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Abstract
Generalizations of the Ornstein–Uhlenbeck process
defined through Langevin equations, such as fractional
Ornstein–Uhlenbeck processes, have recently received a
lot of attention. However, most of the literature focuses
on the one-dimensional case with Gaussian noise. In
particular, estimation of the unknown parameter is
widely studied under Gaussian stationary increment
noise. In this article, we consider estimation of the
unknown model parameter in the multidimensional ver-
sion of the Langevin equation, where the parameter is a
matrix and the noise is a general, not necessarily Gaus-
sian, vector-valued process with stationary increments.
Based on algebraic Riccati equations, we construct an
estimator for the parameter matrix. Moreover, we prove
the consistency of the estimator and derive its limiting
distribution under natural assumptions. In addition, to
motivate our work, we prove that the Langevin equation
characterizes essentially all multidimensional station-
ary processes.
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VOUTILAINEN et al. 993

1 INTRODUCTION

In this article, we study statistical problems related to the multidimensional version of generalized
Langevin equation

dUt = −ΘUt dt + dGt, t ∈ R, (1)

with some stationary increment noise G. HereΘ is a positive definite matrix, and the noise G and
the solution U are understood as random vectors.

A classical Ornstein–Uhlenbeck process can be defined through the Langevin equation

dUt = −𝜃Ut dt + dWt, t ∈ R, (2)

where 𝜃 > 0 is a parameter and W is a Brownian motion. The stationary Ornstein–Uhlenbeck
process U can be obtained by a suitable choice of the initial condition U0. Such equations have
connections especially to physics, and this is part of the reason why Langevin equations of the
form (1) have received a lot of attention in the literature. In addition to the connections to physics,
it was recently proven in Viitasaari (2016) that, in one-dimensional case, Langevin equations
characterize essentially all stationary processes (for analogous results in discrete time, we refer to
Voutilainen et al., 2017, 2019). This highlights the importance of (1) even further.

Equation (1) is well motivated, and there is a vast array of literature studying it with varying
driving force G. One natural generalization is to replace the Brownian motion with a Lévy pro-
cess. In the infinite-dimensional case, Equation (2) driven by a Lévy process has connections to
different branches of probability theory such as stochastic partial differential equations, branch-
ing processes, generalized Mehler semigroups, and self-decomposable distributions. For a recent
survey on the topic, we refer to Applebaum (2015). In addition, Ornstein–Uhlenbeck processes
have been generalized in connection with random recurrence equations. On the related work,
we mention Behme and Lindner (2012) (and references therein), where the authors characterize
multivariate generalized Ornstein–Uhlenbeck processes through (2) by replacing (𝜃t,Wt) with
some other appropriate multivariate Lévy processes.

Another natural generalization is to replace the Brownian motion W in (2) with a frac-
tional Brownian motion BH . (For details on fractional Brownian motion, we refer, e.g., to
Mishura, 2008.) The solution U, called the fractional Ornstein–Uhlenbeck process, was first
introduced by Cheridito et al. (2003) (see also Kaarakka and Salminen, 2011). Statistical analy-
sis related to the fractional Ornstein–Uhlenbeck model was initiated in Hu and Nualart (2010)
and Kleptsyna and Breton (2002), and it has been a very active research topic ever since. Of the
studies on parameter estimation in such models, we mention Azmoodeh and Viitasaari (2015),
Bajja et al. (2017), Balde et al. (2020), Brouste and Iacus (2013), Dehling et al. (2017), Douissi
et al. (2020), Es-Sebaiy and Ndiaye (2014), Es-Sebaiy and Tudor (2015), Hu et al. (2019),
Kozachenko et al. (2015), Kubilius et al. (2015), Maslowski and Pospíšil (2008), Shen et al. (2016),
Shen and Xu (2014), Sottinen and Viitasaari (2018), Sun and Guo (2015), Tanaka (2015) to name
a few recent ones. Finally, we mention Magdziarz (2008), which considers fractional extensions
of the Levy-driven Ornstein–Uhlenbeck processes.

Despite the vast amount of literature related to (1), to the best of our knowledge most of it
focuses on one-dimensional case, and with a specific driver G. In particular, even if the problem
is studied in a greater generality to some extent, usually the assumptions are somehow related to
the one-dimensional case, or to a specific driver. For example, in Balde et al. (2020) and Maslowski
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994 VOUTILAINEN et al.

and Pospíšil (2008), the authors studied infinite-dimensional fractional Ornstein–Uhlenbeck pro-
cesses, but there was only one unknown parameter Θ ∈ R to estimate and the driver was of a
specific form. Similarly, for example, in Bajja et al. (2017) and Dehling et al. (2017), there were
many parameters to estimate, but again the driver (and the model) was of a specific form. Finally,
while in Sottinen and Viitasaari (2018), the authors studied a more general noise G that is not
related to the fractional Brownian motion, G was still assumed to be Gaussian and the equation
was considered only in one dimension with one parameter to estimate. Similarly, in Douissi
et al. (2020) and Nourdin and Tran (2019), the authors considered non-Gaussian case, but only
with one parameter and a specific, though non-Gaussian, driver.

The aim of this article is to study general multidimensional Langevin equations with arbitrary
stationary increment noise. That is, we study (1) with an unknown positive definite matrixΘ. We
prove that (1) characterizes (essentially) all stationary processes, thus giving a natural multidi-
mensional extension of the results presented in Viitasaari (2016). Moreover, given that the under-
lying processes are square integrable, we provide representations of the cross-covariance matrix
𝛾(t) of the stationary solution Ut, and show that the unknownΘ solves a certain continuous-time
algebraic Riccati equation (CARE). Initiated by the seminal paper Kalman (1960), CAREs arise
naturally in optimal control and filtering theory. As such, we relate the Langevin equation to these
fields as well.

We also consider statistical estimation of the unknown matrix Θ. Motivated by the relation
to CARE, we define the estimator as the solution to a perturbed CARE, in which the coefficient
matrices are replaced by estimated ones, and where the cross-covariances 𝛾(t) are replaced by
their estimators �̂�(t). We prove that our estimator is consistent whenever the cross-covariance
estimators are consistent. We also study how the rate of convergence and the limiting distribution
of our estimator are related to the convergence rate and the limiting distribution of �̂�(t).

The rest of the article is organized as follows. In Section 2 we present and discuss our main
results. In particular, we state the characterization of stationary processes through (1) and we
provide the connection to CARE. We also define our estimator for the unknown Θ and provide
results on its asymptotic properties. In Subsection 2.2 we illustrate the applicability of our results
to the Gaussian case. All the proofs are postponed to Appendix A.

2 MULTIDIMENSIONAL GENERALIZED LANGEVIN
EQUATIONS

We consider the n-dimensional Langevin equation

dUt = −ΘUtdt + dGt, t ∈ R (3)

driven by G = (Gt)t∈R, with a positive definite coefficient matrix Θ. Note that G and the solu-
tion U are n-dimensional vector-valued processes. Here we understand the solution in the strong
sense, with a given initial condition to be specified later. The components of the vectors are
denoted by superindices, for example, U (k)

t denotes the kth component of the vector Ut, and is
a real-valued random process. We denote by Sn the set of symmetric n × n-matrices, and with
the notation Θ > 0 we mean that the matrix Θ is positive definite. Similarly, by writing Θ ≥ 0
we mean that Θ is positive semidefinite. If not stated otherwise, we use || ⋅ || to denote the
standard L2 norm and the corresponding induced matrix norm. If two processes (Xt)t∈R and
(Yt)t∈R have equal finite-dimensional distributions, we write (Xt)t∈R

law
= (Yt)t∈R. Furthermore,
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VOUTILAINEN et al. 995

with stationary processes we mean n-dimensional strictly stationary processes, that is, processes
for which (Xt+s)t∈R

law
= (Xt)t∈R for every s ∈ R. In addition, we assume that the driver G (and con-

sequently, the solution U), have continuous paths almost surely. This guarantees that integrals of
type

∫

t

s
eΘudXu

can be understood componentwise as pathwise Riemann–Stieltjes integrals via integration by
parts

∫

t

s
eΘudXu = eΘtXt − eΘsXs − Θ

∫

t

s
eΘuXudu.

Indefinite integrals over an interval [−∞, t] are defined similarly as

∫

t

−∞
eΘudXu = eΘtXt − Θ lim

s→−∞ ∫

t

s
eΘuXudu (4)

provided that the limit exists almost surely.
Our first main theorem below shows that the characterization of stationary processes through

(3) in dimension one, provided in Viitasaari (2016), can be generalized naturally to the multidi-
mensional setting, and motivates the statistical analysis of Equation (3). For this, we present the
following definition for the class Θ of possible drivers G.

Definition 1. Let Θ > 0 be fixed. Let G = (Gt)t∈R be an n-dimensional stochastic process with
stationary increments and G0 = 0. We denote G ∈ Θ if

lim
u→∞ ∫

0

−u
eΘsdGs

defines an almost surely finite random vector.

Remark 1. In the one-dimensional setting, existence of certain logarithmic moments are suffi-
cient to ensure G ∈ Θ. This result can be extended to the multidimensional setting in a straight-
forward manner. Consequently, our estimation procedure, which does rely on the existence of the
second moments, always guarantees G ∈ Θ.

Theorem 1. Let Θ > 0 be fixed. A continuous-time n-dimensional stochastic process U = (Ut)t∈R

is stationary if and only if it is the unique solution of the Langevin equation (3) for some G ∈ Θ and
the initial value

U0 =
∫

0

−∞
eΘsdGs. (5)

That is

Ut = e−Θt
∫

t

−∞
eΘsdGs. (6)

Moreover, the process G is unique.
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996 VOUTILAINEN et al.

Motivated by this result, let us now turn our attention to the statistical analysis of (3). That is,
we suppose that the solution U is observed, and our aim is to define an estimator for the unknown
parameterΘ. Our approach is based on utilizing the cross-covariance matrices, and for this reason
we require some moment assumptions. In the sequel, we assume that the components G(i) of the
driver G satisfy, for all i = 1, … ,n,

sup
s∈[0,1]

E

[

G(i)
s

]2
< ∞. (7)

This assumption ensures that G is square integrable, and consequently so is the solution U. We
remark that this assumption ensures that G ∈ Θ (cf. Lemma 7). Also, without loss of generality,
we assume that G is centered, that is, E(Gt) = 0 for every t ∈ R. This gives that also E(Ut) = 0 for
every t ∈ R.

Let us now introduce some notation. With 𝛾(t) we denote the cross-covariance matrix of the
stationary solution U, namely,

𝛾(t) = E(UtU⊤

0 ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E(U (1)
t U (1)

0 ) E(U (1)
t U (2)

0 ) … E(U (1)
t U (n)

0 )
E(U (2)

t U (1)
0 ) E(U (2)

t U (2)
0 ) … E(U (2)

t U (n)
0 )

⋮ ⋮ ⋱ ⋮

E(U (n)
t U (1)

0 ) E(U (n)
t U (2)

0 ) … E(U (n)
t U (n)

0 )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

Notice that 𝛾(−t) = 𝛾(t)⊤. In addition, we denote a single element E(U (i)
t U (j)

0 ) by 𝛾i,j(t). We also
define the following matrix coefficients for every t ≥ 0. .

Bt =
∫

t

0

(
𝛾(s) − 𝛾(s)⊤

)
ds, (9)

Ct =
∫

t

0 ∫

t

0
𝛾(s − u)duds, (10)

Dt = cov(Gt) − cov(Ut − U0). (11)

Remark 2. The cross-covariance 𝛾(t) can be computed explicitly from (6). For representations in
the case when G has independent components, see Lemmas 10 and 11.

With the help of the above notation, we are able to write the parameter matrixΘ as a solution
to the so-called continuous-time algebraic Riccati equation (CARE), with matrices Bt, Ct, and Dt
as coefficients. This will lead to a natural estimator for Θ.

Theorem 2. Let U be the solution of the Langevin equation (3) with Θ > 0 and initial (5). Then,
for every t ≥ 0, the CARE

B⊤

t Θ + ΘBt − ΘCtΘ + Dt = 0 (12)

is satisfied.

Remark 3. In the one-dimensional case Bt ≡ 0. After a change of variable (12) transforms into

2Θ2
∫

t

0
𝛾(z)(t − z)dz = v(t) + 2𝛾(t) − 2𝛾(0),
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VOUTILAINEN et al. 997

where v(t) is the variance function of G. From this, we can compute a solutionΘ > 0 easily when-
ever ∫ t

0 𝛾(z)(t − z)dz ≠ 0 and v(t) is known. More generally, the coefficients Bt, Ct, and Dt can be
computed from the observed process U if one value of the covariance matrix function t → cov(Gt)
of the noise is known. In the literature, it is a typical assumption that the variance function of the
noise is known completely (up to scaling).

From practical viewpoint, it is desirable that (12) admits a unique positive definite solution.
Indeed, then the solution is automatically the correct parameter matrixΘ. Moreover, uniqueness
of the solution is also a wanted feature for numerical methods. If the coefficient matrices Ct and Dt
are both positive definite, then the solution is unique (in the set of positive semidefinite matrices).
In our model, it turns out that this is usually the case if one chooses t appropriately. A detailed
discussion on the matter is postponed to Subsection 2.1 (see also Remark 6 below on how t can
be chosen in practice).

Remark 4. Even if the solution is unique, (12) is rarely solvable in a closed form. Thus, in practice
or for simulations, one has to apply some numerical method. On the other hand, even in the
one-dimensional general Gaussian setup one may need to rely on numerical approximations. For
example, the ergodicity estimator studied in Sottinen and Viitasaari (2018) is based on a function
𝜓

−1 that can be computed explicitly only in some particular cases. Actually, applying our method
to the one-dimensional case we observe a closed-form expression for the solution (cf. Remark 3).
For numerical methods associated to (12), see, for example, Byers (1987), Laub (1979), and the
monograph Bini et al. (2011).

In the sequel, we assume that t is chosen such that Ct,Dt > 0, guaranteeing thatΘ is the unique
solution to (12). For notational simplicity, we will omit the subindex t and simply write

B⊤Θ + ΘB − ΘCΘ + D = 0 (13)

whenever confusion cannot arise.
Suppose now that we have an observation window [0,T]. We define estimators ̂BT , ̂CT , and ̂DT

for the coefficient matrices by replacing 𝛾i,j(s) with any cross-covariance estimator �̂�T,i,j(s) in the
defining Equations (9)–(11) (see Section 2.2 for an example of covariance estimator). We also write
ΔTB = ̂BT − B, ΔTC = ̂CT − C, and ΔTD = ̂DT − D. This leads to a perturbed CARE that gives us
an estimator for Θ.

Definition 2. The estimator ̂ΘT is defined as the positive semidefinite solution to the perturbed
CARE

̂B⊤

T ̂ΘT + ̂ΘT ̂BT − ̂ΘT ̂CT ̂ΘT + ̂DT = 0, (14)

whenever there exists a unique solution in the class of positive semidefinite matrices. If the
solution does not exists, we set ̂ΘT = 0.

The idea of our estimator is that if the estimators �̂�T,i,j(s) are consistent and C,D > 0 in the
original CARE (12), then the perturbed version (14) automatically has a unique solution ̂ΘT (with
probability increasing to one as T grows), that converges strongly to Θ.

Theorem 3. Suppose C,D > 0 and assume that

sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)||
P

→ 0. (15)
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998 VOUTILAINEN et al.

Then for ̂ΘT , given by Definition 2, we have

|| ̂ΘT − Θ||
P

→ 0. (16)

Remark 5. If the convergence in (15) holds almost surely, we obtain a strong consistent estimator,
that is,

|| ̂ΘT − Θ||
a.s.
→ 0.

Moreover, by our proof (cf. Lemma 8) we obtain that instead of (15), weaker conditions

∫

t

0
||�̂�T(s) − 𝛾(s)||ds

P

→ 0

and

||�̂�T(𝜏) − 𝛾(𝜏)||
P

→ 0, 𝜏 ∈ {0, t}

are sufficient. These conditions are usually easier to verify in practice.

Remark 6. In practice, one does not know the underlying exact model, and thus one cannot deter-
mine whether for given t we have Ct,Dt > 0. However, one can always precheck whether, for
a given t, matrices ̂CT , ̂DT that are computed from the observations are positive definite. This
together with (15) indicates Ct,Dt > 0 implying that the original CARE (13) has a unique posi-
tive semidefinite solution Θ (cf. Theorem 7). Now Theorem 3 applies, and consequently one can
estimate Θ from the observations by applying any numerical method for CARE, without pre-
knowledge on positive definiteness of Ct and Dt. This practical approach can also be used for
simulations.

By Theorem 3, the consistency of ̂ΘT is inherited from the consistency of �̂�T . Similarly, the
rate of convergence and the limiting distribution for ̂ΘT follow from the convergence rate and the
limiting distribution of �̂�T , respectively.

Theorem 4. Let X = (Xs)s∈[0,t] be an n2-dimensional stochastic process with continuous paths
almost surely and let l(T) be an arbitrary rate function. If

l(T)vec(�̂�T(s) − 𝛾(s))
law
→ Xs (17)

in the uniform topology of continuous functions, then:

(1) If ̃Xs is the permutation of elements of Xs that corresponds to the order of elements of vec(𝛾(s)⊤),
we have

l(T)vec(ΔTC,ΔTB,ΔTD)
law
→

⎡
⎢
⎢
⎢
⎢
⎣

∫
t

0 (t − s)(Xs + ̃Xs)ds

∫
t

0
(

Xs − ̃Xs
)

ds

−2X0 + Xt + ̃Xt

⎤
⎥
⎥
⎥
⎥
⎦

=∶ L1(X).
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VOUTILAINEN et al. 999

(2) If C,D > 0 and ̂ΘT is given by Definition 2, we have

l(T)vec( ̂ΘT − Θ)
law
→ L2(L1(X)),

where L2 ∶ R3n2
→ Rn2 is a linear operator depending only on Θ, t, and the cross-covariance

of G.

Remark 7. The operator L2 is given explicitly in the proof.

2.1 On the uniqueness of the solution to (12)

The uniqueness of the solution to (12) is crucially important, as otherwise we cannot guarantee
that a convergent numerical scheme (which we have to apply in practice) converges to the true
parameter Θ. In our case, it turns out that one can usually choose t such that Ct,Dt > 0 giving us
uniqueness. We next address the uniqueness issue particularly in our case. For the general theory
of algebraic Riccati equations, see, for example, Lancaster and Rodman (1995).

We begin with some definitions.

Definition 3. A square matrix A is stable if all its eigenvalues are in the open left half-plane.

Definition 4. A matrix pair (A,B) is stabilizable if there exists a matrix K such that A + BK is
stable.

Definition 5. A real matrix pair (A,B) is detectable if (B⊤

,A⊤) is stabilizable.

We utilize the following uniqueness result (for more details on the topic, see, e.g., Kucera, 1972
or Wonham, 1968) to our case under the assumption that Ct,Dt ≥ 0.

Lemma 1. Let Ct,Dt ≥ 0. If (Bt,Ct) is stabilizable and (Dt,Bt) is detectable, then the
continuous-time algebraic Riccati equation (12) has a unique positive semidefinite solution Θ.
Furthermore, the matrix Bt − CtΘ is stable.

With this we obtain the following useful corollary.

Corollary 1. Let Ct,Dt > 0. Then (12) has a unique positive definite solution Θ.

Proof. Let S be any stable matrix and set K1 = C−1
t (S − Bt) and K2 = (D⊤

t )
−1(S − B⊤

t ). Then Bt +
CtK1 = S = B⊤

t + D⊤

t K2, and the conditions of Lemma 1 are satisfied. Thus CARE (12) has a unique
solution Θ ≥ 0, which is then automatically the true parameter matrix Θ > 0. ▪

Let us now address when one can choose t such that Ct,Dt > 0. For this recall that

Ct = E

[

∫

t

0
Usds

(

∫

t

0
Usds

)
⊤

]

= cov
(

∫

t

0
Usds

)

and

Dt = cov(Gt) − cov(Ut − U0).
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1000 VOUTILAINEN et al.

Thus Ct ≥ 0 for every t. Consider now the matrix Dt. By stationarity of U the elements of
cov(Ut − U0) are uniformly bounded, implying a⊤cov(Ut − U0)a < C||a||2 for some constant C. On
the other hand, we have a⊤cov(Gt)a ≥ 𝜆min||a||2, where 𝜆min is the smallest eigenvalue of cov(Gt).
Thus

a⊤Dta ≥ (𝜆min − C)||a||2,

implying Dt > 0 provided that 𝜆min grows sufficiently. This happens, for example, when G has
independent components with growing variances.

Consider next the matrix Ct. Since Ct ≥ 0 always, it suffices to find one t such that Ct > 0. Let
us, for a moment, suppose that this is not possible. Then rank(Ct) ≤ n − 1 implying that there
exists a (vector-valued) function a(t) such that, almost surely and for all t,

a(t)⊤
∫

t

0
Usds = 0.

Without loss of generality we can assume that a(t) is normalized and oriented consistently.
Furthermore, it follows from the continuity of ∫ t

0 Usds that a(t)⊤ is also continuous. This further
implies that a(t)⊤∫ t

0 Usds is indistinguishable from the zero process meaning that there exists B ⊂

Ω such that P(B) = 1 and

∫

t

0
Us(𝜔)ds ∈ Mn−1

t for every 𝜔 ∈ B and t ∈ R+, (18)

where Mn−1
t is a n − 1-dimensional subspace of Rn. We claim that this implies also degeneracy

of the process U itself. We, again, proceed by contradiction and assume that there exists 𝜔i ∈ B,
i = 1, 2, … ,n such that the vectors U0(𝜔i) are linearly independent. Then the matrix

[U0(𝜔1), … ,U0(𝜔n)] (19)

is invertible. On the other hand, for any 𝜀 > 0 we can apply the mean value theorem to find 𝛿 > 0
such that

∫

𝛿

0
Us(𝜔i)ds = (U0(𝜔i) + 𝜀

𝜔i,𝛿)𝛿, with ||𝜀
𝜔i,𝛿|| < 𝜀.

Thus, by continuity of the eigenvalues and invertibility of the matrix (19), the matrix

[
U0(𝜔1) + 𝜀

𝜔1,𝛿 … U0(𝜔n) + 𝜀
𝜔n,𝛿

]

is invertible as well provided that 𝜀 is chosen small enough. This contradicts (18), meaning that
if rank(Ct) ≤ n − 1, then we have (18) and U0(𝜔) ∈ ̃Mn−1

0 for all 𝜔 ∈ B as well. Now stationar-
ity of U implies that P(Ut ∈ ̃Mn−1

0 ) = 1 for all t ∈ R, meaning that U is a degenerate process. In
particular, then

b⊤U0 =
∫

0

−∞
b⊤eΘsdGs =

∫

0

−∞

n∑

i=1

(
b⊤eΘs)(i)dG(i)

s =
n∑

i=1
∫

0

−∞

(
b⊤eΘs)(i)dG(i)

s
a.s.
= 0
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VOUTILAINEN et al. 1001

for some nonzero vector b. If now G has independent components, then we would also get

∫

0

−∞

(
b⊤eΘs)(i)dG(i)

s
a.s.
= 0 for all i.

For many interesting processes G(i) this would further imply
(

b⊤eΘs)(i) ≡ 0 leading to a
contradiction since eΘs is of full rank. In particular, this is the case whenever G(i) is a Gaus-
sian process for which Wiener integral is injective (for details on Wiener integrals, see, e.g.,
Janson, 1997). Such Gaussian processes include, among others, Brownian motions and frac-
tional Brownian motions. Finally, we note that in general, if we have a set of observations
{Ut(𝜔)}t∈I (with a fixed 𝜔) and span {Ut(𝜔)}t∈I = Rn, then one can always find t such that
Ct > 0.

2.2 Application to Gaussian processes

In this subsection, we illustrate the applicability of our results to the Gaussian case. That is, we
suppose that the components G are independent Gaussian processes G(i). We state the results
under conditions on the cross-covariance 𝛾(t). In practice, one can verify the assumptions for a
given model by computing 𝛾(t) from the variance matrix v(t) = E[GtG⊤

t ]. In particular, different
representations for 𝛾(t) are given in Subsection A.4. We apply these representations to prove that
all our results are applicable, whenever the components G(i) are independent fractional Brownian
motions with Hurst indices Hi < 3∕4 (cf. Corollary 2 below).

We first note that, by assumption, the components G(i) have continuous paths almost surely.
By Gaussianity, this implies L2 continuity as well, and hence (7) is valid, giving G ∈ Θ. For the
cross-covariance estimator �̂� , we use standard

�̂�T(𝜏) =
1
T∫

T

0
Us+𝜏U⊤

s ds.

The following result gives us the consistency immediately, and covers all ergodic systems.

Proposition 1. Let G be a vector of Gaussian processes. If limt→∞ ||𝛾(t)|| = 0, then || ̂ΘT − ̂Θ||
P

→ 0.

Proposition 1 guarantees that we can apply Theorem 3 if the cross-covariance 𝛾(t) vanishes at
infinity. Similarly, we may apply Theorem 4 if 𝛾(t) decays rapidly enough.

Theorem 5. Suppose that 𝛾(r) is locally absolutely continuous and

max
(
||𝛾 ′(r)||, ||𝛾(r)||

)
≤ h(r)

for some nonincreasing function h(r) such that, for some K > 0, we have h(r) ∈ L1([0,K]) and h(r) ∈
L2([K,∞)). Then

√
Tvec(�̂�T(s) − 𝛾(s))

law
→ Xs (20)

in the uniform topology of continuous functions, where X is an n2-dimensional centered Gaussian
process. In particular, Theorem 4 is applicable.
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1002 VOUTILAINEN et al.

Remark 8. The cross-covariance E[X
𝜏
X⊤

𝜂

] of the process X can be computed explicitly, and it
consists of elements

∫

∞

0
𝛾i,j(r + 𝜏)𝛾p,q(r + 𝜂)dr, i, j, p, q ∈ {1, 2, … ,n} (21)

in the order corresponding to vec(�̂�T(s) − 𝛾(s)). We also note that assumptions on the function h
ensures that the terms (21) are finite.

Remark 9. By representation (A20), the differentiability of 𝛾(r) follows provided that the variance
functions vi(r) of the components G(i) are differentiable.

Remark 10. Convergence of finite-dimensional distributions in the above result follows from
some well-known facts. However, to the best of our knowledge, tightness of �̂�T(t)with lag t as a free
parameter has not previously been acknowledged in the literature making it the most significant
point of our example.

To end this section we apply Theorem 5 to the case of multidimensional fractional
Ornstein–Uhlenbeck processes. Recall that a fractional Brownian motion BH with Hurst index
H ∈ (0, 1) is a centered Gaussian process with covariance

RBH (t, s) = 1
2
[
t2H + s2H − |t − s|2H]

.

Corollary 2. Let G be a vector of independent fractional Brownian motions BHi with Hurst indices
Hi <

3
4

. Then
√

Tvec(�̂�T(s) − 𝛾(s))
law
→ Xs (22)

in the uniform topology of continuous functions, where X is an n2-dimensional centered Gaussian
process. In particular, Theorem 4 is applicable.

Remark 11. By carefully examining our proof we actually observe that the tightness holds for
arbitrary values of the Hurst indices Hi ∈ (0, 1). Indeed, this follows since 𝛾(t) ∼ t2Hmax−2 at infinity,
giving us the expected rate function l(T) (cf. Proposition 2). Thus it suffices to study only the
convergence of finite-dimensional distributions.

The above results are obviously just illustrations how our general theorems can be applied.
For example, it is straightforward to check the applicability of Theorem 5 in the multidimen-
sional versions of the fractional Ornstein–Uhlenbeck process of the second kind or the bifractional
Ornstein–Uhlenbeck process of the second kind (see Sottinen & Viitasaari, 2018 and the references
therein for definitions). Indeed, it can be shown that, as in the univariate case, covariances 𝛾ij(t)
decay exponentially. Similarly, in the case of multidimensional fractional Ornstein–Uhlenbeck
process where some of the Hurst indices Hi satisfy Hi ≥ 3∕4, we can obtain a limiting object, but
with different rate and possibly different limiting object Xs. For example, if max Hi = 3∕4, then
the rate is

√
T∕

√
log T instead of standard

√
T, while the limiting process Xs is still Gaussian. If

max Hi > 3∕4, one expects to have Rosenblatt components in X . Indeed, this is a well-known fact
in dimension one (see, e.g., Hu et al,. 2019), and the tightness holds on the full range Hi ∈ (0, 1)
(see Remark 11).

ORCID
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APPENDIX A. PROOFS

For the reader’s convenience, we divide this section into five subsections. The first subsection,
Subsection A.1, provides a proof of Theorem 1 motivating our model. Subsection A.2 contains a
proof of Theorem 2 that leads to the definition of our estimator ̂ΘT . In Subsection A.3 we prove
our results, Theorems 3 and 4, concerning the asymptotic behavior of ̂ΘT . In Subsection A.4, we
provide representations for the cross-covariance 𝛾(t). These representations will then be applied
in Subsection A.5, where we prove results related to our Gaussian example.

A.1 Proof of Theorem 1
The proof of Theorem 1 follows the strategy of Viitasaari (2016). However, in our multidimen-
sional setting one has proceed carefully, for example, it is not clear whether matrices commute or
not. In addition, we need to extend concepts such as self-similarity to the matrix-valued case. For
this reason, we do not omit the proof even though it is partly very similar to the univariate case.

We begin with the following definition of Θ-self-similar processes, where Θ is a matrix.
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Definition 6. Let Θ > 0. An n-dimensional stochastic process X = (Xt)t≥0 with X0 = 0 is
Θ-self-similar if

(Xat)t≥0
law
= aΘ(Xt)t≥0

for every a > 0 in the sense of finite-dimensional distributions. Here the matrix exponent is
defined through the matrix exponential function aΘ = eΘ log a.

The following remark illustrates the necessity of positive definiteness of Θ.

Remark 12. The assumptionΘ > 0 is natural, as otherwise we may reduce the number of dimen-
sions. Indeed, if Θ ≥ 0 with one eigenvalue 𝜆1 = 0, then the eigendecomposition Θ = QΛQ⊤

gives

Xa
law
= QeΛ log aQ⊤X1 = Qdiag(e𝜆i log a)Z,

with Z = Q⊤X1. Since Q is orthogonal, it follows that

||Xa||
law
= ||Qdiag(e𝜆i log a)Z|| ≥ |Z(1)| = |(Q⊤X1)(1)|.

In particular, using continuity of X and letting a → 0 yields (Q⊤X1)(1) = 0. This means that X
is an (n − 1)-dimensional process. Similarly, if G ∈ Θ with Θ having zero as an eigenvalue with
algebraic multiplicity equal k, then G degenerates to an (n − k)-dimensional process.

Definition 7. LetΘ > 0. In addition, let U = (Ut)t∈R and X = (Xt)t≥0 be n-dimensional stochastic
processes. We define

(ΘU)t = tΘUlog t, for t > 0
(−1

Θ X)t = e−ΘtXet , for t ∈ R.

The following result extends the one-to-one correspondence betweenΘ-self-similar processes
and stationary processes to the matrix-valued case. We use the name Lamperti transform for our
matrix-valued version in honor to the original univariate result.

Theorem 6 (Lamperti). Let Θ > 0. Let (Ut)t∈R be an n-dimensional stationary process. Then
(ΘU)t is Θ-self-similar. Conversely, let (Xt)t≥0 be an n-dimensional Θ-self-similar process. Then
(−1

Θ X)t is stationary.

Proof. Suppose first that (Ut)t∈R is stationary. Define Yt = (ΘU)t = tΘUlog t. Let a > 0 and
[t1, t2, … , tm]⊤ ∈ R

m
+ . Then

(Yat1 ,Yat2 , … ,Yatm ) = (a
ΘtΘ1 Ulog at1 , aΘtΘ2 Ulog at2 , … , aΘtΘmUlog atm)

= (aΘtΘ1 Ulog a+log t1 , aΘtΘ2 Ulog a+log t2 , … , aΘtΘmUlog a+log tm)
law
= (aΘYt1 , aΘYt2 , … , aΘYtm ).

Now let Θ = QΛQ⊤ be an eigendecomposition of Θ. Then

tΘ = eΘ log t = Q
∞∑

k=0

Λk(log t)k

k!
Q⊤ = QeΛ log tQ⊤

, (A1)

 14679469, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12552 by A

alto U
niversity, W

iley O
nline L

ibrary on [15/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1006 VOUTILAINEN et al.

where eΛ log t is a diagonal matrix with diagonal elements of the form e𝜆i log t. Since 𝜆i > 0 for every
i = 1, 2, ...,n, we notice that limt→0 Yt = 0 in probability, and hence, Y is Θ-self-similar.

Next, suppose that (Xt)t≥0 is Θ-self-similar. Define Yt = (−1
Θ X)t = e−ΘtXet . Let s ∈ R and

[t1, t2, … , tm]⊤ ∈ Rm. Then

(Yt1+s,Yt2+s, … ,Ytm+s) = (e−Θ(t1+s)Xet1+s , e−Θ(t2+s)Xet2+s , … , e−Θ(tm+s)Xetm+s)
law
= (e−Θt1 Xet1 , e−Θt2 Xet2 , … , e−Θtm Xetm ) = (Yt1 ,Yt2 , … ,Ytm)

concluding the proof. ▪

The following lemma is a straightforward extension of a similar univariate result of
Viitasaari (2016). For the reader’s convenience, we present the proof here.

Lemma 2. Let (Xt)t≥0 be an n-dimensional Θ-self-similar process. Define Y = (Yt)t∈R by

Yt =
∫

t

0
e−ΘudXeu .

Then Y ∈ Θ.

Proof. Clearly Y0 = 0. In addition

∫

0

−∞
eΘudYu =

∫

0

−∞
dXeu = X1 − lim

t→−∞
Xet

P

= X1.

Now, let t, s, h ∈ R. Then

Yt − Ys =
∫

t

s
e−ΘudXeu =

∫

t+h

s+h
e−Θ(v−h)dXev−h

law
=
∫

t+h

s+h
e−ΘvdXev = Yt+h − Ys+h,

where we have used the change of variable u = v − h. The penultimate equation can be verified
by approximating the integral with Riemann sums, using self-similarity, and passing to the limit.
Similarly, for multidimensional distributions

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Yt1 − Ys1

Yt2 − Ys2

⋮

Ytm − Ysm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫
t1

s1
e−ΘudXeu

∫
t2

s2
e−ΘudXeu

⋮

∫
tm

sm
e−ΘudXeu

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫
t1+h

s1+h e−Θ(v−h)dXev−h

∫
t2+h

s2+h e−Θ(v−h)dXev−h

⋮

∫
tm+h

sm+h e−Θ(v−h)dXev−h

⎤
⎥
⎥
⎥
⎥
⎥
⎦

law
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫
t1+h

s1+h e−ΘvdXev

∫
t2+h

s2+h e−ΘvdXev

⋮

∫
tm+h

sm+h e−ΘvdXev

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Yt1+h − Ys1+h

Yt2+h − Ys2+h

⋮

Ytm+h − Ysm+h

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

▪

We split the proof of Theorem 1 into three lemmas. The first one gives us the stationary
solution to (3).

Lemma 3. Let Θ > 0 and G ∈ Θ. Then the unique solution to the Langevin equation (3) with the
initial condition

U0 =
∫

0

−∞
eΘsdGs
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VOUTILAINEN et al. 1007

is given by

Ut = e−Θt
∫

t

−∞
eΘsdGs.

The solution is stationary.

Proof. By integration by parts

Ut = e−Θt
∫

t

−∞
eΘsdGs = Gt − e−ΘtΘ

∫

t

−∞
eΘsGsds,

giving

dUt = dGt − d
(

e−ΘtΘ
)

∫

t

−∞
eΘsGsds − e−ΘtΘd

(

∫

t

−∞
eΘsGsds

)

= dGt − Θd
(

e−Θt)

∫

t

−∞
eΘsGsds − Θe−ΘteΘtGtdt.

Here we have used the fact that e−Θt and Θ commute. Now

dUt = dGt − Θd
(

e−Θt)

∫

t

−∞
eΘsGsds − ΘGtdt = dGt +

(
Θ2e−Θtdt

)

∫

t

−∞
eΘsGsds − ΘGtdt

= dGt − Θ
(

Gt − Θe−Θt
∫

t

−∞
eΘsGsds

)

dt = dGt − ΘUtdt

completing the proof of the first assertion. To show stationarity, change of variable u = s − t gives
us

Ut = e−Θt
∫

t

−∞
eΘsdGs = e−Θt

∫

0

−∞
eΘ(u+t)dGu+t =

∫

0

−∞
eΘudGu+t

law
=
∫

0

−∞
eΘudGu = U0,

where we have used that G has stationary increments. Again, the penultimate equation can
be verified by approximating the integral with finite Riemann sums, using stationarity of incre-
ments, and passing to the limit. Treating multidimensional distributions similarly concludes the
proof. ▪

The next result gives us the other direction, that is, it shows that stationary processes solve
Langevin equation.

Lemma 4. LetΘ > 0 be fixed and let U = (Ut)t∈R be stationary process with continuous paths. Then
U is the unique solution to the Langevin equation (3) for some G ∈ H and the initial condition

U0 =
∫

0

−∞
eΘsdGs.

Proof. Assume that (Ut)t∈R is stationary. Then by Theorem 6 there exists a Θ-self-similar (Xt)t≥0
such that Ut = (−1

Θ X)t = e−ΘtXet . Consequently

dUt = d(e−Θt)Xet + e−ΘtdXet = −Θe−ΘtXet dt + e−ΘtdXet = −ΘUtdt + e−ΘtdXet .
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1008 VOUTILAINEN et al.

Now, define Y = (Yt)t∈R as in Lemma 2. Then Y ∈ Θ and dYt = e−ΘtdXet concluding the
proof. ▪

Finally, the next lemma provides us with the uniqueness of the noise.

Lemma 5. Let Θ > 0 be fixed. Then a process U = (Ut)t∈R satisfies the Langevin equation (3) with
the initial

U0 =
∫

0

−∞
eΘsdGs (A2)

for one process G ∈ Θ at the most.

Proof. Suppose that G,
̃G ∈ Θ yield the same solution U of the Langevin equation with the initial

(A2). Then for every t ∈ R

eΘtUt =
∫

t

−∞
eΘudGu =

∫

t

−∞
eΘud ̃Gu.

Let s < t, then

∫

t

s
eΘudGu =

∫

t

s
eΘud ̃Gu.

Integration by parts gives

∫

t

s
eΘudGu = eΘtGt − eΘsGs − Θ

∫

t

s
eΘuGudu

yielding

eΘt(Gt − ̃Gt) − eΘs(Gs − ̃Gs) = Θ
∫

t

s
eΘu(Gu − ̃Gu)du.

By denoting h(t) = eΘt(Gt − ̃Gt), we obtain

h(t) − h(s) = Θ
∫

t

s
h(u)du

or equivalently

dh(t) = Θh(t)dt. (A3)

The general solution to (A3) reads

h(t) = QeΛtC,

where the columns of Q are equal to the eigenvectors of Θ and Λ is the corresponding eigenvalue
diagonal matrix, and C is a constant vector. The initial G0 = ̃G0 gives QC = 0. Since Q is invertible,
we conclude that C = 0. ▪
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VOUTILAINEN et al. 1009

The proof of Theorem 1 now follows directly.

Proof of Theorem 1. The existence of a unique stationary solution to the Langevin equation is
in fact the statement of Lemma 3. Conversely, the fact that stationary processes solve Langevin
equations is the statement of Lemma 4. Finally, Lemma 5 gives us the uniqueness of the noise. ▪

A.2 Proof of Theorem 2
In order to prove Theorem 2, we begin by showing that for Θ > 0, the (7) implies G ∈ Θ, that is,
we show that for Θ > 0,

∫

0

−∞
eΘsGsds

defines an almost surely finite random variable. For this we begin with the following very
elementary lemma.

Lemma 6. Let G = (Gs)s∈R be a one-dimensional centered process with stationary increments,
G0 = 0, and sups∈[0,1] EG2

s < ∞. Then

var(Gs) ≤ C(s + 1)2

for every s ≥ 0, where C is some positive constant depending only on the process G.

Proof. Let s ≥ 0. Writing Gs = Gs − G⌊s⌋ +
∑⌊s⌋

k=1(Gk − Gk−1), where ⌊⋅⌋ is the standard
floor-function, and using stationarity of the increments together with the Minkowski’s inequality
gives

√
EG2

s ≤ (s + 1) sups∈[0,1]
√

var(Gs). ▪

Lemma 7. Let Θ > 0 and let G satisfy (7). Then

lim
u→∞ ∫

0

−u
eΘsGsds (A4)

exists almost surely.

Proof. Let Θ = QΛQ⊤ be an eigendecomposition of Θ. Then eΘs = QeΛsQ⊤, where eΛs is a diago-
nal matrix with diagonal entries of the form e𝜆is. Thus ||eΛs|| = e𝜆mins, where 𝜆min is the smallest
eigenvalue of Θ. Moreover, by orthogonality of Q, we have ||Q||||Q⊤|| = 1. Thus

||eΘsGs|| ≤ ||Q||||eΛs||||Q⊤||||Gs|| = e𝜆mins||Gs|| ≤ e𝜆mins
√

nmax
i
|G(i)

s |. (A5)

On the other hand, Lemma 6 gives

P

(
|
|
|
|
e

𝜆min
2

sG(i)
s
|
|
|
|
> 𝜖

)

≤

var
(

e
𝜆min

2
sG(i)

s

)

𝜖
2 ≤

Cie𝜆mins(1 + |s|)2

𝜖
2 .

Thus Borel–Cantelli implies
|
|
|
|
e

𝜆min
2

sG(i)
s
|
|
|
|
→ 0 almost surely as s → −∞, which further implies

lim
s→−∞

max
i
|e

𝜆min
2

sG(i)
s | = 0 (A6)
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1010 VOUTILAINEN et al.

almost surely. Hence we observe

∫

0

−∞
||eΘsGs||ds ≤

∫

0

−∞
Cne𝜆minsmax

i
|G(i)

s |ds = Cn
∫

0

−∞
e

𝜆min
2

smax
i
|e

𝜆min
2

sG(i)
s |ds

≤ Cn sup
s∈(−∞,0]

{

max
i
|e

𝜆min
2

sG(i)
s |

}

∫

0

−∞
e

𝜆min
2

sds,

where the supremum term is finite almost surely by (A6). This concludes the proof. ▪

We are now ready to prove Theorem 2.

Proof of Theorem 2. Lemma 7 together with assumption (7) gives us G ∈ Θ, and by Theorem 1
the solution with initial (5) U is stationary. Now (3) and G0 = 0 gives, for every t ≥ 0, that

Gt − G0 = Gt = Ut − U0 + Θ
∫

t

0
Usds. (A7)

In the sequel, we use the short notation ΔtU = Ut − U0. Noticing that Θ⊤ = Θ, we now get
from (A7) that

GtG⊤

t = ΔtU(ΔtU)⊤ + ΔtU
(

∫

t

0
Usds

)
⊤

Θ + Θ
∫

t

0
Usds (ΔtU)⊤ + Θ

∫

t

0
Usds

(

∫

t

0
Usds

)
⊤

Θ

= ΔtU(ΔtU)⊤ +
∫

t

0
ΔtUU⊤

s ds Θ + Θ
∫

t

0
Us(ΔtU)⊤ds + Θ

∫

t

0 ∫

t

0
UsU⊤

u dudsΘ.

Taking expectation on both sides completes the proof. Indeed, the first-order term with respect
to Θ is

∫

t

0
(𝛾(t − s) − 𝛾(−s)) ds Θ + Θ

∫

t

0
(𝛾(s − t) − 𝛾(s)) ds

=
∫

t

0
(𝛾(s) − 𝛾(−s)) ds Θ + Θ

∫

t

0
(𝛾(−s) − 𝛾(s)) ds

=
∫

t

0

(
𝛾(s) − 𝛾(s)⊤

)
ds Θ + Θ

∫

t

0

(
𝛾(s)⊤ − 𝛾(s)

)
ds

= BtΘ + ΘB⊤

t ,

where 𝛾(t) is the cross-covariance matrix of U given by (8). Computing other expectations
similarly and rearranging terms gives us (12). ▪

A.3 Proofs of Theorems 2 and 3
We begin with some preliminary notation. Let B, C, and D denote the coefficient matrices of the
original CARE (12), and let Φ = B − CΘ. We define a linear operator L ∶ Sn → Sn by

L(M) = Φ⊤M +MΦ.

The operator L is bounded and invertible (see, e.g., Stewart & Sun, 1990 and Sun, 1998). In
addition, we define linear operators Q ∶ Sn → Sn and P ∶ Rn×n → Sn by
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VOUTILAINEN et al. 1011

Q(M) = L−1(ΘMΘ),
P(M) = L−1(ΘM +M⊤Θ).

Since L is bounded, also Q and P are bounded operators. We set

l = 1
||L−1||

, p = ||P||, q = ||Q||

and

𝜖T =
1
l
||ΔTD|| + p||ΔTB|| + q||ΔTC||,

𝛿T = ||ΔTB|| + ||ΔTC||||Θ||,
gT = ||C|| + ||ΔTC||,

𝜖

∗
T =

2l𝜖T

l − 2𝛿T +
√
(l − 2𝛿T)2 − 4lgT𝜖T

. (A8)

The following theorem is taken from Sun (1998), but stated using our notation.

Theorem 7. Let Θ be the unique positive semidefinite solution to the CARE (13). Then if the
coefficient matrices ̂DT and ̂CT of the perturbed CARE (14) are positive semidefinite, and if

𝛿T +
√

lgT𝜖T <

l
2
, (A9)

then (14) has a unique solution ̂ΘT ≥ 0 satisfying

|| ̂ΘT − Θ|| ≤ 𝜖

∗
T .

Remark 13. Theorem 7 holds for any unitarily invariant submultiplicative matrix norm || ⋅ ||, not
just the spectral norm we are using. On the other hand, for our purposes the choice of the norm
does not matter since in finite dimensions all norms are equivalent.

Note that 𝜖T = (||ΔTD|| + ||ΔTB|| + ||ΔTC||), where  denotes the usual Landau notation
with meaning XT = (YT) if |XT| ≤ c|YT| for some constant c. We also note that Theorem 7 gives
us the following first-order perturbation bound

|| ̂ΘT − Θ|| ≤ 𝜖T + (||ΔTD||2 + ||ΔTB||2 + ||ΔTC||2). (A10)

Recall that �̂�T(s) and �̂�T,i,j(s) denote some fixed estimators of 𝛾(s) and 𝛾i,j(s), respectively. Next
result gives bound (A10) in terms of cross-covariance estimators.

Lemma 8. For 𝜖T given in (A8), we have

𝜖T ≤ (2p + 2qt)
∫

t

0
||�̂�T(s) − 𝛾(s)||ds + 2

l
(||�̂�T(0) − 𝛾(0)|| + ||�̂�T(t) − 𝛾(t)||) .

In particular,

𝜖T ≤ sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)||
(

2pt + 2qt2 + 4
l

)

.
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1012 VOUTILAINEN et al.

Proof. We have

ΔTB =
∫

t

0

(
�̂�T(s) − �̂�T(s)⊤

)
ds −

∫

t

0

(
𝛾(s) − 𝛾(s)⊤

)
ds

=
∫

t

0
(�̂�T(s) − 𝛾(s)) ds +

∫

t

0

(
𝛾(s)⊤ − �̂�T(s)⊤

)
ds

implying

||ΔTB|| ≤ 2
∫

t

0
||�̂�T(s) − 𝛾(s)||ds. (A11)

Similarly, for

ΔTC =
∫

t

0 ∫

t

0
�̂�T(s − u)duds −

∫

t

0 ∫

t

0
𝛾(s − u)duds

we get

||ΔTC|| ≤
∫

t

0 ∫

t

0
||�̂�T(s − u) − 𝛾(s − u)||duds ≤ 2t

∫

t

0
||�̂�T(s) − 𝛾(s)||ds. (A12)

Finally, for ΔTD we have

ΔTD = ̂ΣGt − ̂ΣUt−U0 − ΣGt + ΣUt−U0 = ΣUt−U0 − ̂ΣUt−U0 ,

where ΣX denotes the covariance matrix of a vector X . Now

ΣUt−U0 = 2𝛾(0) − 𝛾(t) − 𝛾(t)⊤

giving us

||ΔTD|| ≤ 2||�̂�T(0) − 𝛾(0)|| + 2||�̂�T(t) − 𝛾(t)||. (A13)

Combining the estimates (A11), (A12), and (A13) concludes the proof. ▪

Corollary 3. Let Θ be the unique positive definite solution to the CARE (13). If the coefficient
matrices ̂DT and ̂CT of the perturbed CARE (14) are positive semidefinite, and if

𝛿T +
√

lgT𝜖T <

l
2
, (A14)

then (14) has a unique positive semidefinite solution ̂ΘT. Moreover,

|| ̂ΘT − Θ|| ≤ c sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)|| + 
(

sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)||2
)

,

where the constant c depends on n, Θ, t, and the cross-covariance of G.

Proof. The claim follows directly from the bound (A10), Lemma 8, and the proof of Lemma 8. ▪
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VOUTILAINEN et al. 1013

We are now in position to proof our consistency result, Theorem 3.

Proof of Theorem 3. We first pick 𝜌 > 0 small enough such that if

sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)|| ≤ 𝜌, (A15)

then 𝛿T +
√

lgT𝜖T < l∕2. Since C,D > 0, we have that ̂CT , ̂DT are positive definite whenever 𝜌 is
chosen small enough. Moreover, in this case Corollary 3 gives

|| ̂ΘT − Θ|| ≤ ̃C sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)||. (A16)

Next, let 𝜀 > 0 be arbitrary such that 𝜀∕ ̃C ≤ 𝜌 and set

AT,𝜀 ∶=
{

𝜔 ∶ sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)|| ≤ 𝜀

̃C

}

.

Now a unique positive semidefinite solution ̂ΘT to (14) exists for 𝜔 ∈ AT,𝜀, and we have (A16).

Moreover, assumption sups∈[0,t] ||�̂�T(s) − 𝛾(s)||
P

→ 0 implies that for any 𝜉 > 0 there exists T
𝜀,𝜉

such
that for every T ≥ T

𝜀,𝜉
we have P(AT,𝜀) ≥ 1 − 𝜉∕2. Thus we can conclude

P

(

|| ̂ΘT − Θ|| > 𝜀

)

≤ P

(

1AT,𝜀 ||
̂ΘT − Θ|| > 𝜀

)

+ P

(

1Ac
T,𝜀
|| ̂ΘT − Θ|| > 𝜀

)

≤ P

(

sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)|| > 𝜀

̃C

)

+ P(Ac
T,𝜀)

≤
𝜉

2
+ 𝜉

2
= 𝜉.

This concludes the proof. ▪

Before proving Theorem 4 we recall an auxiliary lemma, taken from Horn and Johnson (1991).

Lemma 9. Let E and F be square matrices of sizes m and n, respectively. Then all the eigenvalues
of the Kronecker sum

E ⊕ F = (In ⊗ E) + (F ⊗ Im)

are of the form 𝜆i + 𝜆j, where 𝜆i is an eigenvalue of E and 𝜆j is an eigenvalue of F.

Proof of Theorem 4. Item (1): Recall that

ΔTD = 2(𝛾(0) − �̂�T(0)) + �̂�T(t) − 𝛾(t) + �̂�T(t)⊤ − 𝛾(t)⊤

ΔTB =
∫

t

0
�̂�T(s) − 𝛾(s)ds +

∫

t

0
𝛾(s)⊤ − �̂�T(s)⊤ds.

Similarly, using

∫

t

0 ∫

t

0
𝛾(u − s)duds =

∫

t

0 ∫

s

0
𝛾(u − s)duds +

∫

t

0 ∫

t

s
𝛾(u − s)duds,
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1014 VOUTILAINEN et al.

where

∫

t

0 ∫

s

0
𝛾(u − s)duds =

∫

t

0 ∫

s

0
𝛾(s − u)⊤duds =

∫

t

0 ∫

s

0
𝛾(z)⊤dzds

=
∫

t

0 ∫

t

z
𝛾(z)⊤dsdz =

∫

t

0
(t − z)𝛾(z)⊤dz

and

∫

t

0 ∫

t

s
𝛾(u − s)duds =

∫

t

0
(t − z)𝛾(z)dz,

we get

ΔTC =
∫

t

0 ∫

t

0
�̂�T(s − u) − 𝛾(s − u)duds =

∫

t

0
(t − s)(�̂�T(s) − 𝛾(s))ds +

∫

t

0
(t − s)(�̂�T(s)⊤ − 𝛾(s)⊤)ds.

Now by assumption, we have

l(T)vec(�̂�T(s) − 𝛾(s))
law
→ Xs,

where X = (Xs)s∈[0,t] is an n2-dimensional stochastic process with continuous paths. Now it is clear
that the linear mapping L1 ∶ C[0, t]n2

→ R3n2 defined by

L1(X) =
⎡
⎢
⎢
⎢
⎣

∫
t

0 (t − s)(Xs + ̃Xs)ds
∫

t
0 Xs − ̃Xsds

−2X0 + Xt + ̃Xt,

⎤
⎥
⎥
⎥
⎦

,

where ̃Xs denotes the permutation of the elements of Xs that corresponds to the order of the ele-
ments of vec(𝛾(s)⊤), is a continuous operator. Thus we may apply continuous mapping theorem
to conclude that

L1(l(T)vec(�̂�T(s) − 𝛾(s))) = l(T)vec(ΔTC,ΔTB,ΔTD)
law
→ L1(X).

Item (2):
As in the proof of Theorem 3, set

AT ∶=
{

𝜔 ∶ sup
s∈[0,t]

||�̂�T(s) − 𝛾(s)|| ≤ 𝜌

}

,

where 𝜌 is chosen as in the proof of Theorem 3. Then the unique (positive semidefinite) solution
̂ΘT to the perturbed CARE (14) exists for all 𝜔 ∈ AT . Let ΔTΘ = ̂ΘT − Θ. We write

l(T)vec(ΔTΘ) = l(T)1AT vec(ΔTΘ) + l(T)1Ac
T
vec(ΔTΘ). (A17)

Since (17) implies (15), Theorem 3 implies vec(ΔTΘ)
P

→ 0. Moreover, we have

P(l(T)1Ac
T
> 𝜀) ≤ P(Ac

T) → 0
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VOUTILAINEN et al. 1015

for every 𝜀 > 0. Thus the second term in (A17) converges to zero in probability, and hence, by
Slutsky’s theorem, it suffices to consider the first term in (A17). For this, we first observe that, by
the proof of theorem 17 in Sun (1998), we have

(B − CΘ)⊤ΔTΘ + ΔTΘ(B − CΘ) = −E + h1(ΔTΘ) + h2(ΔTΘ),

where

ET = ΔTD + ΔTB⊤Θ + ΘΔTB − ΘΔTCΘ,
h1(ΔTΘ) = −[(ΔTB − ΔTCΘ)⊤ΔTΘ + ΔTΘ(ΔTB − ΔTCΘ)],
h2(ΔTΘ) = ΔTΘ(C + ΔTC)ΔTΘ.

Recall the notation Φ = B − CΘ. Now, by compatibility of vectorization operator and
Kronecker product we obtain

vec
(
(B − CΘ)⊤ΔTΘ + ΔTΘ(B − CΘ)

)
= vec(Φ⊤ΔTΘ + ΔTΘΦ)
= (I ⊗Φ⊤)vec(ΔTΘ) + (Φ⊤

⊗ I)vec(ΔTΘ)
= (I ⊗Φ⊤ + Φ⊤

⊗ I)vec(ΔTΘ)
= (Φ⊤

⊕Φ⊤)vec(ΔTΘ),

where⊕ denotes the Kronecker sum. By Lemma 1 the matrixΦ is stable, that is, all its eigenvalues
are in the open left half-plane. Hence, by Lemma 9, (Φ⊤

⊕Φ⊤) is invertible, and consequently

l(T)1AT vec(ΔTΘ) = l(T)1AT (Φ
⊤

⊕Φ⊤)−1 (−vec(ET) + vec(h1(ΔTΘ)) + vec(h2(ΔTΘ))) .

By compatibility of vectorization and Kronecker product, the terms of l(T)1AT vec(h1(ΔTΘ))
are given by

l(T)1AT vec(ΔTΘΔTB) = l(T)1AT (I ⊗ ΔTΘ)vec(ΔTB),
l(T)1AT vec(ΔTB⊤ΔTΘ) = l(T)1AT (ΔTΘ⊗ I)vec(ΔTB⊤),

l(T)1AT vec(ΘΔTCΔTΘ) = l(T)1AT (ΔTΘ⊗ Θ)vec(ΔTC),
l(T)1AT vec(ΔTΘΔTCΘ) = l(T)1AT (Θ⊗ ΔTΘ)vec(ΔTC).

By item (1), Theorem 3, and Slutsky’s theorem all these terms converge to zero in probability.
Similarly, for the asymptotically dominant term of l(T)1AT vec(h2(ΔTΘ)), we get

1AT ||ΔTΘCΔTΘ|| ≤ 1AT ||ΔTΘ||2||C||.

Now on the set AT we have, by (A10) and item (1), that

1AT ||ΔTΘ|| = 1AT(||ΔTD|| + ||ΔTB|| + ||ΔTC||).

Thus l(T)1AT vec(h2(ΔTΘ)) converges to zero in probability as well, and it suffices to study
asymptotics of

l(T)1AT (Φ
⊤

⊕Φ⊤)−1 (−vec(ET)) . (A18)
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1016 VOUTILAINEN et al.

For this we write

− l(T)1AT vec(ET) = l(T)1AT vec
(
ΘΔTCΘ − ΔTD − ΔTB⊤Θ − ΘΔTB

)

= l(T)1AT

(
(Θ⊗ Θ)vec(ΔTC) − vec(ΔTD) − (Θ⊗ I)vec(ΔTB⊤) − (I ⊗ Θ)vec(ΔTB)

)
.

We define a linear function f ∶ R3n2
→ Rn2 by

f (vec(C,B,D)) = (Θ⊗ Θ)vec(C) − vec(D) − (Θ⊗ I)vec(B⊤) − (I ⊗ Θ)vec(B). (A19)

Then the usual Delta method and Slutsky’s theorem implies

− l(T)1AT vec(ET) = l(T)1AT

(
f (vec( ̂CT , ̂BT , ̂DT)) − f (vec(C,B,D)

) law
→ L⋆

2 L1(X),

where the linear mapping L⋆

2 is given by the Jacobian (i.e., matrix representation) of the function
f defined in (A19). It remains to apply continuous mapping theorem to (A18) to conclude that

l(T)1AT vec(ΔTΘ)
law
→ (Φ⊤

⊕Φ⊤)−1L⋆

2 L1(X) =∶ L2L1(X).

This completes the proof. ▪

A.4 Representation of cross-covariance matrix 𝜸(t)
Our main results relies on the cross-covariance matrix 𝛾(s) of U. However, in many models
one assumes that only the variance of the noise G is known. In this subsection we give several
representations for 𝛾(s) in terms of the variance matrix v(t) = E(GtG⊤

t ), provided that G has inde-
pendent components. In particular, then E(GtG⊤

s ) is a diagonal matrix for all t, s, and satisfies

E(GtG⊤

s ) =
1
2
(v(t) + v(s) − v(t − s)).

Our first representation is the following.

Lemma 10. Let G have independent components. Then

𝛾(r) = e−ΘrΘ
2

(

∫

r

−∞
eΘxv(x)dx −

∫

r

−∞∫

0

−∞
eΘxeΘsv(x)eΘsΘdsdx −

∫

∞

r ∫

r−x

−∞
eΘxeΘsv(x)eΘsΘdsdx

)

+ 1
2∫

∞

r
v(x)eΘ(r−x)Θdx − 1

2
v(r). (A20)

Proof. Using representation Ut = Gt − e−ΘtΘ∫ t
−∞eΘsGsds gives us

UrU⊤

0 = −∫

0

−∞
GrG⊤

s eΘsΘds + e−ΘrΘ
∫

0

−∞∫

r

−∞
eΘuGuG⊤

s eΘsΘduds.

Taking expectation and using Fubini’s theorem thus yields

𝛾(r) = −1
2∫

0

−∞
(v(r) + v(s) − v(r − s))eΘsΘds

+ e−ΘrΘ
2 ∫

0

−∞∫

r

−∞
eΘu(v(u) + v(s) − v(u − s))eΘsΘduds.
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VOUTILAINEN et al. 1017

Here

e−ΘrΘ
2 ∫

0

−∞∫

r

−∞
eΘuv(s)eΘsΘduds = e−Θr 1

2∫

0

−∞
eΘrv(s)eΘsΘds = 1

2∫

0

−∞
v(s)eΘsΘds

leading to

𝛾(r) = −1
2∫

0

−∞
(v(r) − v(r − s))eΘsΘds + e−ΘrΘ

2 ∫

0

−∞∫

r

−∞
eΘu(v(u) − v(u − s))eΘsΘduds.

By the change of variable x = u − s, we get

∫

0

−∞∫

r

−∞
eΘuv(u − s)eΘsΘduds

=
∫

0

−∞∫

r−s

−∞
eΘ(x+s)v(x)eΘsΘdxds =

∫

∞

−∞∫

min{0,r−x}

−∞
eΘxeΘsv(x)eΘsΘdsdx

=
∫

r

−∞∫

0

−∞
eΘxeΘsv(x)eΘsΘdsdx

+
∫

∞

r ∫

r−x

−∞
eΘxeΘsv(x)eΘsΘdsdx.

Finally, we have the identities

∫

0

−∞
v(r − s)eΘsΘds =

∫

∞

r
v(x)eΘ(r−x)Θdx

∫

0

−∞∫

r

−∞
eΘuv(u)eΘsΘduds =

∫

r

−∞
eΘxv(x)dx

∫

0

−∞
v(r)eΘsΘds = v(r).

Combining all the results above gives us (A20). ▪

Lemma 11. Let G have independent components. Then

𝛾(r) = Θ
2 ∫

0

−∞∫

0

−∞
eΘx (v(x + r) − v(r) + v(r − s) − v(x + r − s)) eΘsΘdxds. (A21)

Proof. The expression

𝛾(r) = −1
2∫

0

−∞
(v(r) − v(r − s))eΘsΘds + e−ΘrΘ

2 ∫

0

−∞∫

r

−∞
eΘu(v(u) − v(u − s))eΘsΘduds

can be written as

𝛾(r) = −1
2∫

0

−∞
e−ΘrΘ

∫

r

−∞
eΘu(v(r) − v(u) − v(r − s) + v(u − s))eΘsΘduds,

from which the claim follows by the change of variable u − r = x. ▪
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1018 VOUTILAINEN et al.

Remark 14. If the matrices v(t) andΘ commute for every t ∈ R, we obtain even simpler expression

𝛾(r) = Θ
4 ∫

0

−∞
eΘx (v(x + r) + v(r − x) − 2v(r)) dx.

In particular, this is the case if G consists of independent processes with equal variances.

A.5 Proofs related to Gaussian examples
This section is devoted to the proofs of Proposition 1, Theorem 5, and Corollary 2. We begin with
the proof of Proposition 1.

Proof of Proposition 1. We have

�̂�T,i,j(s) − 𝛾i,j(s) =
1
T∫

T

0

(

U (i)
r+sU

(j)
r − E

(

U (i)
s U (j)

0

))

dr

implying, with straightforward computations, that

E
[
�̂�T,i,j(s) − 𝛾i,j(s)

]2
≤

2
T∫

T

0
|𝛾i,j(r + s)|2dr.

Now ||𝛾(r)||→ 0 implies |𝛾i,j(r)|→ 0 as well, and thus, for each fixed s,

|�̂�T,i,j(s) − 𝛾i,j(s)|→ 0

in L2. These further implies

sup
s∈[0,t]

E||�̂�T(s) − 𝛾(s)||2 → 0,

from which we conclude that conditions of Remark 5 are satisfied. The claim then follows. ▪

In order to prove Theorem 5 one needs to prove the convergence of finite-dimensional distri-
butions and tightness. For the latter we present the following result that might be interesting on
its own. In the sequel, we use the short notation

FT(𝜏) = l(T)vec(�̂�T(𝜏) − 𝛾(𝜏)).

Proposition 2. Suppose that 𝛾(r) is locally absolutely continuous and

max
(
||𝛾 ′(r)||, ||𝛾(r)||

)
≤ h(r)

for some nonincreasing function h(r) such that, for some K > 0, we have h(r) ∈ L1([0,K]) and

∫

T

K
h(r)2dr = 

(
T

l(T)2

)

, T > K.

Then there exists T0 such that for all 𝜏, s ∈ [0, t], all a ∈ Rn2 and all p ≥ 2, we have

E
|
|
|
a⊤(FT(𝜏) − FT(s))

|
|
|

p
≤ c|𝜏 − s|

p
2 , T ≥ T0,

where c depends only on p, t, 𝛾 , and a⊤.
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VOUTILAINEN et al. 1019

Proof. We have

FT(𝜏) − FT(s) =
l(T)

T ∫

T

0
vec(Uu+𝜏U⊤

u − 𝛾(𝜏) − Uu+sU⊤

u + 𝛾(s))du.

First we note that it suffices to prove the claim only for p = 2. Indeed, since U is Gaussian, the
expression a⊤(FT(𝜏) − FT(s)) belongs to the so-called second Wiener chaos (for details see, e.g.,
Janson, 1997), implying the hypercontractivity property

E|a⊤(FT(𝜏) − FT(s))|p ≤ cp
[
E|a⊤(FT(𝜏) − FT(s))|2

] p
2
.

Thus, let p = 2. We have

|a⊤(FT(𝜏) − FT(s))|2 ≤ ca||FT(𝜏) − FT(s)||2,

where

||FT(𝜏) − FT(s)||2 ≤
l(T)2

T2

n∑

i,j=1

(

∫

T

0

(
Uu+𝜏U⊤

u − 𝛾(𝜏) − Uu+sU⊤

u + 𝛾(s)
)

i,j du
)2

.

Here

(

∫

T

0
(Uu+𝜏U⊤

u − 𝛾(𝜏) − Uu+sU⊤

u + 𝛾(s))i,jdu
)2

=
∫

T

0
U (i)

u+𝜏U (j)
u − 𝛾i,j(𝜏) − U (i)

u+sU
(j)
u + 𝛾i,j(s)du

×
∫

T

0
U (i)

v+𝜏U (j)
v − 𝛾i,j(𝜏) − U (i)

v+sU
(j)
v + 𝛾i,j(s)dv.

Taking expectation and with some straightforward computations, we get

E

(

∫

T

0
(Uu+𝜏U⊤

u − 𝛾(𝜏) − Uu+sU⊤

u + 𝛾(s))i,jdu
)2

=
∫

T

0
(T − x)𝛾j,j,(x)(𝛾i,i(x) − 𝛾i,i(x + 𝜏 − s))dx

+
∫

T

0
(T − x)𝛾j,j(x)(𝛾i,i(x) − 𝛾i,i(−x + 𝜏 − s))dx

+
∫

T

0
(T − x)𝛾j,j,(x)(𝛾i,i(x) − 𝛾i,i(x + s − 𝜏))dx

+
∫

T

0
(T − x)𝛾j,j(x)(𝛾i,i(x) − 𝛾i,i(−x + s − 𝜏))dx

+
∫

T

0
(T − x)𝛾i,j(x + 𝜏)(𝛾i,j(−x + 𝜏) − 𝛾i,j(−x + s))dx

+
∫

T

0
(T − x)𝛾i,j(−x + 𝜏)(𝛾i,j(x + 𝜏) − 𝛾i,j(x + s))dx
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1020 VOUTILAINEN et al.

+
∫

T

0
(T − x)𝛾i,j(x + s)(𝛾i,j(−x + s) − 𝛾i,j(−x + 𝜏))dx

+
∫

T

0
(T − x)𝛾i,j(−x + s)(𝛾i,j(x + s) − 𝛾i,j(x + 𝜏))dx.

Thus it suffices to show that all eight terms, when multiplied with l(T)2∕T2, admit a bound of
the form C|𝜏 − s|. We show how the first term can be treated, while the rest can be shown with
similar arguments. Without loss of generality, let s < 𝜏 and denote u = 𝜏 − s. For the first term
above, we apply the mean value theorem to obtain

|
|
|
|
|
∫

T

0
(T − x)𝛾j,j,(x)(𝛾i,i(x) − 𝛾i,i(x + u))dx

|
|
|
|
|

≤ Tu
(

∫

K

0
|𝛾j,j(x)|ess sup

x<𝜉<x+u
|𝛾 ′i,i(𝜉)|dx +

∫

T

K
|𝛾j,j(x)|ess sup

x<𝜉<x+u
|𝛾 ′i,i(𝜉)|dx

)

.

By assumption,

ess sup
x<𝜉<x+u

|𝛾 ′i,i(𝜉)| ≤ ess sup
x<𝜉<x+u

||𝛾 ′(𝜉)|| ≤ h(x).

Since |𝛾j,j(x)| is bounded and h(x) ∈ L1([0,K]), we get

l(T)2

T2 ⋅ Tu
∫

K

0
|𝛾j,j(x)|ess sup

x<𝜉<x+u
|𝛾 ′i,i(𝜉)|dx ≤ cu l(T)2

T
.

Now, the best possible rate l(T) that one can have is
√

T, giving supT≥T0

l(T)2

T
< ∞. Similarly, we

have

∫

T

K
|𝛾j,j(x)|ess sup

x<𝜉<x+u
|𝛾 ′i,i(𝜉)|dx ≤ c

∫

T

K
h(x)2dx ≤ c T

l(T)2

by assumption. Treating the rest of the terms similarly concludes the proof. ▪

The proof of Theorem 5 is now rather straightforward.

Proof of Theorem 5. By Cramer–Wold device it suffices to prove the convergence of linear com-
binations, and then the tightness follows from Proposition 2. In order to obtain convergence of
multidimensional distributions, we have to prove that all the combinations of the form

√
T

d∑

k=1
a⊤

k vec(�̂�T(𝜏k) − 𝛾(𝜏k))

converges toward
∑d

k=1a⊤

k X
𝜏k , where ak are some n2-dimensional vectors. Now the above expres-

sion can be written as

1
√

T∫

T

0

d∑

k=1

n∑

i,j=1
a(i,j)k

[

U (i)
r+𝜏k

U (j)
r − 𝛾i,j(𝜏k)

]

dr,
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and thus the convergence toward a Gaussian limit follows from the continuous-time
Breuer–Major theorem (see, e.g., Campese et al., 2020 and references therein) together with the
fact that now ∫ ∞0 ||𝛾(s)||2ds < ∞. This completes the proof. ▪

Finally, we verify the result for multidimensional fractional Ornstein–Uhlenbeck process.

Proof of Corollary 2. Let Hmax = max1≤i≤n Hi and Hmin = min1≤i≤n Hi. We prove that asymptoti-
cally, as t →∞, we have

||𝛾(t)|| = 
(

t2Hmax−2)
, (A22)

||𝛾 ′(t)|| = 
(

t2Hmax−2)
, (A23)

and that ||𝛾 ′(t)|| = 
(
max

(
t2Hmin−1

, 1
))

for t ≤ K with K fixed. Since Hmax < 3∕4 and Hmin > 0,
the statement then follows from Theorem 5. For this, let g be an auxiliary function such that
g(r)∕r → 0 and log r∕g(r)→ 0. Then it follows that r4−2Hmax e−cg(r) → 0 for all c > 0. We begin by
showing (A22). We divide the expression (A21) for 𝛾(r) into

Θ
2 ∫

−g(r)

−∞ ∫

−g(r)

−∞
eΘx (v(x + r) − v(r) + v(r − s) − v(x + r − s)) eΘsΘdxds (A24)

Θ
2 ∫

0

−g(r)∫

0

−g(r)
eΘx (v(x + r) − v(r) + v(r − s) − v(x + r − s)) eΘsΘdxds. (A25)

Θ
2 ∫

0

−g(r)∫

−g(r)

−∞
eΘx (v(x + r) − v(r) + v(r − s) − v(x + r − s)) eΘsΘdxds. (A26)

Θ
2 ∫

−g(r)

−∞ ∫

0

−g(r)
eΘx (v(x + r) − v(r) + v(r − s) − v(x + r − s)) eΘsΘdxds. (A27)

Since r is large, we obtain for (A25) that

vi,i(x + r) − vi,i(r) + vi,i(r − s) − vi,i(x + r − s)
= |x + r|2Hi − r2Hi + |r − s|2Hi − |x + r − s|2Hi

= r2Hi

((

1 + x
r

)2Hi
+
(

1 − s
r

)2Hi
− 1 −

(

1 + x − s
r

)2Hi
)

= r2Hi

(



((x
r

)2
)

+ 
(( s

r

)2
))

, when Hi ≠
1
2

and

vi,i(x + r) − vi,i(r) + vi,i(r − s) − vi,i(x + r − s) = 0, when Hi =
1
2
.

Hence

Θ
2 ∫

0

−g(r)∫

0

−g(r)
eΘx (v(x + r) − v(r) + v(r − s) − v(x + r − s)) eΘsΘdxds

= Θ
2

r2Hmax

∫

0

−g(r)∫

0

−g(r)
eΘx

(



((x
r

)2
)

+ 
(( s

r

)2
))

diag
(

1Hi≠
1
2
r2(Hi−Hmax)

)

eΘsΘdxds,
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and taking the norm gives

|
|
|
|
|

|
|
|
|
|

Θ
2 ∫

0

−g(r)∫

0

−g(r)
eΘx (v(x + r) − v(r) + v(r − s) − v(x + r − s)) eΘsΘdxds

|
|
|
|
|

|
|
|
|
|

≤ Cr2Hmax−2
∫

0

−g(r)∫

0

−g(r)
e𝜆min(x+s)(x2 + s2)dxds = (r2Hmax−2).

Next, we study (A24). We have four terms from which one satisfies

|
|
|
|
|

|
|
|
|
|
∫

−g(r)

−∞ ∫

−g(r)

−∞
eΘxv(r − s)eΘsΘdxds

|
|
|
|
|

|
|
|
|
|

≤ Ce−𝜆ming(r)
∫

−g(r)

−∞
e𝜆mins(r − s + 1)2ds

= 
(

e−𝜆ming(r)r2) = 
(

r2Hmax−2) (A28)

by our choice of g(r). By utilizing the exponential decay similarly with the remaining three terms,
and with (A26) and (A27), proves (A22). Let us next consider the derivative 𝛾 ′(r). We first observe
that, by representation (A20), the matrix 𝛾(r) is continuously differentiable except at the origin,
and we have

||𝛾 ′(r)|| = 
(
max

(
r2Hmin−1

, 1
))

as r → 0. To prove (A23), by a standard application of dominated convergence theorem, we
express 𝛾 ′(r) as the sum of

Θ
2 ∫

−g(r)

−∞ ∫

−g(r)

−∞
eΘx (v′(x + r) − v′(r) + v′(r − s) − v′(x + r − s)

)
eΘsΘdxds,

Θ
2 ∫

0

−g(r)∫

0

−g(r)
eΘx (v′(x + r) − v′(r) + v′(r − s) − v′(x + r − s)

)
eΘsΘdxds,

Θ
2 ∫

0

−g(r)∫

−g(r)

−∞
eΘx (v′(x + r) − v′(r) + v′(r − s) − v′(x + r − s)

)
eΘsΘdxds,

Θ
2 ∫

−g(r)

−∞ ∫

0

−g(r)
eΘx (v′(x + r) − v′(r) + v′(r − s) − v′(x + r − s)

)
eΘsΘdxds.

Now all terms can be treated similarly as (A24), (A25), (A26), and (A27), which concludes the
proof. ▪
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