
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Yu, Xixun; Bai, Hui; Yan, Zheng; Zhang, Rui
VeriDedup: A Verifiable Cloud Data Deduplication Scheme with Integrity and Duplication
Proof

Published in:
IEEE Transactions on Dependable and Secure Computing

DOI:
10.1109/TDSC.2022.3141521

Published: 01/01/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Yu, X., Bai, H., Yan, Z., & Zhang, R. (2023). VeriDedup: A Verifiable Cloud Data Deduplication Scheme with
Integrity and Duplication Proof. IEEE Transactions on Dependable and Secure Computing, 20(1), 680-694.
https://doi.org/10.1109/TDSC.2022.3141521

https://doi.org/10.1109/TDSC.2022.3141521
https://doi.org/10.1109/TDSC.2022.3141521

VeriDedup: AVerifiable Cloud Data
Deduplication Scheme With Integrity

and Duplication Proof
Xixun Yu , Hui Bai, Zheng Yan , Senior Member, IEEE, and Rui Zhang ,Member, IEEE

Abstract—Data deduplication is a technique to eliminate duplicate data in order to save storage space and enlarge upload bandwidth,

which has been applied by cloud storage systems. However, a cloud storage provider (CSP) may tamper user data or cheat users to

pay unused storage for duplicate data that are only stored once. Although previous solutions adopt message-locked encryption along

with Proof of Retrievability (PoR) to check the integrity of deduplicated encrypted data, they ignore proving the correctness of

duplication check during data upload and require the same file to be derived into same verification tags, which suffers from brute-force

attacks and restricts users from flexibly creating their own individual verification tags. In this paper, we propose a verifiable

deduplication scheme called VeriDedup to address the above problems. It can guarantee the correctness of duplication check and

support flexible tag generation for integrity check over encrypted data deduplication in an integrative way. Concretely, we propose a

novel Tag-flexible Deduplication-supported Integrity Check Protocol (TDICP) based on Private Information Retrieval (PIR) by

introducing a novel verification tag called note set, which allows multiple users holding the same file to generate their individual

verification tags and still supports tag deduplication at the CSP. Furthermore, we make the first attempt to guarantee the correctness of

data duplication check by introducing a novel User Determined Duplication Check Protocol (UDDCP) based on Private Set Intersection

(PSI), which can resist a CSP from providing a fake duplication check result to users. Security analysis shows the correctness and

soundness of our scheme. Simulation studies based on real data show the efficacy and efficiency of our proposed scheme and its

significant advantages over prior arts.

Index Terms—Integrity check, duplication check, private information retrieval, data deduplication, cloud computing, verifiable computation

Ç

1 INTRODUCTION

CLOUD computing has become a popular information tech-
nology service by providing huge amount of resources

(e.g., storage and computing) to end users based on their
demands. Among all cloud computing services, cloud stor-
age is the most popular. Since the volume of data in the
world is increasing rapidly, saving cloud storage becomes
essential. One of the key reasons that causes storage waste is
duplicate data storage. Multiple users may save same files or
different files containing same pieces of data blocks at

the cloud. Obviously, duplicate data storage at the cloud
introduces a big waste of storage resources. Data deduplica-

tion [1], [2], [3] provides a promising solution to this issue. In

a deduplication scheme, the CSP can cooperate with the

cloud user to first checkwhether a pending uploaded file has

been saved already or not, and then provide the user whose

pieces of file data are checked duplicate a way to access the

file without storing another copy at the cloud.
However, since the CSP cannot be fully trusted, the cloud

users may suffer from some security and privacy issues.
Notably, a semi-trusted CSP may modify, tamper or delete
the uploaded data driven by some profits. The damage of
deduplicated data could cause huge loss to all related users
(e.g., data owners and holders). Thus, the integrity of the
data stored at the cloud should be verified, especially for
duplicate data storage with deduplication.

Several Proof of Retrievability (PoR) schemes [4], [5], [6],
[7], [8], [9] have been proposed to address the issue of integ-

rity check on cloud data storage in recent decade. In such

schemes, a user adds verification tags along with a file. Dur-

ing the verification, the user creates a random challenge and

sends it to the CSP, the CSP has to use all the data in user’s

corresponding files it stored as inputs to compute a response

back to the user. The user then checks the integrity of the

stored file by verifying the response. However, existing PoR

solutions mainly aim to improve the performance at the user

side and assume that the CSP has infinite computation and

storage resources. While, in practice, the CSP performs data

� Xixun Yu and Hui Bai are with the State Key Lab on Integrated Services
Networks, School of Cyber Engineering, Xidian University, Xi’an 710071,
China. E-mail: {xxyu, baih}@stu.xidian.edu.cn.

� Zheng Yan is with the State Key Lab on Integrated Services Networks,
School of Cyber Engineering, Xidian University, Xi’an 710071, China,
and also with the Department of Communications and Networking, Aalto
University, 02150 Espoo, Finland. E-mail: zyan@xidian.edu.cn.

� Rui Zhang is with the Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716 USA. E-mail: ruizhang@udel.
edu.

Manuscript received 29 August 2021; revised 20 November 2021; accepted 5
January 2022. Date of publication 10 January 2022; date of current version 16
January 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grant 62072351, in part by the Academy of Finland under
Grants 308087, 335262, and 345072, in part by the open research project of
ZheJiang Lab under Grant 2021PD0AB01, in part by Shaanxi Innovation
Team Project under Grant 2018TD-007, and in part by 111 Project under
Grant B16037.
(Corresponding author: Zheng Yan.)
Digital Object Identifier no. 10.1109/TDSC.2022.3141521

680 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/ 0000-0003-3461-8856
https://orcid.org/ 0000-0003-3461-8856
https://orcid.org/ 0000-0003-3461-8856
https://orcid.org/ 0000-0003-3461-8856
https://orcid.org/ 0000-0003-3461-8856
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0001-5230-5998
https://orcid.org/0000-0001-5230-5998
https://orcid.org/0000-0001-5230-5998
https://orcid.org/0000-0001-5230-5998
https://orcid.org/0000-0001-5230-5998
mailto:xxyu@stu.xidian.edu.cn
mailto:baih@stu.xidian.edu.cn
mailto:zyan@xidian.edu.cn
mailto:ruizhang@udel.edu
mailto:ruizhang@udel.edu

deduplication in order to achieve themost economic usage of

its storage. Unfortunately, existing solutions mentioned

above are incompatible with deduplication. This is because

the verification tags of these schemes are created with user

individual private keys unknown to each other, thus differ-

ent verification tags are generated, given the same file held

by different users. But these verification tags cannot be dedu-

plicated at the CSP as shown in Fig. 1a.
Message-locked PoR [10], [11] provides a promising solu-

tion to check data integrity when performing deduplication.
It derives a same file into a same verification tag based on
message-locked encryption technique as shown in Fig. 1b.
However, such design restricts the users from creating their
own individual tags with their private keys. Practically, we
expect an effective method that can check data integrity
with the support of deduplication where each user can gen-
erate its own individual verification tags from its private
key against brute-force attacks.

Another security issue ignored by the previous literature is
the correctness guarantee of data duplication check provided
by the CSP. Several schemes [12], [13]motivate the CSP to per-
form deduplication, but ignore that the CSP could cheat the
users by providing a fake duplication check result. The reason
is simple since the CSP can gain an extra profit by asking the
users to pay normal storage fee without granting a deserved
discount while performing deduplication to save storage
space. As shown in Table 1, we illustrate four situations that
the CSP deals with a duplication check about file storage. We

find that a problemmay happen in the third situation that the
CSP actually has the file tested duplicate but tells the user that
it is not in order to let the user pay a normal storage fee with-
out any discount, which should be offered due to deduplica-
tion and storage saving. By saving extra storage space, the
CSP can earn more by serving more users with the same dis-
honest way. An effective mechanism should be proposed to
prevent the user from being cheated by the CSP in the phase
of data duplication check.

In this paper, we propose a novel deduplication scheme
called VeriDedup to tackle the above two security issues in an
integrativeway. It contains a novel Tag-flexible Deduplication-
supported Integrity Check Protocol (TDICP) and a novel User
DeterminedDuplicationCheck Protocol (UDDCP). The TDICP
explores a new verification tag called note set in which each
note is a randomized bit sequence that is conform to a function
f . The note set is inserted into the files based on Private Infor-
mation Retrieval (PIR). TDICP allows the users to create their
own individual verification tags to check data integrity
over the CSP with deduplication compatibility. Meanwhile,
the UDDCP explores a new challenge and response mechanism

based on Private Set Intersection (PSI) to let the user instead of
the CSP tell whether the file is duplicate first, so that the CSP
cannot cheat the user on the result of duplication check during
file upload. VeriDedup is built upon our previous scheme [14],
which offers such functionalities as deduplication over cipher-
text, Proof of Ownership (PoW) and key assignment by
employing proxy re-encryption (PRE). While, in this paper, we
focus on integrity check and duplication check that are ignored
in [14]. Thus, we assumed the functionalities of PoW and
encrypted data deduplication are available and are not the
focus of this paper.

Specifically, the main contributes of this paper are sum-
marized as below:

� We propose a novel protocol named TDICP based on
PIR to check the integrity of uploaded files in the CSP
with deduplication employed. TDICP allows users to
generate their own individual verification tags for
integrity check while the verification tags can also be
deduplicated at the CSP although different.

� We propose another novel protocol named UDDCP to
guarantee the correctness of duplication check based
on PSI, so that the CSP is impossible to cheat the user
to pay for unused storage space due to deduplication.

� We construct a novel deduplication scheme calledVer-
iDedup that contains the above two novel protocols
and other essential properties, such as PoW and data

Fig. 1. Previous PoR schemes.

TABLE 1
AGame Over Duplication Check Between Users and CSP

Duplication check
result of the CSP

The actual situation of the
CSP

Weather the result
needs to be verified

Reason

Duplicated. Don’t
upload file.

CSP stores the file. No. If CSP pretends that it owns the file, when a user
requests the file, the CSP is unable to provide it.
This kind of cheat is easily figured out.

CSP has not stored the file.
(cheat)

Unduplicated. Please
upload file.

CSP stores the file. (cheat) Yes. The user is cheated by CSP to upload the file that
has already been stored and pays normal storage
fee without a deserved discount due to
deduplication.

CSP has not stored the file.

YU ETAL.: VERIDEDUP: AVERIFIABLE CLOUD DATA DEDUPLICATION SCHEMEWITH INTEGRITYAND DUPLICATION PROOF 681

access key assignment by re-shaping our previous
scheme in [14] in order to overcome its shortcomings
regarding integrity andduplication proof.

� We prove the security of TDICP and UDDCP by con-
structing several games and conduct both theoretical
analysis and experimental simulation to evaluate
their performance. Our results show their efficacy
and efficiency.

The rest of the paper is structured as follows. Section 2
briefly reviews related work. Section 3 introduces the main
techniques used in our scheme. Section 4 presents the sys-
tem model, threat model, and design goals of VeriDedup.
We present the detailed construction of VeriDedup that con-
tains TDICP and UDDCP in Section 5. We prove the security
of the above two novel protocols in Section 6 and report the
simulation based evaluation results in Section 7. Finally, we
conclude this paper in Section 8.

2 RELATED WORK

Our work is most related to the proof of retrievability (PoR)
solutions in cloud data deduplication [15], [16], [17]. Juels
and Kaliski [15] proposed a sentinel-based PoR scheme, in
which a data owner adopts Error Correcting Code (ECC)
and inserts special blocks called sentinels. The sentinels are
indistinguishable from encrypted blocks in an encrypted
file. During integrity challenge, a verifier asks a prover for
those sentinels by disclosing their positions to the verifier.
Therefore, this solution supports a limited number of PoR
queries and after several times of queries, a data owner has
to download the whole file and insert new sentinels to it.
Ateniese et al. [6] proposed a scheme by defining the con-
cept of Provable Data Possession (PDP) based on homomor-
phic tags, which is weaker than PoR in the way that it can
verify that the CSP possesses parts of the file (called blocks)
but cannot guarantee that the file is fully stored. Their
scheme allows public verifiability, which means that any
third party can verify the integrity of the files without dis-
closing any private information of the data owner. How-
ever, the usage of homomorphic tags incurs high
computation cost, which brings heavy computation burden
to the data owner. Their later work [7] cooperates with an
erasure code to help recover small corruptions. However,
their solution suffers from such an attack that CSP can selec-
tively delete some of redundant blocks but still can succeed
in providing valid proof to the data owner.

Much effort was then made to improve the performance
of PoR schemes. Shacham and Waters [18] proposed a new
solution based on their proposed concept of Compact PoR,
which adopts an erasure code and an authenticator with a
BLS signature [19] and Message Authentication Codes
(MAC) [11]. However, the computational complexity of
generating the authenticator is high and the number of the
authenticators is linear to the number of blocks. Xu and
Chang [16] proposed to enhance the scheme in [18] with an
polynomial commitment [18] to reduce communication
cost. Azraoui et al. [20] proposed a scheme called Stealth-
Guard by using PIR within Word Search (WS) technique to
retrieve a witness of watchdogs (similar as tags) and allows
an unlimited number of queries. Compared with other
works, the generation of watchdogs is more lightweight

than the generation of tags like in [7], [18]. In addition, the
overhead of storing the watchdogs is less than that of previ-
ous work. However, those works fail in supporting dedupli-
cation over verification tags.

The concept of message-locked proofs of retrievability
was then proposed to solve the above conflicts. Bellare et al.
[21] formalized a new cryptographic primitive called Mes-
sage-locked Encryption (MLE) that subsumes convergent
encryption [22], [23] that derives the same data block to the
same verification tag to allow deduplication of all verifica-
tion tags. Chen et al. [24] proposed a secure data deduplica-
tion mechanism based on an improved MLE scheme to
enable dual-level source-based deduplication of large files.
Moreover, Zheng et al. [5] introduced a new proof of storage
scheme with deduplication based on a publicly verifiable
proof of data possession. In their scheme, users can verify
the correct storage of deduplicated data with the key of the
first user who actually uploads the file. However, this
scheme has been proved insecure under a weak key attack
in [25] and it cannot prevent the users from being cheated
by the CSP. Vasilopoulos et al. [10] proposed a scheme by
transforming the existing PoR into a form that is message-
locked and integrating it with a deduplication function.
However, these works require to derive the same file into
the same verification tag. But multiple users holding the
same file stored at the cloud may create different tags as
their willingness for data integrity check, which improves
integrity check security by overcoming brute-force attacks,
but impacts deduplication.

Table 2 compares our scheme with existing works in
terms of unlimited queries, tag deduplication support, tag
generation flexibility, and duplication check correctness
guarantee. From Table 2, we observe that existing works
either cannot perform deduplication on verification tags or
do not allow the users to flexibly create their own individual
verification tags during deduplication. In particular, none of
the existing schemes considers the necessity of correctness
guarantee on duplication check, which allows the CSP to
cheat the users for gaining profits.

3 PRELIMINARY

In this section, we introduce the main techniques used in
VeriDedup, including PRE, RSA-Private Set Intersection
(RSA-PSI), and PIR. PRE is applied to assign file keys to an
authorized data holder, RSA-PSI is applied to enable the

TABLE 2
Comparison With Existing Schemes

Schemes UQ TDS TGF DCCG

[15] � � ✓ �
[6], [7] ✓ � ✓ �
[16], [18] ✓ � ✓ �
[21] ✓ ✓ � �
[24] ✓ ✓ � �
[5] ✓ ✓ � �
[10] ✓ ✓ � �
VeriDedup ✓ ✓ ✓ ✓

UQ: Unlimited queries; TDS: Tag deduplication support; TGF: Tag genera-
tion flexibility; DCCG: Duplication check correctness guarantee;✓: supported;
�: non-supported.

682 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

data holder to first decide whether a file is duplicate instead
of the CSP, and PIR to enable the data holder to retrieve the
notesetwithout exposing the position of the set to the CSP.

3.1 Proxy Re-Encryption (PRE)

A PRE scheme consists of five polynomial time algorithms:
Key generation(KG), Encryption(E), Re-encryption key genera-
tion(RG), Re-encryption(R) and Decryption(D):
ðKG;E;DÞ are the standard key generation, encryption and

decryption algorithms. Suppose we have two partiesA andB.
On input the security parameter 1k, KG outputs two public
and private key pairs ðpkA; skAÞ and ðpkB; skBÞ. On input pkA
and dataM,E outputs a ciphertextCA ¼ EðpkA;MÞ.

On input ðpkA; skA; pkBÞ, the re-encryption key genera-
tion algorithm RG outputs re-encryption key rkA!B for a
proxy.

On input rkA!B and ciphertext CA, the re-encryption
function R outputs RðrkA!B; CAÞ ¼ EðpkB;MÞ ¼ CB.

On input CB and skB, the decryption algorithm D out-
puts the plaintextM ¼ DðskB; CBÞ.

3.2 RSA-PSI

PSI [26], [27], [28] enables two parties to compute the inter-
section of their inputs in a privacy-preserving way, such
that only their common inputs are revealed. A PSI scheme
based on RSA blind signature (RSA-PSI) consists of four
main phases: base phase, setup phase, online phase, and
update phase:

Base phase: Suppose we have a client C and a server S. S
and C agree on the RSA public key ðN; eÞ and the false posi-
tive rate for the cuckoo filter CF [29]. S generates the RSA
private key d, C chooses Nmax

c random numbers and calcu-
lates their inverses as well as their modular exponentiation
to the power e.

Setup phase: On input the set owned by S, S encrypts it
using its private key d and inserts the ciphertexts into the
cuckoo filter and sends the CF to C.

Online phase: C first blinds its inputs with the encryp-
tion of the respective random values and sends the resulting
values to S. S responds the result to C by encrypting the
resulting values using its private key d. Using the inverse of
the respective random values, C can then unblind the
encrypted blinded values through multiplications by apply-
ing the property of RSA that xed � x mod N . C finally
obtains the intersection by checking whether the unblinded
encrypted elements are in the CF that was sent by S in the
setup phase.

Update phase: On inputs a new element ui to its input, S
encrypts it using its private key d and decides an efficient
option to insert it into CF and sends the updated CF to C.

3.3 PIR

PIR [30], [31] enables a database user, or a client to obtain
some information from the database in a way that prevents
the database from knowing which data was retrieved.
Assume a dataset D is a X � Y matrix obtained by a server
S and we have a client C, let l donate the index of column
the client is interested in. In order to execute a PIR request,
a PIR scheme normally performs the following steps:

Setup phase: C generates a large number m as the order of
a group G, selects a random b 2 Z�M , where gcdðb;mÞ ¼ 1,
and keeps b andm as a secret.

Query phase: C generates a set ðe0; . . . ; eiÞ for each column
ðx0; . . . ; xiÞ, which holds that for a random selected set
ða0; . . . ; aiÞ, if xil is one of queried columns, then eil ¼ ailN

r;
otherwise, if xi is not one of the queried columns, then ei ¼
Nl þ aiN

r. Meanwhile, it holds that all ei < m=ðtðN � 1ÞÞ.
Then, C computes v ¼ fvijvi ¼ bei modmg and sends Req ¼
fv; tagg to S.

Response phase: When receiving Req, S computes Resp ¼
v�D and sends it back to C.

Extraction phase: C computes Res ¼ Resp � b�1 modm and
obtains the data of the queried column.

4 PROBLEM STATEMENT

In this section, we describe the system model, the threat
model and the design goals of VeriDedup.

4.1 System Model

VeriDedup offers grarantee on the correctness of duplica-
tion check and supports the integrity check of deduplicated
encrypted data in cloud storage.

Our target system contains three types of entities: 1) Data
holder who owns data and saves its data that consists of
multiple blocks at CSP. It is possible that a number of eligi-
ble data holders share the same encrypted data blocks in
the CSP. In particular, the data holder that first uploads the
data blocks to the CSP is denoted as a data owner with
regard to the same blocks. 2) CSP who provides a data stor-
age service with deduplication to data holders. Only one
data copy is stored at the CSP, which can be accessed by all
data holders with authority. 3) Authenticated auditor (AA)
who serves as a third party to check data ownership, autho-
rize data access and cooperate with other two types of enti-
ties aiming to audit the whole procedure of data
duplication check. The system model of VeriDedup is
shown in Fig. 2.

4.2 Threat Model

We perform our research based on the following assump-
tions. We assume that the data holder is honest. We assume
the CSP is semi-trusted. It may raise the following three secu-
rity threats: 1) Snooping the private data of the data holders;
2) Cheating the data holders by providing a wrong duplica-
tion check result in order to ask a higher storage fee; 3) Caus-
ing data loss due to carelessness of data maintenance. In

Fig. 2. System model.

YU ETAL.: VERIDEDUP: AVERIFIABLE CLOUD DATA DEDUPLICATION SCHEMEWITH INTEGRITYAND DUPLICATION PROOF 683

VeriDedup, we focus on the last two issues since many exist-
ing solutions of the first issue can be found in the literature
[5], [32]. Thus, we assume that the first issue has been solved,
e.g., through data encryption. In addition, we assume AA
andCSP do not collude. However, AA is semi-trusted, which
is curious about the data stored at the cloud, thus private
data should be kept away fromAA.We assume data holders,
CSP, and AA communicate with each other through secure
channels by applying some security protocol (e.g., Open-
Secure Sockets Layer (SSL)). And all system parameters are
sharedwith all related parties during system setup or initiali-
zation phase in a secureway.

4.3 Design Goals

VeriDedup is a verifiable cloud data deduplication storage
scheme with integrity and duplication Proof. It holds the
following design goals:

� Independent integrity check when deduplication: Veri-
Dedup allows the data holder to check the integrity
of its files stored at the CSP without downloading
the whole files and interacting with the correspond-
ing data owner.

� Flexible tag generation: VeriDedup allows each data
holder to create its own individual verification tags
while still can perform data deduplication over those
tags.

� Correctness guarantee of duplication check: VeriDedup
can assure the correctness of duplication check.
Thus, a semi-trusted CSP can never cheat the data
holders to upload any data that have already been
stored by the CSP.

5 THE PROPOSED SCHEME

In this section, we introduce VeriDedup that can realize
both integrity check and duplication proof over encrypted
cloud data deduplication.

5.1 Overview

VeriDedup follows the construction of our previous dedu-
plication scheme [14] and improves it by using PSI and PIR
to ensure both data integrity and duplication check correct-
ness over encrypted data deduplication. Specifically, com-
pared with previous work, we introduce a PSI based
challenge and response mechanism to the duplication check
procedure in order to let the data holder first tell whether
the uploaded blocks are duplicate or not instead of the CSP.
In addition, we employ AA to verify the computations of
the CSP during the duplication check, so that the CSP can-
not cheat the users to upload data blocks that have been
stored already. Furthermore, we propose a note insertion
mechanism based on PIR to let the data holder insert a spe-
cific set (called note set) that contains several randomized bit
sequences, which conform to a hidden function, as verifica-
tion tags into the encrypted blocks of a uploaded file. The
data owners/holders who are proved to have the owner-
ship of the corresponding blocks can verify the integrity of
the uploaded blocks through a challenge on whether the
notes are conform to the hidden function. Attention need be
given that the verification tags generated by multiple data

holders with various notes can also be deduplicated in Veri-
Dedup, so that the CSP will no longer be required to main-
tain multiple pieces of verification tags from the same block
of different data holders for integrity check, which reduces
storage consumption of performing deduplication. In what
follows, we first introduce the two proposed novel protocols
(i.e., TDICP and UDDCP) and then detail the whole con-
struction of VeriDedup.

5.2 TDICP Design Brief

The protocol TDICP contains the following main proce-
dures: System setup, Note generation and insertion, Check Ini-
tialization, Response computation, and Integrity check.

System setup: On input the security parameter �, AA out-
puts a hidden function f which is then applied for note
generation.

Note generation and insertion: On input the hidden func-
tion f and the secret keys of a data holder, the data holder
outputs a randomized note set S and a position set P accord-
ing to the uploaded blocks of its file and inserts the note set
into the corresponding positions of the encrypted blocks.

Check initialization: On input the check indexes of the
blocks, the data holder outputs a coefficient set e and com-
putes the challenge set v ¼ b � emodm, where gcdðm; bÞ ¼ 1.

Response computation: On input the challenge set v, CSP
outputs the response Resp ¼ v�D.

Integrity check: On input the response Resp, the data
holder outputs the check result by computing Res ¼
Resp � b�1 modm to pick out the note set and validating
whether these notes conform to the hidden function f . If the
verification passes, the data holder confirms the integrity of
the stored file.

5.3 UDDCP Design Brief

The protocol UDDCP contains the following main proce-
dures: System setup, Filter generation, Check initialization,
Response computation, Duplication check, and Filter update.

System setup: On input the secret parameter �, the data
holder outputs a RSA key pair ðe; dÞ under a large number
N and AA initializes an empty cuckoo filter.

Filter generation: On input the CSP maintained tag set fxg,
AA outputs the cuckoo filter as follows: 1) CSP computes
a ¼ HðxÞd for each tag of its tag set; 2) AA verifies the num-
ber of involved tags, the signature of the tags, and the com-
putation of the CSP; 3) AA inserts the set fag into the
cuckoo filter.

Check initialization: On input the secret parameter �, the
data holder outputs three coefficient set frg, frinvg, and fr0g
for its maintained tag set fyg and computes the challenge
A ¼ HðyÞ � r0 for all y.

Response computation: On input the challenge set fAg, CSP
computes C ¼ Ad modm and responds fCg to the data
holder.

Duplication check: On input the response set fCg, the data
holder outputs the duplicate tags as follows: 1) validate the
computation of the CSP on fCg; 2) compute all C �
rinv modN and check them in the cuckoo filter to find inter-
sections as the duplicate tags. The data holder confirms the
duplicate files corresponding to the duplicate tags.

684 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Filter update: On input the update tag set fy0g, AA
updates the cuckoo filter as follows: 1) CSP computes a0 ¼
Hðy0Þd for each y0 in the update tag set; 2) AA verifies the
number of involved tags, the signature of the tags, and the
computation of the CSP; 3) AA inserts the set fa0g into the
cuckoo filter.

5.4 VeriDedup Construction

VeriDedup contains the following main procedures: System
setup, Data preprocessing and Duplication Check, Note set inser-
tion and Data Upload, Data integrity check, andData Download.
The details of the scheme are elaborated as follows:

5.4.1 System Setup

Assuming that e : G1 �G1 ! GT is a bilinear map where
G1, GT are two groups of prime order q, the system parame-
ters are random generators g 2 G1 and Z ¼ eðg; gÞ 2 GT .

During system setup, each data holder uw generates
skw ¼ aw and pkw ¼ gaw for PRE, where aw 2 Zp�. The public
key pkw is used to generate the re-encryption key at AA for
uw. let Eqða; bÞ be an elliptic curve over GF ðqÞ, P � be a base
point shared among system entities, sw 2R f0; . . . ; 2s � 1g
be the Eillptic Curve secret key of data holder uw and Vw ¼
�swP � be the corresponding public key and s be a security
parameter. The keys ðpkw; skwÞ and ðVw; swÞ of uw are bound
to a unique identifier of the data holder, which can be a
pseudonym that is crucial for the verification of user
identity.

AA generates a hiddenfunction f , as a consensus that all
the data holders will later use to create their unique note
sets Sw;i and broadcasts f among all data holders. Note that,
f can be an arbitrary function chosen depending on the
security level required by the data holders. Furthermore,
AA generates pkAA and skAA for PRE and broadcast pkAA to
the data holders.

CSP initializes a RSA algorithm with a public and secret
key pair ðe; dÞ under the module N , The key pair is used to
encode the uploaded tags of the data holders and the CSP
for duplication check.

5.4.2 Data Preprocessing and Duplication Check

Suppose that two data holders u1 and u2 want to upload
their data files F1 and F2 to the CSP. Let u1 the first to
upload the file, it performs the data preprocessing and
duplication check as follows:

Step 1: On input F1 and the symmetric keyDEK1. u1 per-
form the following computations: 1) Divide F1 into several
splits where each split containsm blocks. In order to protect
the file from small corruptions, adopt Error Correcting
Code (ECC) to extend m blocks to mþ d� 1 blocks, which
can correct up to d

2 errors with an efficient ½mþ d� 1;m; d�
ECC, such as Reed-Solomon code [33] and obtain a set of
blocks fB1;ig. 2) For each block B1;i, u1 generates a block tag
y1;i ¼ HðHðB1;iÞ � P �Þ. 3) Send the set of tags fy1;ig to the
CSP.

Step 2: Suppose that the CSP maintains a tag set fxjg
gathered form previous data owners, the CSP interacts with
AA and u1 to perform a duplication check according to the
following procedure. 1) For all xj, the CSP generates aj ¼
HðxjÞd modN , and sends faj;HðxjÞ; signðHðxjÞÞg;D, where

j ¼ 1; . . . ; Ns, to the AA, where signðHðxjÞÞ is the signature
of HðxjÞ signed by the original data owner of the tag xj and
D is the total number of the tags held by the CSP. 2) Receiv-
ing what the CSP sends, AA first verifies whether
faj;HðxjÞ; signðHðxjÞÞg contains D elements to guarantee
that CSP uses all its maintained tags to perform computa-
tions. If it holds, it second verifies all the signatures on
HðxjÞ, which ensures that the CSP indeed uses the tags
uploaded from the previous data owners. Third, AA will
further validate the correctness of the CSP computations on
all xj using a batch verification by randomly creating Nv

non-overlap subset of faj;HðxjÞg and in each subset verify-
ing whether

Q
HðxjÞ ¼ ð

Q
ajÞe holds. If all the verification

passes, the AA assumes that the CSP computations are cor-
rect and creates a cuckoo filter CF as input of fajg, i.e.,
CF ¼ CF:InsertðfajgÞ as a response to u1. Note that, this
procedure is only executed once during the system setup, if
another data holder requires to upload new files to the CSP,
the CSP will cooperate with AA to update the cuckoo filter,
there is no need to re-calculate the parameters of previous
data owners mentioned above. 3) For all y1;i, u1 first selects
random numbers r1;1; . . . ; r1;Nc and computes rinv1;i ¼
r�11;i modN and r

0
1;i ¼ re1;i modN for all i 2 ½1; . . . ; Nc� and

then computes A½1; i� ¼ Hðy1;iÞ � r01;i modN , where i ¼
1; . . . ; Nc, and sends them to the CSP. The CSP then com-
putes C½1; i� ¼ ðA½1; i�Þd modN as a response to u1. u1 then
randomly creates N 01;v non-overlap subset of fC½1; i�; A½1; i�g
and in each subset verifies whether

Q
C½1; i� ¼ ðQA½1; i�Þe

holds to prove the correctness of the CSP computations and
finally checks duplication with the cuckoo filter CF using
algorithm CF:checkðC½1; i� � rinv1;i modNÞ to confirm the
duplicate blocks. The whole protocol is shown in Fig. 3.

5.4.3 Note Set Insertion and Data Upload

Let u2 the second to upload the file that obtains the same
pieces of blocks as u1, u1 and u2 perform the note insertion
and data upload as follows:

Step 1: Since u1 is the first to upload a new file that has not
been stored by theCSP before, i.e., the duplication check is neg-
ative, it is served as a data owner and is required to upload its
corresponding blocks fB1;ig. Assume the ith block B1;i is
uploaded, u1 first encrypts B1;i withDEK1 to get CT1;i, which
is stored as a X � Y matrix, and encrypts DEK1 with pkAA to
get CK1. Let S1;i ¼ fh1;i;0; . . . ; h1;i;kjfðh1;i;0; . . . ; h1;i;kÞ ¼ 0g be a
note set that conforms to the hidden function f . According to
the PIR algorithm, let B1;i be a seed, u1 shuffles the column
index ½1; . . . ;X� and selects the first r columns as the ones to
insert the notes. Thus, in each column, c ¼ dk=re notes are
required to be inserted. Furthermore, in each selected column,
u1 further shuffles the row index ½1; . . . ; Y � and decides the first
c indexes as the final positions to insert the notes. Denote the
position indexes as P1;i ¼ fp1;i;1; . . . ; p1;i;kg, u1 then inserts all
the notes fh1;i;kg into CT1;i according to the position indexes
P1;i to obtain CKI1;i and sends CKI1;i and CK1 to CSP along
with pki. At the same time, u1 also uploads tags of the new
blocks fy1;ig for further duplication check. On receiving a
new block tag y1;i, the CSP first adds them to its
maintained tag set xj ¼ xj

S
y1;i and then computes ai ¼

Hðy1;iÞd modN , and sends fai;Hðy1;iÞ; signðHðy1;iÞÞg to AA.
AA then first checks the signatures on Hðy1;iÞ, and further

YU ETAL.: VERIDEDUP: AVERIFIABLE CLOUD DATA DEDUPLICATION SCHEMEWITH INTEGRITYAND DUPLICATION PROOF 685

randomly createsN 001;v non-overlap subset of ffa1;ig; fHðy1;iÞgg
and in each subset verifies whether

Q
Hðy1;iÞ ¼ ð

Q
a1;iÞe. If

the verification passes, AA assumes that the CSP computation
is correct and updates the cuckoo filter CF using CF ¼
CF:Insertðfa1;igÞ, which will be used in the next duplication
check round. If the duplication check is positive and the pre-
stored blocks are from the same data holder, the data holder
will inform the CSP to do nothing butmaintain its blocks. If the
blocks are from a different data holder, it will inform the CSP
to performdeduplication.

Step 2: Informed the duplication from a different user u2,
the CSP first checks the ownership of the blocks by passing
the ownership verification tasks to the AA, which will chal-
lenge the data holder u2 on whether it is the real party who
possesses the data blocks B2;i0 ¼ B1;i. We introduce an own-
ership verification protocol based on a cryptoGPS identifica-
tion scheme [34]. In the protocol, AA first randomly chooses
c 2R f0; . . . ; 2s � 1g and challenges u2 by c. u2 computes h ¼
HðB2;i0 Þ þ ðs2 � cÞ as a response along with V2 to AA. AA
will computes HðhP � þ cV2Þ and compares it with tag y1;i. If
the verification passes, i.e., y1;i ¼ HðhP � þ cV2Þ, AA con-
firms that u2 has the duplicated blocks B2;i0 ¼ B1;i and gen-
erates re-encryption key rkAA!uj ¼ RGðpkAA; skAA;PK2Þ
and sends it to CSP. CSP then transfers CK1 to CK2 by com-
puting RðrkAA!u2 ;EðpkAA;DEK1ÞÞ ¼ Eðpk2;DEK1Þ for u2.

At this moment, both u1 and u2 can access the same data
blocks B1;iðB2;i0 Þ stored at the CSP and use its corresponding
CTI1;iðCTI2;i0 Þ to perform the below integrity check. Note
that, each B1;i is only correlated with single CTI1;i, i.e.,
CTI1;i ¼ CTI2;i0 .

5.4.4 Data Integrity Check

Assume that data owner u1 wants to upload a block set fB1;ig
and data owner u2 wants to upload a block sets fB2;i0 g.
Regardless of deduplication, when user u1 challenges the
integrity of a single blockB1;i stored at CSP, it first initializes a

large number m and b 2 Z�m, where gcdðb;mÞ ¼ 1, as a secret.
According to the position indexes P1;i, it then generates a set
ðe1;i;0; . . . ; e1;i;zÞ for each column ðx1;i;0; . . . ; x1;i;zÞwith random
selected ðd1;i;0; . . . ; d1;i;zÞ, where if x1;i;l 2 P1;i, then e1;i;l ¼
d1;i;lN

r; otherwise, if x1;i;l =2 P1;i, then e1;i;l ¼ Nl þ d1;i;lN
r.

Meanwhile, it holds that all e1;i;z < m=ðtðN � 1ÞÞ for some
choice of l < r and d1;i;l. Finally, it computes v1;i ¼
fv1;i;ljv1;i;l ¼ be1;i;l modm; l 2 ½1; . . . ; z�g and sends Req1;i ¼
fv1;i; tag1;ig to the CSP. Receiving Req1;i, the CSP computes
Resq1;i ¼ v1;i �B1;i as a response and sends it back to u1. u1

then computesRes1;i ¼ Resp1;i � b�1 modm to obtain the que-
ried columns and thenpick out the notes according to the posi-
tion indexes P1;i to check whether the notes are conform to the
hidden function. Similarly, when user u2 challenges the CSP,
it generates its unique ðm0; b0Þ as a secret and also its unique
ðd2;i0;0; . . . ; d2;i0;zÞ to generate other ðe2;i0;0; . . . ; e2;i0;zÞ and its fur-
therReq2;i0 ¼ ðv2;i0 ; tag2;i0 Þ. In cooperationwith the CSP, u2 can
also obtain the note set based on the position indexes P2;i0 to
checkwhether the notes are conform to the hidden function.

Furthermore, suppose that u1 and u2 shares a same dupli-
cated block fB�i g and u1 has its unique block fB1

i g and u2 has
fB2

i g. For B1;i 2 fB1
i g, u1 verifies fðh1;i;0; . . . ; h1;i;kÞ ¼ 0 to

check the integrity ofB1;i aswell as forB2;i0 2 fB2
i g, u2 verifies

fðh2;i0;0; . . . ; h2;i0;kÞ ¼ 0. For B�;i 	 fB�i g, although u2 is
unaware of the exact inserted notes of u1, since they both
share the same hidden function f and P1;i ¼ P2;i0 , they all can

verify that fðh�;i;0; . . . ; h�;i;kÞ ¼ 0 to check the integrity of B�;i.
Therefore, we not only deduplicate the same block uploaded

to the CSP, but also take a further step to deduplicate the veri-

fication tags of duplicated blocks generated by multiple data

holders. Note that since we apply ECC to help recovering the

files, there is no need to perform integrity check over all

blocks. If u1 and u2 can succeed in performing above g times

random verification in all its corresponding block sets, our

protocol guarantees the integrity ofF1 and F2. Thewhole pro-

cedure is shown in Fig. 4.

Fig. 3. Procedures of UDDCP.

686 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

5.4.5 Data Download

When u1 wants to download F1. It sends a request and the
file name to the CSP. Upon receiving the request, the CSP
first checks if u1 has the authorization to download the file.
If passed, CSP returns the corresponding block sets fCTI1;ig
to u1. u1 then extracts all the notes according to the position
indexes P1;i on each block to get the ciphertexts fCT1;ig ¼
fCT 1

i g
S fCT �i g and decrypts each CT1;i using DEK1

directly to obtain
S fB1;ig ¼ fB�i g

S fB1
i g. Owing to ECC,

u1 can recover F1 from
S fB1;igwith errors no more than d

2 .
As for u2, after following the same steps to obtain the
ciphertexts fCT2;ig ¼ fCT �i g

S fCT 2
i g, it also receives a re-

encrypted DEK1 key Dðsk2;Eðpk2;DEK1ÞÞ from the CSP.
u2 can then obtain the keyDEK1 using its key pair ðpk2; sk2Þ
and decrypt each CT �i to get the duplication original blocks
fB�i g and its unique original blocks fB2

i g by directly using
DEK2. Finally, it can obtain the original file

S fB2;ig ¼
fB�i g

S fB2
i g and recover F2 using ECC.

5.5 Further Discussion

We recognize the fact that the CSP is likely to increase its
income with massive amounts of computation/storage from
deduplication. In this case, confirming deduplication hap-
pened already at the CSP to get an offer of low storage charge
becomes essential, our paper aims to solve this issue. For moti-
vating the adoption of our scheme, in another line of our work,
we study how to make all related stakeholders to accept and
use deduplication schemes by applying game theory to design
proper incentive or punishmentmechanisms in three cases: cli-
ent-controlled deduplication [35], [36], server-controlled dedu-
plication [12] and hybrid deduplication [13]. Since our scheme
design is built upon the one in [14], belonging to server-con-
trolled deduplication, the incentive mechanism [12] suitable
for the server-controlled deduplication schemes can be applied
to motivate scheme adoption. Moreover, linking a trust value
to eachCSP can help the users to choose a trustworthyCSP.

6 SECURITY ANALYSIS

In this section, we prove the correctness and the soundness of
TDICP. Correctness means that the integrity check algorithm
can correctly extract a queried column and soundness means
that the original file can be recovered if the corresponding
TDICP integrity check passes. We also prove the soundness
andprivacy ofUDDCP, andomit the proof of correctness, since
it is obvious. Soundness means that the CSP cannot provide
fake computation results during the whole procedure, privacy
means that none of the information of both the CSP and the
data holder are leaked to the other except for the intersection,
and correctness means that the data holder can correctly pick
up all the intersection of its tag set and theCSP’s tag set.

6.1 Correctness of TDICP

We first prove the correctness of TDICP on extracting the
queried column where the notes are inserted based on the
PIR algorithm.

During the Integrity check phase, the data holder com-
putes as follows:

Resp � b�1 modm ¼ ðv�DÞ � b�1 modm

¼ ðbe�DÞ � b�1 modm

¼ e�Dmodm
Since e ¼ ðe1; . . . ; etÞ and t ¼ x,

D ¼
d11 � � � d1y

..

. . .
. ..

.

dx1 � � � dxy

0
B@

1
CA

then

e�Dmodm ¼
Xx
i¼1

eidi1;
Xx
i¼1

eidi2; . . . ;
Xx
i¼1

eidiy

 !
mod m

¼
Xx
i¼1

eidi1;
Xx
i¼1

eidi2; . . . ;
Xx
i¼1

eidiy

 !

Fig. 4. Procedures of TDICP.

YU ETAL.: VERIDEDUP: AVERIFIABLE CLOUD DATA DEDUPLICATION SCHEMEWITH INTEGRITYAND DUPLICATION PROOF 687

When ei is the queried column, ei ¼ Nl þ alN
r, we havePx

i¼1 eidij ¼
Px

i¼1ðNl þ alN
rÞdij, then

Px
i¼1 eidij modNr

¼Px
i¼1 N

ldij
Otherwise, ei ¼ akN

r, we have
Px

i¼1 eidij ¼
Px

i¼1 ðak
NrÞdij, then

Px
i¼1 eidij modNr ¼ 0

Assume that ir is the queried column, it holds thatPx
i¼1 eidij ¼

Pr
i¼1 N

ldirj ¼ ðdirjÞN
Above all, all the elements in the queried irth column are

obtained.

6.2 Soundness of TDICP

Then, we further prove the soundness of TDICP by intro-
ducing the following game.

Assume there is an adversary A that corrupts on average
radv blocks of an outsourced file, and succeed in the sound-
ness game of the proposed protocol with the probability of
d. In the following proof, we show that if the query times g
exceeds a threshold gneg, our protocol can recover the whole
file with a probability of more than 1� n

2t , where t is the
security parameter, when there exists an adversary A that
can succeed in the soundness game with the probability
d
 dneg ¼ 1

2t .
Remind that n is the length of the notes and s is the number

of the notes in a note set,We first quantify dwith respect to the
parameter radv. In order to succeed in the soundness game,
the adversary A can perform under the following two condi-
tions. 1) it does not corrupt any note; 2) it corrupts some of the
notes, but can still provide valid notes that conform to the hid-
den function. Therefore, we define the probability that the
adversaryA can succeed in the soundness game with respect
to radv as: r ¼ PAðSuccess;iÞ ¼ ð1� radvÞ þ radv

2ns .

In TDICP, the integrity check requires the adversary A to
response g valid note sets to succeed in the soundness
game, therefore

d ¼
Xg
i¼1

PAðSuccess;iÞ ¼ ð1� radvÞg þ
gradvð1� radvÞg�1

2ns
þ o

1

2ns

� �
|ffl{zffl}

�

Note that if ns is large enough, i.e., ns ¼ 128, � will then
be negligible. We can simplify the above equation that if
ns
 128, d � ð1� radvÞg .

We then define a threshold rneg with respect to radv that if
radv < rneg, the probability of our protocol that fails in
recovering the blocks is negligible.

Since TDICP adopts ECC and can recover rD ¼ d
2 errors,

then for each block, if there exists more than corrupted d
2

errors, our protocol fails in recovering the blocks. Let P s
ðFail;iÞ

be the probability that a block has more than d
2 errors.

According to Chernoff bounds, we can bound P s
ðFail;iÞ as

P s
ðFail;iÞ � exp

�
� radvD

3

�
1� r

radv

�2�

Let P s
ðFail;iÞ be negligible, i.e., P s

ðFail;iÞ <
1
2t , then

expð� radvD
3 ð1� r

radv
Þ2Þ < 1

2t . We derive rneg as the bound of
radv �

1� r

rneg

�2

rneg ¼
3 lnð2Þt

D
and rneg < r

Next, we define a threshold gneg for the query time g that
if an adversary A corrupts more than rneg fraction of the
blocks, it will be detected by our protocol with an over-
whelming probability. In other words, if g > gneg and
radv > rneg, then the probability of the adversary A to suc-
ceed in the soundness game is negligible. Then

d ¼ ð1� radvÞg � ð1� radvÞgneg � dneg ¼ 1

2t

According to the equation ln x � x� 1, when radv > rneg

gneg ¼
�
lnð2Þt
rneg

�
� � lnð2Þt

lnð1� rnegÞ
� � lnð2Þt

lnð1� radvÞ

Finally, we define the probability of a file to be recovered.
Since if there exists one block failing to be recovered, the
whole file fails to be recovered. Let

Q�
Fail be the probability

that the file fails to be recovered, then
Q�

Fail �
Pn

i¼1 PðFail;iÞ.
If we assume the probability of the files that fails to be
recovered is negligible, i.e., P�

ðFail;iÞ � 1
2t . The probability of

the files to be successfully recovered is

Y�
Success

¼ 1�
Y�
Fail

 1� n

2t

6.3 Privacy of UDDCP

We further prove the privacy of UDDCP based on the irre-
versibility of the cuckoo filter.

In UDDCP, the data holder is private, which leaks no
information to the CSP about its private inputs. Since the
data holder selects all values uniformly and at random, i.e.,
fr1; . . . ; rNcg Z�n, thus, rinvi and r0i are all random sequen-
ces. The data holder masks its inputs A½i� to the CSP with
random values r0i, so that CSP cannot obtain any otherHðyjÞ
of the data holder except for the intersection. The CSP is pri-
vate which leaks no information to the data holder since we
introduce a cuckoo filter to store the computation results ai
in filtergeneration phase. Due to the irreversibility of the fil-
ter, the data holder cannot obtain any other HðxiÞ except for
the intersection.

6.4 Soundness of UDDCP

We prove the soundness of UDDCP by illustrating how it
can solve all potential cheats the CSP can perform, including
1) the CSP may provide unauthorized tags that are not from
previous data holders or delete some stored tags driven by
some profits; 2) the CSP may provide wrong computation
results of aj or C½i� to the AA or the data holder.

In UDDCP, the first cheat can be tested, since we employ
AA to verify all the signatures and record the number of the
CSP’s tag set. Unauthorized tags created by the CSP are eas-
ily found out and the CSP is audited to provide all the tags
from previous data owners. The second cheat can also be
tested, since we let AA to verify whether

Q
HðxjÞ ¼ ð

Q
ajÞe

holds, which can be proved correct according to the multi-
plication homomorphism of RSA. Wrong computations of
any aj or C½i� can be detected by the AA.

688 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

7 PERFORMANCE ANALYSIS AND EVALUATION

In this section, we perform theoretical analysis, conduct
simulation based evaluation on VeriDedup, and compare
its performance with related previous works. In addition

7.1 Evaluation Metrics and Experimental Settings

7.1.1 Evaluation Metrics

We applied five metrics in our simulation studies to evalu-
ate TDICP, including (1) the data owner’s computational
complexity for creating and inserting the note set; (2) the
data holder’s storage overhead for extra data storage in
integrity check; (3) the data holder’s computational com-
plexity for challenging CSP and retrieving the inserted note
set for verification; (4) CSP computational complexity for
responding the challenge from the data holder; (5) Data
holder-CSP communication cost for transferring extra data
in integrity check. The communication cost of AA to broad-
cast the hidden function f is omitted, since it is a one-time
cost regardless with integrity check interactions.

Meanwhile, we used six metrics in our simulation stud-
ies to evaluate UDDCP, including (1) the data holder’s
computational complexity for initializing duplication check;
(2) CSP’s computational complexity for preprocessing its
tag set and responding the challenge from data holders; (3)
AA’s computational complexity for verifying CSP computa-
tion and setting up the cuckoo filter; (4) the data holder’s
computational complexity for confirming duplicate blocks;
(5) the communication cost from CSP to AA for constructing
the cuckoo filter; (6) the communication cost between the
data holder and CSP for transferring extra data in duplica-
tion check. The communication cost from AA to the data
holder for transferred the cuckoo filter is omitted, since it
depends on the concrete type of the cuckoo filter.

We can find several previous schemes [7], [15], [16], [18],
[20] with the aspect of integrity check. These schemes focus
on integrity check in various scenarios. We found that
StealthGuard [20] is the only one that targets on the same
integrity check issue over data deduplication as ours. Thus,
we chose StealthGuard as a baseline scheme and compare
its simulation performance with ours in terms of integrity
check. Meanwhile, to the best of our knowledge, our scheme
is the first to consider the issue on proving the correctness of
duplication check. Thus, in what follows, we provide the
evaluation result of UDDCP without comparison with other
previous work.

7.1.2 Experimental Settings

We implemented our scheme in Python and tested it on a
desktop equipped with an i5 CPU, 8GB RAM, and 64-bit
Win10 OS. We chose SHA-256 for the cryptographic hash
function and 1024-bit RSA for digital signature. We
employed the Crypto library to realizeAdvanced Encryption
Standard (AES) encryption. We applied a MySQL database
to store data and their related information and built secure
channels between entities using SSLsocket. We employed a
cuckoo filter with 12.6 bits on average per item, which can
offer a false positive rate of 0.19%. In our tests, we focus on
testing the performance of our proposed TDICP and

UDDCP, the rest including encryption, decryption, and key
re-encryption, can be found in our previous paper for details.

Assume there exists n0 elements after the block has been
transformed into a matrix. Let a note set conform to the hid-
den function that contains r notes and a number of k note
sets are required to be inserted, there exists s ¼ k � r notes.

Assume that the data holder inserts c notes in each col-
umn at average, then s=ðtcÞ times of queries will be needed
to fetch all the notes. Therefore, the communication cost of
the data holder and the CSP to check the integrity is ðxþ yÞ �
jmj � s=ðtcÞ. When x ¼ y, the equation reaches the best. Thus,
in our experiment, we set x ¼ y ¼ ffiffiffi

n
p

in order to minimize
communication cost. Meanwhile, the times of multiplication
in the integrity check is 2 � x � s=ðtcÞ þ x � y � s=ðtcÞ þ s ¼ 2 �
x � s=ðtcÞ þ n � s=ðtcÞ þ sþ y. Therefore, the larger t � c, the
less multiplications needed. Thus, we set c ¼ y; t ¼ ds=ce to
minimize the times of multiplication needed for integrity
check.

7.2 Performance Analysis

In this subsection, we analyze the performance of our two
proposed protocols. Hereafter, computation costs are repre-
sented with exp for exponentiation, mul for multiplication,
PRF for pseudo-random function, PRP for pseudo-random
permutation, INV for inversion, and enc for encryption.

7.2.1 Performance Analysis on TDICP

We first did theoretical analysis on integrity check perfor-
mance. The proposed TDICP involves two types of system
entities: data holder/data owner and CSP. In order to be com-
patible with the chunk setting of previous deduplication
schemes [37] and compare computational complexity and
communication cost with other pervious PoR schemes [7],
[15], [16], [18], [20], we follow the settings of the prior arts to
split a 4 GB file into a number of blocks with 128 KB, so that
we got each block containing 16384 elements and each ele-
ment is 64 bits. In order to reduce the probability of CSP to
find collisions that can help passing the integrity verification,
we selected the hidden function as notes½1�knotes½2� ¼
ðHashSHA256ðnotes½3�knotes½4�ÞÞ128, which can be proved
secure and efficient in [38] and inserted 8 pairs of notes as ver-
ification tags into each block. The size of each notes is 64bits.
We adopted ECC in all splits and required it to correct 5%
errors (912 elements). Thus, each block contains 18240 ¼
16384þ 32þ 912 � 2 elements. We adopted AES for symmet-
ric encryption and PRE proposed in [39]. We analyzed the
computational complexity, storage overhead, and communi-
cation cost of each entity at various phases as below. The
result is shown in Table 3.

Computational complexity of data owner at setup phase.
Regarded as the first data uploader, the data owner setups
the whole integrity check by inserting the initial notes into
each block. Assume that the data owner would like to insert
k pairs notes into one block, it performs 4k pseudo-random
permutation (PRP) operations to decide the position Pi and
2k pseudo-random function (PRF) operations and k HASH
to derive all the notes. Therefore, in our test, a 4GB file will
contain 32768 blocks, as we set k ¼ 8 for comparison with
previous work, TDICP requires the data holder to perform
1048576 PRP, 524288 PRF, and 262144 HASH. Compared

YU ETAL.: VERIDEDUP: AVERIFIABLE CLOUD DATA DEDUPLICATION SCHEMEWITH INTEGRITYAND DUPLICATION PROOF 689

with the most related work StealthGuard, since we intro-
duce a hidden function instead of the watchdog in Stealth-
Guard, we bring more costs to the data owner. However,
since the setup phase is a one-time cost regardless of the
integrity check, it is reasonable since our protocol provides
a new feature that we can also deduplicate the verification
tags, which is a step forward than StealthGuard.

Storage overhead of data holders. In order to fulfill the task of
integrity check, all the data holders need to record the posi-
tion set Pi, so that they can later retrieve the notes based on
the PIR algorithm. In our protocol, the size of each position
information is 15bits. Thus, the data holder needs 4k � 15 bits
additional storage to record these positions. As to a 4GB file,
it costs an additional 32768 � 4 � 8 � 15 ¼ 1:875 MB. Com-
pared with StealthGuard and other previous work, our
scheme saves more or less storage due to the novel verifica-
tion tags.

Computational complexity of CSP at response phase. As the
entity who responses the integrity challenge from the data
holders, the CSP performs 1 � x � y multiplication (mul) to
compute Resp ¼ vi �D. Therefore, assume that x ¼ 135
and y ¼ 136 for the matrix D, the CSP performs 18360 mul
to compute a response to the data holder, and totally 1719 �
18360 ¼ 31560840 mul for all 1719 notes. Compared with
StealthGuard, our scheme reduces almost 20 times of
computational complexity, it is mainly because in Stealth-
Guard, the CSP needs to transform the matrix D into a bit
matrix, which increases the number of computations.

Computational complexity of data holder at challenge and
response phase. In each challenge phase, the data holder per-
forms x mul and x PRF for generating the private coefficient
ei and x mul to compute vi ¼ bei modm. Assume that x ¼
135, the data holder then performs 270 mul and 135 PRF to
generate one challenge. As a total, the data holder performs

464130 mul and 232065 PRF to generate all challenges for a
4GB file. In each verification phase, there exist a best situa-
tion and a worst situcation. In the best situation, the data
holder performs 4þ ymul to extract a queried column based
on PIR algrithm. In the worst situation, the data holder per-
forms ð4þ 3þ 2þ 1Þ þ y mul to extract the queried column.
Therefore, in the best situation, the data holder in TDICP per-
forms 140mul and 1HASH to verify that the note conform to
f . In the best situation, the data holder then performs 146
mul and 1 HASH to verify the note set. As a total, the data
holder performs 250974 (240660) mul and 1719 HASH to ver-
ify a 4GB files. Compared with StealthGuard, our scheme is
more efficient than StealthGuard at the challenge phase and
a little bit worse than StealthGuard during verification. The
reason is that our TDICP performs less computations to
retrieve the tags, but performs more computations to verify
whether the notes conform to the hidden function. In fact, for
a same file that contains one pair of notes or a single watch-
dog, our method of note insertion only affects the complexity
of the verification phase, and the effect is very small regard-
ing to the above statement.

Communication cost of challenge and response phase. When the
data holder challenges the integrity of a block, it sends a ½1; x�
vector to the CSP. The size of each element in the vector is
334 bits. Thus, the size of each challenge is 334� x bits. As a
total, the size of each challenge is 334 bits�135 ¼ 5636:25 bytes
and 9.24MB for a 4 GB file. As to the response phase, the CSP
sends a ½1; y� vector back to the data holder, the size of each
element in the vector is also 334 bits. Thus, the size of each
response is 334� xbits. Remembering that y ¼ 136, as a total,
the size of each response is 334 bits�136 ¼ 5678 bytes and
9.31 MB for a 4 GB file. Compared with StealthGuard, our
communication cost is smaller since in our scheme,we reduce
the data needed to be retrieved based on PIR algorithm.

TABLE 3
Computational Complexity and Communication Cost of TDICP Compared With Existing Works

Scheme Parameter Setup cost Storage overhead Server cost Verifier cost Communication cost

[7] Block size: 2 KB
tag size: 128 B

4:4� 106 exp
2:2� 106 mul

tags: 267 MB 764 PRP 764 PRF 765 exp
1528 mul

Challenge: 1 exp
Verfi: 766 exp 764

PRP

Challenge: 168 B
Response: 148 B

[15] Block size: 128
bits Number of
sentinels: 2� 106

2� 106 PRF sentinels: 30.6 MB ? Challenge: 1719
PRF Verfi: ?

Challenge: 6 KB
Response: 26.9 MB

[18] Block size: 80 bits
Number of

blocks: in one
split: 160 tag size:

80 bits

1 enc 5:4� 106

PRF 1:1� 109 mul
tags: 51 MB 7245 mul Challenge: 1 enc 1

MAC Verfi: 45
PRF 160+205 mul

Challenge: 1.9 KB
Response: 1.6 KB

[16] Block size: 160
bits Number of
blocks in one
split: 160

2:2� 108 mul
1:4� 106 PRF

tags: 26 MB 160 exp 2:6� 105 mul Challenge: ?
Verfi: 2 exp 1639
PRF 1639 mul

Challenge: 36 KB
Response: 60 B

[20] Block size: 256
bits Number of
blocks in one
split: 4096

2:6� 105 PRF
2:6� 105 PRP

Watchdogs: 8 MB 6:2� 108 mul Challenge: 2:0�
106 mul Verfi:
1:4� 105 mul

Challenge: 23.3 MB
Response: 26.2 MB

Ours Element size: 64
bits Number of
elements in one
block: 16384

1:0� 106 PRP
7:9� 105 PRF

2:6� 105 HASH

Positions of hidden
parameters: 1.875 MB

3:2� 107 mul Challenge: 4:6�
105 mul Verif:
worst: 2:5� 105

mul 1:7� 103

HASH best: 2:4�
105 mul 1:7� 103

HASH

Challenge: 9.24 MB
Response: 9.31 MB

exp: exponentiation; mul: multiplication; PRP: pseudo-random permutation; PRF: pseudo-random function; enc: encryption; MAC: message authentication code.

690 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

7.2.2 Performance Analysis on UDDCP

We then theoretically analyze the performance of duplica-
tion check. The proposed protocol involves three types of
system entities: data holder, AA, and CSP. Assume that the
data holder holds Nc tags and the CSP has already main-
tained Ns tags. We adopt RSA for signing a signature and
analyze the computational complexity and comminication
cost of each entity at various phases as below. The results
with respect to computational complexity are shown in
Table 4.

Computational complexity of data holder at preprocessing
phase: The data holder who wants to check whether its
uploaded blocks are duplicate needs to perform Nc PRF, Nc

INV, andNc exp to initialize the PSI algorithm, which are all
in proportion to the number of tags held by the data holder.

Computational complexity of CSP at filter generation and
duplication check phase: As we can see in the protocol, the
CSP at setup and online phase performs module exponen-
tial calculations whose computation complexities are Ns

and Nc exp, respectively.
Computational complexity of AA at filter generation phase:

During the setup phase, AA performs three types of verifi-
cation: 1) Tag number verification, i.e., N¼? Ns, which can
be omitted; 2) Signature verification: AA performs Ns exp to
verify all signatures provided by the CSP; 3) CSP computa-
tion verification: Using batch verification, AA performs 2 �
Ns and Ns=�, where � represents the size of each non-over-
lap subset that verifies the CSP computations according to
the corresponding tag value. Also, AA needs to construct a
cuckoo filter with Ns elements. Attention needs to be paid
that, once the system is set up, when several new tags which
have not been maintained by the CSP come, AA only needs
to perform verification on the new coming tags instead of
all the tags maintained by the CSP. This implies that the

total computational complexity of AA is proportional to N 0c
instead ofNs.

Computational complexity of data holder at duplication check
phase: At the duplication check phase, the data holder first
performs Nc mul to create a challenge to the CSP. In order
to verify the response sent back from the CSP, the data
holder then conducts Nc exp computations to verify CSP
compuatation. Finally, Nc mul operations is needed for the
data holder to check duplication with the help of the cuckoo
filter provided by the AA.

Communication cost fromCSP to AA: During the setupphase,
CSP sends its allmaintained tag values, the corresponding sig-
natures and the computation results faig to the AA, whose
element size is 256 bits, 576 bits, and 1024 bits, respectively. As
a total, the CSP is required to transfer (256 bits+576 bits
+1024 bits)*Ns=232*Ns bytes to the AA for constructing the
cuckoo filter, which is linear to the number of tags maintained
at the CSP.

Communication cost between data holder and CSP: At the
duplication check phase, the data holder sends fA½i�g to the
CSP. Since we set the moduleN as an integer with 1024 bits,
the size of each A½i� is 1024 bits. As a total, the size of each
challenge is 1024*Nc bits. As to the CSP, it responses the
challenge with fC½i�g whose element size is 1024 bits. As a
total, the size of each response is 1024*Nc bits. Thus, the
total communication cost between the data holder and CSP
is (1024 bits+1024 bits)*Nc=256*Nc bytes, which is in propor-
tion to the tag number of the data holder.

7.3 Performance Evaluation

In this subsection, we present simulation based evaluation
results of the two proposed protocols.

7.3.1 Performance Evaluation on TDICP

We first present the performance evaluation result of TDICP
and compare it with StealthGuard in terms of setup cost,
integrity check cost at the CSP and the data holder (DH),
respectively. Since we propose the novel note set as the veri-
fication tags, the note ratio, i.e., the ratio of the size of
inserted notes to that of the block, is an unique evaluation
parameter in TDICP, we evaluate it without comparison.

Impact of note ratio: Figs. 5a, 5b and 5c shows note inser-
tion cost, integrity check cost, and note removing cost of our
scheme with the note ratio varying from 0.02 to 0.10 and
notes size of 32 KB, 64 KB, and 128 KB, respectively. As we
can see, the larger the note size is, the higher the note inser-
tion cost, integrity check cost, and note removing cost,
which is the same as our expectation. When the note ratio

TABLE 4
Computational Complexity of UDDCP

Initialization Filter generation Duplication check

Data holder Nc PRF
Nc INV 2Nc mul
Nc exp Nc exp

CSP Ns exp Nc exp

AA Ns þNs=� exp
2Ns mul
Ns CF.insert

exp: exponentiation; mul: multiplication; PRF: pseudo-random function; INV:
inversion.

Fig. 5. Computational costs with regard to note ratio varying from 0.02 to 0.10.

YU ETAL.: VERIDEDUP: AVERIFIABLE CLOUD DATA DEDUPLICATION SCHEMEWITH INTEGRITYAND DUPLICATION PROOF 691

increases, all these costs increase linearly since our meta
verification block is a note set that contains 4 notes that con-
form to the hidden function. The increase of note ratio
causes the increase of operation time regarding inserting,
verifying, and removing those similar verification blocks.

Impact of tag size: Figs. 6a, 6b, 6c, 6d and 6e shows the setup
cost, the data holder storage overhead, the CSP integrity check
cost, the data holder integrity check cost , and the total integrity
check cost of TDICP with regard to the size of notes (watch-
dogs) varying from 2 KB to 14 KB compared with Stealth-
Guard. Fig. 6a compares the setup cost of our scheme with
StealthGuard. The setup cost increases as the size of tag
increases in both schemes as expected. As we can see, TDICP
incurs a higher computation cost than the StealthGuard at the
setup phase. The reason is that TDICP needs to additionally
perform multiple HASH operations and permutations than
the StealthGuard. Fig. 6b compares the storage overhead of
TDICP with StealthGraud at the data holder. StealthGuard
incurs higher storage overhead since it requires the data holder
to record all the watchdogs and TDICP requires the data
holder to store the position index P of the notes whose size is
smaller than that of the watchdogs. Fig. 6c compares the CSP
cost of TDICP with StealthGuard. StealthGuard incurs higher
computation cost since it requires the CSP to transfer the data
into 80bits matrix, which increases the times of multiplication
executed at the CSP. Fig. 6d compares the data holder cost of
TDICP with StealthGuard. We can see that StealthGuard
incurs higher computation cost since StealthGrard requires the
data holder to perform more computations on extracting the
verification tags from the response.As a total, Fig. 6e concludes
and compares the total cost on checking the integrity of a
128KB file with StealthGuard. We can see that TDICP outper-
forms StealthGuard with respect to the computation cost in
both the CSP and the data holder side, and all of those costs
increase as the size of notes (watchdogs) increases.

7.3.2 Performance Evaluation on UDDCP

We further tested the performance of UDDCP. We assume
that the CSP has already maintained a larger number of tags

than the data holder. Since the computational complexity of
signature verification is obviously linear to the number of
the tags. Our simulation focuses on the AA and data holder
verification on the CSP computations, respectively. We also
evaluated UDDCP performance in various sizes of the non-
overlap subset as we introduce batch verification into
UDDCP.

Fig. 7a presents the verification cost of AA on CSP com-
putations. As we can see, in all sizes of the subset, the verifi-
cation cost increases linearly to the the number of CSP tags
as expected. Meanwhile, the larger size of each non-overlap
subset, the lower the verification cost, since the times of
exponentiation needed for verification decreases. Fig. 7b
presents the verification cost of the data holder on CSP com-
putations. Similar as the verification at AA, the verification
cost increases linearly to the number of data holder tags as
expected. Also, the higher size of each non-overlap subset,
the lower the verification cost.

Fig. 7c presents the communication cost between the CSP
and AA. We can see that the communication cost increases
linearly as the number of elements in the CSP tag set X
increases, which is the same as expectation. The reason is
that the CSP is required to provide all its maintained tags to
the AA for computation and signature auditing. Fig. 7d
presents the communication cost between the CSP and the
data holder. As the number of elements in data holder tag
set Y increases, the communication cost increases linearly
as expectation. The reason is that the data holder sends all
its masked tag values to the CSP as challenges and the CSP
then responses all the challenges, which is linear to the
number of tags.

8 CONCLUSION

In this paper, we introduced VeriDedup to check the integ-
rity of an outsourced encrypted file and guarantee the cor-
rectness of duplication check in an integrated way. The
integrity check protocol TDICP of VeriDedup allows multi-
ple data holders to verify the integrity of their outsourced
file with their own individual verification tags without

Fig. 6. Computational costs with regard to note size varying from 2KB to 14KB compared with StealthGuard.

Fig. 7. Computational costs with regard to the size of the non-overlap subset.

692 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

interacting with the data owner. On the other hand, we
employed a novel challenge and response mechanism in the
duplication check protocol UDDCP of VeriDedup to let the
data holder instead of the CSP first tell whether a file is
duplicate in order to guarantee the correctness of duplica-
tion check. Security and performance analysis show that
VeriDedup is secure and efficient under the described secu-
rity model. The result of our computer simulation further
shows its efficiency compared with highly related prior arts.

REFERENCES

[1] Z. Yan, L. Zhang, W. Ding, and Q. Zheng, “Heterogeneous data
storage management with deduplication in cloud computing,”
IEEE Trans. Big Data, vol. 5, no. 3, pp. 393–407, Sep. 2019.

[2] Z. Yan, W. X. Ding, and H. Q. Zhu, “A scheme to manage
encrypted data storage with deduplication in cloud,” in Proc. Int.
Conf. Algorithms Archit. Parallel Process., 2015, pp. 547–561.

[3] Z. Yan, M. Wang, Y. Li, and A. V. Vasilakos, “Encrypted data
management with deduplication in cloud computing,” IEEE Cloud
Comput., vol. 3, no. 2, pp. 28–35, Apr. 2016.

[4] W. Shen, Y. Su, and R. Hao, “Lightweight cloud storage auditing
with deduplication supporting strong privacy protection,” IEEE
Access, vol. 8, pp. 44 359–44 372, 2020.

[5] Q. Zheng and S. Xu, “Secure and efficient proof of storage with
deduplication,” in Proc. 2nd ACM Conf. Data Appl. Secur. Privacy,
2012, pp. 1–12.

[6] A. Giuseppe, R. Burns, and C. Reza, “Provable data possession at
untrusted stores,” in Proc. 14th ACM Conf. Comput. Commun.
Secur., 2007, pp. 598–609.

[7] G. Ateniese et al., “Remote data checking using provable data pos-
session,” ACM Trans. Inf. Syst. Secur., vol. 14, pp. 1–34, 2011.

[8] Z. Wen, J. Luo, H. Chen, J. Meng, X. Li, and J. Li, “A verifiable data
deduplication scheme in cloud computing,” in Proc. Int. Conf.
Intell. Netw. Collaborative Syst., 2014, pp. 85–90.

[9] P. Meye, P. Raı̈pin, F. Tronel, and E. Anceaume, “A secure two-
phase data deduplication scheme,” in Proc. IEEE Int. Conf. High
Perform. Comput. Commun., IEEE 6th Int. Symp. Cyberspace Saf.
Secur., IEEE 11th Int. Conf. Embedded Softw. Syst., 2014, pp. 802–809.

[10] D. Vasilopoulos, M. €Onen, K. Elkhiyaoui, and R. Molva, “Message-
locked proofs of retrievability with secure deduplication,” in Proc.
ACMCloud Comput. Secur.Workshop, 2016, pp. 73–83.

[11] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” in Proc. 16th Annu. Int. Cryptol. Conf.
Adv. Cryptol., 1996, pp. 1–15.

[12] X. Liang, Z. Yan, X. Chen, L. T. Yang,W. Lou, and Y. T. Hou, “Game
theoretical analysis on encrypted cloud data deduplication,” IEEE
Trans. Ind. Informat., vol. 15, no. 10, pp. 5778–5789, Oct. 2019.

[13] X. Liang, Z. Yan, R.H. Deng, andQ. Zheng, “Investigating the adop-
tion of hybrid encrypted cloud data deduplication with game the-
ory,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 587–600,
Mar. 2021.

[14] Z. Yan, W. Ding, X. Yu, H. Zhu, and R. H. Deng, “Deduplication
on encrypted big data in cloud,” IEEE Trans. Big Data, vol. 2, no. 2,
pp. 138–150, Jun. 2016.

[15] A. Juels and B. S. Kaliski, “Pors: Proofs of retrievability for large
files,” in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007,
pp. 584–597.

[16] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,”
in Proc. 7th ACM Symp. Inf. Comput. Commun. Secur., 2012, pp. 79–
80.

[17] C.M. Tang and X. J. Zhang, “A newpublicly verifiable data posses-
sion on remote storage,” J. Supercomputing, vol. 75, no. 1, pp. 77–91,
2019.

[18] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2008, pp. 90–107.

[19] B. Dan, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2001,
pp. 514–532.

[20] M. Azraoui, K. Elkhiyaoui, R. Molva, and M. €Onen,“Stealthguard:
Proofs of retrievability with hidden watchdogs,” in Proc. Eur.
Symp. Res. Comput. Secur., 2014, pp. 39–256.

[21] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptographic Techn., 2013, pp. 296–312.

[22] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size com-
mitments to polynomials and their applications,” in Proc. Int.
Conf. Theory Appl. Cryptol. Inf. Secur., 2010, pp. 177–194.

[23] G. Wallace, F. Douglis, H. Qian, P. Shilane, and W. Hsu,
“Characteristics of backup workloads in production systems,” in
Proc. 10th USENIX Conf. File Storage Techn., 2012, pp. 4–4.

[24] R. Chen, Y. Mu, G. Yang, and F. Guo, ‘BL-MLE: Block-level mes-
sage-locked encryption for secure large file deduplication,” IEEE
Trans. Inf. Forensics Security, vol. 10, no. 12, pp. 2643–2652,
Dec. 2015.

[25] Y. Shin, J. Hur, and K. Kim, “Security weakness in the proof of
storage with deduplication,” Cryptol. ePrint Archive, Rep. 2012/554,
2012, [Online]. Available: https://eprint.iacr.org/2012/554.

[26] A. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set
intersection for unequal set sizes with mobile applications,” in
Proc. Privacy Enhancing Technol., 2017, pp. 177–197.

[27] E. D. Cristofaro and G. Tsudik, “Practical private set intersection
protocols with linear complexity,” in Proc. Int. Conf. Financial
Cryptogr. Data Secur., 2010, pp. 143–159.

[28] E. Cristofaro and G. Tsudik, “Experimenting with fast private set
intersection,” in Proc. Int. Conf. Trust Trustworthy Comput., 2012,
pp. 55–73.

[29] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. 10th ACM
Int. Conf. Emerg. Netw. Exp. Technol., 2014, pp. 77–85.

[30] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Sin-
gle database, computationally-private information retrieval,” in
Proc. 38th Annu. Symp. Found. Comput. Sci., 1997, pp. 364–373.

[31] J. Trostle and A. Parrish, “Efficient computationally private infor-
mation retrieval from anonymity or trapdoor groups,” in Proc.
13th Int. Conf. Inf. Secur., 2010, pp. 114–128.

[32] Z. Pooranian, M. Shojafar, S. Garg, R. Taheri, and R. Tafazolli,
“LEVER: Secure deduplicated cloud storage with encrypted two-
party interactions in cyber–physical systems,” IEEE Trans. Ind.
Informat., vol. 17, no. 8, pp. 5759–5768, Aug. 2021.

[33] S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, pp. 300–304, 1960.

[34] M. O’Neill and M. Robshaw, “Low-cost digital signature architec-
ture suitable for radio frequency identification tags,” IET Comput.
Digit. Techn., vol. 4, no. 1, pp. 14–26, 2010.

[35] X. Liang, Z. Yan, and R. H. Deng, “Game theoretical study on
client-controlled cloud data deduplication,” Comput. & Secur.,
vol. 91, 2020, Art. no. 101730.

[36] X. Liang, Z. Yan, W. Ding, and R. H. Deng, “Game theoretical
study on a client-controlled deduplication scheme,” in IEEE
SmartWorld, Ubiquitous Intelligence & Computi. Adv. & Trusted Com-
put. Scalable Comput. & Commun. Cloud & Big Data Comput. Internet
People Smart City Innov., 2019, pp. 1154–1161.

[37] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication,” ACM Trans. Storage, vol. 7, no. 4, 2012, Art. no. 14.

[38] Q. Dang, “Recommendation for applications using approved hash
algorithms, special publication (NIST SP),” Nat. Inst. Standards
Tech.: Gaithersburg, MD, 2009.

[39] G.Ateniese, K. Fu,M.Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed
storage,”AcmTrans. Inf. Syst. Secur., vol. 9, no. 1, pp. 1–30, 2006.

Xixun Yu received the BEng degree in telecom-
munications engineering from Xidian University,
Xi’an, China, in 2015. He was a visiting student
with the University of Delaware, USA, in 2017. He
is currently working toward the PhD degree in
information security from the School of Cyber
Engineering, Xidian University, Xi’an, China. His
research interests include cloud security and veri-
fiable computation.

YU ETAL.: VERIDEDUP: AVERIFIABLE CLOUD DATA DEDUPLICATION SCHEMEWITH INTEGRITYAND DUPLICATION PROOF 693

https://eprint.iacr.org/2012/554.

Hui Bai received the BEng degree in information
security from Xidian University, Xi’an, China, in
2019. She is currently working toward the master’s
degree in cyberspace security at Xidian University,
Xi’an, China. Her research interests include verifi-
able computation andmachine learning.

Zheng Yan (Senior Member, IEEE) received the
DSc degree in technology from the Helsinki Uni-
versity of Technology, Espoo, Finland, in 2007.
She is currently a professor with the School of
Cyber Engineering, Xidian University, Xi’an, China
and a visiting professor and Finnish Academy
research fellow with the Aalto University, Helsinki,
Finland. Her research interests include trust, secu-
rity, privacy, and security-related data analytics.
She is an area editor or an associate editor of the
IEEE Internet of Things Journal, Information

Fusion, Information Sciences, IEEE Access, and Journal of Network and
Computer Applications. She served as a general chair or program chair
for numerous international conferences, including IEEE TrustCom 2015
and IFIP Networking 2021. She is a Founding Steering Committee co-
chair of IEEE Blockchain conference. She received several awards in
recent years, including the Distinguished Inventor Award of Nokia, Aalto
ELEC Impact Award, the Best Journal Paper Award issued by IEEE Com-
munication Society Technical Committee on Big Data and the Outstanding
Associate Editor of 2017 and 2018 for IEEEAccess, etc.

Rui Zhang (Member, IEEE) received the BE
degree in communication engineering and the ME
degree in communication and information system
from the Huazhong University of Science and
Technology, Wuhan, China, in 2001 and 2005,
respectively, and the PhD degree in electrical
engineering from the Arizona State University,
Tempe, Arizona, in 2013. He has been an assis-
tant professor with the Department of Computer
and Information Sciences Department, University
of Delaware since 2016. Prior to joining UD, he

had been an assistant professor with the Department of Electrical Engi-
neering, University of Hawaii from 2013 to 2016. His research interests
include security and privacy issues in wireless networks, mobile crowd-
sourcing, mobile systems for disabled people, cloud computing, and
social networks. He received the U.S. NSFCAREERAward in 2017.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

694 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

