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ABSTRACT: Unraveling structure−activity relationships is a
key objective of catalysis. Unfortunately, the intrinsic complex-
ity and structural heterogeneity of materials stand in the way of
this goal, mainly because the activity measurements are area-
averaged and therefore contain information coming from
different surface sites. This limitation can be surpassed by the
analysis of the noise in the current of electrochemical scanning
tunneling microscopy (EC-STM). Herein, we apply this strategy
to investigate the catalytic activity toward the hydrogen
evolution reaction of monolayer films of MoSe2. Thanks to
atomically resolved potentiodynamic experiments, we can
evaluate individually the catalytic activity of the MoSe2 basal
plane, selenium vacancies, and different point defects produced
by the intersections of metallic twin boundaries. The activity trend deduced by EC-STM is independently confirmed by
density functional theory calculations, which also indicate that, on the metallic twin boundary crossings, the hydrogen
adsorption energy is almost thermoneutral. The micro- and macroscopic measurements are combined to extract the turnover
frequency of different sites, obtaining for the most active ones a value of 30 s−1 at −136 mV vs RHE.

The production of green hydrogen by water electrolysis
is a key step to establish a sustainable energy
infrastructure.1 However, the development of electro-

chemical (EC) water-to-hydrogen conversion devices through
the hydrogen evolution reaction (HER) is limited by the
materials science and engineering aspects of the working
electrodes.2−4

Nowadays, transition metal dichalcogenides (TMDs) are
investigated as replacements for Pt group materials5 (PGMs),
in the hope that they can achieve similar performances but at a
lower cost.6−9 These materials have drawn the scientific
community’s attention due to their diverse electronic,10−13

optical,13−16 magnetic,17,18 and catalytic19−21 properties that
can be easily tuned through chemical composition,22,23 crystal
phase,24,25 and thickness.10 Moreover, the TMD properties can
be further improved by defects26,27 or strain,28 which can be
introduced during or after the synthesis. Regarding the HER,

the EC performances of standard TMDs are inferior to those
of PGM-based catalysts due to their limited number of active
sites and catalytically inert basal plane. However, many efforts
have been made to develop strategies for minimizing the
performance gap between these two classes of materials.29,30

Previously, we investigated an uncharted strategy for
improving the HER activity of TMDs by exploiting a particular
type of line defects referred to as mirror twin boundaries
(MTBs),21,31 i.e., the boundary separating two grains rotated
by 60°. Contrary to serpentine or low-angle grain bounda-
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ries,32,33 which are formed by the coalescence of arbitrarily
orientated crystal domains, the formation of MTBs becomes
energetically favorable in non-stoichiometric chalcogen-defi-
cient TMDs,34 and can be promoted through post-synthesis
strategies.35,36 The presence of MTBs implies atoms with
modified coordination that induce different electronic proper-
ties, and spectroscopic investigations suggest that MTBs have
metallic properties.21,37 By analogy with the different perform-
ance exhibited by the semiconducting 2H vs 1T metallic TMD
polymorphs,25 MTBs are also expected to have high catalytic
activity.21

Thence, defect-engineering in TMDs can have a huge
impact on the EC activity.38−40 However, an accurate
correlation between an atomically well-defined site and its
catalytic activity is challenging because standard EC character-
ization techniques provide only area-averaged information, so
connecting specific figures of merit to a single type of
microscopic defect is not trivial, given that various structural
and morphological defects can be co-present on the same
“real” catalyst. To surpass these limitations, we developed a
novel method to study electrocatalytic sites with atomic
resolution in operando conditions by evaluating the noise in
electrochemical scanning tunneling microscopy (EC-STM),
which allowed us to investigate separately a wide gamut of
defects at the atomic scale.41,42

Here we present a structural and EC investigation of a
MoSe2 monolayer (ML) grown by molecular beam epitaxy
(MBE) on a bilayer of graphene (Gr) supported on a 6H-

SiC(0001) single crystal (MoSe2/Gr/SiC). Such MBE-grown
MoSe2 films exhibit a high density of MTBs. On this system,
given the high spatial resolution of EC-STM, we could
investigate the activity not only of linear MTBs, but also of the
point defects created locally by the intersections of MTBs.
Structural Characterization. Before the EC-STM meas-

urements, the chemical composition of the MoSe2/Gr/SiC
sample was determined by X-ray photoelectron spectroscopy
(XPS). The survey spectrum of the catalyst (see Figure S1a)
shows peaks due to Si 2p, C 1s, Mo 3d, and Se 3d, besides the
signal due to O 1s (due to air exposure). Figure S1b shows the
high-resolution photoemission spectra of Mo 3d and Se 3d and
their deconvolution into chemically shifted components. The
Mo 3d region can be separated in three doublets and an
additional single peak at a binding energy (BE) of about 229
eV, corresponding to the Se 3s levels. The main doublet, with
the Mo 3d5/2 and 3d3/2 peaks centered at 228.7 and 231.8 eV,
respectively, is attributed to Mo(IV) species of 2H-MoSe2
(80.7 at.%).21,43,44 The other two, less intense doublets can be
associated with Mo(V) species (10.2 at.% with Mo 3d5/2 at
230.5 eV) due to substoichiometric MoO3‑x or complex
structural configurations such as Se−Mo−O bonds45,46 and
Mo(VI) species (9.1 at.% with Mo 3d5/2 at 232.4 eV) deriving
from surface oxidation (e.g., MoO3).

43,44,47 The Se 3d core
level is made up by a single doublet with peaks at 54.2 and 55.1
eV, which corresponds to Se 3d5/2 and Se 3d3/2 levels,
indicating the presence of Se2− ions in 2H-MoSe2.

21,43,44

Additional XPS analysis was performed immediately after the

Figure 1. (a) Large-scale in situ EC-STM image of MoSe2/Gr/SiC acquired at 160 mV vs RHE electrode potential, IT = 1.84 nA, UB = 89 mV.
(b) Height profiles of the P1 and P2 lines in panel a. (c) Large-scale in situ EC-STM image of MoSe2/Gr/SiC acquired at 60 mV vs RHE
electrode potential, IT = 1.84 nA, UB = 89 mV. (d) Atomically resolved in situ EC-STM image of the basal plane of MoSe2 at 60 mV vs RHE,
IT = 1.84 nA, UB = 89 mV.
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EC-STM measurements to evaluate the changes induced by
the potentiodynamic experiment (see Figure S1b and Table
S1). Both the Mo(V) and Mo(VI) components decreased, as
expected for the oxide phases in an acid solution under
reducing working conditions. XPS analysis of the O 1s region
provides direct evidence of the Mo-oxide reduction as
suggested by the decrease of the photoemission signal intensity
in the BE region from 529.9 to 530.9 eV, which can be
associated with Mo-oxides (see Figure S1C).47−49

The same sample was further investigated by EC-STM in
Ar-saturated electrolyte (0.1 M HClO4). Figure 1a and c shows
some large-scale in situ EC-STM images of MoSe2/Gr/SiC
recorded in precatalytic conditions. Most of the support is
covered by a single layer of MoSe2; however, some uncovered
Gr areas and double-layer MoSe2 islands can be observed, too.
The MoSe2 film shows highly corrugated straight lines that
cross each other, forming a triangular pattern. As shown in
Figure S2, the lengths of the triangle’s sides are mainly 7.8 ±
0.4 nm (65%) or 4.5 ± 0.4 nm (35%), while larger features are
rarely observed. The line defects appear as a pair of parallel
atomic rows, which can be assigned to the position of the Se-
atoms in the MTB in agreement with previous works.21,37,50−53

The topographic profiles measured along the P1 and P2
lines in Figure 1a are shown in Figure 1b and indicate a layer
height of 6.5 ± 0.2 Å, consistent with the three-atomic-layer
(Se-Mo-Se) ML thickness, suggesting a first and second layer
of MoSe2 on Gr/SiC substrate. The step edges, regardless of
the applied electrode potential, exhibit a fuzzy contrast, which
can be attributed to the oxidized phase previously detected by
XPS. Only occasionally are clean step edges with a sharp
profile observed (Figure S3). This suggests that step edges are
more prone to oxidation compared to rest of the basal plane
due to their metallic nature and the presence of unsaturated

bonds.37,54 Moreover, an apparent height of 4.4 ± 0.2 Å
between MTBs and the basal plane can be identified in the line
profile P1, confirming the strong difference in the electronic
structures between the two.51 The atomically resolved EC-
STM image of the basal plane shows the presence of a flat
monolayer with a well-ordered hexagonal lattice with a
periodicity of 3.3 ± 0.1 Å, occasionally showing point defects
like the dark spot marked by a white circle in Figure 1d. This
point defect is centered on a site normally occupied by Se
anions, which by comparison with other STM works can be
associated with a Se-vacancy.53,55

It is worth noting that, since the MTBs are clearly observed
with atomic resolution by EC-STM, such defects are stable
after exposure to air and in the presence of acid electrolyte.
Electrocatalytic Characterization. To map with atomic

resolution the catalytic activity of the MoSe2 surface as a
function of the applied electrode potential, we performed
operando potentiodynamic EC-STM in an EC potential
window between 160 mV and −340 mV vs RHE at steps of
50 mV.

Figure S4 shows a selection of EC-STM topographic images
summarizing the potentiodynamic experiment. No significant
changes are observed above −40 mV vs RHE (Figure S4c),
while at this potential, some localized spikes become visible
near the Se-vacancy site, and increase as the EC potential is
decreased. Additional highly corrugated spots appear along the
MTBs at −190 mV vs RHE, which eventually propagate also
on the basal plane at a more negative potential (Figure S4g−i).
Sweeping back the electrode potential toward the positive
direction, the noise fluctuations on the basal plane, along
MTBs, and at the Se-vacancy are damped (see Figure S4i−p).
The full data set of the experiment is presented as a movie,
together with a detailed description in the SI.

Figure 2. (a) Large-scale in situ EC-STM image of MoSe2/Gr/SiC acquired at an electrode potential of 60 mV vs RHE, IT = 1.84 nA, UB = 89
mV. (b) Atomic structures of MoSe2 monolayer with adsorbed H-atom on pristine 44 |P MTB and two different vertices. The adsorption
energies are also listed. (c) Cyclic voltammogram of the MoSe2/Gr/SiC recorded in Ar-saturated 0.1 M HClO4, scan rate: 20 mV s−1. (d) Fit
results of the faradaic-cr (L) as a function of the EC potential extracted from the highlighted rectangles in panel a.
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The activation/suppression of noise with the EC potential is
easily explained: when the working electrode potential (E) is
set to an EC potential where a reaction takes place, the rapid
local changes produced by the reaction (formation or
disappearance of charged species, adsorption/desorption
phenomena) perturb the tip−sample tunneling junction. We
have recently proposed evaluating the noise fluctuations during
the EC potentiodynamic run by introducing a new quantity,
the tunneling current roughness (cr),41,42 which quantifies the
variations of the tunneling current with respect to the value set
in the feedback loop of the STM working in constant current
mode. The cr can be calculated with subnanometer resolution
on any point of interest of an EC-STM image. Across an EC
potential window where a reaction is activated, the cr values
versus E show a sigmoidal profile that describes the off/on
switch of the EC reaction.41 By the fit of the sigmoidal curve, it
is possible to extract figures of merit such as the onset reaction
potential (Eon) and the attenuation factor (a) of each site.
Herein, for the quantitative analysis we will use the faradaic-cr
(L) values, which we demonstrated to represent the size-
normalized noise contribution of the faradaic processes,
excluding any noise component due to the intrinsic structural
features of the site (i.e., topographic contributions).41 More
details about this technique and the data analysis are reported
in the Supporting Information (SI).

Figure 2 shows the topographic EC-STM image of the
examined area, with colored rectangles and labels identifying
different surface structures. The cr-analysis has been performed
on a basal plane (BP), an MTB, a Se-vacancy, and different
types of vertex sites on the MoSe2/Gr/SiC surface. Figure 2b
shows the ball-and-stick models of the investigated sites for H
adsorption, such as two types of vertices (named vertex 1 and
vertex 2) which are produced by different intersections of
MTBs.

The macroscopic cyclic voltammogram (CV) and the local L
vs E plots are reported in Figure 2c. The different cr profiles
shown in Figure 2d reflect the different catalytic activity of the
various sites.

Different values of Eon are evident in Figure 2d, with the Eon
of the MTB and vertex sites showing a lower overpotential of
20 and 90 mV, respectively, compared to the Eon of the BP
(−130 mV vs RHE).

To provide a direct map of chemical activity, Figure 3 shows
the squared deviation of the tunneling current signal relative to
the ISET of the investigated area at selected electrochemical
potentials, moving from precatalytic to catalytic HER
conditions. As discussed in Supporting Note 2, (IT − ISET)2
is the key quantity to evaluate the noise and therefore
represents the most direct way to visualize the noise hot spots

at the different electrochemical potentials. At first, higher
values of current roughness are observed at −40 mV vs RHE
on the vertex sites, while further noise spots appear also on the
MTBs and basal plane sites at −140 and −190 mV vs RHE,
respectively.

The high spatial density and distinct geometry of MTBs
produce several active sites arising from their intersections,
which significantly contribute to the activity of the planar film.
The areal density of active sites, consisting of any type of
vertex, estimated from the topographic images in Figures 1a
and S2 is approximately (3 ± 0.1) × 1012 sites·cm−2.
Therefore, considering the lower Eon exhibited by vertices
according to local cr plots, the macroscopic EC behavior of the
MoSe2/Gr/SiC at the early onset of HER can be associated
with these sites, as highlighted in Figure 2c. Hence an average
turnover frequency (av-TOF) for the vertex sites can be
calculated (see Supporting Note 3). In Figure 4a, the obtained
av-TOF trend for the vertex sites (TOF = 30 s−1 at an
overpotential of 136 mV vs RHE) is compared with the
literature values56−60 to highlight the different intrinsic activity
among various TMD sites. The av-TOF of vertex sites is higher
than that of unmodified MoSe2,

57,58 which is mainly connected
to the basal plane activity, and it is even higher than MoS2-
edges60 and 1T-MoS2,

59 which are well-known to be among
the most active TMD sites for HER.4,25,61 It must be noted
that the sigmoidal curves of vertex 2 and Se-vacancy are
strongly overlapping, suggesting a very similar catalytic activity
for these two sites. The MTBs are thermodynamically stable
under chalcogen-deficient conditions;34,35,48,50 the MoSe2 film
can accommodate a systematic deficiency of Se-atoms through
a local variation of the stoichiometry and of the metal−
chalcogenide coordination.34 Isolated Se-vacancies, far from
the MTBs, therefore are statistically uncommon defects on the
catalyst surface, as confirmed by the present data and previous
investigations.37,50,52 Hence, the effect of Se-vacancies on the
catalytic activity can be considered negligible. Anyway, our
results (i.e., low onset potential for HER) confirm previous
theoretical and experimental works indicating that chalcoge-
nide vacancies are very active catalytic centers.62−64

Additional information can be deduced by analyzing the
attenuation factor a: as previously discussed,41 the different
growth rates of the sigmoidal profile can be associated with
differences in the local value of the Tafel slope. The growth
rate parameters are reported in Figure S5a, and the lower a
value of the vertex sites compared to that of the basal plane
suggests a more favorable hydrogen adsorption step. This
conclusion is partially supported by the value of 89 mV/dec of
the macroscopic Tafel slope measured in the vertex Eon region,
which is significantly lower than the value reported in the
literature for the TMC basal plane sites (120 mV/dec, see
Figure S5b).65,66 However, it must be emphasized that, due to
nonlinearity, the 89 mV/dec local value is only an estimation
in a small range near to the onset potential. Therefore, any
information about the catalytic activity obtained by the local
Tafel slope must be necessarily considered highly speculative.

The comparative analysis of the L(E) curves indicates that
the vertices are the most catalytically active sites, followed by
the MTBs and BP. This agrees with the direct visualization of
catalytically active sites during an EC reaction, summarized in
Figures 3 and S4, and density functional theory (DFT)
calculation results (see Figure 4b and c). The different
structural units were modeled, and the hydrogen Gibbs free
energy of adsorption, ΔGH, was calculated, since it is

Figure 3. Squared deviation of tunneling current signal relative to
the ISET of investigated sites in Figure 2a at 110, −40, −140, and
−190 mV vs RHE.
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considered a reliable descriptor of the HER in acid conditions.
Details about the DFT calculations are reported in the SI.

The energetics of hydrogen adsorption on pristine and
defective MoSe2 were assessed using DFT calculations. We
have considered various hydrogen adsorption sites, and the
most energetically favorable configurations are shown in Figure
2b. Vertices are created by joining the 44 |P MTBs with 60°
relative orientation. We have investigated several vertex
configurations since the precise atomic structure and
composition of these vertices are unknown. It should be
mentioned that the distance between the vertices where the
MTBs intersect is noticeably smaller than in the experiment,
suggesting a higher concentration of vertices in our
simulations.

In the case of a pristine monolayer, the H-atoms prefer to be
in the interstitial configuration rather than adatom config-

urations due to the large primitive cell of MoSe2, which
provides free space in the hollow site of the Mo-atom plane, as
demonstrated earlier.67,68 In the presence of MTB, the H-atom
is adsorbed at the center of the hexagon next to the MTB. We
note that due to metallic nature of the one-dimensional
metallic band at the MTB, the adsorption energy of H-atoms
in general depends on the occupancy of the band, i.e., the
position of the Fermi level. This also gives rise to a difference
of about 0.7 eV in the adsorption energy of H-atom when
MoSe2 with the MTB is modeled as a ribbon67 due to the
charge transfer between the metallic states localized at the
edges and the MTB.34 While the MTB does not have any
dangling bonds, the vertices contain more complex morphol-
ogies with only partially unsaturated bonds, therefore affecting
adsorption. It has been demonstrated that several of these
vertices serve as preferential nucleation sites for vapor-
deposited metal atoms.69 Our calculations showed that the
adsorption energies of H-atoms on vertices are lower than
those on MTBs and Se-vacancies. The strongest interaction
between the H and defects was found for vertex 1, with the
adsorption energy of −2.57 eV.

To achieve more insight into the role of defects in HER
reactivity, we further compared the free energy diagrams for
the basal plane, Se-vacancy, MTB, and vertices (Figure 4b).
The vertices exhibit the lowest HER energy among the
different considered defects. The reported values must be
intended as relative indicators of the different catalytic
activities of the investigated sites, since they were calculated
considering the adsorption of a single H-atom, but it is
reported that the Eads and ΔGH change as a function of the H
coverage.70 Therefore, further investigations were carried out:
different possibilities of adsorption positions have been
investigated for vertex 1, considering an increasing number
of adsorbed H-atoms. The most stable configurations are
reported in Figure S6, and the results show that the interaction
of hydrogen with vertices decreases with increasing hydrogen
coverage. However, the vertices adsorb H much more strongly
than the basal plane and MTBs. The free energy plot indicates
that the HER energy barrier of the vertices is still lower than
that of other defects, suggesting a high activity of vertices
toward the HER process on the MoSe2 ML (see Figure S6b).

The sequence of reactivity experimentally observed by cr-
EC-STM perfectly agrees with the trend of ΔGH obtained by
the DFT simulations. In close analogy to what was observed in
a previous investigation,42 the onset potential obtained by the
cr curves is indeed linearly correlated to the ΔGH, as shown in
Figure 4c.

In this work, we have shed light on a new strategy to activate
the HER on the MoSe2 basal plane.41 We confirmed that
metallic defects like MTBs are very stable and moderately
active; however, the high resolution capabilities of the cr
analysis allowed us to identify in secondary structures such as
the intersections of MTBs, i.e., the vertices, the most active
sites, which are extremely active even at a very low
overpotential (TOF = 30 s−1 at an overpotential of 136 mV
vs RHE), as also confirmed by DFT calculations (ΔGH almost
perfectly thermoneutral for vertex 1). This work demonstrates
the huge potential of EC-STM in the precise identification and
quantification of active sites and also proposes new strategies
for the activation of the basal plane of TMDs.

Figure 4. (a) av-TOF as a function of the overpotential per the
vertex sites based on Figure 2c; literature results per common
TMD sites are also shown for comparison (dashed line and shaded
area): basal plane-MoS2 from ref 56, basal plane-MoSe2 from refs
57 and 58, edge-MoS2 from ref 60, 1T basal plane-MoS2 from ref
59, and S-vacancy-MoS2 from ref 56. (b) Gibbs free energy profiles
of HER on a pristine MoSe2 monolayer and with different types of
defects. (c) Plot of onset potential versus Gibbs free energy of
HER showing a linear relationship.
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■ METHODS AND MATERIALS
Mono- to bilayer MoSe2 films were grown by molecular beam
epitaxy. Mo was evaporated from a home-built water-cooled
mini e-beam evaporator from a solid, 2 mm diameter, high-
purity Mo rod. Atomic selenium was supplied by a valved, hot-
wall selenium cracker source. The films were grown in more
than 10 times higher chalcogen than molybdenum flux at a
growth temperature of 300 °C. The growth rate was slow, at
about 1 h per monolayer. More details about the growth and
vacuum characterization of the samples can be found in ref 37.

The EC-STM measurements were carried out using a home-
built electrochemical scanning tunneling microscope at
constant current mode, as described by Wilms et al.71 The
electrolyte was prepared by using deionized water from a
Millipore-Pure (Merck, Burlington, MA, USA) water system
(with a specific resistance of 18 MΩ·cm and a residual amount
of organic impurities in the ppb regime) and purged with supra
pure argon gas for several hours before use. During the EC-
STM measurement, the chamber was filled with Ar gas.
Chemicals used (purchased from Sigma-Aldrich, Saint Louis,
MO, USA) were of the highest commercially available quality
and were used without further purification. The tunneling tips
were electrochemically etched from a 0.25 mm tungsten wire
in 2 M KOH solution and subsequently cleaned in high-purity
water, dried, and coated by passing the tip through a drop of
hot polymer glue (Pattex, Germany) placed on a platinum
sheet with a 0.5 mm hole. The usual temperature of the glue is
150 °C. Each fabricated tip is tested directly in the EC-STM
cell to verify the faradaic current leakage before use. The test is
performed by changing the bias of the tip with respect to the
working electrode in the range ±500 mV. If the leakage
exceeds 50 pA, the tip is unsuitable for measurements and
discarded. More details on the tip quality can be found in
Supporting Note 4 and Figure S7. Platinum wires were used as
counter and reference electrodes to ensure the system’s high
purity; a correction factor of 0.8 V was considered for
conversion from the Pt/PtO reference electrode to RHE.72

The stability of the Pt wires reference electrode was checked
by comparing the results of the faradaic-cr analysis with a
further cycle of potentiodynamic STM images on the same
area, as reported in Figure S8.

The image analysis was carried out by using the WSxM 5.0
software.73

The XPS analysis was carried out using an EA 125 Omicron
electron analyzer equipped with five channeltrons, working at a
base pressure of 2 × 10−10 mbar. The XPS data were collected
at RT with the Mg Kα line (hν = 1256.6 eV) of a non-
monochromatized dual-anode DAR400 X-ray source using 0.1
eV energy steps, 0.5 s collection time, and 20 eV pass energy.
The binding energy (BE) scale was calibrated using a gold
sample (Au 4f at 84 eV). Curve-fitting of Mo 3d and Se 3d
lines was performed employing a Voigt function with a Shirley
background using the KolXPD software.

Details about the DFT calculations are reported in
Supporting Note 5.
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