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Abstract

Motivation: Finding molecules with desired pharmaceutical properties is crucial in drug discovery. Generative mod-
els can be an efficient tool to find desired molecules through the distribution learned by the model to approximate
given training data. Existing generative models (i) do not consider backbone structures (scaffolds), resulting in ineffi-
ciency or (ii) need prior patterns for scaffolds, causing bias. Scaffolds are reasonable to use, and it is imperative to
design a generative model without any prior scaffold patterns.

Results: We propose a generative model-based molecule generator, Sc2Mol, without any prior scaffold patterns.
Sc2Mol uses SMILES strings for molecules. It consists of two steps: scaffold generation and scaffold decoration,
which are carried out by a variational autoencoder and a transformer, respectively. The two steps are powerful for
implementing random molecule generation and scaffold optimization. Our empirical evaluation using drug-like mol-
ecule datasets confirmed the success of our model in distribution learning and molecule optimization. Also, our
model could automatically learn the rules to transform coarse scaffolds into sophisticated drug candidates. These
rules were consistent with those for current lead optimization.

Availability and implementation: The code is available at https://github.com/zhiruiliao/Sc2Mol.

Contact: zhusf@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In drug discovery, researchers aim to find molecules with desired
pharmaceutical properties. However, due to permutations of atoms
and bonds, the chemical space is huge: the number of potential
drug-like (synthesizable) molecules is estimated to be more than
1023 (Polishchuk et al., 2013), which is an intractable number for
exhaustive search by wet-lab experiments. Deep learning-based gen-
erative models, which learn the probability distribution of a given
massive training dataset and then have succeeded in generating
objects, such as images (Arjovsky et al., 2017; Karras et al., 2020),

text (Zhang et al., 2017, 2019) and music (Dong et al., 2018) from
the learned distribution, will thus be useful for searching drug candi-
dates in the huge chemical space.

Molecule generation, which usually represents a molecule by a
SMILES string (Weininger, 1988) or a molecular graph, has two
tasks: distribution learning and molecule optimization (Langevin
et al., 2020). The first is that a distribution is modeled from a given
training dataset, and novel molecules with properties similar to the
training dataset are generated from the distribution by random sam-
pling. The second is to modify input molecules and generate mole-
cules with improved scores according to the given evaluation
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function. Usually, molecules are generated from atoms and bonds in
a de novo style (e.g. Blaschke et al., 2020; Gómez-Bombarelli et al.,
2018). Nonetheless, each molecule has a backbone structure called a
scaffold. A suitable scaffold is necessary for a molecule to match the
binding pocket of a target protein. In addition, synthesizing organic
compounds from intermediates with the same scaffolds can reduce
medicinal chemistry efforts. Therefore, generating a molecule
through a scaffold is a common and efficient practice in drug discov-
ery (Zhang et al., 2007). However, all recent scaffold-based
approaches need expert knowledge, such as pre-defined patterns
(Arús-Pous et al., 2020; Langevin et al., 2020; Li et al., 2020; Lim
et al., 2020). Moreover, in these approaches, a scaffold is defined as
a fragment or a substructure (rather than a backbone), being likely
to generate molecules with larger shapes than input scaffolds, re-
gardless that a moderate size is important for protein–drug binding.
Also, clinical drug candidates should be generated from not only
known compounds but also large compound collection through ran-
dom screening (Brown and Boström, 2018). Thus, molecule gener-
ation should support both random de novo generation and lead
molecule optimization.

We propose an end-to-end deep generative model, Sc2Mol, for
generating molecules (represented by SMILE strings) with two steps:
scaffold generation and scaffold decoration. We first generate a scaf-
fold that contains only carbon atoms and single bonds by a vari-
ational autoencoder (VAE) (Kingma and Welling, 2014), which
provides a scaffold distribution to find a novel scaffold. We then en-
rich the generated scaffold by changing atom and bond types by a
transformer (Vaswani et al., 2017), resulting in molecules with
desired properties (see Fig. 1). Our model needs no extra expert
knowledge, such as grammar rules and pre-defined substructures,
and generates molecules from either random variables or given
scaffolds.

We used the MOSES dataset (Polykovskiy et al., 2020) and a
subset of the ZINC database (Gómez-Bombarelli et al., 2018;
Sterling and Irwin, 2015) (both of them are drug-like molecule data-
sets) to evaluate our model by comparing with well-known base-
lines: CharVAE (Gómez-Bombarelli et al., 2018), JTVAE (Jin et al.,
2018) and MoFlow (Zang and Wang, 2020). Our model achieved
comparable performances against the competing methods on ran-
domly generating molecules under several evaluation metrics. The
results showed that our model, even though without pre-defined
rules, could capture complex SMILES syntax, including matching
parentheses for side chains and pairing numbers for ring systems
and lower cases for aromatic systems, and chemical rules, such as
the similarity between halogens. On the other hand, given scaffolds,
Sc2Mol generated molecules by carefully considering the trade-off
between the scaffold and molecule similarity. That is, keeping simi-
larity to a reference molecule, our model could reduce the scaffold

similarity, even when the scaffolds are not in the training set.
Finally, several case studies demonstrated that our model could con-
vert simple carbon scaffolds into potential drug-like compounds.

Our contribution can be summarized into the following three
points:

• We present a SMILES-based deep generative model called

Sc2Mol for molecule generation, which consists of two steps:

scaffold generation and scaffold decoration.
• Sc2Mol does not need any expert knowledge, such as pre-defined

patterns or syntactic rules. It allows both random de novo mol-

ecule generation and scaffold transformation (to a molecule with

desired properties).
• Our experimental results showed that Sc2Mol could learn chem-

ical rules and patterns automatically and could discover potential

compounds for mental illness by using the learned rules and

patterns.

2 Materials and methods

2.1 Problem formulation
We use a string (SMILES; Weininger, 1988) to represent a molecule,
meaning that molecule generation can be a text generation problem.

Thus, our problem is, given a source string with l characters,
x ¼ ðx1; x2; . . . ; xlÞ, to generate a target string with l0 characters,

y ¼ ðy1; y2; . . . ; yl0 Þ. We assume that the source and target strings
share the same vocabulary with the size of v.

Our method for this problem has two steps (Fig. 1): (i) scaffold
generation: generating a generic scaffold and (ii) scaffold decoration:
decorating the generic scaffold with atoms and bonds. A generic

scaffold can be defined, following (Blaschke et al., 2020): a generic
(carbon) scaffold is a molecule obtained by replacing all types of

non-hydrogen atoms by carbon atoms and all types of bonds by sin-
gle bonds. Note that a generic scaffold is also a valid molecule. This
definition can keep the original molecule shape as possible. We use a

VAE for scaffold generation (i.e. a string generation problem) and a
transformer for scaffold decoration corresponding to translation

from a generic scaffold string to the desired molecule string.
Figure 2 shows our entire architecture.

2.2 Scaffold generation
We assume that the latent prior distribution is a standard normal
distribution. We represent a character by a one-hot row vector;

thus, an input SMILES string with l characters can be denoted by a
binary matrix X 2 R

l�v. We first apply an embedding layer with a

positional encoding to X, to learn dense representation from the in-
put. Note that the lookup operation on an embedding matrix can be
considered as matrix multiplication, resulting in the following up-

date for the embedding layer:

X1 ¼ XE1 þ P1;

where X1 2 R
l�d is the embedding result, E1 2 R

v�d is an embedding
matrix, and P1 2 R

l�d is a positional encoding matrix.
We implement a VAE by stacking m gated convolutional neural

networks (GatedConv) for strings (Dauphin et al., 2017) with re-

sidual connection (He et al., 2016):

X tþ1 ¼ X t þGatedConvðX tÞ; t ¼ 1; 2; . . . ;m;
where GatedConvðAÞ ¼ ðA ? U1 þ c1Þ � sðA ? U2 þ c2Þ;

$ and � denote the convolution operation and the element-wise
product, respectively, s is the sigmoid function, U1;U2 2 R

k�d�d are
convolution kernels of size k, and c1; c2 2 R

d are biases. We then

use max pooling to reduce the convolution result to vector h 2 R
d,

to obtain mean l 2 R
dz and logarithmic variance log r 2 R

dz of the
approximate distribution by two independent fully connected layers:

Fig. 1. Two-step molecule generation: we first generate a scaffold that only contains

carbon atoms and single bonds and then decorate this scaffold with different atoms

and bonds
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h ¼MaxPoolingðXmþ1Þ:

l ¼ hW1 þ b1; log r2 ¼ hW2 þ b2:

Note that direct sampling fromNðl; rÞ is non-differentiable with re-
spect to l and r, and thus we apply the reparameterization trick
below:

z ¼ lþ r� �; where � � Nð0; IÞ:

From the obtained latent variable z, we reconstruct the input
SMILES string using the following decoder:

Z1 ¼ Reshapeðz0Þ; where z0 ¼ zW3 þ b3:

Ztþ1 ¼ Zt þGatedConv1DðZtÞ; t ¼ 1;2; . . . ;m:

X̂ ¼ SoftmaxðZmþ1W4 þ b4Þ:

This VAE is designed to model generic carbon scaffolds in a latent
space of dimension dz, and then sample a random variable from this
space to construct a certain scaffold, entirely allowing scaffold
hopping.

2.3 Scaffold decoration
We decorate each carbon scaffold (output of the VAE) by using a
transformer (Vaswani et al., 2017) to generate the desired com-
pound. Note that the carbon scaffold is a probabilistic matrix rather
than a one-hot index matrix, and the argmax operation is non-
differentiable. Thus, for training, we use ‘teacher forcing’ (Williams
and Zipser, 1989), i.e. the ground truth scaffold, to avoid the non-
differentiable argmax operation, while for inference, we directly use
the scaffold generated by the VAE through the argmax and one-hot
operation:

X 0 ¼ ~X E2 þ P2; where ~X ¼ X for training;
argmaxðX̂ Þ for inference:

�

X 0 2 R
l�d is the embedding result of the input scaffold; E2 2 R

v�d

and P2 2 R
l�d are the token embedding matrix and positional

encoding matrix, respectively, of the transformer. We combine
multi-head attention with residual connection (He et al., 2016),
layer normalization (Lei Ba et al., 2016) and feed-forward networks

to assemble the encoder and decoder layers in the transformer. The
decorated SMILES string Ŷ is given by a fully connected layer with
the softmax activation.

2.4 End-to-end style training of the VAE and

transformer
Assuming that prior distribution phðzÞ is a standard normal distribu-

tion, the VAE loss function can be given as follows:

Lvae ¼ c � LKL þ Lvr; where

LKL ¼ DKLðN ðl;r2IÞjjN ð0; IÞÞ ¼ �1

2

Xd

i¼1

1þ log r2
i � l2

i � r2
i

� �

and Lvr ¼ CrossEntropyðX ; X̂ Þ ¼ �1

l

Xl

j¼1

Xv

k¼1

xjk log x̂jk

(1)

The VAE loss function (1) balances between the KL-divergence and
the reconstruction error by c, the weight over the KL-divergence:

c ¼ min 0:01; 0:001þ bmaxð0; step num� 40000Þ=5000c
10000

� �
:

Note that this manner has been adopted to improve training for sen-
tence generation (Bowman et al., 2016).

For training the transformer, we use the cross entropy loss
function:

Fig. 2. Our model architecture. For scaffold generation, we use a VAE that receives the source scaffold, keeping the balance between the reconstruction error and the KL-diver-

gence. For scaffold decoration, we use a transformer to transform the generated carbon scaffold into a meaningful molecule string, close to the target molecule string
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Ltr ¼ CrossEntropyðY ; Ŷ Þ ¼ �1

l0

Xl0

j¼1

Xv

k¼1

yjk log ŷjk;

where Y is the one-hot matrix of the target molecule string and Ŷ is
the output probabilistic matrix.

Finally, the total loss function is:

L ¼ c � LKL þ Lvr þ Ltr:

For optimization, we use the Adam optimizer (Kingma and Ba,
2015) with the learning rate of the following warm-up schedule
(Vaswani et al., 2017):

lr ¼ d�
1
2 �minðstep num�

1
2; step num � 10000�

3
2Þ:

2.5 Two types of molecule generation
Our model allows two types of molecule generation (i) from a ran-
dom latent variable and (ii) from a given scaffold, which are de novo
molecule generation and molecule optimization, respectively. The
first type randomly samples a variable from the standard normal dis-
tribution and uses the decoder of the VAE and transformer to obtain
a molecule without any expert knowledge. The second type starts
with an input carbon scaffold and obtains a molecule with proper
atoms and bonds based on this scaffold.

To improve the validity of generated molecules, we added a
validity-check component to our model for inference. This compo-
nent will check the validity of output strings. If the output string is
invalid according to the SMILES syntax, the model will discard the
string and attempt to make a new generation.

3 Experiments

3.1 Dataset
We used two datasets to evaluate model performance. The first one
is the MOSES dataset (Polykovskiy et al., 2020), derived by filtering
from ZINC (Sterling and Irwin, 2015). In MOSES, one molecule has
a molecular weight ranging from 250 to 350 Da, no charged atoms,
and no rings larger than eight atoms, and atom types are limited to
H, C, N, O, F, S, Cl and Br only. Also, all molecules are drug-like,
since they pass the medicinal chemistry filters and PAINS filters
(Baell and Holloway, 2010). MOSES consists of three subsets: train-
ing set, test set and novel scaffold set, with around 1.6 million,
176 000 and 176 000 molecules, respectively. All scaffolds in the
novel scaffold set differ from those in both the train and test sets.

The second one is the ZINC-250k dataset (Gómez-Bombarelli
et al., 2018), which was built by randomly extracting about 250 000
drug-like molecules from ZINC (Sterling and Irwin, 2015). A mol-
ecule in this dataset is commercially available and has no rings larger
than eight atoms, and atom types are limited to H, C, N, O, F, P, S,
Cl, Br and I only. We randomly split the ZINC-250k into train
(80%) and test (20%) sets.

We trained our model by the training set, and the trained model
was evaluated by the following three tasks: Task (1) random gener-
ation from latent variables; Task (2) scaffold decoration for the test
set molecules, keeping input as generic scaffold molecules; Task (3)
scaffold decoration for the novel scaffold set, keeping the same as
the above (2).

3.2 Experiment setting
We set model dimension d as 256 and latent dimension dz as 64;
both the VAE and transformer had a three-layer encoder and a
three-layer decoder. All gated convolution layers in the VAE had a
kernel size of 3 with a stride length of 1. The transformer used four-
head multi-head attention and feed-forward dimension dff was set at
1024. We set the batch size to 64, and adopted the Adam optimizer
(Kingma and Ba, 2015) with the learning rate schedule shown in
Equation (2). To reduce over-fitting, a drop-out rate (Srivastava
et al., 2014) of 0.1 was applied. Hyperparameter settings and selec-
tion can be found in Supplementary Tables S1–S3.

We used RDKit (https://www.rdkit.org/) for data preprocessing
and implemented our model by Tensorflow (https://www.tensor
flow.org/) on a machine with NVIDIA GeForce GTX 1080 Ti GPU.

3.3 Baselines
Table 1 is a comparison of baseline models (and our model) shown
below:

• AddCarbon (Renz et al., 2019): a simple model that adds a car-

bon token ‘C’ to the source SMILES string at a random position.
• CharVAE (Gómez-Bombarelli et al., 2018): has a VAE for

SMILES strings, with convolution layers, followed by a fully con-

nected layer, and a decoder with gated recurrent unit networks

(Chung et al., 2014).
• FragLinker: a SMILES-based model, an extended variant of

SyntaLinker (Yang et al., 2020). The original SyntaLinker

receives only two fragment strings as input and uses a transform-

er to link the input into a completed molecule. This input is

extended into any fragment strings.
• JTVAE (Jin et al., 2018): first decomposes a molecule into a junc-

tion tree, where each node refers to a pre-defined subgraph, and

then uses a VAE, to encode both the junction tree and subgraphs

into two latent variables, which are decoded to reconstruct the

junction tree and assemble subgraphs according to the tree.
• MoFlow (Zang and Wang, 2020): a graph-based flow model that

uses two invertible neural networks to encode atoms and bonds

into two Gaussian latent variables and then uses the reverse neur-

al networks to transform Gaussian noise variables into atoms

and bonds. This model adopts a validity correction module to en-

sure chemical validity.

3.4 Evaluation measures
All models were trained with the training sets and tested with the
test or novel scaffold sets for evaluation. Baseline models were
trained in their originally designed ways, in which inputs and
expected outputs were molecules.

For Task 1, we randomly drew 30 000 samples from the stand-
ard normal distribution which are the input of the decoder of the
variational autoencoder and the rest of the model. For Tasks 2 and
3, we randomly selected 30 000 molecules from the test/novel scaf-
fold set and extracted the carbon scaffolds, which are then the input
of the whole model. We first adopted the three common metrics of
molecule generation:

• Validity: The ratio of the chemically valid molecules to the total-

ly generated molecules. Higher validity means that the model

learns more correctly proper chemical rules, such as valence and

aromaticity.
• Uniqueness: The ratio of the uniquely generated valid molecules

to the totally generated valid molecules. Higher uniqueness indi-

cates that the model can generate more diverse molecules.
• Novelty: The ratio of the novel valid generated molecules (not in

the training set) to the totally valid generated molecules. High

novelty means that the model generates molecules not in the

training set more.

Also, we checked the distribution of molecular weights, calcu-
lated octanol-water partition coefficients (logP) (Wildman and
Crippen, 1999) and quantitative estimates of drug-likeness (QED)
(Bickerton et al., 2012) to illustrate the similarity of the generated
molecules to the training set (also the test set for Task 2 and the
novel scaffold set for Task 3).

Additionally, for Tasks 2 and 3, we introduced the following
metrics:
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• Recovery: The ratio of the desired valid generated molecules

(identical to the corresponding reference molecules in the test

set) to the totally valid generated molecules. Recovery is propor-

tional to how well the model learned the optimization rules from

a scaffold to the desired molecule.
• Similarity: The average Tanimoto similarity between fingerprints

[1024-bit extended-connectivity fingerprints with radius 2

(ECFP4) (Rogers and Hahn, 2010)] of generated molecules and

the corresponding reference molecules in the test set. Similarity is

proportional to how well the model captures the optimization

rules.
• Scaffold similarity (SS): The average Tanimoto similarity be-

tween fingerprints of the scaffold of generated molecules and the

scaffold of the corresponding reference molecules in the test set.

Moderate SS is favorable since high SS implies no novel scaffolds,

and low SS implies arbitrary generation without considering in-

put scaffolds.

3.5 Results
3.5.1 Task 1: Random generation

Table 2 shows the performance on the MOSES dataset (three com-
mon metrics) of baselines and our model (note that AddCarbon and
FragLinker cannot be applied to Task 1), indicating that our model
achieved the best in Uniqueness and Novelty. JTVAE achieved the
Validity of 100% because of tree decomposition and pre-defined
subgraphs, avoiding learning SMILES syntax. MoFlow and our
model also achieved the Validity of 100% as well because of benefit-
ing from the validity-check component. Supplementary Table S4
shows the performance on the ZINC-250k dataset. Similar to the
case on the MOSES dataset, our model still achieved the best in
three metrics.

Figure 3a shows the distributions of molecular weights, logP and
QED of the molecules generated in Task 1. Regarding molecular
weights and logP, JTVAE and our model showed distributions closer
to the training set. Regarding QED (which can be affected by more
physical features, such as the molecular polar surface area of mole-
cules), the distribution of JTVAE was the most similar to the train-
ing set due to the pre-defined subgraph vocabulary of JTVAE.
Without any prior knowledge, our model made the distribution
slightly deviate from the training set, and CharVAE made it more
away. Most molecules generated by MoFlow had significantly lower
QED, whose distribution was far away from the training set.

3.5.2 Task 2: Test scaffold transformation

Table 3 shows the performance in six metrics of all models.
AddCarbon, FragLinker and MoFlow achieved good scores (>70%)
of Validity, Uniqueness and Novelty, but low Recovery (0.00%) and
low Similarity (<10%) with high SS (>80%). It means that these
models could not modify scaffolds well enough. Particularly,
MoFlow showed 100% SS, indicating it was a perfect autoencoder
but not a good modifier for scaffold transformation. JTVAE also
achieved high scores (>90%) of Validity, Uniqueness and Novelty,
while CharVAE performed clearly worse. These two models showed

low Recovery (0.00%), Similarity (<10%) and SS (<30%), imply-
ing that they could not pay enough attention to the input scaffolds.
By contrast, our model achieved the best Validity, Uniqueness and
Similarity, and it even recovered some (4.93%) desired reference
molecules, although its Novelty decreased. The SS of our model also
decreased to a moderate value (72.94%), suggesting that our model
performed the best overall.

Figure 3b shows the distributions of molecular weights, logP and
QED of the molecules generated in Task 2. The distributions of mo-
lecular weights were all rather similar to each other, except
CharVAE. For logP and QED, the distributions of CharVAE and
JTVAE had no significant overlaps with other distributions.
However, those of AddCarbon, FragLinker and MoFlow were al-
most identical to that of the scaffolds of the test set. More promis-
ingly, the distributions of our model were extremely similar to those
of the training set and the (references of the) test set.

In summary, (i) CharVAE and JTVAE generated molecules with-
out careful attention to the input scaffolds, resulting in low
Similarity, low SS and little overlap with other distributions. (ii)
AddCarbon, FragLinker and MoFlow, which modified input scaf-
folds only slightly, were unable to transform the carbon scaffolds
into desired molecules, resulting in only generating molecules very
similar to the input scaffolds. (iii) Our model could achieve the high-
est molecular similarity to the reference molecules and the distribu-
tion most highly similar to those molecules. Also, the SS values
implied the possibility of generating the most desired scaffolds.

3.5.3 Task 3: Novel scaffold transformation

Table 4 shows the performance of all models under the six metrics,
and Figure 3c shows the distributions of the generated molecules by
all models. Entirely the results are consistent with those for Task 2.
Note that our model could generate molecules most similar to the
reference molecules, regardless that the input scaffolds are not expli-
citly in the training set. This result confirms that our model can cap-
ture, from the given data, rules of transforming scaffolds into
desired molecules and apply the rules to even data with unseen scaf-
folds successfully.

3.5.4 Ablation study

We also conducted the ablation study to verify the effectiveness of
our model with the following experimental settings: (i) Our

Table 1. Comparison of models

Model Molecular

representation

Random generation Generation from

scaffold

Need pre-defined objects Model architecture

AddCarbon SMILES No Yes No —

CharVAE SMILES Yes Yes No VAE with RNN

FragLinker SMILES No Yes Yes Transformer

JTVAE Graph Yes Yes Yes VAE with RNN

MoFlow Graph Yes Yes No GCN þ CNN

Sc2Mol(Ours) SMILES Yes Yes No VAE with CNN þ
Transformer

Table 2. Performances of models for Task 1 on the MOSES dataset

Model Validitya (%) Uniquenessa (%) Noveltya (%)

AddCarbon — — —

CharVAE 3.33 86.59 99.50

FragLinker — — —

JTVAE 100.00 99.92 95.98

MoFlow 100.00 99.59 99.61

Sc2Mol (Ours) 100.00 99.99 99.72

aHigher is better.

Note: The best results are highlighted in bold.
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proposed model and MoFlow with/without the validity-check com-
ponent were compared to confirm the effectiveness of this compo-
nent. (ii) Several baseline models were trained with scaffolds as
inputs and molecules as expected outputs, which would be tagged
with ‘-s2m’. (iii) Our proposed model was trained with molecules as
both source inputs and expected outputs, which would be tagged
with ‘-m2m’.Settings 2 and 3 could study how the high-capacity
neural networks would affect generation, and whether it would be

necessary to decompose the generation process into scaffold and
molecule.

Table 5 shows the performance of models with/without the
validity-check component for Task 1 on MOSES. With validity-
check, our model achieved the best Uniqueness and Novelty, and
both models reached the Validity of 100%. Without validity-check,
the Validity of MoFlow decreased significantly to 33.94%, while
our model outperformed MoFlow with a Validity of 63.07%. This

Fig. 3. Distributions of the properties (molecular weights, logP and QED) of the generated molecules in Tasks (a) 1, (b) 2 and (c) 3

Table 3. Performance of models on Task 2 (generating molecules from test scaffolds)

Model Validitya (%) Uniquenessa (%) Noveltya (%) Recoverya (%) Similaritya (%) Scaffold similarity (SS)b (%)

AddCarbon 99.94 97.56 100.00 0.00 6.07 81.04

CharVAE 1.88 78.90 100.00 0.00 11.23 24.69

FragLinker 95.84 87.33 100.00 0.00 6.10 98.79

JTVAE 99.48 93.77 99.99 0.00 8.69 24.51

MoFlow 100.00 88.48 100.00 0.00 6.17 100.00

Sc2Mol (Ours) 100.00 97.58 80.23 4.93 36.37 72.94

aHigher is better.
bAn appropriate value is good.

Note: The best results are highlighted in bold.

Table 4. Performance of models on Task 3 (generating molecules from novel scaffolds)

Model Validitya (%) Uniquenessa (%) Noveltya (%) Recoverya (%) Similaritya (%) Scaffold similarity (SS) (%)b

AddCarbon 99.96 94.94 100.00 0.00 5.98 81.34

CharVAE 1.79 78.21 100.00 0.00 11.05 24.39

FragLinker 95.74 74.71 100.00 0.00 6.05 98.56

JTVAE 99.71 94.04 99.99 0.00 8.65 24.59

MoFlow 100.00 76.06 100.00 0.00 6.06 100.00

Sc2Mol (Ours) 100.00 95.19 81.19 4.11 34.53 71.95

aHigher is better.
bAn appropriate value is good.

Note: The best results are highlighted in bold.
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result is notable since our model does not have any prior expert
knowledge of SMILES syntax. Supplementary Table S5 shows the
experiment results for Task 1 on ZINC, which are consistent with
those on MOSES. Without validity-check, the Validity of MoFlow
decreased to about 30%, while our model still had a better Validity
of more than 50%. Besides, the scores of Uniqueness and Novelty
were insensitive to validity-check. Since the cost of SMILES syntax
check is low and our model still could achieve an acceptable
Validity even without validity-check, introducing validity-check to
our model would not increase considerable computation.

Table 6 shows the performance of models with different input
and expected output settings for Task 2 on MOSES. The training
data of CharVAE-s2m and FragLinker-s2m were identical to our
models, while those of CharVAE, FragLinker and Sc2Mol-m2m
were the same. Validity, Uniqueness: Our model achieved the best
Validity due to the validity-check component, and transformer-
based FragLinker also showed good performance on Validity.
Transformer-based models reached high scores of Uniqueness
(>80%), while CharVAE and CharVAE-s2m failed to generate
enough valid and unique molecules (because of low Validity or
Uniqueness). These results confirm that high-capacity architectures
of neural networks are necessary. Novelty, Recovery, Similarity and
SS: Transformer-based models trained with ‘s2m’ data showed
lower Novelty but higher Recovery and Similarity than their corre-
sponding version of ‘m2m’, respectively. This means that taking
scaffolds as input training data could force models to generate

expected molecules, although it would decrease some novelty. Note
that simply repeating a few unseen molecules would also achieve
very high Novelty, but these molecules would not be desired (with
low Similarity to the reference). Thus, molecules with acceptable
Novelty and enough Similarity would be preferred. In addition,
compared with FragLinker-s2m, our model had higher Similarity
but lower SS. This result indicates that decomposing generation into
two-step and using VAE for scaffold generation could contribute to
finding desired molecules with novel scaffolds. Table 7 shows the
performance of the ablation study for Task 3 on MOSES. These ex-
perimental results are similar to those for Task 2, indicating the gen-
eralization capabilities of models.

3.5.5 Examples of the generated molecules

Figure 4 shows examples of the generated molecules: Figure 4a
shows three molecules generated from different latent variables
from Task 1. In terms of scaffolds, 1 and 2 were similar while 3 was
different, since the corresponding latent variables of 1 and 2 were
closer to each other, and far away from that of 3; Figure 4b shows,
from Task 2, an input scaffold (4), the reference molecule (5) and
the corresponding generated molecule (6) from 4, showing the simi-
larity between 5 and 6, such as the benzene ring and carboxamide.
The fluorine at the benzene ring in 5 is replaced by the chlorine in 6.
Fluorine and chlorine are in the same group called ‘halogen’, imply-
ing that our model was able to discover novel scaffold and learn
chemical rules such as halogen similarity and aromatic ring.
Figure 4c shows, from Task 3, an input scaffold (7), the reference
molecule (8) and the corresponding generated molecule (9). Two
molecules, 8 and 9, share the same scaffolds and moieties. The
hydroxy group at the benzene ring in 8 is replaced by the fluorine in
9, where fluorinating is a major strategy of lead compound opti-
mization (Brown and Boström, 2018; Young and Leeson, 2018).
Also, 8 and 9 have aromatic rings, especially not only benzene but
also thiazole. The aromatic rings are special in SMILES, such as low-
ercase letters for aromatic atoms and a pair of numbers for the start-
ing and end of the ring, implying that our transformer architecture is
powerful enough to learn the complex SMILES syntax of aromatic
systems.

Table 5. Ablation study for Task 1 on MOSES

Model Validitya (%) Uniquenessa (%) Noveltya (%)

MoFlow 100.00 99.59 99.61

MoFlow w.o. VC 33.94 99.41 99.18

Sc2Mol 100.00 99.99 99.72

Sc2Mol w.o. VC 63.07 99.98 98.70

w.o. VC, without validity-check component.
aHigher is better.

Note: The best results are highlighted in bold.

Table 6. Ablation study for Task 2 on MOSES (generating molecules from test scaffolds)

Model Validitya (%) Uniquenessa (%) Noveltya (%) Recoverya (%) Similaritya (%) Scaffold similarity (SS)b (%)

CharVAE-m2m 1.88 78.90 100.00 0.00 11.23 24.69

CharVAE-s2m 12.71 0.21 100.00 0.00 6.45 25.87

FragLinker-m2m 95.84 87.33 100.00 0.00 6.10 98.79

FragLinker-s2m 95.87 96.27 70.30 1.75 26.87 90.81

Sc2Mol-m2m 100 96.89 100.00 0.00 6.98 26.53

Sc2Mol-s2m 100 97.58 80.23 4.93 36.37 72.94

aHigher is better.
bAn appropriate value is good.

Note: The best results are highlighted in bold.

Table 7. Ablation study for Task 3 on MOSES (generating molecules from novel scaffolds)

Model Validitya (%) Uniquenessa (%) Noveltya (%) Recoverya (%) Similaritya (%) Scaffold similarity (SS)b (%)

CharVAE-m2m 1.79 78.21 100.00 0.00 11.05 24.39

CharVAE-s2m 12.65 0.20 100.00 0.00 6.52 26.89

FragLinker-m2m 95.74 74.71 100.00 0.00 6.05 98.56

FragLinker-s2m 95.84 95.93 68.98 1.67 27.43 90.01

Sc2Mol-m2m 100.00 94.78 100.00 0.00 7.10 27.35

Sc2Mol-s2m 100.00 95.19 81.19 4.11 34.53 71.95

aHigher is better.
bAn appropriate value is good.

Note: The best results are highlighted in bold.
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3.5.6 Case study 1: Auglurant

Figure 5 shows an example prediction by our model, starting with a
random screened initial compound (10) [which is, in reality, opti-
mized as Auglurant (11), a clinical candidate for mood disorders
whose target is mGluR5 (Bates et al., 2014; Felts et al., 2017)]. The
scaffold (12) of 11 was an input of our model, which generated a
molecule (13). Note that 11 (ground truth) and 13 (prediction) share
the (i) fluorinated benzene, (ii) nitrogen heterocycles and (iii) re-
placement of the amino group with the methyl group. Importantly,
these three points are favorable strategies in lead compound opti-
mization (Brown and Boström, 2018; Pennington and Moustakas,
2017; Young and Leeson, 2018).

3.5.7 Case study 2: Benzodiazepines

Benzodiazepines (BZD) are a category of psychoactive drugs which
has a benzene with a diazepine as the core chemical structure. Many
compounds in this category reduce brain activity and thus are used
to ease mental problems, such as anxiety, insomnia and seizures.
Using a training set and additional 46 commercial BZD drugs
(Supplementary Table S6), we generated scaffolds first and then
molecules. Figure 6 shows our process, starting with bromasepam,
an anti-anxiety agent and ending with the generated molecules not
being in the input set. The bromine in bromazepam was replaced
with chlorine in 16. This chlorination appears in other psychoactive
drugs, lorazepam (17) and nordazepam (18). Also, the pyridine was
replaced with chlorobenzene in 16. Both pyridine and chloroben-
zene are aromatic, and chlorobenzene appears in clonazepam, an-
other anti-anxiety drug.

4 Conclusion

We presented a molecule generator with two steps, which (i) gener-
ates scaffolds with a VAE and (ii) decorates the scaffolds with our
transformer. Our extensive empirical results demonstrated the com-
petitive performances of our model against baselines. In particular,
our transformer architecture allowed us to learn complex SMILES
syntax without any expert knowledge like pre-defined rules (say,
substrings and parse trees). Also, our two-step model could capture
the chemical rules of transforming an initial carbon scaffold into
meaningful molecules. Interesting future work would be to develop
a method for a seamless combination of our two steps.
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