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To accommodate the increasing data rate demand, the fifth-generation (5G) cellular network came up with new technological
advancements including massive multiple-input multiple-output (massive MIMO) and hyperdensification which can
significantly boost network capacity. On the other hand, the introduction of these technologies along with their heterogeneity
brings a challenge in terms of network operators’ need to identify a cost-effective optimal deployment approach which is
hardly entertained by the legacy planning and optimization method. Hence, to leverage the core benefits of those technologies
in a cost-effective manner, we need a holistic planning framework that takes into account their coverage, capacity and cost
impact, and realistic spatiotemporal distribution of users. In this work, we present a data-driven multiobjective optimization
planning framework that can be used not only for small cells but also for massive MIMO. The planning framework is
illustrated using a 5G planning case study for a service area in Addis Ababa, Ethiopia, considering its realistic network data
that is collected from the network management system and different potential identified deployment options. Ray tracing is
employed to compute propagation, and users and demands are distributed based on the realistic network data. A two-stage
optimization and a joint optimization are applied to identify points that provide optimal network performance. Simulation
results reveal that the planning method provides Pareto points for different deployment options that can significantly improve
the performance of the existing network while reducing the total network cost.

1. Introduction

According to many studies, mobile network traffic volumes
have been growing steadily in the last two decades and will
continue to do so in the foreseeable future [1, 2]. This traffic
growth is typically driven by increased penetration of mobile
computing devices and adoption of bandwidth-intensive use
cases (e.g., remote working or learning and high-resolution
video consumption). For instance, the GSMA report from
2021 projected that 70% of the global population will have
a mobile subscription by the year 2025, with majority of
new subscribers being from Asia and sub-Saharan Africa.
In other annual studies by the network equipment vendor

Ericsson, it was noted that the amount of traffic carried by
mobile networks increased 300-fold within a decade from
2011 to 2021 [2]. Similarly, within the same time period,
the average traffic per smartphone increased by a factor of
14. These traffic growth trends oblige mobile network oper-
ators to continuously expand their network capacity to meet
evolving user and service demands.

The fourth-generation (4G) long-term evolution (LTE)
networks are generally considered to be the first type of
mobile technology standard that was specified from the
beginning to cater to this insatiable demand for capacity
for mobile broadband services [3, 4]. This resulted in the
aggressive rollout of LTE networks by the network operators
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targeting full population coverage while also gradually
migrating from preceding (pre-4G) mobile technology gen-
erations. However, the pace of mobile data traffic growth
and new demands from vertical use cases (e.g., connected
cars and public safety) necessitated the evolution of the base-
line LTE (Release 8) standard from the Third-Generation
Partnership Project (3GPP). These became available in
subsequent 3GPP releases in the form of LTE-Advanced
and LTE-Advanced Pro enhancements which could be
applied as upgrades that protect initial LTE investments by
operators [5]. However, despite these continued LTE net-
work enhancements, the commercial rollout of new fifth-
generation (5G) mobile technologies (specified from 3GPP
Release 15) is now on the timelines of most global operators
[6]. This is attributed to the fact that 5G not only provides at
least an order of magnitude increase in capacity over LTE
(and its incremental enhancements) but also is specified
from the beginning to have the versatility to cater to the
requirements of diverse vertical use cases [7].

As 5G development is essentially use-case-driven, it has
necessitated the specification of a 5G new radio (NR) air
interface, with flexible numerology and architectures to meet
differing requirements in terms of latency, reliability, and so
on, and also improved capacity scalability. The latter is
primarily enabled by the exploitation of broader spectrum
resources available in high bands (particularly frequency
range 2 specified by 3GPP) and the increased spectral effi-
ciency through the use of high-order modulation schemes
andmassive multiple-input multiple-output (MIMO) antenna
configurations. Additional capacity gains in 5G networks
are derived from enhanced spectrum reuse through the
dense deployment of small cell sites to supplement exist-
ing microcellular sites. It is indeed noted that the densifi-
cation approach began with LTE networks’ typical site
densities of around 10–30 sites/km2 [8]. However, the
higher capacity targets and high-band operations in 5G
networks would necessitate ultra- or hyperdensification
with site densities even exceeding 150 sites/km2 in some
outdoor urban [9, 10].

However, while the aforementioned mobile technology
developments are compelling in terms of meeting evolv-
ing user demand, they present significant complexity for
network planners due to the diversity of possible technology
deployment or upgrade options and the need for cost-
effectiveness to maximize the operator’s return on invest-
ment (ROI). In its fundamental form, detailed mobile
network planning involves evaluating the required num-
ber, location, and configuration of base stations to cost-
effectively meet projected user demand in a given service
area. In an era with 5G expected to dominate new base
station deployments or site upgrades, it is essential for
the network planning process to respond to operator plan-
ning questions, such as the following:

(i) Where are new 5G sites deployed or 5G upgrades
implemented on existing LTE sites

(ii) In given high traffic demand areas, should capacity
need to be met by dense small cell deployment or

should macrocell be upgraded with massive MIMO
antennas of a given order

(iii) With virtualised and disaggregated 5G base stations,
which 3GPP functional splits for each base station
should the functions be placed in the radio access
network (RAN)

(iv) How are costs minimized by leveraging candidate
sites with existing facilities for backhaul/fronthaul
and powering

In a previous study [11], the authors addressed some of
these challenges by proposing a holistic network planning
framework for hyperdense 5G deployments. The planning
framework was characterised as data-driven due to the use
of contextual datasets (e.g., network traffic data and mor-
phological data) as input to the planning algorithms.
Furthermore, the network planning problem in the frame-
work required multiobjective optimization approaches as
it involved simultaneous optimization of conflicting objec-
tives (maximizing performance versus minimizing cost)
and had high cardinality (due to the high density of small
cells). A Pareto optimal solution of the multiobjective opti-
mization problem is said to be found if it is not possible
to improve any objective without degrading at least one
other objective.

A notable gap in the study of [11] was the assumption
of network hyperdensification with 5G small cells being
the only upgrade option considered for scaling capacity
in an incumbent 4G macrocellular network. This particular
assumption limited the planning scope by not considering
other capacity enhancement approaches, for instance, mas-
sive MIMO (one of the key enablers of 5G mobile networks)
or a combination of the technologies (small cells and massive
MIMO). These deployment options may in parts of a service
area have an advantage (from a cost or performance perspec-
tive) over dense small cells. The discourse on the benefits or
trade-offs between 5G massive MIMO versus small cell
deployments is well documented in industry and scientific
literatures (see, for example, [12]).

This article addresses the aforementioned issues by pro-
posing an extension to the previously proposed data-driven
multiobjective optimization framework for 5G network
planning by considering not only network densification
(with 5G small cells) as the sole upgrade option but also
upgrade of macrocellular sites with 5G base stations with
massive MIMO antenna configurations as an alternative or
complementary solution. The new extended planning frame-
work proposed in this article is validated using a realistic
planning case study and reveals the following useful insights
when compared to previous or existing approaches:

(i) Upgrading a network with optimized massive
MIMO will provide up to 290.5% user satisfaction
gain at 10 Pareto massive MIMO networks rela-
tive to macro-only configuration with a planning
approach that considers user satisfaction as a per-
formance target
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(ii) For the case of two-stage joint optimization, it pro-
vides up to 664% user satisfaction gain for a combi-
nation of 8 massive MIMO and 50 small cell Pareto
networks relative to macro-only configuration with a
planning approach that considers user satisfaction as
a performance target

The rest of the paper is organised as follows. Section 2
presents related work and the identified research gaps.
Section 3 discusses the system model that applied the work.
In subsections of this section, multiobjective problem for-
mulations, deployment options, and planning approaches
are described. Section 4 presents simulation parameters,
assumptions, results, and discussion. Finally, Section 5 pro-
vides concluding remarks and potential future works.

2. Related Works

The need for more precise network planning is becoming
more critical in 5G network deployments due to the relative
increased complexity in terms of base station density (both
indoor and outdoor), higher-order massive MIMO antenna
configurations, and the use of the 5G new radio (NR)
beam-based air interface [13]. These demands on network
planning further increased the need to consider a heteroge-
neous technology environment considering not only the
diversity of technology options available in 5G but also code-
ployment with preceding mobile technology generations.

tCurrently, two network planning approaches have been
prevalent particularly in 4G or earlier deployments, namely,
planning under consideration of either synthetic or realistic
environments or some combination of the two. The key dis-
tinction between the two is that the planning environment is
on the level of utilization of realistic contextual data as input
to the network planning process. This specifically applies to
(but is not limited to) the following cases:

(i) Radio Propagation Modelling. Propagation model-
ling provides pathloss maps of a target planning area
for given deployment topologies and antenna config-
urations. To that end, the accuracy and spatial reso-
lution of the pathloss map are useful in optimizing
coverage and minimizing interference in network
planning. Typically, the pathloss predictions may
be obtained using either empirical or deterministic
propagation models [14]. The empirical models rep-
resent a synthetic approach with low computational
effort as they are based on models derived from
measurements performed in past study locations
and only have minimal geospatial data requirements
for the target planning areas. By contrast, determin-
istic models are a more realistic approach that
archives modelling accuracy. However, empirical
models present higher computational complexity
and the need for detailed three-dimensional (3D)
geospatial data of the planning area which may
include data on building structures and materials,
terrain, foliage, and other scatterers in the area.

(ii) Distribution of Users and Demand. The network
planning decisions on topology and density are
impacted by current and future spatiotemporal
traffic distribution in the target planning area. This
spatiotemporal traffic distribution is determined by
variations in user distributions and their respective
service demands (in terms of throughput, latency,
etc.). In synthetic approaches, user distributions may
be approximated by probability distributions (e.g.,
Poisson and uniform), whereas service demands are
represented by common network-wide targets, such
as cell edge throughputs. By contrast, data-driven real-
istic approaches have more realistic spatiotemporal
user and service demand distributions. Moreover,
the definition of service demands is increasingly being
done specifically to each user depending on data on
requirements of actual service used or assigned net-
work slice [15].

So far in literature, many network planning and perfor-
mance analysis studies involving massive MIMO and
dense 5G network deployments have been carried out
using either realistic or synthetic environments. References
[16–18] investigate the performance impact of massive
MIMO under synthetic environments. However, as noted
previously, these theoretical works do not render the real
impact of a realistic network environment, propagation
model, user distribution, and network layout.

References [19–23] analyse the performance impact of
massive MIMO under realistic environments. The authors
in [19] investigate how massive MIMO performs in channels
measured in real propagation environments with a 2.6GHz
operating band. Based on measurement data, they illustrate
the channel behaviour of massive MIMO and evaluate the
corresponding performance. Reference [20] investigates
variations in the spectral efficiency due to changes in the
user equipment (UE) and base station (BS) antennas of the
massive MIMO network in the downlink scenario. Reference
[21] studies a massive MIMO system that performs in real
propagation environments, specifically on channel perfor-
mance of a realistic indoor scenario using large linear and
circular antenna arrays. In Reference [22], realistic massive
MIMO channels are evaluated both in single and multicell
environments. The authors in [23] evaluate the user rate
performance of massive MIMO small cells in hotspot areas
with the use of the 28GHz millimetre wave band. However,
these works do not show how, when, and where to deploy
the technology.

Reference [24] provides a model which can be used as
guidance for modelling cognitive radio networks (Internet
of Things, fifth generation, and cell phone networks) and
security performance evaluation. The authors in [25] opti-
mize the capacity of a two-tier network by selecting a set
of cochannel users and allocating power among them with
a millimetre wave. However, both manuscripts do not
address the planning aspect of mobile networks. References
[26–38] conducted a planning work with a combination of
realistic and synthetic environments. However, they are
not data-driven based and do not consider massive MIMO.
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References [39, 40] optimize massive MIMO BS locations
under Electromagnetic Field (EMF) and power consumption
constraints. Reference [39] addresses EMF-aware 5G net-
work planning and, in particular, the problem of site selec-
tion for 5G BS equipment that abides by downlink EMF
limits. The work considers EMF-aware mobile networking
and overviews the current exposure limits and how the
EMF constraints may impact 5G planning. Reference [40]
proposes a novel method combining hybrid ray tracing-
finite difference time domain (FDTD) and network planner
tools. Using this method, they proceed with the optimization
of the BS’s locations under the low power consumption and
low EMF exposure constraints. However, both are not data-
driven based. Moreover, they do not consider small cells.

References [11, 41] conduct 5G planning works under
realistic environments. Reference [41] proposes a method
to optimize positions, coverage, and energy consumption
of massive MIMO base stations while meeting low power
requirements. However, it is neither data-driven based nor
considered small cells. Reference [11] proposes a data-
driven multiobjective optimization framework for hyper-
dense 5G network planning. However, it does not consider
massive MIMO. Hence, this work considers a data-driven-
and multiobjective optimization-based network planner
method for 5G radio access network (RAN) densification
with massive MIMO and small cells under a realistic envi-
ronment. Table 1 acknowledges advances in the literature
while also highlighting the gaps.

3. System Model

3.1. Overview of the Planning Framework. As a methodology,
this paper adopted the holistic planning framework proposed
for hyperdensification in Reference [11]. The approach takes
relevant contextual data from the target planning area as an
input and provides outputs for Pareto optimal networks.
The aim of the evaluation is to help the operator’s choice of
network deployment.

Massive MIMO incorporated in the proposed frame-
work by manipulating blocks belongs to data collection
and data-driven analysis phases so that the multiobjective
optimization considers the impacts of the massive MIMO.
Pale pink-shaded blocks show the points that need to be
incorporated into the extended planning framework (see
Figure 1). The framework has three main parts: data collec-
tion, data-driven analysis, and multiobjective optimization.
Each of them is briefly described as follows.

The data collection part is about achieving accurate rele-
vant planning data including geospatial data for the service
area, cost, and revenue-related data. The geospatial data
consists of network layout and other geospatial data that
affect fading parameters and demand distribution. Data
related to existing service areas such as cell configurations,
spatiotemporal distribution of users/devices, and their traffic
can be obtained from the granular (e.g., hourly) large
datasets produced by the operator’s network management
system (NMS) [42]. The cost and revenue part is associated
with the cost of network upgrades, equipment, site acquisi-
tion, and fronthaul/backhaul. Data that describes these costs

need to be surveyed in the context of the planning area and
targets. Total Cost of Ownership (TCO) is a sum of all
site deployment costs including location-dependent and
location-independent which are given as [11]

TCO = 〠
Nc

j=1
SC j + 〠

NM

j=1
mMC j,

SCj =
SC j, Xc jð Þ − 1ð Þ, Xc jð Þ ≠ 0,

0, Xc jð Þ = 0,

(

mMCj =
mM j, Xc jð Þ − 1ð Þ, Xc jð Þ ≠ 0,

0, Xc jð Þ = 0,

(
ð1Þ

where SC ϵ RNcxNo and mMC ϵ RNMxNo are the cost of the
matrix with values for small cell candidate sites and cost of
matrix associated with massive MIMO, respectively. Nc and
NM are described as the number of small cells and massive
MIMO candidate sites. In this work, the existing macrosites
are considered candidate site locations for massive MIMO.

The data-driven analysis part incorporates geospatial
modelling, propagation prediction, user and demand
distribution, and selection of candidate sites. In geospatial
modelling, topography and building need to be accurately
modelled. After geospatial modelling, propagation model-
ling is done for existing macro-, candidate massive MIMO,
and small cells. The resulting average channel power
response is given γ = RNtxNα , where Nt =Nm +NM +NC ,
where Nt is the number of existing cells, NM is the number
of massive MIMO candidate sites, NC is the number of small
cell candidate sites, and Na is the number of area elements
(pixels) in the planning area. After propagation computa-
tion, users and demand are distributed and candidate sites
are selected. Once the data are collected and analysed, iden-
tification of planning approaches, deployment options, and
formulation of a multiobjective problem follow.

3.2. Planning Approaches. The technical performance and
the total cost of a network are a function of the choice of
deployment option, architecture selection, choice of technol-
ogies, operating bands, and planning and optimization
approaches [43, 44].

As far as planning approaches are concerned, one way of
minimizing total cost while enhancing network technical
performance is upgrading the network where there is data
demand. This means upgrading a cell is only a viable option
if a current macrocell is unable to satisfy demand. To attain
this goal, it is important to characterise both user locations
and demand distribution in the service area. This is called
the data-driven approach where users and demands are dis-
tributed based on realistic data collected from a network
management system [11]. Table 2 shows a summary of the
planning approaches that are considered in this work.

The planning approaches are briefly described as follows:

(i) Data-Driven Planning for User Satisfaction and
TCO (DDsa). In this approach, user distribution
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and candidate site locations are obtained based on
the NMS data from a mobile network operator.
The 10%-ile user satisfaction is computed in terms
of user throughput, and the total cost is obtained
using Equation (1)

(ii) Data-Driven Planning for Aggregate Throughput
and TCO (DDagg). This planning approach is simi-
lar to DDsa, but it applies aggregate capacity instead
of satisfaction

(iii) Data-Driven Planning for User Throughput and
TCO (DDce). Again, this planning approach is sim-

ilar to DDsa, but it applies cell edge throughput
instead of satisfaction. Cell edge performance is
computed in terms of 10%-ile user throughput

3.3. Deployment Options. As it can be recalled from Subsec-
tion 3.2, the deployment option is one of the important
parameters associated with both cost and technical perfor-
mance. As a result, operators must carefully analyse their
deployment alternatives based on their business strategy
and vendor product plans. Moreover, the options are usually
expected to enable a smooth transition to a full 5G network.
One way of identifying a cost-effective deployment option is
to list every possible option and assess their cost versus

Evaluate network
Performance

Generate initial
network

Economics
indicator

Satisfaction indicator

Check end ?

Select candidate
sites

Develop
Geospatial

maps

Simulate networks

Formulate network

Predict propagation

Include candidate sites for massive MIMO
(It can be either the existing macro sites or

the new ones)

Generate user and
Demand distribution

Geospatial
Terrain

Buildings
Vegetation

Roads Incorporate cost and revenue
Associated with massive MIMO

Cost and Revenue
Site upgrades Site sharing

Front haul/Back haulsNetwork equipment
Site deployment Powering
Street furniture RevenueService and Demand

Subscriber
Services

Demands

Existing network
User and devices

Traffic
Configurations

Coverage

Pareto network

Data collection

Data-Driven Analysis

Multiobjective optimization

N Y

Figure 1: Extended data-driven optimization framework.

Table 2: Planning approaches.

Name User distribution Technical objective Economic objective

Data driven for user satisfaction Data-driven user distribution 10%-ile user satisfaction Minimizing total cost

Data driven for aggregate throughput Data-driven user distribution Aggregate throughput Minimizing total cost

Data driven for user throughput Data-driven user distribution 10%-ile user throughput Minimizing total cost
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technical performance trade-offs. In this work, we consider
four deployment alternatives and compared their cost versus
performance trade-offs based on the performance target
listed in Subsection 3.1. The considered deployment options
are

(i) upgrading a network with optimized massive
MIMO

(ii) upgrading a network with optimized small cells

(iii) upgrading a network with optimized massive
MIMO and small cells

The upgrade options with their configurations are listed
in Table 3.

3.4. Multiobjective Problem Formulation. To study a data-
driven and multi-objective-based planning approach, a
downlink mobile network and small cell candidate locations
are considered. The aim is to find an optimal network that
provides the best technoeconomic performance among the
possible options. To do that, a multiobjective problem is for-
mulated and an evolutionary algorithm is applied as follows.

A 3 × 1 cellular network having M number of macrosites
will have a total of 3M macrocells. We assume that the cor-
responding macrocell locations are considered the candidate

site for massive MIMO. Let the notations X = ½Xm, Xs�, Ci
m

and N refer to a network realization, a cell with i and m cell
indexes, and number of candidate small cell locations,
respectively, where

(i) Xm = ½x1, x2,⋯, xi,⋯, x3M� represents the macrocell
positions and xi can take a value either 0 or 1. If
xi = 0, it refers to the existing cell and xi = 1 refers
to massive MIMO

(ii) Xs = ½x3M+1, x3M+2,⋯, x3M+i,⋯, x3M+N � refers to
small cell candidate locations and x3M+i can be
either 0 or 1. If x3M+i takes 1, a small cell is deployed
in the corresponding site; otherwise, a small cell is
not deployed

(iii) the cell index m specifies the serving cell with a
value of 1, 2, or 3, representing the macro-, massive
MIMO, and small cell, respectively; the notation i
denotes that the position of the cell can have a value
between 1 and 3M +N

For a network upgraded with massive MIMO and small
cells, the signal-to-interference-plus-noise ratio (SINR) per-
formance of a user located at u per resource block can be
expressed as

where pðu, cz1Þ, pðu, cz2Þ, and pðu, cz3Þ are received signal
power from macrocell, massive MIMO, and small cell,
respectively. The superscript z, ∑i≠zð∑3

m=2pðu, cimÞÞ, and Pn
are the serving cell index, the sum of interferences from
other cells excluding the serving cell, and the noise power.
User association is based on reference signal received power
(RSRP). Using user SINR, the modulation and coding
scheme (MCS) is obtained from the standard SINR to

MCS mapping table [45]. Based on these parameters, the
corresponding user throughput (TP) can be written as

TP = n ∗NRB ∗NCPRB ∗mod‐sch ∗ cod‐sch
∗NSYBPSLOT ∗NSLOTPSEC,

ð3Þ

where n is the MIMO layers, NRB is the number of resource
blocks, NCPRB is the number of subcarriers per resource

Table 3: Upgrading deployment options.

Configurations Operating band Bandwidth

Existing macro (reference configuration) 1800/2600MHz 40MHz

Optimized massive MIMO-based 5G NR configuration (DOP1) 3500MHz 100MHz

Optimized SC-based 5G NR configuration (DOP2) 3500MHz 100MHz

Optimized massive MIMO+SC 5G NR configuration (DOP3) 3500MHz 100MHz

SINR =

p u, cz1ð Þ
∑i≠zp u, ci1

À Á
+ Pn

, when a user is associated withmacrocell,

p u, cz2ð Þ
∑i≠z ∑3

m=2p u, cimð Þ
� �

+ Pn

, when a user is associated withmassiveMIMO,

p u, cz3ð Þ
∑i≠z ∑3

m=2p u, cimð Þ
� �

+ Pn

, when a user is associated with small cell,

8>>>>>>>>>>><
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block, mod-sch is the modulation scheme, cod-sch is the
coding scheme, NSYBPSLOT is the number of symbols per slot,
and NSLOTPSEC is the number of slot per second. Once we get
the user throughput, the fitness functions are formulated
based on it. Aggregate throughput and user satisfaction are
considered technical objectives. If we assume that there are
L number of users in the service area and all are served by
an existing network, the aggregate user throughput ðCMBÞ
can be expressed as

CMB = 〠
L

n=1
TP unð Þ: ð4Þ

If a network is upgraded with massive MIMO and small
cells, traffic is offloaded from macrocells and shared among
them. Hence, the aggregate user throughput (C) of the
upgraded network can be expressed as

C = 〠
L1

n=1
TP unð Þ + 〠

L2

n=1
TP unð Þ + 〠

L3

n=1
TP unð Þ, ð5Þ

where ∑L1
n=1TPðuiÞ,∑L2

n=1TPðunÞ, and ∑L3
n=1TPðunÞ are the

aggregate user throughput served by macrocell, massive
MIMO, and small cell. The notations L1, L2, and L3 are the
total number of users served by macrocells, massive MIMO,
and small cells, respectively. Based on upgraded and existing
aggregate user throughput, network capacity gain (Γ) can be
written as

Γ =
CMB − C
CMB

: ð6Þ

The other objective function is user satisfaction which is
a measure of the match between the user demand and
networks’ ability to full the demand with respect to certain

performance indicators like data throughput and latency,
which can be defined as [11]

S u, xð Þ = I u, xð Þ
Id uð Þ , ð7Þ

where Iðu, xÞ is achieved performance and IdðuÞ is
demanded performance. In the simulation, the 10%-tile
CDF of user satisfaction (SA10per) is used, which can be
expressed as

SA10per = S 0:1L½ �ð Þ, ð8Þ

where S is a vector containing user satisfaction sorted in
ascending order. For every R number of macro cells and K
number of small cells, there are P numbers of options which
can be defined as

P =
3M +Nð Þ!

3M +Nð Þ − R + Kð Þð Þ!∗ R + Kð Þ! : ð9Þ

From those P options, finding the optimal network pre-
senting the best technoeconomic performance becomes a
multiobjective problem. Now, the multiobjective problem
is formulated as

Minx f xð Þ = f1 xð Þ,−f2 xð Þ½ �, ð10Þ

where x is a network topology, f1 is the total cost of the
network, and f2 is the performance of the network that is
either aggregate capacity or 10%-tile user satisfaction
obtained according to Equations (5) and (8). Multiobjective
optimization enables the simultaneous optimization of
several objective functions simultaneously. To solve the mul-
tiobjective optimization problem in (10), we apply evolution-
ary algorithms as they are effective metaheuristics for
mathematical structures with objective functions without

Start

Generate initial population

Evaluation of objective function

Recombination

Selection

Mutation

Termination
criteria satisfied Pareto network

Show results

Stop

Figure 2: Flow chart of genetic algorithm.
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convexity or continuity [46]. We also select and apply nondo-
minated sorting genetic algorithm II (NSGA-II) due to its less
complexity, fast convergence, and empirically near-optimal
performance [47] (see Figure 2 for its high-level flow chart).

The NSGA-II algorithm first generates Z number of ran-
domly selected populations which is denoted by the vector V
and can be expressed as

V =

x1,1 x2, 1 ⋯xi,1 ⋯ x3M+N ,1

⋮ ⋮ ⋮ ⋱ ⋮

x1,z x2,z ⋯xi,z ⋯ xM+N ,z

⋮

⋮

⋮

⋮

x1,Z x2,Z ⋯xi,Z ⋯ x3M+N ,Z

2
666666666666666664

3
777777777777777775

, ð11Þ

where xi,z show the status of macro- and small cells and
whether upgrading is applied or not. Each row of vector V
consists of randomly selected populations with a different
combination of 0 s and 1 s which indicates the status of
macrocells and small cell sites. Then, it continues generating
evolved populations with better technical and economical
performance until the evolution termination criteria are met.

4. Case Study

4.1. Simulation Parameters and Assumptions. In this section,
we present a data-driven and multi-objective-based network
planning case study with the aim to investigate the perfor-
mance impact of upgrading a network with massive MIMO
or/and small cells for the deployment options and planning
approaches that are listed in Tables 2 and 3. The case study
is performed for a 4.07 km square (2:81 km × 1:45 km) ser-
vice area located around Meskel Square, Addis Ababa,
Ethiopia (see Figure 3). It is one of the hotspots in Addis
Ababa. Currently, the area is being served with an LTE

Addis Ababa 
stadium

Meskel square

Ghion hotel

Existing LTE-Advanced Macro site

Street furniture

Fiber termination point

Figure 3: Case study service area around Meskel Square, Addis Ababa.
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advanced network with 10 sites (30 macrocells) whose loca-
tion is depicted with a purple circle in Figure 3.

A 5G new radio uses massive MIMO which is defined by
the same synchronisation signal block (SSB) information
which contains a primary synchronisation signal, secondary
synchronisation signal, and physical broadcasting channel
and demodulation reference signal (DM-RS). This work
considers a grid of beams-based operations in massive
MIMO. That implies the cells broadcast a grid of beams
and the user selects the strongest beam based on the strength
of reference signal received power (RSRP) and reports the
beam index to Next-Generation Node B (gNB). User-
centric beams within the same SSB and users within the
same beam identification are scheduled with orthogonal
resource blocks. Moreover, layers per user are assumed
orthogonal.

The NMS follows the number of users attached to differ-
ent base stations, with the resolution that depends on the cell
sizes [11]. The data consists of the cell-level numbers of
users and observed per hour data flow with 50m × 50m
pixel accuracy based on this data and user density clutter
of Table 4, defined by the next-generation mobile network
(NGMN) alliance in [48]. The instantaneous user distribu-
tion and simulation parameters used in this work are shown
in Figure 4 and Table 5, respectively. The performance met-
rics are computed for various instants of user distribution.
The red and small blue spots in Figure 4 show the location
of macrosites and the instantaneous location of the users,
respectively. User distribution is based on the real data col-
lected from the Ethio Telecom network management system.

For the computation of total costs, we customized the
cost analysis presented in [11] as described in Section 3.1.
Small cell cost is estimated considering backhaul, site acqui-
sition, site preparation, and small cells and their associated
cost as listed in Table 6. On the other hand, the existing
macrocells are used as candidates’ site locations for massive
MIMO. Hence, the cost of massive MIMO is directly pro-
portional to the number of massive MIMO cells assuming
no additional location-dependent cost is required, unlike
small cells. The total cost of the network is the sum of small
cell and massive MIMO costs.

4.2. System-Level Simulation. System-level simulation is
carried out using the 5G Vienna system-level simulator with
a schematic diagram in Figure 5 after modifying it to fit our
network and simulation scenarios. For the simulation, users
and demands are distributed based on traffic data collected
from Ethio Telecom network management systems. Radio
propagation is deterministically computed using Winprop
software using terrain and building maps for the service area
[49]. The propagation results obtained from Winprop are
incorporated into the 5G Vienna simulator for the system-
level simulation [45]. The link quality model of the 5G
Vienna simulator accepts those parameters as input and
provides SINR to the link performance model. Finally, the
link performance model takes SINR values and the decision
of the scheduler to determine the user throughput as follows.
First, the SINR to block error rate (BLER) value is mapped
using a 5G standard channel quality indicator (CQI) to the

SINR mapping table [45]. Then, based on CQI and the
BLER, the numbers of transmitted bits are determined.
The throughput performance is used as a fitness value while
optimization is performed.

4.3. Results and Discussion. User satisfaction, aggregate
throughput, and cell edge throughput gain are used as per-
formance metrics to analyse achieved performance results
from the system-level simulation. User satisfaction provides
a measure for the match between the user demand and net-
works’ ability to realize the demand with respect to certain
performance indicators (e.g., throughput) [11]. As stated in
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Figure 4: Instantaneous user distribution.

Table 5: Simulation parameters.

Number Simulation parameters Values

1 Carrier frequency 3500MHz

2 Bandwidth 100MHz

3 Carrier spacing 30 kHz

4 Symbol duration (μs) 33.33μs

5 Symbols per slot 14

6 Slots per subframe 2

7 Slots per frame 20

8 Layers per cell 4

9 Layers per user 2

Table 4: User throughput demand and relative density.

Clutter types
Throughput

demand (Mbps)
Relative

user density

Crowded 1.25 30

Business building 25 15

Residential building 12.5 17.5

Intraurban road (up to 60 km/h) 2.5 4

Others (broadband everywhere) 2.5 1
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Subsection 4.2, the existing macronetwork is taken as a ref-
erence (baseline) configuration.

Figure 6 is presented to show the performance impact of
the identified planning approaches in terms of a 10%-ile user
satisfaction gain assuming a network is upgraded with
deployment option DOP1. The planning approaches are
DDsa, DDagg, and DDce. As the number of massive MIMO
increases, 10%-ile user satisfaction gain also increases for all
planning approaches, as shown in the figure. However, since
satisfaction is a performance metric, it is natural that the
planning approach for DDsa outperforms the other plan-
ning options. For example, at the 8 cell Pareto points, the
10%-ile users’ satisfaction with DDsa, DDagg, and DDce
is about 283.5%, 133%, and 141.5%, respectively. From
Figure 6, it can be observed that upgrading a network with
deployment option DOP1 and planning approach DDsa
provides significant user satisfaction gain compared with
a macro-only configuration.

Figure 7 is presented to compare the planning approach
DDagg with 5 massive MIMO (DDc5aggmM), DDce with 5
massive MIMO (DDc5cemM), and DDsa with 5 massive
MIMO (DDc5samM) in terms of 10%-ile, 50%-ile, and
90%-ile user throughput gains assuming a network is
upgraded with deployment option DOP1. The result
shows that DDc5cemM outperforms at 10%-ile whereas
DDc5aggmM outperforms at 50%-ile and 90%-ile, as can
be seen in Figure 7. From Figure 7, it can be deduced that

a network that is optimized for one performance target
may not provide optimal performance for another perfor-
mance metric.

Figure 8 is shown to present the performance impact of
planning approach DDagg in terms of aggregate capacity
gain assuming a network is upgraded with deployment

Table 6: Costs relative to 1000 cost unit [11].

Cost type Site building Private building Street furniture Other locations

Location dependent

Backhaul civil work 0.025/metre

Site acquisition 0.35 0.70 0.35 0.35

Site rental 0.5 1 0.5 0.25

Site preparation 0.5 0.5 0.25 1

Location independent

(i) Small cells and their accessories

(ii) Small cell installation

(iii) Backhauling and electricity 7.19

(iv) Maintenance and licensing (10% cost of small cell and its accessories)

Winprop
Digital map
Antennas
Pattern/beams pattern
and locations

Pareto network
Path loss
Shadow fading
Small scale
fading

Link quality
model NSGA IISINR

Scheduling Link
performance model Throughput

(i)
(ii)

(i)
(ii)

(iii)

Figure 5: Schematic diagram of system simulation.
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Figure 6: 10%-ile user satisfaction gain relative to macro-only
network.
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option DOP1. The simulation result provides different
Pareto points that can optimize a network. As the number
of massive MIMO increases, the aggregate capacity gain of
planning approach DDagg also increases. For example, at
the 12 Pareto massive MIMO planning approach, DDagg
provides an aggregate throughput gain of about 311.5%.
From Figure 8, it can be noted that upgrading a network
with deployment option DOP1 and planning approach
DDagg provides considerable aggregate capacity gain rela-
tive to a macro-only configuration.

Figure 9 compares the user SINR performance of a net-
work deployed with the planning approach DDagg that has
5 Pareto massive MIMO (ueSINR5cellagmM) and 8 Pareto
massive MIMO (ueSINR8cellagmM) to the user SINR per-
formance of macro-only (ueSINR macro only) and massive
MIMO-only (ueSINR mMIMO only) networks. Both net-
works are deployed with deployment option DOP1. As can

be seen in Figure 9, both options (ueSINR5cellagmM and
ueSINR8cellagmM) significantly improve the SINR perfor-
mance of the network. From Figure 9, it can be noted that
upgrading a network with deployment option DOP1 and
planning approach DDagg provides considerable aggregate
capacity gain and coverage improvement in terms of SINR
relative to a macro-only configuration.

Figure 10 is presented to examine user satisfaction and
aggregate capacity gain of upgrading a network with opti-
mized small cells (deployment option DOP2) using planning
approaches DDsa and DDagg. The result provides different
Pareto points that can enhance user satisfaction and aggre-
gate capacity gain. From Figure 10, it can be noted that
upgrading a network with deployment option DOP2 and
planning approaches DDsa and DDagg provides consider-
able user satisfaction and aggregate capacity gain. For exam-
ple, at 90 Pareto small cell networks, DOP2 with DDsa and
DDagg planning approaches provides about 549% user
satisfaction gain and 743% aggregate capacity gain over a
macro-only configuration.

The normalized cost of different Pareto small cell net-
works with their corresponding normalized cost for plan-
ning option DDagg is indicated in Table 7. The values are
normalized with the cost of 182 Pareto networks.

From the above results, it can be noted that a significant
performance gain can be obtained from upgrading a net-
work with optimized massive MIMO or optimized small
cells. To investigate the aggregate impact of massive MIMO
and small cells, two stages and joint optimization are
applied. In the case of joint optimization, the Pareto points
of small cells and massive MIMO are obtained at the same
time. If operators need to optimize their networks jointly,
this method is preferable. In the case of two-stage optimiza-
tion, first, the Pareto points of either of the technologies are
identified. Then, the other Pareto points are obtained based
on the first Pareto points.

Figure 11 depicts the combined impact of massive
MIMO and small cell upgrading on a network with deploy-
ment option DOP3 and a two-stage optimization approach.
Simulation results provide different Pareto points that can
optimize network performance. As the number of small cells
increases, user satisfaction gains of small cells without con-
sidering massive MIMO (DDsasm), small cells and 5 mas-
sive MIMO (DDsasmM5), and small cells and 8 massive
MIMO (DDsasmM8) also increase, as shown in Figure 11.
Similarly, increasing the number of massive MIMO while
keeping the number of massive MIMO user satisfaction also
increases. For example, at 50 Pareto networks, the user
satisfaction gains of DDsasM, DDsasmM5, and DDsasmM8
are about 379%, 542%, and 664%, respectively. From
Figure 11, it can be deduced that upgrading a network with
deployment option DOP4 and planning approach DDsa
provides a significant user satisfaction gain relative to
macro-only configuration. Since DOP3 considers the joint
impact of small cells and massive MIMO, it is natural that
it outperforms deployment options DOP1 and DOP2, which
consider only either massive MIMO or small cells.

Figure 12 shows the user throughput gain performance
of deployment option DOP3 applying joint optimization
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with planning approach DDsa. Simulation result provides
Pareto points that can enhance user throughput gain. For
example, user throughput gain of 5 massive MIMO and
140 small cells (DDsmMc5/140), 1 massive MIMO and 57

small cells (DDsmMc5/140), and 2 massive MIMO and
141 small cells (DDsmMc5/140) at 50%-ile is about 600%,
223%, and 568%, respectively (see Figure 12). From
Figure 12, it can be noted that upgrading a network with
deployment option DOP3 applying joint optimization with
planning approach DDsa improves user throughput relative
to the macro-only configuration.

Figure 13 shows the user SINR performance of
deployment option DOP3 applying joint optimization with
planning approach DDsa. The simulation result provides
Pareto points that can enhance user SINR performance. For
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Figure 9: CDF of UE-SINR for macro-only and Pareto networks.
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Table 7: Normalized cost of different Pareto small cells.

Pareto small cells 108 116 126 144 172 182

Normalized cost 0.558 0.625 0.681 0.788 0.953 1
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Figure 11: User satisfaction gain with two-stage optimization.
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example, Pareto points with 1 massive MIMO and 57 small
cells (ueSINR1/57sasmM), 2 massive MIMO and 141 small
cells (ueSINR2/141sasmM), and 5 massive MIMO and 140
small cells (ueSINR5/140sasmM) provide a better SINR per-
formance compared with the macro-only configuration
(ueSINR macro only) (see Figure 13). From Figure 13, it
can be noted that upgrading a network with deployment
option DOP3 applying joint optimization with planning
approach DDsa improves SINR performance of a user rela-
tive to the macro-only configuration.

Figures 14 and 15 illustrate the aggregate capacity gain of
deployment option DOP3 with the planning approach
DDagg for joint and two-stage optimization cases. Both
options provide Pareto points that can enhance the aggre-

gate capacity of a network. For example, at 100 Pareto
points, the aggregate capacity gain of considering only
small cells (DDagsM), small cells and 5 massive MIMO
(DDaggsmM5), and small cells and 9 massive MIMO
(DDaggsmM9) is 818.5%, 1004%, and 1081.5%, respectively
(see Figure 15). From Figures 14 and 15, it can be deduced
that upgrading a network with deployment option DOP3
and planning approach DDagg provides significant aggregate
capacity gain for both joint and two-stage optimization
relative to the macro-only configuration. Since DOP3 con-
siders the joint impact of small cells and massive MIMO, it
is natural that it outperforms deployment options DOP1
and DOP2.

Figures 16(a) and 16(b) show user throughput and SINR
performance of deployment option DOP3 and planning
approach DDagg with two-stage joint optimization. The
simulation result gives different Pareto points that can
enhance user throughput and SINR performance of a net-
work. For example, user throughput gain of 10 massive
MIMO and 117 small cells (DDc10/117smM), 10 massive
MIMO and 147 small cells (DDc10/147), and 10 massive
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MIMO and 189 small cells (DDc10/189) at 50%-ile is 706%,
785%, and 854%, respectively (see Figure 16(a)). The
method also significantly improves the SINR performance
of the network at all percentiles compared with the macro-
only configuration (see Figure 16(b)). From Figures 16(a)
and 16(b), it can be noted that upgrading a network with
deployment option DOP3 applying two-stage joint optimi-
zation with planning approach DDagg also improves user
throughput and coverage capacity relative to the macro-
only configuration.

5. Conclusions

In this paper, a data-driven and multiobjective optimization-
based 5G RAN planning that utilizes real data from NMS

and considers densification with massive MIMO and small
cells under a realistic network environment has been inves-
tigated. The planning performance has been illustrated using
a case study for a selected hotspot area in Addis Ababa. The
performance investigation work has included identifying
deployment options, planning approach, and multiobjective
problem formulation. The simulation campaign has been
performed to look for Pareto points for massive MIMO
and small cells using a modified planning framework con-
sidering the existing LTE-advanced network in the service
area. Simulation results showed that the modified planning
approach presents network topologies with significant per-
formance gains. For example, upgrading the existing net-
work with optimized massive MIMO will provide up to
311.5% aggregate capacity gain at 12 Pareto locations
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relative to the macro-only configuration. For the case of
joint two-stage optimization, it provides up to 664% user
satisfaction gain for a combination of 8 massive MIMO
and 50 small cell Pareto locations. In terms of user through-
put, we achieve 706%, 785%, and 854% gain at 50%-ile for 10
massive MIMO common and 117, 147, and 189 respective
small cell Pareto locations. Performance impacts of cell-
free massive MIMO under realistic simulation environments
and extensions of this work for millimetre wave bands are
important future work.
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