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Abstract
University, Espoo, Finland . - - P ;
piversity, Bepoo, Hinan Intelligent transportation and smart city applications are currently on the rise. In many

c J applications, diverse and accurate sensor perception of vehicles is crucial. Relevant infor-
ortrespondence Rk N . : .
mation could be conveniently acquired with traffic cameras, as there is an abundance of

cameras in cities. However, cameras have to be calibrated in order to acquire position

Risto Ojala, Department of Mechanical Engineering,
Aalto University, Espoo, Finland.

Email: ristoj.ojala@aalto i data of vehicles. This paper proposes a novel automated calibration approach for partially
connected vehicle environments. The approach utilises Global Navigation Satellite Sys-

Funding information .. . . . . .
& tem positioning information shared by connected vehicles. Corresponding vehicle Global

Henry Ford Foundation Finland; Academy of
Finland Navigation Satellite System locations and image coordinates are utilised to fit a direct
transformation between image and ground plane coordinates. The proposed approach was
validated with a research vehicle equipped with a Real-Time Kinematic-corrected Global
Navigation Satellite System receiver driving past three different cameras. On average, the
camera estimates contained errors ranging from 1.5 to 2.0 m, when compared to the
Global Navigation Satellite System positions of the vehicle. Considering the vast lengths
of the overlooked road sections, up to 140 m, the accuracy of the camera-based localisa-
tion should be adequate for a number of intelligent transportation applications. In future,
the calibration approach should be evaluated with fusion of stand-alone Global Navi-
gation Satellite System positioning and inertial measurements, to validate the calibration
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methodology with more common vehicle sensor equipment.

1 | INTRODUCTION

of sensors capable of facilitating smart features. Smart features
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can range from safety and traffic signal control to urban plan-

1.1 | Motivation and background

Transportation systems and city infrastructure are becoming
increasingly intelligent, in an attempt to solve many problems
of expanding urbanisation. Future technological advancements
are relied on to increase the efficiency and safety of transporta-
tion. There lies great potential in the co-operation of connected
vehicles and roadside sensors, as working in unison they can
accurately monitor the overall surrounding traffic. Vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) connections
allow effortless information amongst vehicles and road users.
Information transmitted in such connected systems can be
utilised for controlling the traffic or assisting drivers with rel-
evant information. To grasp the full benefit of these connected
systems, road infrastructure should be updated with plethora

ning. A potential approach for acquiring information on the
infrastructure side would be to more efficiently utilise the traf-
fic cameras already existing in many parts of road networks.
Surveillance cameras are all over cities nowadays [1], with traffic
being a popular area of monitoring. Cameras can be utilised for
detecting the presence of different road users, such as vehicles,
pedestrians or cyclists, as well localising them and evaluating
their trajectories.

Applying detection and localisation algorithms on surveil-
lance camera feeds in real-time, different connected safety
systems could be implemented in the infrastructure. Vehicles
and their drivers could be alerted of probable on-coming col-
lisions, or alerts could be sent of hazardous behaviour of others.
Such systems have been developed and discussed in the existing
literature [2—4]. A smart safety system has also been developed
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at our research group, with the goal of detecting road users
in occluded intersection areas and warning drivers of probable
collisions [5]. In order to use surveillance cameras to their max-
imum potential in different intelligent transportation systems,
reliable localisation information should be acquired from them.
This is a challenging issue, as acquiting three-dimensional real-
wortld locations from the two-dimensional pixel information of
image data is naturally not a straightforward process.

To improve the applicability of surveillance cameras in
intelligent transportation infrastructure, this paper presents a
convenient calibration approach based on connected vehicle
technology. The goal of the calibration is to accurately trans-
form the image coordinates of vehicles to coordinates on the
road. Calibration is achieved via tracking a vehicle in the camera
view with known geographic coordinates. Geographic coordi-
nates of the vehicle are acquired from the Global Navigation
Satellite System (GNSS), and shared with the infrastructure over
V2I-connections. Although such vehicle GNSS positioning data
is not currently available in the traffic infrastructure systems,
the calibration approach is convenient for future adoption.
Modern vehicles are already equipped with GNSS localisa-
tion capabilities, and connected vehicle technology will soon
be introduced to the market. Connected vehicle technology
will enable vehicles to share their GNSS positions via V2I-
connections. The presented calibration technology is especially
useful for infrastructure-based localisation systems in a future
transition period when only a portion of vehicles are equipped
with connected technology. This scenario is likely, consider-
ing the long lifespan of vehicles [6]. Calibration based on the
GNSS coordinates can be considered reliable, as the coordi-
nates offer a closed-loop calibration solution, in which the
calibration accuracy of the automated process can be easily
evaluated. Furthermore, cameras calibrated with GNSS coordi-
nates are capable of localising vehicles in geographic coordinate
systems, allowing seamless utilisation of the data in intelligent
transportation systems (ITSs).

1.2 | Scientific contributions

This work presents novel methodology for automatically cal-
ibrating traffic cameras for vehicle localisation. The proposed
calibration approach carries several benefits compared to
previously presented calibration approaches [7-9]. Previous
approaches have been limited by the challenge that they must
make several assumptions regarding the structure of the visi-
ble scene, such as straight roads, known lane width, or certain
visible vehicle keypoints. Additionally, these purely image-based
approaches do not feature a feedback loop for automatically
verifying the resulting calibration. Our novel contribution is
a calibration method, that can be carried out in practically
any outdoor environment. The proposed method is not reliant
on assumptions of geometric clues visible in the structure of
the scene, making the approach more generalisable. Further-
more, the GNSS-based calibration approach allows utilising
the calibration data for validating the success of the calibra-
tion automatically, as the GNSS data inherently allow evaluation

of the achieved localisation accuracy. GNSS-based calibration
also enables camera-based extraction of vehicle coordinates
in a global coordinate system, facilitating effortless usage of
the camera localisation data in traffic monitoring systems. Pre-
vious approaches have been limited to a local camera-based
coordinate system, as no global frame has been provided.
Experimental results validating the reliability and accuracy of
the proposed calibration approach are presented, highlighting
the applicability of the method in actual traffic use cases.

2 | STATE OF THE ART

Calibration is an essential step in systems and devices that apply
sensor data to assess their state and perceive the surrounding
environment. Investigation of different calibration techniques
has become a crucial field of research in robotics [10] and vehic-
ular applications [11], where localisation and state-estimation
must be performed accurately and robustly. Camera calibration
has been a field of extensive research, as calibration is essen-
tial for acquiring reliable geometric information from images.
In its simplest form, the calibration problem boils down to
finding the camera matrix of a pinhole camera model, which
linearly maps real-world 3D coordinates to the 2D camera coot-
dinate system. Direct Linear Transformation (DLT), proposed
by Abdel-Aziz and Karara [12], is commonly considered the
most basic approach for this task. DLT calibration requires
a set of known 3D wortld coordinate and 2D camera coordi-
nate correspondences, and the camera matrix is found as the
least squares solution to the linear problem. However, finding
the camera matrix might not be sufficient for many applica-
tions. Weng e# a/. [13] have proposed a calibration method based
on wortld coordinate and camera coordinate correspondences,
which accounted for distortions in the camera model. In addi-
tion, their approach also solved the actual values of the camera
intrinsic and extrinsic parameters, and not simply a solution
to the linear projection problem. The approach was based on
iterative least squares optimisation of the pinhole camera param-
eters and distortion parameters. In many practical scenatios,
finding the 3D wotld coordinate and 2D camera coordinate cot-
respondences for the calibration can be a laborious task, often
requiring carefully constructed calibration setups. An alterna-
tive approach to calibrating a camera has been invented utilising
vanishing points found in a camera view, as proposed by Caprile
and Torre [14]. Vanishing points are theoretical points in the
2D image of a camera, where projected patallel 3D world lines
appear to intersect. Utilising vanishing points derived from a
camera view, the camera intrinsic parameters as well as the rota-
tion matrix can be calibrated. This can be practical in many
man-made environments, where parallel lines often exist. How-
ever, as the vanishing points contain no information of scale,
the camera translation vector cannot be found via this method
alone. Recently, the most popular camera calibration has been
the one developed by Zhang [15]. This approach is capable of
providing all camera parameters, including distortion param-
eters, based on multiple images of a planar checkerboard of
known size. The approach first applies basic DLT to solve an
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FIGURE 1

environment

Simplified illustration of a traffic camera monitoring a traffic

analytical solution, followed by non-linear optimisation. Pop-
ularity of the approach is easy to understand, as no complex
calibration setups are needed, only a planar pattern has to be
shown in different orientation in front of the camera. How-
ever, in many real-world scenarios, especially with surveillance
and traffic cameras, automated calibration procedures have been
favoured, as the sheer number of surveillance cameras around
the world is staggering.

Traffic camera calibration has been a widely studied problem
among the I'TS research community. Commonly the approaches
have aimed for maximal automation, so that minimal manual
work is required in the calibration procedure. The motive of the
calibration has commonly been to acquire vehicle speeds and
locations with the cameras, traditional applications including
speed-limit violation monitoring and intelligent traffic control.
As the ITS applications develop with advanced technology, need
for convenient calibration increases for future applications as
well. Generally, the calibration procedutes and camera-based
measurement techniques model the road environment as a plane
on which the vehicles are located. This effectively reduces the
positioning problem to a mapping from 2D world coordinates
to 2D camera coordinates. Visual representation of the sim-
plified problem is depicted in Figure 1. An extensive review
presenting a multitude of traffic camera calibration approaches
has been written by Sochor e a/. [8]. Another review on the
topic has been published by Kanhere and Birchfield [9], focus-
ing especially on the commonly applied methodology based on
vanishing points. As previously stated, vanishing point-based
calibration methods are unable to generate a translation vector
for the camera. Approaches based on this methodology typi-
cally utilise additional information of lane width, camera height,
or distance between road and camera to compute a translation
vector. This is necessary for acquiring distances or speeds in the
camera view.

Vanishing point-based methods have been the most thot-
oughly investigated topic in traffic camera calibration. Bas and
Crisman [16] were pioneers in the field, proposing an approach
based on known camera height and tilt angle, as well as two man-
ually marked points on both sides of the road. These roadside
points were utilised for finding a vanishing point, demand-
ing the road to be straight. Their measurements showed a
relative accuracy of 1%-2% for points near the camera and

4%—6% for points further away on a single camera view. Sim-
ilar yet more automated calibration methodology was presented
by Schoepflin and Dailey [17]. Their approach first deter-
mined lanes based on vehicle motion maps, and extracted a
vanishing point from the lanes, assuming that the lanes were
straight. Another vanishing point, in an orthogonal direction,
was found statistically analysing the vehicles with Hough trans-
form. Assuming a known lane width they were able to carry
out calibration of the camera. The accuracy of similar camera
calibration has been studied by Zheng and Peng in a manual
approach [18]. They also utilised two vanishing points, acquit-
ing the first point along the ground from the lane markings
and the second point in the vertical direction from lamp posts
and other similar objects. Vanishing points were determined
based on manual image annotation. Translation vector was esti-
mated based on known dimensions of the lanes and the lane
markings, as well as known heights of fences. Testing the accu-
racy of their approach with two 3.2 m and two 6 m known
lengths in the image, they acquired an average relative accu-
racy of 1.5%. Traffic camera calibration mixing vanishing point
detection and geometric road models has been proposed by
Dawson and Birchfield [19]. Markov chain Monte Carlo search
was utilised to fit the road geometry to the detected vanishing
point. They assumed prior knowledge of the number of reced-
ing and oncoming lanes, and lane width. Analysing a segment
with a known length on the ground plane, their approach had an
average relative positioning accuracy of 10%. One of the most
recent vanishing point-based methods has been presented by
Dubska e al. [20]. Their goal was to fully automate the calibra-
tion process. Vehicles were assumed to move on a straight path
in the camera view, and a vanishing point was acquired from
tracking them. Vehicle appearance was utilised for finding an
additional vanishing point, which was in the orthogonal direc-
tion compared to the other vanishing point, along the ground
plane. Known statistics of vehicle sizes were utilised for esti-
mating the translation vector of the camera. The work on the
calibration method was continued by Sochor e a/. [21]. They
fine-tuned the method by improving the acquisition of vehicle
3D information, thus defining the scale of the scene more accu-
rately. When measuring segments with known length in the road
plane, their approach yielded an average relative error of 3.47%.

Calibration methods not based on vanishing points have
been also presented. Manual traffic camera calibration has been
explored by Ismail ¢z a/. [22], who utilised calibration data gath-
ered from ortographic imagery and field-measurements catried
out with a measuring wheel. Utilised calibration data included
point correspondences, as well as lengths and angles of seg-
ments. They applied a novel multi-component loss function
to reach calibration, reaching 6.9% relative error in estimat-
ing segment lengths. Another traffic camera calibration method
based on known geometry in the images has been proposed by
Do et al. [23]. They placed the corner markings of an equilat-
eral triangle in the camera view, and used the known geometry
for finding necessary camera parameters for distance measure-
ments. A more recent automated calibration approach has been
proposed by Bhardwaj e¢# al. [7]. They applied deep learning
for detecting vehicle keypoints, whose relative dimensions were
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assumed known based on statistical data of the locally most
common sedan models. They assumed known intrinsic cam-
era parameters, as well as suitable point of view of vehicle
rears. Necessary vehicle keypoints included vehicle tail lights
and side-view mitrors.

Most approaches in traffic camera calibration, especially the
automated methods, have been focused on utilising only the
information available in the camera view. However, with the
emerge of connected vehicles, additional sensor data may be
available for the calibration procedure. In outdoor applications,
GNSS offers an interesting solution for acquiring real-world
coordinates in the camera view, enabling a multitude of cali-
bration approaches. However, positions acquired with regular
stand-alone GNSS receivers contain several metres of errot,
which can hinder the accuracy of the calibration [24-206]. GNSS
positioning can be enhanced with different approaches, such
as Real-Time Kinematic (RTK) corrections, which can reach
centimetre-level accuracy in favourable conditions [27]. These
approaches still suffer from some of the common limitations
of GNSS navigation, such as signal reflection and non-line of
sight issues in urban canyons [28—30]. GNSS-based calibration
approaches are commonly applied in vehicles, fusing GNSS
positioning information with the on-board camera imagery
[31, 32]. Calibration of cameras installed in the infrastruc-
ture has been less commonly achieved with GNSS, although
some related works exist. GNSS-based surveillance camera
calibration has been implemented by Liao ef a4/ [33], who
performed calibration based on GNSS coordinates acquired
from the mobile device of a pedestrian. Their system was
designed for automated calibration, with an implementation
of trajectory matching between the camera view and GNSS
coordinates. Point correspondences of GNSS coordinates and
image coordinates were utilised to carry out the well-established
calibration method developed by Tsai [34]. Liu ¢z a/. [35] have
also utilised GNSS coordinates, calibrating their stereovision
surveillance system based on GNSS coordinates of a passing
vehicle. GNSS-based calibration of camera systems has been
expanded by Jiang and Sun [36]. With a small unmanned aerial
vehicle equipped with a differential GNSS receiver, they visited
different locations in the camera view. This yielded varied point
correspondences in a notably wide range, ensuring a proper
calibration.

As seen in previous literature, multiple calibration approaches
for traffic cameras have been presented, both manual and auto-
mated calibration. There is an increasing need for automated
traffic camera calibration methods, as a growing amount of
localisation data are requited from urban traffic environments.
However, previously presented methods still require some
preliminary knowledge or measurements of the scene in order
to perform the calibration. This preliminary knowledge typ-
ically includes road or vehicle dimensions, or geometry. Due
to their core assumptions, many methods can only function
in specific environments, such as on straight roads. Further-
more, calibration methods based purely on the geometrical
clues of the camera view miss an inherent feedback loop
ensuring that the camera has been propetly calibrated for the
localisation task. We aim to solve the previously presented

problems by proposing a novel calibration approach for local-
isation tasks. Our automated calibration approach utilises point
correspondences of vehicle GNSS coordinates and image coor-
dinates to calibrate traffic cameras. The proposed approach
is designed for partially connected vehicle environments,
where the shared GNSS coordinates of visible connected
vehicles can be utilised. Proposed GNSS-based calibration
can be carried out in any outdoor scene, not being reliant on
assumptions regarding visible geometric clues in the structure
of the scene. Furthermore, GNSS coordinates utilised in the
calibration provide a feedback loop for testing the automatically
calibrated camera, ensuring that the localisation is reliable.
GNSS-based calibration also carries the benefit of the camera
localisation results being automatically available in a relevant
coordinate system. Localisation in the geographic coordinate
system enables a multitude of ITS applications with the camera
data.

3 | METHODS

3.1 | Calibration for localisation

The camera calibration approach presented here models the
scene by placing vehicles on a flat ground plane. This reduces
the problem to a 2D-to-2D mapping between world coordinate
and pixel coordinate systems. The third dimension is completely
omitted here, as it is irrelevant for the task of vehicle localisation
in the two-dimensional ground plane. Therefore, a full camera
calibration is not carried out and instead a homography [37, 38]
is fitted between the image plane and the ground plane. This
is achieved by matching multiple pairs of image plane coordi-
nates of vehicles to their known ground plane coordinates. The
image plane coordinates are acquired via object detection and
tracking, and the ground plane coordinates are acquired with
GNSS positioning, The location of a vehicle described by a 2D
homogeneous coordinate x, which is defined as

x=|y]. (1)

The image plane coordinates p of the vehicle are defined in
homogeneous coordinates as

p=|r|- @

In this paper, the centre point of the vehicle bounding box is
chosen to represent p. The described ground plane and image
plane coordinate systems is presented in Figure 1. Any 7th cor-
responding homogeneous coordinates in ground plane x; and
in image plane p; are linked via homography as

Ax; = Hp;, ®)
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where the homography is defined by a 3X3 projection matrix H.
The scaling factor is denoted by A.

Based on available point correspondences, the least squares
optimal homography matrix can be solved via a homogeneous
linear system representation as presented by Hartley and Zis-
serman [38]. For the corresponding ground plane x; and image
plane p; coordinates, it holds that

This can be manipulated to the form
T T
0 =p;, P, (|l
p, 0 —xp/|[[h]|=0, 5
—p!  xp] 0 h;

where h denotes a row of the homography matrix. This form
provides two linearly independent equations for each point
correspondence. Requitring four or more unique point cotrre-
spondences, a total of # point correspondences are bundled
together as

0 —p/  p]

p/ 0 —xp!
0 _PZT JzPZT hy
p, 0 —xp)||h|=0. ©)
. h,

0 _PnT J’ﬂpnT
p, 0

T
—X,Px

In the above homogeneous linear system, we denote the leftside

matrix as A:
0 -p/ np/
PZ ' 0 _leil 4
0 —p;, op)
A=|pl 0 —xp!|. ™
0 _P;{ )’nP;ﬁ
_pﬂ[ 0 _X;zPZ‘_

Constraining the scale of the homography matrix with its
Frobenius norm ||H||z = 1, the optimal homography matrix
is represented by the ecigenvector of A”A corresponding
to the smallest eigenvalue. This eigenvector is the reshaped
homography matrix which minimises the least squares error

L= (v—5)+0,-5)% ®)
=1

where % and j denote a ground plane coordinate estimated
with the homography matrix. With the calibrated homography
matrix, image plane coordinates can be transformed into esti-
mated ground plane coordinates, allowing acquisition of vehicle
coordinates directly from images. The homography calibration
can be effortlessly carried out once known pairs of ground plane
coordinates and image coordinates are available. This calibration
process was here experimentally validated on data of a research
vehicle driving past traffic cameras.

3.2 | Random sample consensus for filtering
the calibration data

Outlier coordinate pairs can be found in the calibration point
correspondences due to problems in GNSS localisation or
incorrect timestamps in the matched ground plane and image
coordinates. Outliers in the calibration data can have a tremen-
dous effect on the outcome of the homography calibration due
to the least squares approach. In order to reduce the effects
of outliers in the coordinate pairs utilised for calibration, Ran-
dom Sample Consensus (RANSAC) [39] is additionally utilised
in the calibration procedure presented here. The calibration pro-
cess with RANSAC can be divided to the following separate
steps.

1. A minimal random subset of four point correspondences are
selected from the full set, called the initial inliers.

2. The homogtraphy is fitted to these initial inliets.

3. Ground plane estimates for all pixel coordinates are gener-
ated with the homography matrix, and those with an error
beneath a chosen threshold are considered inliers.

4. The homography matrix is refitted to all of the inlier point
correspondences.

In the experiments presented here, the RANSAC procedure
was executed a total of thousand iterations, the chosen homog-
raphy matrix being the one with the highest number of inliers.
The inlier threshold was set at 3 m. The number of iterations
and the inlier threshold value were chosen keeping in mind
the total number of points correspondences and that GNSS
localisation even with RTK corrections can occasionally include
notable error [28—30]. The presented values should be generally
applicable to any camera installations, although number of itera-
tions could be increased if notably more point correspondences
are available.

3.3 |
plane

Geodetic GNSS coordinates to ground

In order to transform geodetic vehicle GNSS coordinates to the
two-dimensional ground plane, the following transformations
were applied. First, the geodetic longitude, geodetic latitude,
and ellipsoidal height coordinates were transformed to Earth
Centred, Earth Fixed (ECEF) coordinates. This was achieved
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FIGURE 2  Geographic coordinate systems related to GNSS positioning

as
X (N + ) cos p cos 4
vl= (N + h)cos¢psind )
Z <ﬁzN + /y> sin ¢
a
where
2
a
= (10)

\/42 cos2 ¢ + P2 sin” ¢

Geodetic longitude and latitude ate denoted as 4 and @,
respectively. Ellipsoidal height is denoted by 4, and & denotes
equatorial radius, whereas 4 denotes polar radius. The acquired
ECEF cootdinates X, Y, and £ are further transformed to
East, North, Up (ENU) coordinates as

x —sind, cos 4, 0 X —-X,
y|=]|—sinp,cosd, —sing,sind, cose, || Y =Y, ],
2 cosp,cosd, cosd,sind, sing,|| Z—2Z,

)

where x;, y, and z denoted the ENU coordinates. X, Y, and Z,
represent a chosen origin in the ECEF coordinate system, which
was here chosen arbitrarily to be one of the measurement points
in each experiment. The chosen origin defines the location
of the ENU tangent plane, which here represents the ground
plane. In order to place each calibration point on the ground
plane, the g-coordinate is set to zero for all points. The differ-
ent coordinate systems are presented graphically in Figure 2. It

is noteworthy that the ground plane coordinates can be trans-
formed back to ECEF and geodetic coordinates, depending
on the coordinate system requirements of the particular ITS
application.

3.4 | Experiment setup

To validate the calibration approach presented here, three
roadside cameras were calibrated in the Helsinki metropolitan
region by driving a research vehicle equipped with a GNSS
receiver past them. The cameras ate here referred to as Camera
1, Camera 2, and Camera 3. Samples of the camera views are
provided in Figure 3. Camera 1 had a resolution of 1024X768
pixels, and monitored a high traffic road in central Helsinki.
Camera 2 had a resolution of 1280X720 pixels, ovetlooking
an urban road entering the Aalto University campus in Espoo.
Camera 3 also had a resolution of 1280X720 pixels, and it
monitored a section of a busy highway in Espoo. The camera
views provided three distinct scenarios for validating the local-
isation results acquired with the calibration. Fach camera view
provided a unique combination of road geometry, speed of the
research vehicle, camera viewpoint, as well as quality of GNSS
positioning. GNSS positioning accuracy was mostly affected
by the surrounding buildings, with the area of Camera 1 having
the the most notable positioning problems due to the central
location.

Validation of the calibration approach was practically carried
out by driving a research vehicle past each camera view sev-
eral times. In the view of Camera 1, each passing was done on
a separate lane of the four-lane road. Camera 2 was passed a
total of five times, driving back and forth the two-lane road. A
total of six different lanes, three on both sides, were used for
passing Camera 3 with the research vehicle. The research vehi-
cle was equipped with an Indagon MTT130 RTK-positioning
terminal, which was utilised for acquiring the GNSS location
of the vehicle. In the urban surroundings, RTK fixed solutions
were available for only a limited number of measurements, and
vast majority of measurements were recorded with RTK float
solutions. The corresponding image coordinates of the research
vehicle were acquired with the well-established tracking combi-
nation of YOLOv4 [40] and DeepSORT [41]. The centre point
of the vehicle bounding box was chosen to represent the vehicle
image point coordinate. For Camera 1, Camera 2, and Camera
3, a total of 43, 38, and 40 corresponding GNSS locations and
camera detections were recorded, respectively. The number of
point correspondences was kept modest to highlight that the
approach does not depend on a great number of data samples.
Acquired GNSS locations as well as visualisations of tracking
the research vehicle are presented for all three camera views in
Figures 4-0. GNSS locations were plotted on samples extracted
from OpenStreetMap [42] for clearer illustration of the points.
When observing the map figures, one should note that Open-
StreetMap is not a high-accuracy map and can contain notable
errors [43]. This is why many of the camera localisations and
GNSS positions can seemingly appear to be located outside of
the road.
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FIGURE 3  Camera views used for validating the calibration approach. Camera 1 on the left, Camera 2 in the middle, and Camera 3 on the right
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FIGURE 4  Visualisation of vehicle tracking in the view of Camera 1, and all the corresponding GNSS coordinates of multiple test runs
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FIGURE 5 Visualisation of vehicle tracking in the view of Camera 2, and all the corresponding GNSS coordinates of multiple test runs

Since many existing traffic and surveillance cameras in
cities capture video at lower resolution, the experiments were
repeated with low-resolution video to ensure the calibration
method can be applied on a wide vatiety of camera views.
Low-resolution directly affects how accurately the vehicle posi-
tion can be extracted from the images. Additionally, resolution
impacts how well vehicles can be tracked in the images. The
original video recordings were used, reducing the resolutions of
Camera 1, Camera 2, and Camera 3 to 640%x480, 852x480, and
852%480 pixels, respectively. Tracking the research vehicle in the

low-resolution video footage of the cameras, a total of 45, 39,
and 39 corresponding GNSS locations and camera detections
were extracted, respectively.

3.5 | Error metric for comparison to other
methods

Localisation errors arte here mostly reported as the abso-
lute distance between the camera localisation and the GNSS
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FIGURE 6 Visualisation of vehicle tracking in the view of Camera 3, and all the corresponding GNSS coordinates of multiple test runs

position. This offers a simplistic error metric for evaluating
the applicability of the calibration approach to different traffic
monitoring applications. However, this metric is inconvenient
for comparing the achieved accuracy to previous approaches
in the literature. This is due to the fact that the absolute
measurement error typically grows as the measured distance
grows. Expressing the errors as proportional to the measured
distance yields results with better generalisability. To compare
the proposed approach to previously published methods, the
root-mean-square error (RMSE) metric proposed by Bhardwaj
et al. |7] was adopted. The error metric analyses all possible
pairs of validation points in the ground plane, and a normalised
error is computed by comparing the real distance between the
points and the distance reported by the camera. For any /th pair
of validation points, the relative error €/”” was computed as

d'”/"’”/' _ dl_rea/

norm — _1
e’ =

z drea/ (1 2)

>

reproj . . : :
d 7%/ is the distance between the camera localisations,

where
and d" “ is the distance between the ground truth points. Both
distances lie on the ground plane. In this work, the GNSS
positions were used as the ground truth points. Combining
the relative errors of the point pairs of the validation sets,

camera-specific RMSE values were computed as

RMSE = €72, (13)

where K denotes the total number of validation point pairs.

In this paper, the RMSE metric was used compatre the accu-
racy achieved with the proposed method to the accuracy values
reported in the work of Bhardwaj ez a/. [7]. Their work reported
RMSE values measured for their novel AutoCalib approach,
as well as the vanishing point approach proposed by Dubska
et al. [20]. Their reported RMSE values were computed based
on applying the calibration approaches in 10 different traffic

camera views, and localising specific ground truth points in the
ground plane.

4 | RESULTS

RTK-corrected GNSS data from the research vehicle and
video data from the three cameras were utilised to validate the
proposed calibration approach. Tenfold cross-validation was
applied to meticulously evaluate the localisation capabilities
of the calibrated cameras. The point correspondence data
were divided into 10 separate subsets, of which nine subsets
were utilised for calibration and the remaining subset was
used for validation. All such combinations wete exhaustively
evaluated, using the validation sets for evaluating the error of
the calibration. Each camera view was studied separately, and
errors for the camera localisation were reported based on the
distance between the location reported by the camera and the
location acquired from the RTK-corrected GNSS receiver.
Visualisations of the localisation results were generated for
randomly selected subsamples of the validation processes. The
visualisations were presented on OpenStreetMap, and one
should again note that the maps are an approximation of the
road environment. Furthermore, relative error was quantified
for each camera view with the RMSE metric. These RMSE
values were used to compare the proposed calibration approach
to previous approaches, in addition to a general comparison
of the features of the methods. Lastly, the efficacy of applying
RANSAC for excluding GNSS mislocalisations was assessed,
and the impact of timestamp errors on the calibration was
analysed.

4.1 | Camera 1localisation accuracy

A total of 43 corresponding GNSS locations and image points
were gathered of the research vehicle with Camera 1. With 10-
fold cross-validation, the localisation error was computed for
each point when the respective point was in the subset used
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FIGURE 7 Camera localisation errors on the cross-validation data of
Camera 1

for validation. A histogram and key statistics of these observed
errors are presented in Figure 7.

Most of the errors can be seen in the range of 0-3 m, which
is also reflected by the mean and standard deviation of the error
distribution. The mode of errors can be found in the prox-
imity of 0 m. However, the error distribution exhibits a heavy
tail, with a number of outlier errors approaching the 6 m mark.
These outlier errors were likely caused by GNSS inaccuracy, as
the position estimates from the camera were directly compared
to the GNSS locations.

Presented errors can also be witnessed observing localisa-
tion samples recorded at a random step of the cross-validation
process, visualised in Figure 8. The GNSS locations and cor-
responding camera estimates are presented for the calibration
and validation points separately. Most of the camera-based
location estimates closely resemble the GNSS locations in the
experiments, which depicts the capabilities of the camera-based
localisation. The four lanes of the road are evidently distin-
guishable from the localisation results. However, some camera
estimates can be seen clearly diverging from the GNSS locations
near the tramway track, and these represent the outlier errors of
Camera 1 previously presented in Figure 7.

Performing the same cross-validation on the low-resolution
footage of Camera 1 did not drastically alter the results. With the
reduced resolution, the localisation results showed a mean error
of 2.0 m, median error of 1.5 m, and standard deviation of 1.6
m. Observing the original higher resolution validation results
in Figure 7, the average error increased, yet the median error
decreased. Therefore, the spread of the error slightly increased
as the resolution was altered, which can also be witnessed by the
increased standard deviation.

4.2 | Camera 2 localisation accuracy

Testing the calibration approach on Camera 2, a total of 38
corresponding GNSS locations and image points were utilised.
Similar validation methodology was applied as with Camera 1,
and the errors from the 10-fold cross-validation are presented
in Figure 9.

Errors for Camera 2 also mostly ranged from 0 to 3 m. The
error distribution resembles a bell curve, well represented by
the mean and standard deviation. Mode of the distribution can
be seen located at the mean. Compared to the error distribu-
tion of Camera 1, notably fewer errors were found in proximity
of the 0 m mark. However, the distribution has barely any
tail, except a single outlier at over 5 m of error. This outlier
was likely again caused by GNSS measurement inconsistency.
Localisations made by the camera system on a random cross-
validation iteration are provided along the GNSS locations in
Figure 10. Separate figures are presented for the calibration and
validation points.

Camera estimates can be seen closely matching to the GNSS
locations for both calibration and validation points. The two
lanes of the road can be clearly distinguished from the localisa-
tion results. This indicates that the camera was well calibrated to
the road environment, even though two-dimensional vatiation
of the point data was minimal in the ground plane.

Cross-validation tests were repeated with low-resolution ver-
sion of the video footage. On the low-resolution data, the
camera localisation netted a mean error of 1.6 m, median error
of 1.5 m, and standard deviation of 0.95 m. Change in resolu-
tion had therefore minimal impact on the calibration of Camera
2, when comparing to the results in Figure 9. Only the standard
deviation of the errors shifted slightly.

4.3 | Camera 3 localisation accuracy

For Camera 3, a total of 40 corresponding GNSS positions and
image points were utilised for assessing the accuracy of the cal-
ibration. Resulting errors from the 10-fold cross-validation are
presented in Figure 11.

The achieved accuracy was distinctly similar to that achieved
with Camera 1, with the error statistics showing nearly identi-
cal values. However, the mode of Camera 3 error distribution
can be found at approximately 1.5 m, and there is notably
more spread in the errors. Frequent errors are visible in the 3—
5 m range. These errors were mostly caused due to localising
the research vehicle at extreme distances. The road section for
which the point correspondences were gathered was approx-
imately 140 m long, and therefore the vehicle was nearly
vanishing into the horizon during the farthest measurements.
The difficulties in long-distance localisation can be witnessed
in Figure 12, which depicts localisations performed by Cam-
era 3 on a random cross-validation iteration along the GNSS
positions. Greatest errors can be witnessed among localisa-
tions provided for distant points. Despite the errors, the lanes
which the vehicle followed ate again clearly visible from the
localisation results.

The cross-validation was cartied out with the low-resolution
video of Camera 3 as well. In this cross-validation, the cal-
ibrated camera performed localisation with a mean error of
1.6 m, median error of 1.4 m, and standard deviation of 1.1
m. Surprisingly, the camera performed localisation more accu-
rately with the low-resolution data, when comparing to the
values in Figure 11. As the standard deviation decreased, some
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FIGURE 8 Sample from the Camera 1 cross-validation, highlighting camera location estimates on calibration as well as validation points
TABLE 1 The proposed GNSS-based calibration method compared to previously published methods
Calibration Mean Min Max Feedback Coordinate Computational Connected
method RMSE RMSE RMSE Generalisability ~ Prior info loop system load traffic
AutoCalib [7] 8.98% 5.07% 12.3% Fair Required No Local High None
GNSS method 12.0% 8.21% 18.0% Excellent None Yes Global Low Required
VP method [7,20]  21.6% 5.40% 56.4% Good Required No Local Low None
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FIGURE 9 Camera localisation errors on the cross-validation data of
Camera 2

of of the most extreme errors were absent. However, this
was at least partially due to the fact that the low-resolution
data had fewer long-range point correspondences. The research
vehicle was not as successfully tracked at long ranges in the
low-resolution video.

4.4 | Comparison to other calibration
methods

Performing the previously desctribed cross-validation on each
of the cameras, the validation sets were utilised for evaluating
relative errors comparable to the recent literature. RMSE val-
ues defined in Equation (13) were computed for each of the
cameras. From the RMSE wvalues of the cameras, the mean,

minimum, and maximum are reported in Table 1, along with
reference RMSE values reported for other automatic calibra-
tion methods in the literature [7]. In addition to the quantitative
RMSE results, qualitative features of the calibration methods are
compared in Table 1.

The proposed GNSS approach can be seen ranking slightly
below the AutoCalib calibration approach in terms of the
RMSE results. Compared to the commonly applied vanishing
point-based calibration method (VP method), notably lower
mean and maximum errors were achieved. These results high-
light that the accuracy achieved with the proposed calibration
approach is within the state of the art, yet not cutting-edge.
However, the RMSE values do not offer an absolutely fair
comparison, as the values found in the literature have been
generated with a different dataset, featuring different character-
istics, such as the accuracy of the ground truth measurements.
Nevertheless, the provided RMSE values offer an indefinite
metric for approximately comparing the accuracies of the
calibration methods.

Accuracy is not the only factor that should be utilised for
assessing the different methods. The qualitative features of the
methods listed in Table 1 highlight the benefits of the proposed
approach. The proposed GNSS-based method is generalisable
to nearly any outdoor camera view, whereas AutoCalib requires
a camera view with vehicles in certain poses. More specifically,
AutoCalib assumes that vehicle sideview mirrors, taillights, and
rear register plate are visible simultaneously in the images, as
these keypoints are used for fitting the calibration. The VP
method assumes that the vehicle trajectories follow straight
lines. This assumption can break due to road geometry, or vehi-
cle lane changes. Furthermore, the proposed method assumes
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FIGURE 10 Sample from the Camera 2 cross-validation, highlighting camera location estimates on calibration as well as validation points

Camera 3
8
Mean: 1.9 m
7 Median: 1.5 m
£ Standard deviation: 1.4 m
36
(="
g
=5
2
4
Z
o
53
£
£
| []
0
0 1 2 3 4 5
Error [m]
FIGURE 11 Camera localisation errors on the cross-validation data of
Camera 3

no prior information other than flat ground plane, which is
common to all methods. AutoCalib assumes known camera
intrinsic parameters, as well as utilises a prior database of vehicle
models common to the area. Similarly, the VP method utilises
prior statistical knowledge of vehicle dimensions. A benefit of
the GNSS-based method is also that it can utilise the GNSS
coordinates as a feedback loop to assess the achieved calibra-
tion. The other methods are limited to the image data, and
cannot reliably verify the result of the calibration. GNSS-based
calibration additionally carries the benefit that the camera local-
isation is calibrated to the same global coordinate system used
by other traffic systems. The other calibration methods provide
localisation in an arbitrary local coordinate system, the orienta-
tion of which is unknown relative to the global frame. Lastly, the
calibration process of the GNSS-based method is computation-
ally lightweight, as only a handful of matrix operations on the
point correspondence data are required each RANSAC iteration
to compute the result. Similarly the VP method does not feature
heavy computing, yet AutoCalib utilises a deep neural network
for annotating vehicle keypoints, making its implementation
computationally more demanding. The benefits of the proposed
method stem from the utilisation of vehicle GNSS coordinates.
However, the calibration method is reliant on connected vehicle
and traffic infrastructure solutions, unlike the other calibration

approaches. This limits the usage of the proposed approach in
current traffic infrastructure.

4.5 | RANSAC for eliminating GNSS outliers
The ability of RANSAC to detect GNSS outliers and exclude
them from the calibration was analysed with the point cor-
respondences of Camera 1. Camera 1 was chosen as GNSS
mislocalisations were clearly present, and the data points of
adjacent lanes allowed for a convenient evaluation. Using all of
the available point correspondences for calibration, the outliers
excluded by RANSAC were labelled. These points are shown in
Figure 13.

On the left in the figure, the outlier points can be seen located
at a distance of roughly 10 m from the points of the adjacent
lane. Considering an average lane width of 3—4 m, this indicates
that the GNSS localisation has indeed performed extremely
poortly in this particular area. The right side of the figure shows
the camera location estimates acquired for the corresponding
image points. The camera estimates can be seen ignoring the
outlier GNSS points, forming the adjacent lanes with a fairly
constant gap in between. Camera estimates of the outlier points
are cleatly shifted closer to the points of the adjacent lane. Dis-
tances between the outlier point estimates and estimates from
the adjacent lane were notably more realistic, approximately 6
m. Compared to the distance of 10 m between the GNSS loca-
tions, this was a notable improvement. Therefore, it seems that
RANSAC was able to correctly detect the outliers and exclude
them from the calibration process. As a result, the camera
localisation accuracy was not affected by the GNSS misposition-
ing, although the outlier points heavily affected the quantitative
error results presented for Camera 1 in Figure 7.

4.6 | Sensitivity of calibration to errors in
timestamps

In addition to GNSS inaccuracy, errors in image timestamps
also hinder the outcome of the calibration. Matching the vehi-
cle image coordinates to the GNSS position require the data
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FIGURE 12  Sample from the Camera 3 cross-validation, highlighting camera location estimates on calibration as well as validation points
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FIGURE 13 RANSAC effectively labelled unfit points as outliers. The outlier GNSS locations contained notable error, as they were at a distance of 10 m from

the measurements of the adjacent lane. Due to excluding the outliers, the camera positioned the points closer to one another, roughly at a distance of 6 m

to be synced. GNSS receiver timestamps are highly accurate,
yet image timestamps can include errors from multiple sources.
The camera clock may not be properly synced to internet time
services, or the image capturing and encoding process may
be subject to delays which cause error in the timestamp. Dis-
crepancy in the timestamps causes the vehicle to appear at a
different location in the image than the one matching the posi-
tion reported by the GNSS receiver. This leads to error in
fitting the calibration, as the corresponding GNSS position and
image coordinates of the data point do not match. Depending
on the timestamp error and the vehicle speed, the vehicle may
have moved to a drastically different position during the time
between the acquisition of the corresponding image and GINSS
position sample. In Table 2, distances moved by a vehicle during
different quantities of timestamp error are presented.
Analysing the vehicle position errors presented in Table 2,
error in timestamps is potentially a notable source of error
in the overall accuracy of the calibration. Vehicles may move
metres during the discrepancy between timestamps, which hin-
ders the accuracy of the achieved calibration. Implementing
the calibration in practical applications, timestamps provided
by the cameras should be reasonably accurate. In the tests pre-
sented for the three cameras, errors in timestamps have likely

TABLE 2
at different vehicle speeds. The position errors have been colour-coded: green
<1m,1m<yellow <2m,red >2m

Errors in observed vehicle position caused by timestamp errors

Vehicle speed
30km/h 40km/h  60km/h 70 km/h
30 ms 0.25 m 0.33m 0.50 m 0.58 m
50 ms 0.42 m 0.56 m 0.83 m 0.97 m

100 ms | 0.83 m 1.1 m 1.7m 1.9m
200 ms 1.7m 2.2 m 33 m 39m

Timestamp
error

contributed to the overall localisation error. As the localisation
errors on average ranged between 1.5 and 2.0 m, it seems prob-
able that part of the error has been caused by slightly incorrect
timestamps. However, on average the timestamps should have
been fairly accurate in the tests, as the presented tests featured
road sections with significantly different driving speeds, yet the
average error remained relatively constant. Some outlier data
correspondences in the tests could have been caused by occa-
sional delay in image timestamps. In practical use, RANSAC
should eliminate the outlier data correspondences caused by
random timestamp errors, provided that the errors are not
prevalent in the calibration data.
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5 | DISCUSSION

5.1 | Accuracy of the calibration approach

Presented results demonstrate that the proposed calibration
approach can be conveniently applied to accomplish reliable
vehicle localisation from roadside surveillance cameras. The cal-
ibrated camera systems were capable of accurate localisation,
considering the tests were carried out on roughly a 100 m
long road sections. Despite monitoring long road sections, the
average localisation errors of Camera 1, Camera 2, and Cam-
era 3 were 1.8, 1.6, and 1.9 m, respectively. Evaluating the
localisation accuracy on the relative RMSE metric presented
in Equation (13), the error was similar to that achieved in the
recent literature. Observing Table 1, the proposed approach can
be seen reaching a mean RMSE of 12.0%, whereas the recently
published AutoCalib was reported to reach RMSE of 8.98%
in its respective paper [7]. Since the RMSE results have been
extracted from different datasets, comparison between them is
limited and only approximate. Nevertheless, their localisation
errors can be considered rather similar.

The witnessed errors of the proposed calibration should be
acceptable for many I'TS applications, especially since the lane
of the vehicle could be quite clearly determined from the local-
isation results. This is evident in the figures highlighting the
camera localisation results on the map, especially in Figures 8
and 13. In these figures, the four lanes the vehicle has driven
can be cleatly defined from the camera localisations. The linear
localisation procedure ensures that the error is more of a con-
stant offset in certain regions, instead of highly varying random
noise. This leads to the errors being highly predictable, and lanes
should be conveniently extractable from the localisations with
simple map-matching and pattern analysis algorithms. This type
of position information combined with scene understanding is
invaluable for many traffic control, monitoring, as well as safety
applications. Such applications include traffic light control, road
planning, and red-light violation warnings.

5.2 | Uncertainty in the GNSS positioning

In the presented results, there remains uncertainty regarding the
exact accuracy of camera-based localisation, as the correspond-
ing GNSS locations were used as reference for computing the
errors. As mentioned earlier, even RTK-corrected GNSS can
include outliers with metres of error when line of sight to the
satellites is blocked. This naturally degrades the reliability of
the accuracy measurements, as there is uncertainty regarding the
ground truths.

Due to the occasional outliers in GNSS positioning, the
RANSAC filtering was added to the calibration approach to
negate the effects of anomalous positioning data. As seen in
Figure 13, RANSAC effectively allowed the calibration process
to ignore the outliers when fitting the homography. The camera
can be seen localising the vehicle on clearly separate lanes, that
are notably more realistic than the ones acquired from GNSS.
However, ignoring these outlier points in the calibration caused
the error histograms to include notable outlier errors, which in

turn affected the error statistics. These outlier points ignored
by RANSAC formed the tail of the error distribution of Cam-
era 1 in Figure 7, which contained individual errors from 3
to 6 m. Camera 2 error distribution in Figure 9 had less out-
liers, only a single error of approximately 5 m. Similarly, Camera
3 did not apparently experience as many GNSS outliers. The
highest errors of Camera 3 occurred at extreme distances from
the camera, and therefore the distance was a more plausible
cause for the errors. The GNSS positioning likely functioned
more accurately in the views of Cameras 2 and 3 due to the
better visibility of the sky, as well as the more predictable and
straight trajectory of the vehicle. Camera 1 was located in cen-
tral Helsinki, surrounded by tall buildings in immediate vicinity
on multiple sides.

5.3 | Benefits and drawbacks of the
calibration approach

The proposed GNSS-based automated calibration approach is
applicable in a wide range of traffic environments, as minimal
assumptions regarding the camera view are made. The only
assumption in the proposed method is the model of the flat
ground plane. In practice, the approach can be applied in neatly
any outdoor environment. Previously proposed approaches in
the literature have depended on different assumptions regard-
ing the traffic scene, such as straight roads, vehicles moving
in straight lines, known number of lanes, known lane width,
known vehicle dimensions, or certain viewpoint of the camera.
For example, the AutoCalib [7] approach used for comparison
here assumed known intrinsic parameters of the camera, known
statistics of vehicle dimensions, and such a camera viewpoint
that the images contained vehicles in certain poses. This was
necessary so that specific keypoints could be extracted from the
vehicles. Such assumptions have naturally been necessary as the
previous approaches have only utilised the information avail-
able in the images to perform the calibration. The proposed
calibration approach takes advantage of an external data source,
allowing for more reliable calibration. GNSS vehicle locations
utilised for point correspondences in the images also allow for
convenient validation of the calibration in automated opera-
tion. Specifically, the GNSS coordinates allow a feedback loop
between camera estimates and actual locations. Purely image-
based calibration approaches cannot verify the calibration from
image data in any concrete way, reducing the reliability of the
camera localisation.

Although widely applicable, GNSS-based calibration can
have its drawbacks in some highly specific environments. Areas
that are underground or inside naturally have extremely unre-
liable GNSS localisation. Therefore, cameras overlooking such
areas cannot be calibrated with the proposed approach. Urban
canyons can also hinder the GNSS positioning accuracy, as wit-
nessed in the presented measurements. If a notable portion
of outlier localisations are present in the calibration point cot-
respondences, the calibration may be unreliable. However, in
future traffic camera applications the appearance of connected
vehicles in the camera view should be a somewhat regular
occurrence. Continuous data acquisition from these connected
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vehicles offers an increased number of point correspondences,
which allows for increasingly reliable outlier elimination with
RANSAC and a more stable optimal solution for the least-
squares optimisation. This offers the possibility for updating
the camera calibration, continuously enhancing the localisation
accuracy and reliability of the camera system.

Another factor to note regarding applicability of the pro-
posed approach is that the GNSS coordinates are transformed
to the ENU ground plane. This method does not consider local
changes in altitude, and localisation accuracy may consequently
be limited in areas with significant local inclinations. This prob-
lem is common to all traffic camera localisation approaches,
as a flat ground plane assumption is generally made in all
single-camera localisation approaches. The proposed approach,
however, also models the ground plane to be tangent to the
earth ellipsoid. This should not pose any challenges in prac-
tice, as the inclination would have to be drastic to majorly affect
the accuracy. Considering the steepness limitations for vehicle-
operated roads, inclination should not cause notable errors
in localisation.

5.4 | Future improvements to the calibration
approach

In the presented tests, the acquired errors of the camera local-
isation were similar to the error in the GNSS positioning. This
indicates that the accuracy of the achieved calibration is mostly
limited by the accuracy of the GNSS. Calibration reliability and
accuracy could further be improved by fusing the vehicle GNSS
positioning with inertial measurements. Fusing inertial measure-
ments with GNSS would effectively remove outliers caused
by temporary problems with GNSS signal quality. Such fusion
would likely enable usage of regular uncorrected GNSS posi-
tioning in the calibration without notable drawbacks in accuracy.
RTK-corrected GNSS is a rare feature in vehicles, whereas reg-
ular GNSS fused with inertial measurements is common and
cost-efficient technology available in most modern vehicles.
Managing to carry out the calibration with existing on-board
positioning equipment is naturally crucial for the adoption of
the presented calibration technology.

Additionally, localisation and calibration reliability of the
proposed approach could be improved with more accurate
detection models of the vehicles in the images. Here, only
two-dimensional bounding boxes were generated for the vehi-
cles, and the centre point of the bounding box was used to
reduce the vehicle to a point coordinate. This is cleatly not an
optimal approach, as the centre point of the two-dimensional
vehicle bounding box depends on the angle in which the
vehicle is observed, skewing the localisation results. More com-
prehensive algorithms capturing the vehicle three-dimensional
bounding box should be applied to reach greater accuracy
and improved reliability. The three-dimensional bounding box
would provide more accurate pixel coordinates corresponding
to the vehicle location on the ground plane. Nonrepresenta-
tive bounding boxes were undoubtedly a source of error in the
presented results.

The results presented in this paper highlight that the cam-
era localisation suffers from varying errors, yet the causes of
these errors are not exhaustively analysed. These errors and
the factors impacting them should be analysed more in-depth
to further optimise the camera localisation capabilities. Such
error factors include GNSS positioning, discrepancy in cali-
bration data timestamps, vehicle bounding box, vehicle speed,
camera pose, and camera resolution. Each of these factors has
an effect on the accuracy of the point correspondence data
used for the calibration process. Their impact on the calibra-
tion error should be analysed independently, finding the key
attributes which might cause the calibration to fail. This detailed
error analysis is left for future research on the topic.

Future research should also focus on fusing the proposed
GNSS-based calibration approach with previously presented
calibration methodologies. This would enable maximal exploita-
tion of the benefits of different calibration methods. Since the
other calibration methodologies apply vastly different process-
ing techniques, their errors are likely not strongly correlated with
the errors of the proposed approach. Fusion of the calibration
approaches could be achieved in a number of ways, machine
learning lately being a popular choice for fusion of perception
technologies. Neural network-based approaches [44] or rein-
forcement learning-based approaches [45] could be applied to
fuse the localisation results achieved with different automated
calibration algorithms.

Another detail left for future work is the procedure of match-
ing the specific vehicle in the images that has provided their
GNSS coordinates. Here, the correct vehicle ID was selected by
hand after recording the tracking results. In real automated cali-
bration applications, the correct vehicle has to be automatically
found in the images for which the known vehicle coordinates
are acquired. This was left out of the scope of this paper, as
the most convenient approach for this problem will depend
on the information available in the connected vehicle message
formats. Simple path matching and statistical methods should
provide a suitable solution to the problem, yet additional infor-
mation likely available in connected vehicle messages, such as
vehicle colour and type, can notably improve the reliability of
the matching.

5.5 | Camera localisation in connected
vehicle environment

The presented calibration approach relies on vehicle GNSS
coordinates being available on the infrastructure side, which is
not the case in current traffic infrastructure. Therefore, imple-
mentation of the calibration approach can only be carried out
once connected vehicles sharing their GNSS coordinates with
the infrastructure are available on the roads. The GNSS times-
tamps must also be synced with the camera timestamps, yet
this should not pose challenges in a connected vehicle environ-
ment with access to the internet. As for the future connectivity
of vehicles, one could argue that vehicle communications will
defeat the purpose of the roadside camera calibration and local-
isation technology presented here. Especially considering that
the presented calibration approach is reliant on at least a partial
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adoption of connected vehicle technology. In order to carry
out the calibration in an automated manner, connected vehi-
cles sharing their GNSS locations must drive past the cameras.
If all vehicles shared their positions in real-time over a network,
all external measurement approaches would naturally be redun-
dant to some extent. However, reaching such scenario where all
vehicles are connected will take a considerable amount of time.

Vehicle manufacturers and traffic authorities have had a
long on-going debate regarding the implementation details of
vehicle communications, and no definitive solution has yet
been created. Meanwhile, an increasing number of modern
vehicles include manufacturer-specific communication tech-
nologies. This indicates that while the industry is shifting
towards connected vehicle technology, a great deal of effort
is still required to reach unified vehicle communication net-
works. Furthermore, even if vehicle communications were
unanimously standardised, adopted, and mandatory on mod-
ern vehicles, not all vehicles in traffic would be connected
for a substantial time period. This is due to vehicles having
a notably long lifespan, as most vehicles are in use for over
a decade. Due to these reasons, for the near future a time
period of partial connected vehicle environment seems prob-
able. The calibration and localisation technology presented here
is designed with this partial connectivity in mind, as the calibra-
tion can be performed in an automated manner if even some
connected vehicles drive past the camera. As an example, if the
maintenance vehicles of a city were equipped with connected
technology, they would effectively allow convenient calibration
of the cameras in the city while the vehicles were conducting
their routine business. With the calibrated roadside cameras,
a number of ITS applications requiring vehicle positions can
be implemented without facing the uncertainty of unaccounted
vehicles with no connected technology.

6 | CONCLUSION

An automated roadside camera calibration approach for local-
ising vehicles was proposed in this paper. Future intelligent
transportation systems rely on rich real-time information of
traffic, and utilising existing traffic camera infrastructure offers
a convenient way to acquire such information. The calibra-
tion approach is based on receiving GNSS coordinates from
connected vehicles visible in the camera view. These GNSS
coordinates atre utilised to calibrate a homography, which can
be utilised to transform image coordinates of vehicles to the
respective ground plane locations. Distinct advantages of the
presented approach are that it can be applied in practically any
outdoor environment, and the GNSS coordinates of vehicles
can be utilised as a feedback loop for the calibration, validat-
ing that the calibration has been successful. The measurements
presented in this paper highlight that the presented calibra-
tion offers accurate vehicle localisation, although outliers in
GNSS measurements complicated the exact quantification of
the errors.

Future work on the calibration approach should aim to evalu-
ate different methods for conveniently matching the vehicles in

the camera view to the received GNSS-coordinates. This is cru-
cial for adoption of the algorithm, as the calibration data points
must be acquired reliably to prevent problems in the calibra-
tion. Furthermore, the calibration method should be validated
with vehicle localisations performed via fusion of stand-alone
GNSS and inertial measurements. This combination of sensors
is already equipped on most modern vehicles, and the iner-
tial measurements should fix most short-comings of GNSS in
urban environments. Additional statistical methods could also
be included to more reliably filter GNSS outliers.

Overall, the presented camera calibration approach can have
a notable impact on how traffic is monitored and controlled.
Adoption of real-time camera-based localisation technology in
roadside cameras can generate an immense amount of data,
which can solve traffic problems with more efficient control,
design, and safety features. Infrastructure-based localisation
offers advantages and robustness in partially connected vehi-
cle environments, as fully connected vehicle fleets are still fairly
distant future.
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