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One of the main advantages of reciprocal bianisotropic metasurfaces is their capability to produce asymmetric
scattering depending from which side they are illuminated and on the handedness of circularly polarized
illuminations. For most applications, these metasurfaces are designed for illumination by a single source at
a time. The resulting bianisotropic metasurface has a specific and usually complex geometrical structure that
ensures the expected scattering produced under various illuminations. Here we show that geometrical asymmetry
of metasurfaces can be emulated by using nonbianisotropic layers in presence of coherent illumination, which
allows us to replicate and optically control the desired asymmetric scattering and chirality effects. In particular,
the concept is developed on an example of emulating asymmetric scattering needed to create a 180◦ hybrid
junction for plane waves. We show that this device can be realized either using a bianisotropic metasurface or a
set of simple sheets with electric response under simultaneous illumination by two coherent waves.

DOI: 10.1103/PhysRevB.107.035145

I. INTRODUCTION

Main interest in bianisotropic media and metasurfaces
sprouts from their capability to produce cross-polarized (chi-
ral) or asymmetric (omega) scattering response [1–5]. In terms
of metasurface design, bianisotropic scattering can be estab-
lished using a single illumination source. If the metasurface
has a linear response, its performance will be as expected
whether it is illuminated from only one side at a time or si-
multaneously from both sides. As an example, with the use of
bianisotropic inclusions it is possible to create a metasurface
that allows combining two arbitrary incident waves so that
the resulting scattered waves are equal to the sum and differ-
ence of the incident waves, as portrayed in Fig. 1(a). It is easy
to see that such functionality requires bianisotropic response
[2,4] (asymmetric reflection due to geometrical asymmetry of
the metasurface).

Here, we ask ourselves the question if it is possible to
emulate bianisotropic properties of metasurfaces using illu-
mination of a simple nonbianisotropic metasurface by two
or more coherent waves. The motivation is an analogy with
other coherently-illuminated devices, such as coherent ab-
sorbers [6–10]. While perfect absorption of plane waves in
thin layers requires excitation of both electric and magnetic
surface currents in a finite-thickness layer [11], using coher-
ent illumination by two waves it is possible to realize full
absorption in a sheet of negligible thickness that supports
only electric surface current [12]. The same conclusion is
true for some other functionalities, such as retroreflection of
plane waves [13]. Based on these observations, we expect that
also some asymmetric or polarization-sensitive reflection re-
sponse can be achieved using nonbianisotropic metasurfaces,
exploiting coherent illumination by two sources. By doing
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that, it becomes possible to emulate and optically control ef-
fects of complex bianisotropic layers using simple symmetric
metasurfaces, as conceptualized in Fig. 1(b). We note that in
Ref. [14] it was shown that coherent illuminations can control
the degree of optical activity in chiral layers. Here, we show
that chiral and other bianisotropic effects can be emulated
using completely nonchiral and symmetric structures. Actual
realizations of coherent illuminations of metasurfaces usually
use one source and various wave splitters or power dividers,
see examples in Refs. [7,8,12,15–17].

In this work, we discuss the concept of emulating bian-
isotropic response using an example of asymmetric reflection
from a bianisotropic metasurface designed as a planar 180◦
hybrid junction [18] for plane waves. We show that it can
be replicated using only metasurfaces with electric response
illuminated by two coherent sources.

II. �� BIANISOTROPIC METASURFACE

In microwave engineering, a 180◦ hybrid junction is a four-
port device that combines two input waves and outputs waves
proportional to their sum and difference [18]. For plane waves,
a two-port equivalent of this concept can be depicted using
asymmetric scattering, either in transmission or reflection.
Such device, visualized in Fig. 2(a), functions for two input
waves simultaneously illuminating a single metasurface (one
propagating in the forward direction with amplitude EF and
the other traveling in the backward direction with amplitude
EB). We write the fields of the two incident waves as

EI,F = EFe− jk0zax, HI,F = EF

η0
e− jk0zay, (1a)

EI,B = EBe jk0zax, HI,B = −EB

η0
e jk0zay, (1b)
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FIG. 1. (a) A bianisotropic metasurface allows creation of asym-
metric scattering that depends on the side where the source is located.
Under illumination by two sources, such layer allows us to combine
waves created by the two sources in different ways. (b) By exploiting
the presence of two coherent sources, it is possible to replicate
scattering of a bianisotropic layer.

where η0 is the characteristic impedance of the medium sur-
rounding the metasurface, and k0 is the wave number of
propagating waves. For this work, we assume the time har-
monic convention exp(+ jωt ).

The desired scattering, produced by the metasurface under
this illumination, is equivalent to the sum “�” and difference
“�” of the incident waves. We write the scattered fields as

E� = ER,F + ET,B = α(EF + EB)e jk0zax, (2a)

E� = ER,B + ET,F = α(EF − EB)e− jk0zax. (2b)

The fields are proportional (through the nonzero complex
scaling factor α) to the sum and difference of the amplitudes
of the two incident waves. Such interaction between incident
waves can be realized using a single bianisotropic sheet that
can be designed to support asymmetric transmission, asym-
metric reflection, or arbitrary scattering. The bianisotropic
sheet can be designed by imposing the desired scattering sep-
arately for each single source. For single forward illumination
the scattered waves read

ET,F = ET,Fe− jk0zax, HT,F = ET,F

η0
e− jk0zay, (3a)

ER,F = ER,Fe jk0zax, HR,F = −ER,F

η0
e jk0zay, (3b)

ET,F = τFEF, ER,F = �FEF, (3c)

where τF (�F) is the transmission (reflection) coefficient with
respect to the forward illumination. In the case of single back-
ward illumination we write

ET,B = ET,Be jk0zax, HT,B = −ET,B

η0
e jk0zay, (4a)

ER,B = ER,Be− jk0zax, HR,B = ER,B

η0
e− jk0zay, (4b)

ET,B = τBEB, ER,B = �BEB, (4c)

where, accordingly, τB and �B are the transmission and re-
flection coefficients at backward illumination. In the case
of asymmetric transmission (τF �= τB), the sheet should be
nonreciprocal, requiring external magnetic bias, active, or

nonlinear components [18]. On the other hand, asymmetric
reflection (�F �= �B) requires presence of bianisotropy: mag-
netoelectric coupling, where the induced currents depend on
both incident electric and magnetic fields [1,5]. Reciprocal
magnetoelectric effects are classified into chiral effects, mea-
sured by the symmetric part of the coupling dyadic [19,20]
and omega coupling effects measured by the antisymmetric
part of the coupling dyadic [1,20]. In both cases, the exis-
tence of coupling requires layers of nonzero thickness with
specific geometric asymmetries. Specifically for the thought
application we require asymmetry of reflection of linearly
polarized incident waves, which corresponds to the presence
of omega coupling [5]. For the desired combined scattering of
Eqs. (2), we require a combination of symmetric transmission
τF = τB = α and antisymmetric reflection �F = −�B = α.
Such bianisotropic metasurface, isotropic in the transverse
plane, can be described using the generalized sheet impedance
conditions [5,21,22]

n × (ER − EL) = Jm, (5a)

Jm = Zmm
HR + HL

2
+ γemn ×

[
ER + EL

2

]
, (5b)

n × (HR − HL) = −Je, (5c)

Je = Yee
ER + EL

2
+ χmen ×

[
HR + HL

2

]
.

(5d)

Here, Je and Jm are the electric and magnetic surface cur-
rent densities induced at the sheet, Yee is the electric sheet
admittance, Zmm the magnetic sheet impedance, and γem and
χme are the magnetoelectric coupling parameters. Further-
more, ER (HR) is the net tangential electric (magnetic) field at
the right side of the interface of Fig. 2(a), while EL (HL) is the
corresponding net tangential electric (magnetic) field at the
left side. These boundary conditions relate surface-averaged
fields at the two sides of the layer, and they can be used
to calculate reflected and transmitted fields at distances that
are large compared with the array period [22,23]. Solving
the boundary conditions for each incident wave, as done in
Appendix A, gives us the complex amplitudes of transmitted
and reflected waves:

τF = α = η0[4 − YeeZmm − γem(χme − 2) − 2χme]

2Zmm + η0(4 + YeeZmm + γemχme) + 2η2
0Yee

,

(6a)

�F = α = 2
[
Zmm − η0(γem + χme) − η2

0Yee
]

2Zmm + η0(4 + YeeZmm + γemχme) + 2η2
0Yee

,

(6b)

τB = α = η0[4 − YeeZmm − γem(χme + 2) + 2χme]

2Zmm + η0(4 + YeeZmm + γemχme) + 2η2
0Yee

,

(7a)

�B = −α = 2
[
Zmm + η0(γem + χme) − η2

0Yee
]

2Zmm + η0(4 + YeeZmm + γemχme) + 2η2
0Yee

.

(7b)
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FIG. 2. (a) A �� metasurface is a bianisotropic sheet capable of emulating a 180◦ hybrid junction functionalities under illumination
by two plane waves. (b) The asymmetric reflection from such metasurface can be modeled as a two-port T network, where the effects of
excited electric and magnetic surface current densities Je and Jm are governed by three equivalent surface impedances ZL,B, ZC,B, and ZR,B in
a transmission-line model. (c) Simulation results obtained with COMSOL show that the device behaves as expected, producing total reflection
when both incident waves illuminate the metasurface with the same phase and amplitude of the electric field, (d) while total forward scattering
is produced with a 180◦ phase difference between the sources.

The required properties of such Delta-Sigma (��) bian-
isotropic metasurfaces defined by Eqs. (6)–(7) are achieved
when the sheet parameters take the form

Yee = 2 − 4α2

η0(1 + 2α + 2α2)
, (8a)

Zmm = η0(2 − 4α2)

1 + 2α + 2α2
, (8b)

γem = χme = − 4α

1 + 2α + 2α2
. (8c)

Contemplating the above expressions, two important proper-
ties are observed. First, we see that Zmm = η2

0Yee regardless
of the value of α. Second, since the electromagnetic and
magnetoelectric coupling parameters are the same (γem =
χme), this bianisotropic metasurface is reciprocal, and it
can be modeled as a two-port T network of Fig. 2(b) (see
Appendixes B–D). Hence, the �� bianisotropic metasurface
is equivalent to three cascaded sheets (left, center, and right),
with surface impedances

ZL,B = YeeZmm − 2γem + γ 2
em

2Yee
= η0

1 + 2α2

1 − 2α2
, (9a)

ZC,B = 4 − YeeZmm − γ 2
em

4Yee
= η0

2α

1 − 2α2
, (9b)

ZR,B = YeeZmm + 2γem + γ 2
em

2Yee
= η0

1 − 4α + 2α2

1 − 2α2
. (9c)

Two of the equivalent sheets have a magnetic response
(ZL,B and ZR,B) while the middle sheet has an electric response
with sheet impedance ZC,B. A lossless implementation of such
interface requires the combined power of the output waves to
be equal to the total input power (either with single or coherent
forward-backward illumination). This condition is achieved
when

α = 1√
2

e jψ, (10)

where ψ is an arbitrary phase angle. Based on this equation,
the resulting equivalent impedances reduce to

ZR,B = jη0(cos ψ − √
2)

sin ψ
, (11a)

ZC,B = jη0√
2 sin ψ

, (11b)

ZL,B = jη0

tan ψ
. (11c)

A simplified variant of such metasurface is achieved with α =
± j/

√
2 (ψ = ±π/2), as in this case ZL,B becomes zero, and

the resulting �-model metasurface is fully characterized by
the two remaining impedances

ZC,B = αη0, ZR,B = η0

α
. (12)

Simulation results presented in Figs. 2(c)–2(d) show how
the �� bianisotropic metasurface behaves under illumination
by two incident waves with the same amplitudes with an
arbitrary reference frequency f0 = 11.11 GHz under two sce-
narios: when both waves have the same phase, and when there
is a difference of 180◦ phase between the incidence sources.
Both scenarios, simulated in COMSOL inside a parallel-plate
waveguide consider an ideal �� bianisotropic metasurface by
the sheet impedance boundary conditions (5). The amplitudes
and phases for both scenarios were selected for their particular
scattering outcome, as the scenario of Fig. 2(c) is expected
to have only back scattering (E� = 0), while the illumina-
tion corresponding to Fig. 2(d) should produce only forward
scattering (E� = 0).

III. ASYMMETRIC SCATTERING FROM SYMMETRIC
STRUCTURES

The �� bianisotropic metasurface shown in Fig. 2(a)
requires bianisotropic omega coupling response defined in
Eq. (5). In practice, this kind of response can be realized using

-shaped particles [2,24] or as arrays of cascaded planar
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FIG. 3. (a) A �� metasurface can be implemented as a combination of cascaded individual sheets with only electric current excitation.
(b) In the case of a �� bianisotropic sheet of Eqs. (12), one of the equivalent cascaded sheets can be suppressed, resulting in a metasurface
pair separated λ0/4 between them. (c)–(d) Simulation results show the same behavior as of the �� metasurface pair implementation, using
equivalent electric current densities, with additional standing waves between the metasurfaces. For (c), using waves with the same amplitude
and phase, only the sum scattering wave adds constructively, while the difference component fades. In (d), the additional 180◦ phase difference
results in a constructive interference in the difference scattering, as there is no sum component.

meta-atoms [25–29]. While the 
-particle topology offers an
intuitive understanding of its interaction with the electromag-
netic fields, the latter topology is preferred due to its ease of
fabrication. The �� bianisotropic metasurface of Eqs. (12)
can be converted into a set of two independent cascaded sheets
by applying the quarter-wave transformer to the magnetic
component ZR,B [18]. As a result, this �� metasurface pair
can be realized as shown in Fig. 3(a), where two sheets with
identical surface impedances

ZC,A = ZC,B = αη0, ZR,A = η2
0

ZR,B
= αη0 (13)

are separated by distance d = λ0/4, where λ0 is the opera-
tional wavelength.

Interestingly, this metasurface pair is geometrically sym-
metric, as portrayed in Fig. 3(b): both parallel sheets have
the same electric properties. It appears counterintuitive that
a symmetric device can produce asymmetric scattering.
However, this pseudobianisotropy is possible because the con-
siderable distance between the metasurfaces allows the use
of coherent illumination with an asymmetrically defined ref-
erence plane. In the absolute terms, phases of all input and
output waves are counted from the same reference plane: the
metasurface located at z = 0 in Fig. 3(a). Thus, from the
point of view of each individual source, the forward wave
(propagating in the +z direction) has its reference plane at
the first metasurface that the wave illuminates. By solving
the boundary conditions at each sheet for single forward and
backward illuminations (see Appendix E), it can be found that
the amplitudes of the scattered waves of Eq. (3) produced by
the forward incident wave read

ET,F = EF
2Z2

C,A

η2
0 + 2η0ZC,A + 2Z2

C,A

, (14a)

ER,F = −EF
η2

0

η2
0 + 2η0ZC,A + 2Z2

C,A

. (14b)

However, the reference plane for the backward wave (prop-
agating in the −z direction) is located at the last metasurface

that the wave reaches. In that case, the amplitudes of reflected
and transmitted waves, described by Eqs. (4), read

ET,B = EB
2Z2

C,A

η2
0 + 2η0ZC,A + 2Z2

C,A

, (15a)

ER,B = −EBe jφR,B
η2

0

η2
0 + 2η0ZC,A + 2Z2

C,A

. (15b)

It can be noticed that the reflected wave ER,B is defined
with an additional phase of φR,B = 2k0d = π with respect to
the reflected wave produced under forward illumination. The
resulting combined fields read

E� = −EFη
2
0 + EB2Z2

C,A

η2
0 + 2η0ZC,A + 2Z2

C,A

e jk0zax

= α(EF + EB)e jk0zax, (16a)

E� = 2EFZ2
C,A − EBe jφR,Bη2

0

η2
0 + 2η0ZC,A + 2Z2

C,A

e− jk0zax

= α(EF − EB)e− jk0zax. (16b)

Similarly as has been done for the �� bianisotropic meta-
surface, computations of induced surface current densities
using COMSOL software show that the metasurface pair is
capable of producing only back scattering when it is illumi-
nated with two incident waves with the same amplitude and
phase, as presented in Fig. 3(c). Total forward scattering is
obtained after introducing a phase difference of 180◦ between
the illuminating sources, as is done in Fig. 3(d).

IV. �� COHERENT METASURFACE

Alternatively, a two-port analogy of an 180◦ hybrid junc-
tion that creates scattering proportional to the sum and
difference of the incident waves can be realized by a single
nonbianisotropic sheet by external tuning of these incident
waves. The device of Fig. 4(a), namely a �� coher-
ent metasurface, is designed as a thin sheet with electric
sheet impedance [defined by Yee = 1/ZC,P and Zmm = γem
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FIG. 4. (a) By adding an additional phase shift between the incident waves, it is possible to design a �� metasurface that exploits coherent
illumination. (b) The equivalent transmission-line model for such sheet is a shunt impedance, which produces symmetric reflection. (c) With
the additional phase, a single nonbianisotropic metasurface is able to produce the desired asymmetric scattering in terms of producing back
scattering when the incident waves are coherently in phase. (d) Likewise, total forward scattering is achieved using the same amplitudes but
the incident waves have the phase difference of 180◦ + 2φ.

= χme = 0 in Eq. (5)] that is illuminated by two coherent
sources with a matching phase φ in the form

EI,F = EFe jφe− jk0zax, (17a)

EI,B = EBe− jφe jk0zax. (17b)

The scatterings produced by each individual incidence source
are combined using a relaxed definition of summation and
subtraction of fields:

E� = α� (EF + EB)e jk0zax, (18a)

E� = α�(EF − EB)e− jk0zax, (18b)

where the sum and difference waves can have arbitrary am-
plitudes α� and α�, respectively. The resulting boundary
conditions of Eq. (5) can be split for each illumination source,
so that the values of ZC,P, φ, α� , and α� do not depend
on EF and EB. For single forward illumination scenario, the
boundary conditions read

e jφ + α� = α�, (19a)

2ZC,P(e jφ − α� − α�) = η0(e jφ + α� + α�), (19b)

while for the backward incident wave we get

α� = e− jφ − α�, (20a)

2ZC,P(e− jφ − α� + α�) = η0(e− jφ + α� − α�). (20b)

The boundary conditions of Eqs. (19)–(20) are satisfied for
combinations of sheet impedance and matching phase of the
form

φ[n] = π (1 + 2n)

4
, (21a)

ZC,P[n] = − jη0

2 tan (φ[n])
, (21b)

where n is an integer. The corresponding values of α� and α�

read

α� = − j sin (φ[n]), (22a)

α� = cos (φ[n]). (22b)

Unlike the previous structures, the �� functionality re-
quires that both incident waves have an additional phase

shift between them, defined by Eq. (21a), as a form of co-
herent bianisotropy. This single-sheet coherently-illuminated
device was also tested in COMSOL with a similar setup, using
a homogenized model of an electrically polarizable sheet.
The difference scattering component is canceled when both
incident waves have the same amplitude and a phase differ-
ence of 2φ[n], as represented in Fig. 4(c); while the sum
component vanishes when the phase difference is equal to
2φ[n] + 180◦, as shown in Fig. 4(d). Please notice that, un-
like the previous structures, the phases of these scattered
waves are different, corresponding to the conditions given in
Eqs. (22).

V. STABILITY UNDER NONIDEAL ILLUMINATIONS

Because the device operation requires coherent excitation,
the performance of the metasurface pair and the coherent sheet
degrades under nonideal illuminations. Phase misalignment
would happen when one of the sources has an additional
phase �� = � − �ideal, introduced when the metasurface
pair is not properly aligned to the reference plane, or, for
the single-sheet device, the two incident waves do not have
the proper phase difference. Under the assumption that only
one of the incident waves is not properly matched (forward
wave in this case), the phase difference is transferred into the
complex amplitude of the wave E ′

F = EF exp j��. Therefore,
the sum and difference responses, as described in Eqs. (18),
depend on this additional phase variation in the source. As
a result, the amplitude of the scattered waves degrades from
their expected values as �� increases. Nevertheless, it can
be found that this degradation in performance becomes no-
ticeable only when |��| > 25◦, where the amplitude of the
sum component (using waves with the same amplitude and
same original phase) falls below 95% of the ideal value
(see Appendix F).

This performance degradation is also noticeable in scenar-
ios where the frequency or the incident angle is not ideal.
For such purpose, both coherently-illuminated structures were
simulated in COMSOL as thin sheets with effective surface
impedances, using two plane waves with the same ampli-
tude, phase, frequency, and angle of incidence. In terms of
frequency, as shown in Fig. 5(a), worse performance of the
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FIG. 5. Stability of the �� metasurface pair and the �� coher-
ent metasurface with respect to (a) shifts of the angle of incidence
and (b) frequency deviations of the incidence waves. In both cases, it
was assumed that the two incident waves have the same incidence
angle or frequency. Both structures were designed for the normal
incidence (θi = 0) and the operational frequency of f = 11.11 GHz
(dotted line), using frequency-dispersive impedance sheets.

metasurface pair is due to the quarter-wave transformer im-
plementation, where the use of two sheets makes the overall
device frequency resonant (the resonance is at 11.11 GHz in
this example). As the impedances for each sheet should be
designed for a particular angle of incidence, it is expected
that the performance of both �� structures deteriorates when
the angle of incidence differs from the design one (in this
case, both structures were designed for normal incidence). In
the case of the metasurface pair, the weaker angular perfor-
mance of Fig. 5(b) is also due to the quarter-wave transformer,
as the standing wave in between the sheets depends on re-
flections produced by each single sheet. Nevertheless, both
structures offer a broad frequency and angular performance
range, as the performance of the metasurface pair is at least
95% of the ideal level for incident angle variations up to 10◦
and frequency variations up to about 1 GHz (approximately
9% bandwidth).

VI. IMPLEMENTATION FOR OBLIQUE ANGLE
OF INCIDENCE

Both coherent structures can be implemented using meta-
surfaces with only electric response. Additionally, they can
be designed to operate for oblique illumination, mimicking
a four-port device through specular reflection. For that pur-
pose, example metasurfaces are designed to operate under
transverse electric (TE) illumination at the angle of incidence
θi = 45◦, with the characteristic impedance η = η0/ cos θi

and propagation constant β = k0 cos θi at the operational fre-
quency of f0 = 10 GHz [23]. In accordance to the change in
the propagation constant, the distance between metasurfaces
for the �� metasurface pair is increased to d = λ0/4 cos θi.

In this setup, each sheet can be realized using metal-
lic stripes of Fig. 6(a), with a periodicity of a = 0.5λ0

(14.99 mm) for all the required metasurfaces. This meta-atom
is designed based on the homogenization principle, where
the array of meta-atoms can be replaced by a uniform sheet
characterized by an effective surface impedance. The homog-
enized layer produces the same fields as the actual array of
meta-atoms at distances that are large as compared with the
array period [23,30]. The width of the metallic stripe was
tuned to give the desired scattering under oblique incidence.
For the metasurface pair, the stripe width was found to be
h = 0.045λ0 (1.35 mm), while for the single coherent sheet
the width was h = 0.076λ0 (2.28 mm). The simulation results,
realized in COMSOL using perfect electric conductor (PEC)
stripes, corroborate the expected performance for TE illu-
minating plane waves, whose electric field is parallel to the
metal strips. In the case of the metasurface pair of Fig. 6(b),
illuminated by two incident waves with the same amplitude
and phase, the sum component picks up 94% of the incident
power. Even better performance was achieved for the single
coherent sheet of Fig. 6(c), which under similar illumination
(with an added phase shift of φ = 5π/4), creates the sum
component that carries 99% of the total power.

VII. COHERENT ILLUMINATION EMULATING
CHIRALITY EFFECTS

The �� structure explained in the previous sections was
introduced as an example of the use of coherent illumina-
tion to emulate bianisotropic coupling of the omega type. In
that case, linearly polarized incident waves reflect differently,
depending on which side of the metasurface they illuminate.
Next, we show that this geometrically symmetric metasurface
can emulate also effects of chiral bianisotropic coupling, with
the use of coherent illumination by a circularly polarized
control wave.

In the case of an incident wave with an arbitrary polar-
ization, it is found that the reflected wave has the opposite
handedness of the incident wave, with transmission and re-
flection coefficients following the expressions of Eqs. (6)–(7)
(see Appendix G). Using these equations, we see that if the
layer is coherently illuminated by two circularly polarized
waves with the opposite handedness (one is right handed and
the other one is left handed), the scattered waves at each
side of the interface have the same handedness and they can
merge together. Therefore, for the �� metasurface under

035145-6



EMULATING BIANISOTROPIC COUPLING THROUGH … PHYSICAL REVIEW B 107, 035145 (2023)

ℎ

1

-1

0

0.5

-0.5

2

-2

0

1

-1

Einc
V
m(  ) Escatt

|α|
V
m(  )(a) (b) (c)

FIG. 6. (a) The electric sheets can be modeled using anisotropic meta-atoms consisting of a metallic stripe with width h and periodicity
a. (b) The �� metasurface pair can be designed to operate for oblique incidence for TE-polarized waves, by adjusting the distance between
the sheets. (c) With the respective considerations for the sheet impedance, the �� coherent sheet can also be designed to operate for oblique
incidence. In both scenarios, we assumed two incident waves with Einc = 1 V/m and zero phase difference at the reference plane, expecting to
obtain complete constructive interaction at the sum scattering, while the difference component scatters little-to-none power.

coherent illumination by waves of the same phase and
amplitude, forward scattering vanishes, and only backward
scattering remains, which has the same handedness as the
backward incident wave. In Fig. 7(a), we confirm this result in
numerical simulations, using a similar setup of the ideal ��

metasurface pair of Sec. III. As seen, the numerical results are
fully in agreement with the theoretical expectations. Note that
this control over handedness of scattering is enabled by the
use of a control wave of a certain handedness, since the sheets
are uniform, isotropic, and symmetric with respect to mirror
inversion. Without coherent illumination by a handed control
wave, no chirality effects are possible.

As another interesting example, we show that it is also
possible to spatially decompose a circularly polarized wave
into two orthogonal linearly polarized scattered waves, again
using coherent illumination of a nonchiral layer. To realize
such effect, the two illuminating coherent waves should have
the same handedness. Due to this property and the inversion

of the handedness in reflection, we see that the �� layer
splits the incident circularly polarized wave into two linearly
polarized waves, propagating into the opposite directions, as
illustrated in Fig. 7(b). This happens because the vertically
polarized difference wave propagates in the forward direction
(resulting in vanishing of this wave) while the sum wave is
in the backward direction. However, for the horizontal polar-
ization, the situation is opposite and the sum wave propagates
in the forward direction, while the difference wave (with zero
total amplitude) is in the backward direction. Therefore, the
vertical and horizontal components are spatially separated. It
is important to note that the symmetry of reflection of right
and left circularly polarized waves illuminating one side of
a nonchiral layer is broken and controlled by the helicity
of the coherent control wave that illuminates the other side.
Similarly to the previous example, without the presence of co-
herent control wave such polarization splitting by an isotropic
in the plane layer would require a mirror-asymmetric (chiral)
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FIG. 7. (a) The �� metasurface pair can also emulate some chiral effects under coherent illumination. Using isotropic sheets, it is capable
to combine constructively a left-handed wave with a right-handed one when their phases are the same at the first sheet. In this scenario,
the concept was proved numerically via COMSOL using the �� metasurface pair of Sec. III as two homogenized sheets carrying electric
surface current. (b) Additionally, if the metasurface pair is illuminated by two circularly polarized waves with the same handedness (right-hand
polarization in this case), the resulting scattered waves have a vertical or a horizontal polarization depending on the side of the device and the
phase difference between the illuminating waves.
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structure. Thus, we see that coherent illumination emulates
breaking of the mirror-reflection symmetry of metasurfaces.

VIII. CONCLUSIONS

In summary, we have proposed a possibility to emulate
and control bianisotropic response from nonbianisotropic ob-
jects using coherent illumination by two waves. This basically
means that symmetry of scattering phenomena can be con-
trolled by adjusting the phase or amplitude of the control
wave. In the first part, we discussed how asymmetric reflection
from bianisotropic metasurfaces can be emulated using coher-
ent illumination. As a representative example, we considered
a metasurface analogy of a 180◦ hybrid junction, called ��

metasurface. The amplitudes of waves scattered by such a
sheet into opposite directions are proportional to the sum and
difference of the amplitudes of two illuminating waves. If
we require that such device is a metasurface with electrically
negligible thickness, this functionality requires bianisotropic
properties (reciprocal omega coupling) in the metasurface.
However, if we allow electrically considerable thickness, the
equivalent response can be realized using two parallel meta-
surfaces that both maintain only electric surface currents. In
this case, the required bianisotropic coupling is emulated by
an additional phase shift of waves propagating between the
two sheets. We call this effect pseudobianisotropy. Further-
more, we have shown that if we illuminate a metasurface
by two coherent plane waves with a particular value of the
phase difference of the incident electric fields, the same func-
tionality of an asymmetrically reflecting �� metasurface can
be realized in a single nonbianisotropic, infinitely thin sheet.
Thus, specific coherent illumination of a nonbianisotropic
sheet by two coherent waves emulates bianisotropic properties
of metasurfaces that are required for breaking symmetry of
reflection properties of two sides of thin sheets. In addition,
we have shown that some effects usually associated with
chirality can also be emulated using coherent illumination.
This concept of coherent bianisotropy allows us to realize ef-
fects of bianisotropy in simpler nonbianisotropic metasurfaces
with either electric or magnetic response. Since these effects
exist only in the presence of a proper control wave, they are
optically tunable. In this work, we also presented a proof-of-
concept of coherent bianisotropy at oblique illumination of
nonbianisotropic metasurfaces. Finally we note that although
in this work we have considered planar layers, the introduced
concept of coherent bianisotropy is general and can be applied
to asymmetric scattering from any bianisotropic object, for
example, from small bianisotropic particles.
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APPENDIX A: COUPLING PARAMETERS
FOR A BIANISOTROPIC SHEET

WITH ARBITRARY SCATTERING

The bianisotropic metasurface of Fig. 8 is characterized
using two independent incident waves, each one illuminat-
ing from opposite sides of the interface. The corresponding
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FIG. 8. A bianisotropic sheet with linear response can be char-
acterized in terms the scattering produced by each individual source.
In the case of this work, it is assumed that the bianisotropic sheet is
illuminated in the (a) forward and (b) backward direction.

electric fields are as defined in Eqs. (1). The forward wave
in Fig. 8(a) produces two scattering waves, one transmitting
wave (with the same propagating direction as the incident
wave) and a reflected wave (traveling in the opposite direc-
tion). The electric fields for both waves can be written as
in Eqs. (3). In the case of single forward illumination, the
boundary conditions of Eqs. (5) are reduced into the form

−(ET,F − EF − ER,F) = Zmm

2η0
(ET,F + EF − ER,F)

− γem

2
(ET,F + EF + ER,F),

(A1a)

1

η0
(ET,F − EF + ER,F) = −Yee

2
(ET,F + EF + ER,F)

− χme

2η0
(ET,F + EF − ER,F).

(A1b)

From Eqs. (A1) can be extracted a transmission coefficient τF

and a reflection coefficient �F, with respect to the forward-
illuminating wave, which expressions are summarized in
Eqs. (6).

On the other side, the scattering produced by an incident
wave traveling in the backward direction, as portrayed in
Fig. 8(b), can be described as in Eqs. (4). The boundary
conditions of Eqs. (5) for the backward-illuminating case are
reduced into

(EB + ER,B − ET,B) = Zmm

2η0
(EB − ER,B + ET,B)

+ γem

2
(EB + ER,B + ET,B),

(A2a)

1

η0
(EB − ER,B − ET,B) = Yee

2
(EB + ER,B + ET,B)

− χme

2η0
(EB − ER,B + ET,B);

(A2b)

and are solved similarly in terms of transmission (τB) and
reflection (�B) coefficients, described as in Eqs. (7).

Therefore, if the desired scattering is known for forward
and backward direction, the coupling parameters of Eqs. (5)
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can be reduced from Eqs. (6) and (7) into

Yee = 2

η0

(1 − �F)(1 − �B) − τFτB

(1 + τF)(1 + τB) − �F�B
, (A3a)

Zmm = 2η0
(1 + �F)(1 + �B) − τFτB

(1 + τF)(1 + τB) − �F�B
, (A3b)

γem = −2
�F − �B − τF + τB

(1 + τF)(1 + τB) − �F�B
, (A3c)

χme = −2
�F − �B + τF − τB

(1 + τF)(1 + τB) − �F�B
. (A3d)

In the case of a reciprocal sheet with asymmetric reflection
(τF = τB = τ ), the coupling parameters take the form

Yee = 2

η0

(1 − �F)(1 − �B) − τ 2

(1 + τ )2 − �F�B
, (A4a)

Zmm = 2η0
(1 + �F)(1 + �B) − τ 2

(1 + τ )2 − �F�B
, (A4b)

γem = χme = −2
�F − �B

(1 + τ )2 − �F�B
. (A4c)

Please notice that in this scenario we have γem = χme, which
allows us to characterize the bianisotropic sheet as a two-port
reciprocal device, using models based on T or � networks. It
can be demonstrated that the expressions derived in Eqs. (9)
are obtained when τ = α and �B = −�F = α. In the comple-
mentary case, where the bianisotropic sheet is non-reciprocal
but it has symmetric reflection (�F = �B = �), the coupling
parameters read

Yee = 2

η0

(1 − �)2 − τFτB

(1 + τF)(1 + τB) − �2
, (A5a)

Zmm = 2η0
(1 + �)2 − τFτB

(1 + τF)(1 + τB) − �2
, (A5b)

γem = −χme = 2
τF − τB

(1 + τF)(1 + τB) − �2
. (A5c)

It is found that a symmetric reflection requires the condition
γem = −χme instead.

APPENDIX B: EQUIVALENT BOUNDARY CONDITIONS
FOR BIANISOTROPIC METASURFACES MODELED

AS TWO-PORT T NETWORKS

Metasurfaces with bianisotropic response can be viewed as
combinations of alternating sheets with electric or magnetic
response. The distance between the sheets are assumed to be
negligible and the sheets are effectively homogeneous.

The configuration of Fig. 9 contains three cascaded sur-
face impedance sheets: two magnetically polarizable and one
electrically polarizable placed between the former two. The
boundary conditions for each impedance sheet read:

n × (EL,T − EL) = Jm,L, (B1a)

n × (HL,T − HL) = 0, (B1b)

Jm,L = ZL,T
HL,T + HL

2
= ZL,THL; (B1c)

n × (ER,T − EL,T) = 0, (B2a)

n × (HR,T − HL,T) = −Je,C, (B2b)

Je,C = ER,T + EL,T

2ZC,T
; (B2c)
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FIG. 9. A general reciprocal T network can be envisioned as
three tightly cascaded current sheets. The shunt components model
sheets with magnetic surface currents on them, while sheets with
electric surface currents correspond to the behavior of the shunt
component.

and

n × (ER − ER,T) = Jm,R, (B3a)

n × (HR − HR,T) = 0, (B3b)

Jm,R = ZR,T
HR + HR,T

2
= ZR,THR, (B3c)

where EL,T (HL,T) is the net tangential electric (magnetic)
field between the left and center sheets; while ER,T (HR,T)
is the corresponding electric (magnetic) field between the
center and right sheets. The tangential fields EL,T and HL,T are
determined using the boundary conditions on the left sheet of
Eqs. (B1), written as

n × HL,T = n × HL, (B4a)

n × EL,T = n × EL + ZL,THL. (B4b)

Similarly, tangential fields ER,T and HR,T are related through
the right sheet’s boundary conditions of Eqs. (B3) as

n × HR,T = n × HR, (B5a)

n × ER,T = n × ER − ZR,THR. (B5b)

Therefore, equivalent boundary conditions for the whole
setup can be established replacing the values of the inner
tangential fields into the middle sheet boundary conditions of
Eqs. (B2), leading to

n × (ER − EL) = ZR,THR + ZL,THL, (B6a)

n × (HR − HL) = − 1

2ZC,T
[ER + EL

+ n × (ZR,THR − ZL,THL)]. (B6b)

The boundary conditions can be rearranged so that the
surface current densities can be defined in terms of Eqs. (5),
in the case of the T network these parameters read

Yee,T = 4

ZL,T + 4ZC,T + ZR,T
, (B7a)

χme,T = γem,T = 2(ZR,T − ZL,T)

ZL,T + 4ZC,T + ZR,T
, (B7b)

Zmm,T = 4(ZL,TZC,T + ZC,TZR,T + ZR,TZL,T)

ZL,T + 4ZC,T + ZR,T
. (B7c)

Notice that the relation χme,T = γem,T is valid due the re-
ciprocal nature of the T network. Complementarily, the
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FIG. 10. A � network is equivalent to three cascaded current
sheets: two with electric currents and one with magnetic currents,
positioned between the electric ones. The distances between sheets
are negligible, so that there are no phase shifts between insertions.

network impedances can be described in terms of the coupling
parameters as

ZL,T = Yee,TZmm,T − 2γem,T + γ 2
em,T

2Yee,T
, (B8a)

ZC,T = 4 − Yee,TZmm,T − γ 2
em,T

4Yee,T
, (B8b)

ZR,T = Yee,TZmm,T + 2γem,T + γ 2
em,T

2Yee,T
. (B8c)

APPENDIX C: EQUIVALENT BOUNDARY CONDITIONS
FOR BIANISOTROPIC METASURFACES MODELLED

AS TWO-PORT � NETWORKS

On the other hand, the configuration of Fig. 10 is formed
by three cascaded surface impedances: two electrically polar-
izable sheets, and one magnetically polarizable sheet placed
between the former two. The boundary conditions for each
sheet read

n × (EL,� − EL) = 0, (C1a)

n × (HL,� − HL) = −Je,L, (C1b)

Je,L = EL,� + EL

2ZL,�

= EL

ZL,�

; (C1c)

n × (ER,� − EL,�) = Jm,C, (C2a)

n × (HR,� − HL,�) = 0, (C2b)

Jm,C = ZC,�

HR,� + HL,�

2
; (C2c)

and

n × (ER − ER,�) = 0, (C3a)

n × (HR − HR,�) = −Je,R, (C3b)

Je,R = ER + ER,�

2ZR,�

= ER

ZR,�

. (C3c)

Similarly to the above derivations, the inner tangential fields
EL,� and HL,� are determined through the left sheet’s bound-
ary conditions of Eqs. (C1), written as

n × EL,� = n × EL, (C4a)

n × HL,� = n × HL − EL

ZL,�

. (C4b)

Accordingly, tangential fields ER,� and HR,� are related
through the boundary conditions of the right sheet, based on
Eqs. (C3), as

n × ER,� = n × ER, (C5a)

n × HR,� = n × HR + ER

ZR,�

. (C5b)

The equivalent boundary conditions for the whole � network
can be established by substituting the values of the inner
tangential fields into the middle sheet boundary conditions of
Eqs. (C2):

n × (ER − EL) = ZC,�

2

[
HR + HL.

− n ×
(

ER

ZR,�

− EL

ZL,�

)]
, (C6a)

n × (HR − HL) = −
(

ER

ZR,�

+ EL

ZL,�

)
. (C6b)

Using the definitions of the surface currents based on aver-
age fields of Eqs. (5), the coupling parameters for a � network
read

Yee,� = 4(ZL,� + ZC,� + ZR,�)

ZL,�ZC,� + ZC,�ZR,� + 4ZR,�ZL,�

, (C7a)

χme,� = γem,�

= 2ZC,�(ZR,� − ZL,�)

ZL,�ZC,� + ZC,�ZR,� + 4ZR,�ZL,�

, (C7b)

Zmm,� = 4ZR,�ZC,�ZL,�

ZL,�ZC,� + ZC,�ZR,� + 4ZR,�ZL,�

. (C7c)

As shown before for the T network, the relation χme,� =
γem,� holds due to the reciprocal nature of the � network.
Similarly as done in Eqs. (B8), the impedances for a � net-
work can be written in terms of the coupling parameters as

ZL,� = 2Zmm,�

Yee,�Zmm,� + 2γem,� + γ 2
em,�

, (C8a)

ZC,� = 4Zmm,�

4 − Yee,�Zmm,� − γ 2
em,�

, (C8b)

ZR,� = 2Zmm,�

Yee,�Zmm,� − 2γem,� + γ 2
em,�

. (C8c)

APPENDIX D: TRANSFORMATION BETWEEN T AND �

MODELS AND THEIR CORRESPONDING IMPEDANCE
AND ADMITTANCE MATRICES

Due to the reciprocal nature of the system, these two mod-
els are fully interchangeable. Using the relations in Eqs. (B7)
and (C7), the corresponding impedances can be converted
using relations

ZL,� = ZL,TZC,T + ZC,TZR,T + ZR,TZL,T

ZR,T
, (D1a)

ZC,� = ZL,TZC,T + ZC,TZR,T + ZR,TZL,T

ZC,T
, (D1b)

ZR,� = ZL,TZC,T + ZC,TZR,T + ZR,TZL,T

ZL,T
; (D1c)
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and

ZL,T = ZL,�ZC,�

ZL,� + ZC,� + ZR,�

, (D2a)

ZC,T = ZL,�ZR,�

ZL,� + ZC,� + ZR,�

, (D2b)

ZR,T = ZC,�ZR,�

ZL,� + ZC,� + ZR,�

. (D2c)

Alternatively, the T-network model parameters can be ex-
pressed in terms of a reciprocal impedance matrix (where
Z12 = Z21) [18]. In that case, the impedances are given by

ZL,T = Z11 − Z12, (D3a)

ZC,T = Z12, (D3b)

ZL,T = Z22 − Z12; (D3c)

and the field coupling parameters read

Yee,Z = 4

Z11 + 2Z12 + Z22
, (D4a)

χme,Z = γem,Z = 2(Z22 − Z11)

Z11 + 2Z12 + Z22
, (D4b)

Zmm,Z = 4
(
Z22Z11 − Z2

12

)
Z11 + 2Z12 + Z22

. (D4c)

For the � model of Eqs. (C7), a reciprocal admittance matrix
model (with Y12 = Y21) is used instead [18]. The impedances
of the � model read in terms of the admittance matrix param-
eters as

ZL,� = 1

Y11 + Y12
, (D5a)

ZC,� = − 1

Y12
, (D5b)

ZL,� = 1

Y22 + Y12
; (D5c)

and the coupling parameters are expressed as

Yee,Y = 4
(
Y11Y22 − Y 2

12

)
Y11 − 2Y12 + Y22

, (D6a)

χme,Y = γem,Y = 2(Y11 − Y22)

Y11 − 2Y12 + Y22
, (D6b)

Zmm,Y = 4

Y11 − 2Y12 + Y22
. (D6c)

With these two models, it becomes easier to design and char-
acterize metasurfaces with asymmetric but reciprocal two-port
responses.

APPENDIX E: REFERENCE-PLANE MATCHING
OF A �� METASURFACE PAIR

Let us consider two cascaded metasurfaces, separated by
d = λ0/4 and illuminated by a single plane wave, as shown in
Fig. 11. The two metasurfaces can be modelled as two sheets
supporting electric surface current with surface impedances
ZC,A and ZR,A. In the case of Fig. 11(a), the incident wave
propagates in the az direction, and the coordinates origin is
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ZC,A ZR,A

n
z= 0/4

ET,F

HT,F kT,F

ax

ay az

ET,B

HT,BkT,B

EP,B

HP,B kP,B

EN,B

HN,BkN,B

z'=- 0/4

ZC,A ZR,A

n
z'=0

ER,B

HR,B kR,B

EI,B

HI,BkI,B

(a) (b)

FIG. 11. A �� metasurface pair can be analyzed using single
illumination from (a) forward direction and (b) backward direction.
In terms of phase, the reference plane is chosen to be at the first
metasurface that is illuminated by the incident wave.

located at the first metasurface that the incident wave illumi-
nates. The fields across the structure read

EI,F = EFe− jk0zax, HI,F = EF

η0
e− jk0zay, (E1a)

ET,F = ET,Fe− jk0zax, HT,F = ET,F

η0
e− jk0zay, (E1b)

ER,F = ER,Fe jk0zax, HR,F = −ER,F

η0
e jk0zay, (E1c)

EP,F = EP,Fe− jk0zax, HP,F = EP,F

η0
e− jk0zay, (E1d)

EN,F = EN,Fe jk0zax, HN,F = −EN,F

η0
e jk0zay. (E1e)

The boundary conditions for the first metasurface at z = 0
read

EF + ER,F = EP,F + EN,F, (E2a)

1

η0
(EF − ER,F − EP,F + EB,F) = JC,A

= EF + ER,F

ZC,A
; (E2b)

and they are satisfied for the fields between metasurfaces

EP,F = −EF(η0 − 2ZC,A) + ER,Fη0

2ZC,A
, (E3a)

EN,F = EFη0 + ER,F(η0 + 2ZC,A)

2ZC,A
. (E3b)

Likewise, the boundary conditions for the second metasur-
face at z = d read

EP,Fe− jk0d + EN,Fe jk0d = ET,Fe− jk0d ,

(E4a)

1

η0
(EP,Fe− jk0d − EN,Fe jk0d − ET,Fe− jk0d ) = JR,A

= ET,Fe− jk0d

ZR,A
.

(E4b)

By combining Eqs. (E3) with Eqs. (E4), it can be found that
the amplitudes of scattered waves produced by the cascaded
metasurfaces (assuming ZR,A = ZC,A) read as in Eqs. (15).
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The complementary scenario of Fig. 11(b) defines the
fields produced under backward illumination, where the first
illuminated metasurface is the coordinate reference (z′ = 0):

EI,B = E ′
Be jk0z′

ax, HI,B = −E ′
B

η0
e jk0z′

ay, (E5a)

ET,B = E ′
T,Be jk0z′

ax, HT,B = −E ′
T,B

η0
e jk0z′

ay, (E5b)

ER,B = E ′
R,Be− jk0z′

ax, HR,B = E ′
R,B

η0
e− jk0z′

ay, (E5c)

EP,B = E ′
P,Be− jk0z′

ax, HP,B = E ′
P,B

η0
e− jk0z′

ay, (E5d)

EN,B = E ′
N,Be jk0z′

ax, HN,B = −E ′
N,B

η0
e jk0z′

ay. (E5e)

Therefore, the boundary conditions at the metasurface lo-
cated at z′ = 0 read

E ′
B + E ′

R,B = E ′
P,B + E ′

N,B, (E6a)

1

η0
(E ′

I,B − E ′
R,B − E ′

N,B + EP,B) = JR,A

= E ′
I,B + E ′

R,B

ZR,A
. (E6b)

Similarly as found for the forward illumination, the inner
fields read

E ′
P,B = E ′

Bη0 + E ′
R,B(η0 + 2ZR,A)

2ZR,A
, (E7a)

E ′
N,B = −E ′

B(η0 − 2ZR,A) + E ′
R,Bη0

2ZR,A
. (E7b)

The boundary conditions at the second metasurface at
z′ = −d read

E ′
P,Be− jk0d + E ′

N,Be jk0d = E ′
T,Be− jk0d , (E8a)

1

η0

(
E ′

N,Be− jk0d − E ′
P,Be jk0d

−E ′
T,Be− jk0d

) = JC,A = E ′
T,Be− jk0d

ZC,A
. (E8b)

The combination of both boundary conditions with the
same surface impedance ZR,A = ZC,A is satisfied for scattered
waves

E ′
T,B = 2E ′

BZ2
C,A

η2
0 + 2η0ZC,A + 2Z2

C,A

, (E9a)

E ′
R,B = − E ′

Bη2
0

η2
0 + 2η0ZC,A + 2Z2

C,A

. (E9b)

In order to combine the scattering produced by the two
incident waves (ER,F with ET,B and ER,B with ET,F, respec-
tively), both scattered fields should refer to the same reference
plane (we place it at the metasurface that is illuminated first
by the forward incident wave). This is done using the relation

z′ = z − d , with the fields redefined as

EI,B = EBe jk0zax → EI,B = E ′
Be− jk0d , (E10a)

ET,B = ET,Be jk0zax → ET,B = E ′
T,Be− jk0d , (E10b)

ER,B = ER,Be− jk0zax → ER,B = E ′
R,Be jk0d . (E10c)

This quarter-wavelength shift of the reference plane affects
drastically the phase relation between the backward wave and
its corresponding reflected wave, without affecting the phase
in transmission. This property can be noticed by replacing the
results of Eqs. (E10) into the transfer functions of Eqs. (E9),
which can be rewritten as

ET,B = E ′
T,B = 2EBZ2

C,A

η2
0 + 2η0ZC,A + 2Z2

C,A

, (E11a)

ER,B = e jk0d E ′
R,B = EBη2

0

η2
0 + 2η0ZC,A + 2Z2

C,A

. (E11b)

This combination of asymmetrically defined reference
plane in a structure with a significant electrical distance be-
tween metasurfaces introduces the phase shift in reflection
for backward illumination required for realization of a ��

metasurface pair.

APPENDIX F: PERFORMANCE DEGRADATION
DUE TO ANGULAR MISMATCH

In the scenario that one of the incident sources is not
properly aligned to the �� metasurface pair

EI,F = EFe j��e− jk0zax, (F1a)

EI,B = EBe jk0zax, (F1b)

the shifted phase in the forward component �� will be repli-
cated into the scattering waves

E� = α(EFe j�� + EB)e jk0zax, (F2a)

E� = α(EFe j�� − EB)e− jk0zax. (F2b)

In the scenario that both incident waves have the same ampli-
tude and phase EF = EB, the sum and difference components
can be rewritten as

E� = αEF(e j�� + 1)e jk0zax, (F3a)

E� = αEF(e j�� − 1)e− jk0zax. (F3b)

Ideally, the incident wave propagating in the forward direction
does not have any mismatch �� = 0, and the sum component
has an amplitude E� = 2αEF, while the difference component
fades E� = 0. With this information, it is possible to estimate
the attenuation produced by the phase mismatch in terms of
the scattered power in the sum component

L�� = |αEF(e j�� + 1)|2
|2αEF|2

= 1 + cos ��

2
. (F4)
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From Eq. (F4) it can be found that the scattered power decays
down to 95% of the ideal value (L�� = 0.95) when the phase
mismatch becomes �� = ±25.84◦.

APPENDIX G: SCATTERING PRODUCED
BY AN BIANISOTROPIC SHEET WITH UNIAXIAL
RESPONSE UNDER ELLIPTICAL ILLUMINATION

Let us consider the same bianisotropic sheet of Fig. 8 and
illuminated it with an electromagnetic wave on the form

EI,F = (EF,xax + EF,yay)e− jk0z, (G1a)

HI,F = 1

η0
(−EF,yax + EF,xay)e− jk0z, (G1b)

where EF,x (EF,y) is the complex amplitude of the electric field
projected onto the x (y) axis. The relation between the x and
y components of the electric field defines the wave properties
(linear, circular, or elliptical) and its handedness (left-handed
or right-handed). On the presence of such particular incident
wave, the produced scattering waves acquires a similar shape

ET,F = (ETF,xax + ETF,yay)e− jk0z, (G2a)

HT,F = 1

η0
(−ETF,yax + ETF,xay)e− jk0z, (G2b)

ER,F = (ERF,xax + ERF,yay)e jk0z, (G2c)

HR,F = 1

η0
(ERF,yax − ETR,xay)e jk0z. (G2d)

By solving the boundary conditions of Eqs. (5), it can be
found that for a bianisotropic sheet with uniaxial response the
amplitude of the scattering waves only depends on the corre-
sponding coplanar component of the incident field, resulting
in similar expressions found in Eqs. (A1)

−
([

ETF,x

ETF,y

]
−

[
EF,x

EF,y

]
−

[
ERF,x

ERF,y

])

= Zmm

2η0

([
ETF,x

ETF,y

]
+

[
EF,x

EF,y

]
−

[
ERF,x

ERF,y

])
(G3a)

−γem

2

([
ETF,x

ETF,y

]
+

[
EF,x

EF,y

]
+

[
ERF,x

ERF,y

])
,

1

η0

([
ETF,x

ETF,y

]
−

[
EF,x

EF,y

]
+

[
ERF,x

ERF,y

])

= −Yee

2

([
ETF,x

ETF,y

]
+

[
EF,x

EF,y

]
+

[
ERF,x

ERF,y

])
(G3b)

−χme

2η0

([
ETF,x

ETF,y

]
+

[
EF,x

EF,y

]
−

[
ERF,x

ERF,y

])
.

As a result, the amplitudes of the transmitted wave read[
ETF,x

ETF,y

]
= τF

[
EF,x

EF,y

]
, (G4)

while the reflected ones are expressed as[
ERF,x

ERF,y

]
= �F

[
EF,x

EF,y

]
; (G5)

with the definitions of τF and �F found in Eqs. (6).
This analysis can be also performed for a incident back-

ward wave

EI,B = (EB,xax + EB,yay)e jk0z, (G6a)

HI,B = 1

η0
(EB,yax − EB,xay)e jk0z, (G6b)

which produces scattering waves

ET,B = (ETB,xax + ETB,yay)e jk0z, (G7a)

HT,B = 1

η0
(ETB,yax − ETB,xay)e jk0z, (G7b)

ER,B = (ERB,xax + ERB,yay)e− jk0z, (G7c)

HR,B = 1

η0
(−ERB,yax + ERB,xay)e− jk0z. (G7d)

The relation between incident and scattering waves is solved
again through Eqs. (5), taking a form comparable to Eqs. (A2):

([
EB,x

EB,y

]
+

[
ERB,x

ERB,y

]
−

[
ETB,x

ETB,y

])

= Zmm

2η0

([
EB,x

EB,y

]
−

[
ERB,x

ERB,y

]
+

[
ETB,x

ETB,y

])
(G8a)

+γem

2

([
EB,x

EB,y

]
+

[
ERB,x

ERB,y

]
+

[
ETB,x

ETB,y

])
,

1

η0

([
EB,x

EB,y

]
−

[
ERB,x

ERB,y

]
−

[
ETB,x

ETB,y

])

= Yee

2

([
EB,x

EB,y

]
+

[
ERB,x

ERB,y

]
+

[
ETB,x

ETB,y

])
(G8b)

−χme

2η0

([
EB,x

EB,y

]
−

[
ERB,x

ERB,y

]
+

[
ETB,x

ETB,y

])
.

Hence, transmission and reflection coefficients for backward
illumination follow the relation

[
ETB,x

ETB,y

]
= τB

[
EB,x

EB,y

]
, (G9)

[
ERB,x

ERB,y

]
= �B

[
EB,x

EB,y

]
; (G10)

with τB and �B taken from Eqs. (7). Please notice that the
reflected wave for both cases (forward and backward illumi-
nation) has the opposite handedness compared to the incident
source. While the electromagnetic fields at the interface are
proportional to the ones of the incident wave, their wave
vectors are pointing at opposite directions.
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