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a b s t r a c t

Hydrogen, at critical concentrations, responsible for hydrogen-induced mechanical prop-

erty degradation cannot yet be estimated beforehand and can only be measured experi-

mentally upon fracture with specific specimen sizes. In this work, we develop two deep

learning artificial neural network (ANN) models with the ability to predict hydrogen con-

centration responsible for early mechanical failure in martensitic ultra-high-strength

steels. This family of steels is represented by four different steels encompassing

different chemical compositions and heat treatments. The mechanical properties of these

steels with varying size and morphology of prior austenitic grains in as-supplied state and

after hydrogen-induced failure together with their corresponding hydrogen charging

conditions were used as inputs. The feed forward back propagation models with network

topologies of 12-7-5-3-2-1 (I) and 14-7-5-3-2-1 (II) were validated and tested with unfamiliar

data inputs. The models I and II show good hydrogen concentration prediction capabilities

with mean absolute errors of 0.28, and 0.33 wt.ppm at test datasets, respectively. A linear

correlation of 80% and 77%, between the experimentally measured and ANN predicted
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hydrogen concentrations, was obtained for Model I and II respectively. This shows that for

this family of steels, the estimation of hydrogen concentration versus property degradation

is a feasible approach for material safety analysis.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

Introduction

The detrimental effect of hydrogen on the mechanical integ-

rity of steels and alloys is a major industrial challenge. Atomic

hydrogen enters metallic materials during manufacturing

processes or in service through physisorption and chemi-

sorption [1,2]. Being the smallest and lightest element, upon

surface adsorption, the hydrogen is absorbed via diffusion

within the lattice of steels and alloys and tends to be trapped

at microstructural features like interstitials, grain boundaries,

and interfaces [3e5]. During diffusion, hydrogen can be trap-

ped reversibly or irreversibly by microstructural features and

defects like dislocations, voids and precipitates depending on

the local thermodynamic state [6e9]. Consequently, because

of simultaneous action of high local stress state and hydrogen

content above critical concentrations, early degradation of

mechanical properties, leading to crack initiation and failure

occurs [10e12]. This phenomenon is generally termed

hydrogen embrittlement (HE). As yet, a real-time experi-

mental observation of hydrogen-metal interaction leading to

early failure is still difficult and the phenomenon is not fully

understood. Nevertheless, several hydrogen-induced failure

mechanisms have been proposed.

Themechanisms include hydrogen enhanced decohesison

(HEDE) [13,14], hydrogen enhanced localised plasticity (HELP)

[15], adsorption induced dislocation emission (AIDE) [16],

hydrogen enhanced stress induced vacancies (HESIV) [17],

stress-induced hydride formation and cleavage [18] and the

newly proposedHEDEþHELPmechanism [19]. The underlying

principle of HEDEmechanism is that the presence of hydrogen

in the bulk material reduces any interatomic bond strength

leading to decohesison and consequential failure at relatively

lower stresses [13]. In reheated-quenched (RQ) and quenched

and tempered (QT) martensitic steels, the HEDEmechanism is

mostly responsible for failure where the fracture mode is

intergranular along the prior austenitic grain (PAG) boundaries

[20e22]. The fundament of the HELP mechanism is that

hydrogen enhances themovement of dislocations resulting in

dislocation pile-up. The movement of dislocations in turn fa-

cilitates hydrogen transport and increases its concentration at

pile-ups. This mechanism is found to be responsible for the

observed plastic strain localisation in hydrogen-induced brit-

tle fractures and fracture modes transitioning from ductile to

transgranular, quasi-cleavageand intergranular inmartensitic

steels [15,23]. Generally, for DQ and QT steels, the synergic

activity of HEDE þ HELP as emphasized by Djukic et al. [19] is

seen in action when hydrogen, transported by dislocations

reaches a critical concentration at pile-ups caused by

dislocation barriers such as carbide and inclusion-matrix in-

terfaces. At this critical concentration, hydrogen at interfaces

instigates the HEDE mechanism leading to eventual early

fracture [19].

Principally, the magnitude of steel’ susceptibility to HE is

proportional to their strength and hardness [24]. Thus, DQ and

QT martensitic ultra-high strength are at higher risk of HE. In

addition to alloying, the volume fraction and shape of retained

austinite (RA) as well as the morphology of PAG [25,26] are

parameters that influence martensitic ultra-high steels’ sus-

ceptibility to hydrogen. Studies have shown that HE associ-

atedwith RA is not only dependent on the volume fraction but

also the shape. Zhu et al. [27] reported that massive hydrogen-

induced cracks are found to initiate at the interface of blocky

RA. On the other hand, steels with filmy RA are relativelymore

resistant to hydrogen-induced cracks. As for PAGs which

serve as crack initiation points and preferred propagation

paths, studies have shown that smaller PAGs reduce the

sensitivity to hydrogen in DQ steels [8,28]. This can be asso-

ciated not only with the reduced trapping ability at the grain

boundaries but also with the prevention of hydrogen con-

centration from attaining critical concentrations sooner due

to improved diffusion over a larger area [29].

Hydrogen embrittlement research has benefited from

several investigative techniques over the years, including

experimental methods and atomistic simulations [17,30e33].

These, help investigate the HE phenomenon from macro-

scopic to nanoscopic levels in variety of steels with distin-

guished microstructural compositions and service

applications. Contemporary investigation of hydrogen-

assisted degradation on macroscopic levels is carried out by

mechanical testing after hydrogen charging or under contin-

uous hydrogen charging. The mechanical tests include con-

stant extension rate tests (CERT), constant load tests (CLT)

[11], impact toughness tests, four-point bend tests [33] and the

recently proposed tuning-fork test [34]. The commonly used

hydrogen charging techniques include the classical electro-

chemical charging [35], plasma charging [36] and hydrogen gas

charging [37]. Worth to note here is that although the results

obtained via thesemethods provide some scientific insight for

better understanding of the HE phenomenon, they are often

used only to evaluate the performance of the steel with the

attempt to mimic service conditions. In other words, evalu-

ating the influence of hydrogen on macroscopic mechanical

properties. For distinguished steels, the extent of mechanical

properties degradation during testing is not only dependent

on the hydrogen charging conditions, but more importantly

the hydrogen concentration in the steels [31,33]. Thus far,

there are no swift means available for obtaining hydrogen
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concentration values in steels after hydrogen-assisted failure

except for complex experimental measurement using mer-

cury, gas chromatography and thermal desorption spectros-

copy (TDS) techniques. Even with these methods, the

measurements need to be performed immediately after frac-

ture with specimens of specific shapes and sizes which is a

challenge for steels that fail in service. So far, the ability to

predict hydrogen contents based on service conditions is poor.

Meanwhile, this information could assist designers in esti-

mating the probabilities and magnitude of hydrogen assisted

failures.

In recent times artificial neural networks (ANN) find their

growing application in several fields including research in

engineering and material sciences [38e42]. Among many

functions, ANNs mimicking the neural networks that consti-

tute human brains, possess the ability to learn, identify trends

and build mathematical relationships between the feature

variables of input data to predict specific target outputs [43]. In

many disciplines, the immense reposited data available from

experimental results over the years are used to train ANN

models to predict target outputs with little or no further

experimental requirements. Hydrogen embrittlement

research has benefited from ANN as well. Titus et al. [38]

developed ANN model to predict the degradation of me-

chanical properties of aluminium alloys in the presence of

hydrogen while considering the influence of different

elemental compositions. In other works, ANN models were

trained to use hydrogen thermal desorption spectroscopy data

believed to contain microstructural information to predict HE

index of ferritic, austenitic, and ferritic-martensitic steels

with up 98% accuracy [44]. Despite the available works using

ANN to predictmechanical performance of steels and alloys in

the presence of hydrogen, there are no available models to

predict the actual hydrogen concentrations resulting from a

combination of hydrogen charging conditions and loading

which are simultaneously responsible for performance

degradation of the steel.

In this paper, we develop, and evaluate the reliability of

two ANN models to predict total hydrogen concentration

responsible for performance degradation in DQ and

DQ þ RQ steels by using data curated from a combination of

mechanical testing in as-supplied state, and under contin-

uous hydrogen charging. The hydrogen charging parameters

are also considered as input. The success and imple-

mentation of this approach will assist designers in esti-

mating the levels of hydrogen required to cause hydrogen-

assisted failure of hot-rolled martensitic ultra-high-

strength steels, hence influencing the selection of material

and service conditions.

Materials and methods

Materials

Two direct-quenched martensitic steels with distinct chemi-

cal compositions were used in this study. The original mi-

crostructures were achieved by hot rolling in the non-

recrystallization region followed by direct quenching (DQ1

and DQ2). In addition to the base materials, two additional

microstructures were obtained by re-heating and quenching

(RQ) of DQ2 at austenisation temperatures of 860 �C and 960 �C
with 25 min holding time, followed by quenching in water-oil

emulsion bath (DQ2þRQ at 860 �C ≡ A860 and DQ2þRQ at

960 �C ≡ A960, respectively). The re-austenisation led to

equiaxed PAG structures with different grain sizes. Table 1

shows the elemental composition of DQ1, DQ2 with their

corresponding mechanical properties as well as those of A860

and A960. The different chemical compositions and different

PAG structures are intended to evaluate the sensitivity to

hydrogen uptake of themechanical property degradation. The

encompassment of these steels and different heat treatment

conditions will provide a wider application range of the pro-

posed model for hydrogen concentration prediction at failure,

for materials of this same class.

The steels used in the present study are predominantly

martensitic in microstructure. Fig. 1 shows the similarity in

the lath-martensite microstructure and carbide morphology

of the steels. On the contrary, the steels possess rather dis-

similar PAG structures: DQ1 and DQ2 have elongated PAG

structures (Fig. 2(a) and (b)) resulting from hot rolling below

non-recrystallization temperature followed by direct-

quenching; while A860 and A960 have equiaxed PAG struc-

tures (Fig. 2(c) and (d)) as a result of additional re-

austenisation and quenching. The average PAG sizes for all

test materials, calculated from all directions with linear

intercept method, were 11.2 mm for DQ1, 9.6 mm for DQ2,

9.4 mmand 42.6 mmfor A860 and A960 respectively. Besides the

shape, emphasis should also be made on the significant dif-

ference in average PAG size between the A860 and A960,

versus the original DQ2 condition. X-ray diffraction results

revealed that the steels contain negligible volume fractions of

RA (<1%).

Hydrogen charging and mechanical testing

Electrochemical hydrogen charging was performed with a

three-electrode electrochemical cell coupled with a Gamry

potentiostat framework. Calomel and platinum electrodes

Table 1 e Chemical composition and mechanical properties of the steels used in this study.

Chemical composition [wt. %] Mechanical properties

DQ1 DQ2 DQ1 DQ2 A860 A960

C 0.370 0.250 Ultimate tensile strength, (UTS) [MPa] 2200 1570 1734 1710

Mn 0.299 0.250 Yield strength (YS) at 2% offset [MPa] 1800 1350 1250 1230

S 0.001 0.002 Measured hardness [HRC] ± STD 57 ± 0.5 51 ± 0.5 48 ± 1 52 ± 1

Al 0.430 0.095 Elongation at fracture [%] 13 12 13 14
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were used as reference and counter electrodes, respectively.

The steel specimen was the working electrode. 30 g/l of so-

dium chloride (NaCl) and 2e6 g/l of ammonium thiocyanate

(NH4SCN) were utilised as main electrolyte and atomic

hydrogen recombination inhibitor, respectively. Prior to

tensile tests under continuous hydrogen charging, the steel

specimens were pre-charged for 2 h, which was experimen-

tally determined to provide sufficient and homogeneous dis-

tribution of hydrogen across the thickness of the specimen's
gauge section. Electrochemical potentials of �0.8 VSCE to �1.4

Fig. 1 e Dominant martensitic microstructure observed in test steels via scanning electron microscopy (SEM) of (a) DQ1, (b)

DQ2, (c) A860 and (d) A960.

Fig. 2 e Distinguished PAG morphology via optical microscopy (OM) of (a) DQ1, (b) DQ2, (c) A860, and (d) A960.
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VSCE were applied for hydrogen charging. A combination of

varied applied electrochemical potential and concentration of

hydrogen recombination inhibitor was used to provide a wide

range of hydrogen concentration in the studied steels. The pH

of the electrolyte was measured to be 5.5 and 4.5 for the

electrolyte solution containing 2 g/l and 3 g/l NH4SCN,

respectively. During hydrogen charging, the electrolyte was

kept under constant stirring at 40 rev/min and deaeration by

nitrogen gas flow. Hydrogen charging was performed at room

temperature.

Mechanical testing (MT) specimens with size of

5 mm � 10 mm � 300 mm and gauge part size of

1.0 mm � 5.0 mm � 20 mm, shown in Fig. 3(a) were wire cut

with EDM and polished mechanically, finishing with emery

paper No. 1200. The specimens were Teflon-taped exposing

only the gauge part to the hydrogen charging environment.

CERTs were conducted under continuous hydrogen charging

ona 30 kNMTSbenchtop tensile testmachine at the strain rate

of 10�4 s�1 until fracture. Fig. 3(b) shows a general view of

mechanical testing setupwith continuous hydrogen charging.

After fracture the gauge part of the specimen is cut to the

characteristic size of 1 mm � 5 mm � 10 mm for hydrogen

concentration measurement.

Hydrogen concentration measurement

Hydrogen concentration was measured with TDS technique.

The extracted specimens after fracture were cleaned with

distilledwater followedbydrying inheliumgasflow to prevent

the formation of moisture on the specimen surface. The

measurement of partial pressure of hydrogen occurs in ultra-

high-vacuum (UHV) chamber (ultimate pressure is

10�9mbar) coupledwith amass spectrometer (SRS residual gas

analyser RGA100). To keep the UHV chamber at the required

pressure and reduce pumping time before measurement, the

sample is first placed in an airlock compartment and pumped

to an intermediate pressure of 10�6 mbar. After which the

specimen is transported to the UHV chamber for hydrogen

partial pressure measurement (see Fig. 4). The total time from

the specimen preparation to TDS measurement did not

exceeded 10 min with effective dwelling time in airlock as

5 min (up to 10�6 mbar) ensuring negligible amounts of

hydrogen loss. All TDS measurements were performed at a

heating rate of 10 �C/min. The total hydrogen concentration

was calculated by integrating the area below the desorption

rate versus temperature curve.

Data processing

The data utilised as input for the developed ANN models

consists of the inherent mechanical properties of the test

steels, parameters for hydrogen charging, results from me-

chanical tensile testing in air and under continuous hydrogen

charging and their corresponding measured hydrogen con-

centrations. Table 2 presents the features of the input data

utilised for training, validation and testing of the developed

ANN models. The mechanical properties were obtained from

classical hardness and tensile tests of as-received specimens.

The tensile toughness was obtained by integrating the area

under the nominal stress-strain curve, up to theUTS, resulting

from tensile tests. Hydrogen sensitivity parameter (HSP) is

used to quantify the level of mechanical property degradation

as a result of increased hydrogen concentration from me-

chanical loading under hydrogen charging [32]. HSP was

calculated for the test steels in this study considering tensile

Fig. 3 e Depiction of the experimental features with (a)

schematic and dimensions of MT specimens (b) general

setup CERT under continuous hydrogen charging.

Fig. 4 e Schematic view of TDS apparatus used for experimental hydrogen concentration measurement.
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strength, elongation to fracture and tensile toughness using

Equation (1).

HSP¼Mpair �MpH

Mpair

*100% (1)

Where:Mpair andMpH are themechanical properties of the test

steels in as-received condition and after electrochemical

hydrogen charging respectively, excluding the hardness. It is

important to mention that only the absolute values of applied

potentials and their corresponding currents were used.

The collected experimental data was split into training,

validation, and testing datasets according to the 60-20-20 rule.

To ensure the generalisation the model, a data augmentation

method was applied to the training and validation datasets

using the stats.truncnorm.rvs function from the statistics

package in spicy, an open-source library built on python with

NumPy extension [45].With this, probabilities within a normal

distribution are defined for each input parameter as may

naturally occur in an experimental setting or in service. Thus,

random variates of desired size are generated within a pre-

determined standard deviation considering experimental data

point as a mean [46]. Table 3 shows the set standard deviation

values attributed to the feature samples of experimental data

utilised for the augmentation. For each sample within the

training and validation data structure, a 10-fold random

variateswere generated respectivelywith a controlled random

seed. The resulting input data was 649 samples. No augmen-

tation was carried out on the test dataset. In fact, the test data

was not at any point exposed to the ANN during training and

validation. The test datawas strictly used to test the predictive

error of the network.

In the preparation of ANN input data, normalisation is

typically carried out to ensure the unification of input data,

thus ensuring that all input features have equal importance

on the prediction [38,47]. In this study, normalisation of the

input data was performed using preprocessing.normalize from

scikit-learn library. The normalisation model was saved and

called at any time to ensure the reproducibility of the nor-

malisation process.

Neural network architecture

The multilayer feed-forward artificial neural network (ANN)

models, with backpropagation, were developed using Keras,

an open-source library built on TensorFlow software (version

2.3.0) for machine learning applications with python pro-

gramming language [48]. All codes in this study were written

and executed using the Jupiter platform.

The ANN is intended to receive as input data containing

the features presented in Table 2 and predict a target output of

total hydrogen concentration responsible of mechanical

properties degradation and failure for the given data sample.

Two ANN models of identical architecture were developed:

Model I and Model II. The topology of the models however

differs in terms of input feature sizes. In Model I, the charging

parameters i.e. applied potentials (Ea), hydrogen charging

times (Tch) and initial current (Ii) were transformed into sys-

tem energy (Es) using Equation 2

ES ¼Ea � Ii � Tch (2)

Where: Ea is the absolute value of the applied electrochemical

potential in volts, Ii the initial corresponding current in

ampere and Tch is the charging time in seconds. The standard

deviation selected for data augmentation of energy system

feature was 0.5 J, that can be introduced by the following pa-

rameters amplitude: Ea, Tch, Ii, which are physically appli-

cable, and at the same time significant in representing a wide

range of laboratorial testing, or real service conditions. The

ANN models were developed with an input layer with 12

nodes for Model I and 14 nodes for Model II corresponding to

Table 2 e Features of the input data utilised in this study.

Mechanical properties 1. Hardness (HRC)

2. Ultimate tensile strength (UTS)

3. Elongation to fracture (EF)

4. Tensile toughness (TT)

Hydrogen charging parameters 5. Hydrogen charging time Tch

6. Applied electrochemical potential (Ea)

7. Initial current (Ii)

0 System energy (Es)

(Equation (2))

8. Concentration of NH4SCN (Cp)

Resulting variables after mechanical testing and hydrogen

concentration measurement

9. Fracture stress (FS)

10. Elongation at fracture (EFh)

11. Tensile toughness (TTh)

12. Measured hydrogen concentration (Hc)

13. Hydrogen sensitivity parameter (HSP)

Table 3 e Standard deviations of attributed to feature
used for data augmentation.

Input features Standard deviation

Hardness [HRC] 0.35

Ultimate tensile strength [MPa] 5

Toughness [J/m3] 5

Elongation to fracture [%] 5 � 10�3

Fracture stress [MPa] 5

Toughness(H) [J/m3] 5

elongation to fracture (H) [%] 5 � 10�5

HSP(Stress) [%] 5 � 10�5

HSP (elongation) [%] 1 � 10�4

HSP (toughness) [%] 1 � 10�4

System energy [J] 0.5

Voltage [V] 0.1

Current [A] 1 � 10�2

Charging time [s] 60

Concentration of NH4SCN [g/l] 0.1

Measured hydrogen concentration [wt.ppm] 5 � 10�2
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their respective input features number. The input layer is then

followed by 4 hidden densely connected layerswith respective

nodes and summed up with a single node output layer. The

topology of the networks can be summarised as 12-7-5-3-2-1

and 14-7-5-3-2-1 for Model I and Model II, respectively. The

networks operate sequentially, where every node in a layer

receives an input from nodes in preceding layer and transmits

an output to nodes in subsequent layer within the framework

of supervised leaning. Fig. 5 illustrates the characteristic

function of a unit node within a layer.

Hyperparameters, especially hidden layers and nodes play

the most important role in the perfomance of an ANN [49].

Despite the proposals in literature with equations governing

the selection of hyperparameters [40,41,50], there is not

thumb rule or robust methodology for the selection of hidden

layers and nodes. Some proposed methods are suitable only

for specific applications [38]. In this study, the network to-

pology 12-7-5-3-2 was selected by trial and error while moni-

toring the perfomance of the models. The oupout from all

layers in the model are governed by the rectified linear units

(ReLU) activation function as it ensures better gradient prop-

agation [51]. In order to efficiently control the adjustment of

added weight and maximise the loss function which helps in

monitoring the model performance, the adaptive estimation

of first and second-ordermoments (adam) algorithmwas used

as an optimizer. This is based on a stochastic gradient descent

method. Several studies testify of the computational effi-

ciency and little memory requirement of adam, as well as its

suitability for problems that are large in terms of input fea-

tures [52,53]. In this research adam was used with its default

arguments including default values for learning rate and step

size. The learning perfomance evaluation of the developed

ANNs is monitered by the mean square error (MSE) loss

function [54]. MSE loss score during training of the model is

determined by Equation (3).

MSE¼ 1
N

XN

i¼0

ðy� YÞ2 (3)

Where: N is the number of samples of input data, y is the

experimental output data and Y is the predicted output by the

ANN.

Results and discussion

Hydrogen charging and mechanical testing were performed

on four steels to highlight the deleterious effect of hydrogen

on their mechanical perfomance. In addition, curate and

process the obtained data for the development of ANNmodels

that can predict the hydrogen concentration responsible for

mechanical properties degradation and eventual failure. The

influence of hydrogen on fracture strength, one of the input

features of the test is presented in Fig. 6 (a), (b), (c) and (d) for

DQ1, DQ2, A860 and A960, respectively.

For DQ1, the fracture stress of the steel reduces from

2200 MPa for small hydrogen concentrations of about

1wt.ppm, to a clear lower plateau at about 1100MPa for higher

concentrations up to 4.8 wt.ppm. The observed lower plateau

can be considered as the maximum hydrogen effect on the

UTS of the studied steel under the employed experimental

conditions. Similar phenomenon of the embrittlement curve

has been reported for several steels grades with varying

strengths, hardness, and microstructures [31,33]. Contrary to

DQ1 which manifests sudden strength degradation, DQ2

rather shows a resistance to hydrogen presence in terms of

strength degradation at hydrogen concentrations up to

1.5 wt.ppm. Further analysis of the mechanical data revealed

nevertheless a reduction in ductility in this regime that did not

manifest strength degradation. At hydrogen concentrations of

2 wt.ppm under load, DQ2 becomes highly sensitive to

hydrogen, manifesting significant strength degradation up to

1150MPa at concentrations of 2.7 wt.ppm. Further attempts to

induce more hydrogen into the material after 2.7 wt.ppm by

increasing the electrolyte poison and potential was not suc-

cessful, DQ2 however continued to exhibit further strength

degradation without increase in hydrogen concentration

(right grey area in Fig. 6 (b)). This may have resulted from

aggressive hydrogen charging conditions with high fugacity

that may have caused substantial defects on the specimen

surface. Nevertheless, further investigation is required to

clarify the magnitude of damage to the surface caused by

hydrogen at high-fugacity and its contribution to early failure

despite the relatively low hydrogen concentration.

A860 and A960 steel conditions do not manifest localized

strength degradation below the yield strength as DQ1 and

DQ2. Fracture stress as a function of hydrogen concentration

for A860 and A960, tends to follow linear trends up to stresses

of about 1300 MPa at hydrogen concentrations of 5 wt.ppm

and 3 wt.ppm for A860 and A960, respectively. It is noticeable

that A960manifests significant scatter as shown Fig. 6 (b). The

same scatter was observed for hydrogen effect on ductility for

A960 leading to the inference that the manifested scatter

maybe associated with an inherent property of the steel. The

scattering phenomenon observed for A960 has also been

observed in other works for crack initiation time and time to

fracture for steels with similar microstructure [34]. The

disparate responses of the distinctive test steels to hydrogen

can be mainly attributed to the difference in their

Fig. 5 e Characteristic function of a unit node within an ANN hidden layer.
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microstructure especially the average size and shape of PAG

as shown in Fig. 2. In addition, it is important to mention that

microstructural defects resulting from the deformation during

tensile testing may influence the hydrogen concentration

measurements as the different steels deform and retain

hydrogen differently. In future studies, this can be evaluated

by analysing the obtained spectra from TDS hydrogen con-

centration measurements.

It is worth noting that the deleterious effect of hydrogen on

the test steels shown in Fig. 6 represents effect on one feature,

i.e. mechanical strength, meanwhile the effect of hydrogen on

the steels in termsmechanical properties ismulti-dimensional

(including effect on ductility, steel surface quality, size, etc.).

Nonetheless the results shown in Fig. 6 are clearly represen-

tative of the effect of hydrogen on the respective steels.What is

important to underline from these results is that the hydrogen

influence on themechanical integrity of the respective steels is

dissimilar. Despite that the effect of hydrogen on the steels are

commonly deleterious, their nature and magnitudes are

different. The input data consisting of different steels is

important for the ANN models in terms of reliability and their

suitability for a wider scope of applications.

A preliminary statistical correlation analyses was per-

formed on the input data features. A correlation matrix

(heatmap of Pearson's corelation) was used to investigate the

degree of correlation between the input feature pairs and

target output. The utilised topology in terms of hidden layers

and neurons was found by trial and error to be superlative for

Model I. Attempts to add or subtract any hidden layers results

in the model overfitting or underfitting quickly. It is worth to

note that the current features have been retained after a pre-

liminary feature selection procedure [55]. Fig. 7 (a) and (b) de-

picts the heatmap correlation between the features of theANN

input data for Model I and Model II, respectively. As shown in

map of Fig. 7 (a) for Model I, less than 20% of the feature pairs

have moderate to strong positive or negative correlation

(⎪R⎪ > 0.65). The strongest correlation is mostly between

originalMp andHSPwhich indubitably consist of originalMp as

A component per Equation (1). The samemap further reveals a

low correlation (⎪R⎪ < 0.5) between more that 75% of the

feature pairs, of which more than 95% are statistically insig-

nificant at P.01 (highlighted by asterisks). ForModel II, despites

the increase in feature pairs, themap shows only about 25% of

the feature pairs have relatively strong positive or negative

correlation (⎪R⎪ > 0.65) which is also attributed to inherent

correlation between Mp and HSP and charging time. Low to

moderate Correlationswith ⎪R⎪ < 0.5, exist betweenmore that

65% of the feature pairs, of which more than 80% are statisti-

cally insignificant at P.01 (highlighted by asterisks). In other

words, for bothmodels,majority of the input data feature pairs

Fig. 6 e Fracture stress as a function of hydrogen concentration for (a) DQ1, (b) DQ2, (c) A860, and (d) A960.
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have a weak correlation. Although other non-linear, multi-

variate forms of correlation may exist, classical linear regres-

sion solutions do not suffice to predict the hydrogen

concentration with the available data. Nevertheless, more

powerful methods like ANN can establish any existing non-

linear or multi-dimensional relationships between the input

features and target output. This is of great value, when there is

no analytical validated formulation for this multi-physical

problem.

The learning performance of the ANNmodels, i.e., training

history, prediction accuracy at training, validation and testing

are evaluated using themean absolute error (MAE)metric [56].

MAE is the measure of errors between pairs of true and pre-

dicted values over the training epochs, where each epoch is a

full dataset training iteration. MAE is calculatedwith Equation

(4).

MAE¼
Pn

i¼1absðTi � PiÞ
n

(4)

Where: Ti are the experimental true values, Pi are the pre-

dicted values, and n the number of epochs.

Fig. 8 (a) shows the final training history of Model I (12-7-5-

3-2-1). The utilised topology in terms of hidden layers and

neurons was found by trial and error to be superlative for

Model I. Attempts to add or subtract any hidden layers results

in the model overfitting or underfitting quickly and getting

stuck in a local minimum, evidenced by straight line in MAE

for both training and validation history [57]. Considering the

training history with this topology, MAE for training consis-

tently reduces up to 105 epochs. MAE for validation data

originally declined but starts to overfits at about 104 epochs

followed with a momentary spike. MAE nevertheless con-

tinues to decline until 6 � 104 when the overfitting gap be-

tween training and validation starts to widen remarkably.

Consequently, Model I was re-run and training was stopped at

6 � 104 epochs and saved. The model was then called to make

predictions on training, validation, and test datasets.

Fig. 7 e Heatmap of Pearson's linear correlation between the feature of ANN input data (a) Model I (b) Model II [where

asterisks represent correlation that are insignificant at P.01].

Fig. 8 e The learning performance of the ANN Model I, in terms of (a) training history over epochs for and (b) prediction of

hydrogen concentration with training data set.
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Model I makes good predictions of hydrogen concentration

on training dataset with a MAE of 0.04 wt.ppm and a linear

correlation of 99% (R ¼ 0.99) as shown in Fig. 8(b). With the

validation dataset, Model I make predictions with a MAE of

0.18 wt.ppm and R ¼ 0.84 as shown in Fig. 9 (a). It is worth

noting that the training data was fully exposed to model

during training and high accuracy predictions using the same

data does not translate to a good predictive performance of

the model. The same applies to predictions with validation

datasets because of possible data leakage events that may

occur during model training. Normalisation of the entire data

to ensure data unification before splitting in to various sets

and cross-validation procedure during training are mostly

responsible for leakage [58,59]. The predictive performance of

any ANN at a ‘never seen before’ test dataset is considered the

most reliable indication of the model's performance [60]. With

the test data, Model I predicts hydrogen concentration with

good accuracy as shown in Fig. 9 (b), (MAE ¼ 0.28 wt.ppm and

R ¼ 0.8). The results reflect a good correlation between the

predicted and experimentally measured hydrogen concen-

tration responsible for hydrogen assisted mechanical failure.

It is worth stating that the model shows a good predictive

performance that is not sensitive to respective steels with

disparate morphology of PAG as the test dataset was carefully

selected to include all fours DQ test steels. However, further

data and investigation is required ascertain the predictive

performance of the model for the same steels under different

mechanical test conditions (e.g. varying strain rates).

To evaluate the effect of increased feature size on the

training and prediction performance of the developed ANN,

Model II, was developed keeping the individual hydrogen

charging parameters as input features resulting in a 14-7-5-3-

2-1 network topology. This was performed to test the general

assumption that an increase feature size may cause quicker

overfitting or allow a good fit for training data but result in a

bad prediction performance on test data due to lack of

generalization [61,62]. Fig. 10 (a) shows the training history of

Model II up to 105 epochs. Contrary to Model I, the Model II

presents several spikes in MAE increase for training and

validation are noticeable. These could be attributed to dis-

turbances during the training caused by the presence of

additional features. The trade-off between decreasingMAE for

training data and increasing MAE for validation data set was

made at 6.5 � 104 epochs when the misfit in MAE between the

training and validation datasets manifest significant increase.

Model II was called to make hydrogen concentration pre-

dictions with train, validation, and test datasets as inputs.

With the training dataset, Model II makes hydrogen

Fig. 9 e Correlation between experimental and predicted hydrogen concentration from ANN Model I, using (a) validation

dataset, (b) test dataset.

Fig. 10 e The learning performance of the ANN Model II, in terms of (a) training history over epochs, and (b) prediction of

hydrogen concentration with training data set.
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concentrations predictions with MAE of 0.15 wt.ppm, and 96%

corelation with experimental data (see Fig. 10 (b) compared to

0.02 wt Ppm and 99% for model I.

With validation and test datasets, as depicted in Fig. 11 (a)

and (b), Model II makes predictions with MAE of 0.37 wt.ppm

and 0.3 wt.ppm, respectively. It is important to remember

that the information contained by a single feature Es (Equa-

tion (2)) in Model I, it is decomposed in the respective three

physical features in Model II. In other words, both models

contain the same information on hydrogen charging pa-

rameters and conditions. Despite that, it is evident that the

increase in feature size has some effect on the learning and

predictive performance of Model II, resulting in predictions

with relatively higher errors irrespective of longer training

time (5 � 103 epochs more). In future works, a thorough

feature extraction, selection and principal component anal-

ysis is strongly recommended to ascertain the specific in-

fluence of respective features on the predictive performance

of the developed models. Nevertheless, this study demon-

strates that steels’ mechanical properties in air and after

hydrogen induced failure in combination with hydrogen

charging parameters (or hydrogen-rich service conditions) as

input data, possess the requisite information to predict the

hydrogen concentrations responsible for the respective

damage via ANN techniques.

Conclusion

Two artificial neural network (ANN) models were developed

to predict the hydrogen concentration responsible for me-

chanical properties degradation DQ and DQ þ RQ martensitic

ultra-high-strength steels. The inherent mechanical proper-

ties of the steels in as supplied state, after hydrogen-induced

failure and hydrogen charging parameters for four steels

encompassing different chemical composition and thermal

treatment, resulting in similar martensitic microstructure

but different PAG size and morphology, were used as inputs

to represent this family of steels and wide range of hydrogen

rich service conditions. The following conclusions can be

drawn.

� The developed ANNModel I (12-7-5-3-2-1) andModel II (14-

7-5-3-2-1) show comparable hydrogen concentration pre-

diction abilities with remarkable accuracy.

� The ANN models show good hydrogen concentration pre-

diction for all considered steels irrespective of their

different mechanical responses to varying levels of

hydrogen concentration resulting from differences in prior

austenitic grain (PAG) morphology.

� Increase in feature size in Model II, by considering the

original three parameters controlling the hydrogen

charging energy, requires longer training time to reach a

good mean absolute error (MAE) trade-off for training and

validation dataset, yet reduces prediction performance

evaluated with test dataset compared to Model I.

� The developed models may not be suitable for hydrogen

concentration at fracture for other family of DQ high-

strength steels, namely with significant volume fraction

of retained austinite, and steels with dominantly ferritic or

austenitic microstructures as is expectable that they

respond differently to hydrogen-induced fracture.

� In future works, the effect of PAG size and boundary sur-

face area as input features on the prediction performance

of the developed models can be considered for further

studies.

Funding

This researcher was supported by the Public Research Net-

worked with Companies (Co-Innovation) program of Business

Finland via the projects 7743/31/2018 (ISA Aalto-

HydroSafeSteels) and 7537/31/2018 (ISA-Intelligent Steel

Applications).

Declaration of competing interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Fig. 11 e Correlation between experimental and predicted hydrogen concentration from ANN Model II, using (a) validation

dataset, (b) test dataset.

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 5 7 1 8e5 7 3 05728

https://doi.org/10.1016/j.ijhydene.2022.11.151
https://doi.org/10.1016/j.ijhydene.2022.11.151


Acknowledgments

The authors wish to acknowledge Dr. SaaraMehtonen, Dr. Esa

Virolainen, KimWidell and Alison Tshala for their committed

support during this study.

r e f e r e n c e s

[1] Christmann K. Some general aspects of hydrogen
chemisorption on metal surfaces. Prog Surf Sci
1995;48(1e4):15e26.

[2] Panella B, Hirscher M. Hydrogen physisorption in
metaleorganic porous crystals. Adv Mater 2005;17(5):538e41.

[3] Rudomilova D, et al. The effect of microstructure on
hydrogen permeability of high strength steels. Mater Corros
2020;71(6):909e17.

[4] Mallick D, et al. Study of diffusible behavior of hydrogen in
first generation advanced high strength steels. Metals
2021;11(5):782.

[5] Li H, et al. Hydrogen adsorption with micro-structure
deformation in nanoporous carbon under ultra-high
pressure. Int J Hydrogen Energy 2022;47(81):34555e69.
https://doi.org/10.1016/j.ijhydene.2022.08.030.

[6] Liu MA, et al. Microstructural influence on hydrogen
permeation and trapping in steels. Mater Des
2019;167:107605.

[7] Chen Y-S, et al. Observation of hydrogen trapping at
dislocations, grain boundaries, and precipitates. Science
2020;367(6474):171e5.

[8] Venezuela J, et al. The influence of microstructure on the
hydrogen embrittlement susceptibility of martensitic
advanced high strength steels. Mater Today Commun
2018;17:1e14.

[9] Zhang Z, et al. Combined effects of stress and temperature
on hydrogen diffusion in non-hydride forming alloys applied
in gas turbines. Int J Hydrogen Energy 2022;47(71):30687e706.

[10] Colla V, Valentini R. Assessment of critical hydrogen
concentration in as-cast and hot-rolled billets in medium
carbon steels. Steel Res Int 2020;91(9):2000126.

[11] Fangnon E, et al. Determination of critical hydrogen
concentration and its effect on mechanical performance of
2200 mpa and 600 hbw martensitic ultra-high-strength steel.
Metals 2021;11(6):984.

[12] Nowak C, et al. Atomistic simulations of hydrogen
distribution in FeeC steels. Int J Hydrogen Energy
2022;47(76):32732e40.

[13] Oriani R, Josephic P. Equilibrium aspects of hydrogen-
induced cracking of steels. Acta Metall 1974;22(9):1065e74.

[14] Troiano AR. The role of hydrogen and other interstitials in
the mechanical behavior of metals. trans. ASM
1960;52:54e80.

[15] Sofronis P, Birnbaum HK. Mechanics of the
hydrogendashdislocationdashimpurity interactionsdI.
Increasing shear modulus. J Mech Phys Solid
1995;43(1):49e90.

[16] Clum JA. The role of hydrogen in dislocation generation in
iron alloys. Scripta Metall 1975;9(1):51e8.

[17] Nagumo M, Nakamura M, Takai K. Hydrogen thermal
desorption relevant to delayed-fracture susceptibility of
high-strength steels. Metall Mater Trans 2001;32(2):339e47.

[18] Shih D, Robertson I, Birnbaum H. Hydrogen embrittlement of
a titanium: in situ TEM studies. Acta Metall
1988;36(1):111e24.

[19] Djukic MB, et al. The synergistic action and interplay of
hydrogen embrittlement mechanisms in steels and iron:
localized plasticity and decohesion. Eng Fract Mech
2019;216:106528.

[20] Du Y, et al. Hydrogen diffusivity in different microstructural
components in martensite matrix with retained austenite.
Int J Hydrogen Energy 2021;46(11):8269e84.

[21] Shibata A, et al. Hydrogen-related fracture behavior under
constant loading tensile test in as-quenched low-carbon
martensitic steel. Metals 2022;12(3):440.

[22] Du Y, et al. Hydrogen embrittlement behavior of high
strength low carbon medium manganese steel under
different heat treatments. Int J Hydrogen Energy
2019;44(60):32292e306.

[23] Robertson IM, et al. Hydrogen embrittlement understood.
Metall Mater Trans 2015;46(6):2323e41.

[24] Brahimi SV, Yue S, Sriraman KR. Alloy and composition
dependence of hydrogen embrittlement susceptibility in
high-strength steel fasteners. Phil Trans Math Phys Eng Sci
2017;375(2098):20160407.

[25] Malitckii E, Yagodzinskyy Y, Vilaҫa P. Role of retained
austenite in hydrogen trapping and hydrogen-assisted
fatigue fracture of high-strength steels. Mater Sci Eng
2019;760:68e75.

[26] Krauss G. Martensitic structure. In: Encyclopedia of iron,
steel, and their alloys. CRC Press; 2016. p. 2182e7.

[27] Zhu X, et al. Effect of retained austenite stability and
morphology on the hydrogen embrittlement susceptibility in
quenching and partitioning treated steels. Mater Sci Eng
2016;658:400e8.

[28] Yang J, et al. Effect of retained austenite on the hydrogen
embrittlement of a medium carbon quenching and
partitioning steel with refined microstructure. Mater Sci Eng
2016;665:76e85.

[29] Cho L, et al. Effects of hydrogen pressure and prior austenite
grain size on the hydrogen embrittlement characteristics of a
press-hardened martensitic steel. Int J Hydrogen Energy
2021;46(47):24425e39.

[30] Tehranchi A, Curtin WA. The role of atomistic simulations in
probing hydrogen effects on plasticity and embrittlement in
metals. Eng Fract Mech 2019;216:106502.

[31] Lovicu G, et al. Hydrogen embrittlement of automotive
advanced high-strength steels. Metall Mater Trans
2012;43(11):4075e87.

[32] Malitckii E, et al. Hydrogen effects on mechanical properties
of 18% Cr ferritic stainless steel. Mater Sci Eng
2017;700:331e7.

[33] Valentini R, et al. Investigation of mechanical tests for
hydrogen embrittlement in automotive PHS steels. Metals
2019;9(9):934.

[34] Latypova R, et al. Hydrogen-induced stress corrosion
cracking studied by the novel tuning-fork test method. Mater
Corros 2020;71(10):1629e36.

[35] Claeys L, et al. Electrochemical hydrogen charging of duplex
stainless steel. Corrosion 2019;75(8):880e7.

[36] Malitckii E, Yagodzinskyy Y, H€anninen H. Hydrogen uptake
from plasma and its effect on EUROFER 97 and ODS-EUROFER
steels at elevated temperatures. Fusion Eng Des
2015;98:2025e9.

[37] Yamabe J, Awane T, Matsuoka S. Investigation of hydrogen
transport behavior of various low-alloy steels with high-
pressure hydrogen gas. Int J Hydrogen Energy
2015;40(34):11075e86.

[38] Thankachan T, et al. Artificial neural network to predict the
degraded mechanical properties of metallic materials due to
the presence of hydrogen. Int J Hydrogen Energy
2017;42(47):28612e21.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 5 7 1 8e5 7 3 0 5729

http://refhub.elsevier.com/S0360-3199(22)05445-3/sref1
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref1
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref1
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref1
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref1
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref2
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref2
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref2
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref2
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref3
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref3
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref3
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref3
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref4
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref4
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref4
https://doi.org/10.1016/j.ijhydene.2022.08.030
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref6
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref6
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref6
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref7
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref7
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref7
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref7
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref8
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref8
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref8
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref8
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref8
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref9
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref9
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref9
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref9
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref10
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref10
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref10
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref11
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref11
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref11
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref11
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref12
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref12
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref12
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref12
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref12
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref13
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref13
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref13
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref14
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref14
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref14
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref14
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref15
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref15
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref15
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref15
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref15
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref15
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref16
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref16
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref16
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref17
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref17
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref17
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref17
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref18
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref18
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref18
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref18
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref19
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref19
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref19
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref19
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref20
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref20
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref20
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref20
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref21
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref21
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref21
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref22
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref22
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref22
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref22
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref22
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref23
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref23
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref23
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref24
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref24
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref24
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref24
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref25
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref25
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref25
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref25
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref25
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref26
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref26
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref26
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref27
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref27
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref27
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref27
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref27
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref28
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref28
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref28
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref28
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref28
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref29
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref29
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref29
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref29
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref29
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref30
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref30
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref30
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref31
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref31
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref31
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref31
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref32
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref32
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref32
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref32
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref33
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref33
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref33
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref34
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref34
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref34
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref34
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref35
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref35
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref35
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref36
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref36
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref36
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref36
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref36
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref36
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref37
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref37
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref37
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref37
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref37
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref38
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref38
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref38
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref38
http://refhub.elsevier.com/S0360-3199(22)05445-3/sref38
https://doi.org/10.1016/j.ijhydene.2022.11.151
https://doi.org/10.1016/j.ijhydene.2022.11.151


[39] Azimzadegan T, et al. An artificial neural-network model for
impact properties in X70 pipeline steels. Neural Comput Appl
2013;23(5):1473e80.

[40] Haque ME, Sudhakar K. Prediction of corrosionefatigue
behavior of DP steel through artificial neural network. Int J
Fatig 2001;23(1):1e4.

[41] Haque ME, Sudhakar K. ANN back-propagation prediction
model for fracture toughness in microalloy steel. Int J Fatig
2002;24(9):1003e10.

[42] Lu Z, et al. Predicting hydrogen storage capacity of
VeTieCreFe alloy via ensemble machine learning. Int J
Hydrogen Energy 2022;47(81):34583e93. https://doi.org/
10.1016/j.ijhydene.2022.08.050.

[43] Plumb AP, et al. Optimisation of the predictive ability of
artificial neural network (ANN) models: a comparison of
three ANN programs and four classes of training algorithm.
Eur J Pharmaceut Sci 2005;25(4e5):395e405.

[44] Malitckii E, Fangnon E, Vilaça P. Study of correlation between
the steels susceptibility to hydrogen embrittlement and
hydrogen thermal desorption spectroscopy using artificial
neural network. Neural Comput Appl
2020;32(18):14995e5006.

[45] Huynh T, et al. General methods for quantitative
interpretation of results of digital variable-volume assays.
Analyst 2019;144(24):7209e19.

[46] Wedel W, et al. Improving information gain from
optimization problems using artificial neural networks. 2004.

[47] Chollet F. Deep learning with Python. Simon and Schuster;
2021.

[48] Moolayil J. An introduction to deep learning and keras. In:
Learn Keras for deep neural networks. Springer; 2019.
p. 1e16.

[49] Uzair M, Jamil N. Effects of hidden layers on the efficiency of
neural networks. In: 2020 IEEE 23rd international multitopic
conference (INMIC). IEEE; 2020.

[50] Xu L, et al. Artificial neural network prediction of retained
austenite content and impact toughness of high-vanadium
high-speed steel (HVHSS). Mater Sci Eng
2006;433(1e2):251e6.

[51] Yang J. ReLU and softmax activation functions. H€amtat
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