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Abstract
The stability of amino acids in solutions containing electrolytes and the effect of ambi-
ent pH on their biological activity is an important research area. In this research work, 
the volumetric and transport properties of ionic liquid (IL) aqueous solution with special 
performance of 1-(2-carboxyethyl)-3-methylimidazolium chloride ([HOOCEMIM][Cl]) 
were studied. The selected IL acts as an electrolyte and allows the study of systems con-
taining amino acids at acidic pH. In this work, the density, speed of sound and viscosity 
of binary and ternary solutions of IL in aqueous solution of amino acids in the structure 
of proteins, namely l-serine and l-threonine within IL molality range of (0.05, 0.07 and 
0.09 mol·kg−1) were measured at 298.15 K. From these quantities, apparent molar volume, 
limiting apparent molar volume, apparent molar isentropic compression, limiting apparent 
molar isentropic compression, transfer standard volumes for amino acids from water to the 
aqueous IL solutions and viscosity B-coefficients were calculated using the equations of 
Redlich–Meyer and Jones–Dole. Close examination of literature indicates that there is no 
data for water activity for solution of l-serine + H2O at 308.15 and 318.15 K. In this way 
water activity, osmotic coefficient and vapor pressure were measured and using the interac-
tion parameters of Wilson, NRTL, NRF-NRTL and UNIQUAC models, activity coefficient 
values of l-serine calculated.
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1  Introduction

The advancement of biotechnology has largely led to the production of many biomolecules, 
which has led to the development of effective methods for the separation, concentration 
and purification of biomolecules. Biomolecules are complex molecules whose behavior in 
the mixture is affected by many factors such as pH, chemical structure, surface charge dis-
tribution, solvent properties, electrolyte type and concentration and even the presence of 
other biomolecules [1, 2]. Among these factors, the interaction of biomolecules with elec-
trolytes has a potential application in the processes of separation and concentration of bio-
molecules [3, 4]. Many separation processes of biomolecules, such as adding electrolyte, 
which is one of the simplest methods of protein precipitation, are widely used in biotech-
nology and pharmaceutical industries [5, 6]. Also, the extraction of reverse micelles of pro-
teins and amino acids with an electrolyte or solvents that have recently received attention is 
directly related to the interaction of biomolecules with electrolytes [7, 8]. Investigating the 
nature of these interactions is very important in designing suitable separation processes. 
Therefore, the interaction of biomolecules with electrolytes plays a central role in the phys-
icochemical properties of these systems. Due to the complex three-dimensional structure 
of protein, which makes it difficult to investigate the effect of solvent on these macromol-
ecules, interpreting the behavior of proteins by model compounds such as amino acids and 
peptides can be a valuable clue for understanding the behavior of biomolecules [9, 10].

Today, ionic liquids (ILs) as organic electrolytes and green solvents have a significant 
effect on many biochemical and chemical processes [11]. Therefore, due to the increasing 
importance and use of ILs, these compounds are a suitable option for studying the thermo-
dynamic properties of amino acids due to their unique properties. Also, investigating and 
understanding the nature of the interaction of these compounds with amino acids is very 
important in designing suitable processes for the separation of amino acids, peptides and 
biomolecules. Of course, the design of these processes requires extensive and systematic 
studies of thermodynamic properties of these systems.

In the present work, the studied ionic liquid is functionalized by –COOH. Close exami-
nation of literature indicates that, water activity and solubility of 1-(2-carboxyethyl) 
-3-methylimidazolium chloride ([HOOCEMIM][Cl]) in presence of l-serine and l-threo-
nine have been investigated in our previous work [12, 13] but no volumetric and transport 
data are available for these systems. However, volumetric and transport properties of l-ser-
ine and l-threonine in binary and ternary aqueous solutions of other ILs were determined 
in several works [14–21]. We found that, the studied ionic liquid promoted remarkable 
changes in the solubility of the studied amino acid by reducing the pH of the solution [12].

In this work, the density, speed of sound and viscosity of binary and ternary solutions 
of IL in aqueous solution of amino acids in the structure of proteins, namely l-serine and 
l-threonine within IL molality range of (0.05, 0.07 and 0.09 mol·kg−1) were measured at 
298.15. From these quantities, apparent molar volume, limiting apparent molar volume, 
apparent molar isentropic compression, limiting apparent molar isentropic compression, 
transfer standard volumes for amino acids from water to the aqueous IL solutions and 
viscosity B-coefficients were calculated using the equations of Redlich–Meyer [22] and 
Jones–Dole [23]. Close examination of literature indicates that there is no data for water 
activity for solution of l-serine + H2O at 308.15 and 318.15 K. In this way water activity, 
osmotic coefficient and vapor pressure were measured and using the interaction parameters 
of Wilson [24], NRTL [25], NRF-NRTL [26] and UNIQUAC [27] models activity coef-
ficient values of l-serine in aqueous solution were calculated.
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2 � Experimental Section

2.1 � Materials

The TSIL has been synthesized. The synthesis method is described in detail in our pre-
vious work [12] and its specifications are given in Table  1. TSIL is a brownish yellow 
solid with melting point of 472.15 K. Other materials used in this research work, l-serine 
and l-threonine amino acids with molecular mass of 105.09 and 119.12, respectively, and 
in mass fraction purity > 0.99, are manufactured by Merck. These amino acids were used 
without further purification. Double distilled and deionized water was used.

2.2 � Apparatus and Procedure

Densities and sound velocities were continuously, simultaneously, automatically meas-
ured using a commercial density and sound velocity measurement apparatus (Anton Paar 
DSA 5000 densimeter and sound velocity analyzer). Both of speed of sound and density 
are extremely sensitive to temperature, so it was kept constant within ± 0.001 K using the 
Peltier Method. This device determines the density of solutions by electronically measur-
ing the frequency of an oscillating system at the approximate frequency of 3 MHz. The 
uncertainties of density and speed of sound data measurement by this device is equal to 
0.15  kg·m−3 and 0.5  m·s−1, respectively. The apparatus was calibrated with double dis-
tilled deionized and degassed water, and dry air at atmospheric pressure. All solutions were 
degassed before measurement. The solutions were prepared by weighing with an analytical 
balance (Shimadzu, 321–34,553, Shimadzu) with an uncertainty of ± 10–7 kg. Before each 
series of measurements, the device was calibrated using distilled water and dry air.

In this work, the viscosity of the solutions is measured using an Ubbelohde viscom-
eter suspended in a water bath (Julabo, MD-18  V, Germany). This device is able to 
keep the temperature constant to ± 0.01  K. To make the temperature of the bath uni-
form and stabilize the temperature better, we connect it to another thermostat (Huber, 
D-77656, Germany). The dynamic viscosity, η, was calculated by the following rela-
tion of η = dK(t−θ), where t is the flow time; K is the viscometer constant; θ is the 

Table 1   Characteristics of ionic liquid 1-(2-carboxyethyl)-3-methylimidazolium chloride [HOOCEMIM]
[Cl]

Structure:

Name: 1-(2-Carboxyethyl)-3-methylimidazolium chloride
Molecular wight 190.60
Purity: 98%
13C NMR (100 MHz, DMSO-d6): δ (ppm): 171.82, 137.56, 123.76, 122.87, 45.25, 35.96, 34.55
1H NMR (400 MHz, DMSO-d6): δ (ppm): 8.93 (s, 1H), 7.62 (s, 1H), 7.43 (s, 1H), 5.81 (bs, 

COOH), 4.37 (t, J = 5.6, 2H), 3.84 (s, 3H), 2.85 (t, J = 5.6, 
2H)

FT-IR (cm−1): 3153, 2932, 1734, 1575, 1424, 1168, 633
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Hagenbach correction factor; and d is the density. The flow times were measured using a 
stopwatch. The precision of the used stopwatch was 0.01 s. The viscometer constant, K, 
is determined by calibrating at working temperatures with distilled water using viscosity 
values from the literature. The uncertainty for the dynamic viscosity determination was 
estimated to be ± 0.006 mPa·s. Each measurement was repeated five times.

The isopiestic method is a simple but highly accurate method for measuring the vapor 
pressure of a solution with a non-volatile solute, through equilibrium with a solution 
with a known vapor pressure (as a reference). The isopiestic device used in this research 
work contained two types of aqueous solution (NaCl as a reference and amino acid sam-
ple) which are in contact with each other through the vapor phase and are in thermal 
contact through an intermediate. The vapor space is emptied of air so that it contains 
only solvent vapor. Normally, the time needed to establish an equilibrium in the system 
is at least one week and more time is needed for dilute solutions. Equilibrium occurs 
when the differences between the mass fractions of each of the two repetitions is less 
than 0.01 %. The bath of water containing a Julabo temperature controller (Julabo, MB, 
Germany) was used to keep the isopiestic system at T = 308.15 and 318.15 K with an 
accuracy of 0.1 K. It is estimated that the standard uncertainty of solvent activity to be 
0.008.

3 � Results and Discussion

The measured density, speed of sound and viscosity data for binary systems of 
[HOOCEMIM][Cl] + H2O and ternary systems of [HOOCEMIM][Cl] +  l-serine + H2O 
and [HOOCEMIM][Cl] + L-threonine + H2O at a temperature of 298.15 K are reported 
in Tables 2, 3, 4 and 5. Using these data and the following relations, the apparent molar 
volume ( V

�
 ), isentropic compressibility ( �S ) and apparent molar isentropic compression 

( KS,Φ ) of solutions considered are obtained, and the relevant results are given in these 
tables:

Table 2   Molality (m), density (d), speed of sound (u), apparent molar volume ( V
�
 ), isentropic compress-

ibility ( �s ) and apparent molar isentropic compression ( KS,Φ ) for [HOOCEMIM][Cl] + H2O solution at 
298.15 K and total experimental pressure (ptotal) of 85.7 kPa

Standard uncertainties (σ) for each variable are σ(m) = 0.0001  mol·kg−1; σ(d) = 0.15  kg·m−3; 
σ(u) = 0.5 m·s−1; σ(ptotal) = 6 kPa; σ(T) = 0.01 K

mIL/ (mol⋅kg−1) 10–3 d/ (kg⋅m−3) u/ (m⋅s−1) 106 Vφ/m3·mol−1 1010 ⋅ �s / (Pa−1) 1014 ⋅ KS,Φ / (m3⋅ 
mol−1⋅Pa−1)

0.0000 0.99704 1496.6 4.48
0.0355 0.99869 1500.2 144.1 4.45  − 1.65
0.0536 0.99953 1502.1 144.22 4.43  − 1.63
0.0827 1.00083 1504.9 144.51 4.41  − 1.58
0.0957 1.00140 1506.2 144.72 4.40  − 1.57
0.1105 1.00206 1507.7 144.76 4.39  − 1.56
0.1278 1.00282 1509.4 144.88 4.38  − 1.55
0.1422 1.00345 1510.8 144.90 4.37  − 1.54
0.1588 1.00418 1512.5 144.91 4.35  − 1.53
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where m, M, d, d0 and �S0 are molality of solution (in mol·kg−1), molar mass of the IL (in 
kg·mol−1), densities (in kg·m−3) of solution and pure solvent and �S0 the isentropic com-
pressibility of pure solvent, respectively. The apparent molar volume at infinite dilution 
( V0

�
 ) is obtained by fitting the values of the apparent molar volume in the dilute region 

with the Redlich–Meyer equation [22], that is, Eq. 4. At infinite dilution, each ion is almost 
surrounded by solvent molecules and is separated from other ions. Therefore, the values 
are not affected by ion–ion interactions and this quantity will be a measure of ion–solvent 
interactions [28].

In this equation, Sv and Bv are adjustable parameters. The values of V0
�
 , Sv and Bv at each 

temperature are reported in Table  6. Apparent molar isentropic compressions in dilute 
region, m1 < 0.1 mol·kg− 1 ( K0

S,Φ
 ) for the studied binary and ternary systems can be obtained 

by fitting the apparent molar isentropic compression values for IL aqueous solutions at the 
studied temperature using Eq. 5. Calculated values for K0

S,Φ
 are reported in Table 7.

where Sk and Bk are the fitting coefficients. The experimental and calculated values of the 
apparent molar volume from the Redlich–Meyer equation versus the molality of the IL for 
the binary aqueous IL system are shown in Fig.  1 and are compared with the results of 
our previous work on 1-carboxymethyl-3-methylimidazolium chloride ([HOOCMMIM]

(1)V
�
=

M

d
−

(

d − d0
)

mdd0
,

(2)�S =
1

du2
,

(3)KS,Φ =

(

�Sd0 − �S0d
)

mdd0
+

�SM

d
,

(4)V
�
= V0

�
+ Svm

1∕2 + Bvm.

(5)KS,Φ = K0
S,Φ

+ Skm
1∕2 + Bkm.

Table 3   Molarity (cIL), 
density (d) and viscosity (η) 
for [HOOCEMIM][Cl] + H2O 
solution at 298.15 K and total 
experimental pressure (ptotal) of 
85.7 kPa

Standard uncertainties (σ) for each variable are 
σ(cIL) = 0.0001  mol·kg−1; σ(d) = 0.15  kg·m−3; σ(ptotal) = 6  kPa; 
σ(η) = 0.006; σ(T) = 0.01 K

cIL/ (mol⋅dm−3) 10–3⋅d/ (kg⋅m−3) η/ (mPa⋅s)

([HOOCEMIM][Cl] + H2O)
 0.0352 0.99869 0.895
 0.0530 0.99953 0.901
 0.0815 1.00083 0.910
 0.0941 1.00140 0.914
 0.1084 1.00206 0.919
 0.1250 1.00206 0.926
 0.1389 1.00345 0.932
 0.1548 1.00418 0.939



348	 Journal of Solution Chemistry (2023) 52:343–363

1 3

Table 4   Molality (m), density (d), speed of sound (u), apparent molar volume ( V
�
 ), isentropic compress-

ibility ( �
s
 ) and apparent molar isentropic compression ( K

S,Φ ) for [HOOCEMIM][Cl] + l-serine + H2O and 
[HOOCEMIM][Cl] + l-threonine + H2O solutions at 298.15  K and total experimental pressure (ptotal) of 
85.7 kPa

mamino acid/(mol⋅kg−1) 10–3⋅d/ (kg⋅m−3) u/ (m⋅s−1) 106 V
�
/m3⋅mol−1 1010⋅�

s
 / (Pa−1) 1014⋅K

S,Φ / (m3⋅ 
mol−1⋅Pa−1)

l-serine in aqueous solutions of 0.05 mol⋅kg−1 [HOOCEMIM][Cl]
 0.0000 0.99938 1502.0 4.44
 0.0484 1.00151 1505.0 60.96 4.41  − 2.98
 0.0678 1.00237 1506.3 60.79 4.40  − 2.98
 0.1029 1.00391 1508.5 60.74 4.38  − 2.97
 0.1386 1.00548 1510.7 60.67 4.36  − 2.95
 0.1716 1.00693 1512.7 60.64 4.34  − 2.94
 0.2122 1.00870 1515.2 60.61 4.32  − 2.93
 0.2616 1.01084 1518.3 60.57 4.29  − 2.91
 0.3009 1.01255 1520.7 60.53 4.27  − 2.89

l-serine in aqueous solutions of 0.09 mol⋅kg−1 [HOOCEMIM][Cl]
 0.0000 1.00110 1505.7 4.41
 0.0565 1.00360 1509.4 60.69 4.37  − 3.01
 0.0700 1.00420 1510.2 60.60 4.37  − 3.00
 0.0858 1.00490 1511.2 60.56 4.36  − 2.99
 0.0987 1.00547 1512.0 60.53 4.35  − 2.98
 0.1421 1.00738 1514.8 60.48 4.33  − 2.97
 0.1762 1.00888 1516.9 60.44 4.31  − 2.96
 0.2123 1.01046 1519.2 60.39 4.29  − 2.94
 0.3658 1.01712 1528.7 60.30 4.21  − 2.89

l-threonine in aqueous solutions of 0.05 mol⋅kg−1 [HOOCEMIM][Cl]
 0.0000 0.999225 1501.7 4.44
 0.0409 1.000882 1505.0 78.51 4.41  − 3.17
 0.0609 1.001718 1506.6 78.02 4.40  − 3.15
 0.0749 1.002303 1507.7 77.81 4.39  − 3.12
 0.0908 1.002992 1508.9 77.37 4.38  − 3.11
 0.1007 1.003411 1509.7 77.26 4.37  − 3.09
 0.1306 1.004706 1511.9 76.76 4.35  − 3.06
 0.1515 1.005601 1513.4 76.57 4.34  − 3.03
 0.1691 1.006354 1514.7 76.44 4.33  − 3.01
 0.1992 1.007616 1516.9 76.38 4.31  − 2.98

l-threonine in aqueous solutions of 0.07 mol⋅kg−1 [HOOCEMIM][Cl]
 0.0000 1.00018 1503.7 4.42
 0.0392 1.00182 1507.0 77.12 4.40  − 3.34
 0.0610 1.00275 1508.8 76.87 4.38  − 3.32
 0.0752 1.00336 1509.9 76.58 4.37  − 3.3
 0.0904 1.00402 1511.1 76.40 4.36  − 3.29
 0.1021 1.00452 1512.1 76.30 4.35  − 3.27
 0.1291 1.00567 1514.2 76.18 4.34  − 3.24
 0.1516 1.00662 1515.9 76.13 4.32  − 3.21
 0.1684 1.00734 1517.2 76.07 4.31  − 3.19
 0.2041 1.00885 1519.9 76.00 4.29  − 3.15
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Table 4   (continued)
Standard uncertainties (σ) for each variable are σ(m) = 0.0001  mol·kg−1; σ(d) = 0.15  kg·m−3; 
σ(u) = 0.5 m·s−1; σ(ptotal) = 6 kPa; σ(T) = 0.01 K

Table 5   Molarity (cIL), density (d) and viscosity (η) for [HOOCEMIM][Cl] + l-serine + H2O and [HOOCE-
MIM][Cl] + l-threonine + H2O solutions at 298.15 K and total experimental pressure (ptotal) of 85.7 kPa

Standard uncertainties (σ) for each variable are σ(cIL) = 0.0001  mol·kg−1; σ(d) = 0.15  kg·m−3; 
σ(ptotal) = 6 kPa; σ(η) = 0.006; σ(T) = 0.01 K

camino acid / (mol⋅dm−3) 10–3⋅d/ (kg⋅m−3) η/ (mPa⋅s)

l-serine in aqueous solutions of 0.05 mol⋅kg−1 [HOOCEMIM][Cl]
 0.0000 0.99938 0.908
 0.0482 1.00150 0.917
 0.0675 1.00238 0.922
 0.1022 1.00390 0.931
 0.1374 1.00549 0.939
 0.1697 1.00688 0.946
 0.2953 1.01249 0.972

l-serine in aqueous solutions of 0.09 mol·kg−1 [HOOCEMIM][Cl]
 0.0000 1.00110 0.922
 0.0564 1.00360 0.928
 0.0698 1.00420 0.933
 0.0854 1.00490 0.937
 0.0982 1.00547 0.940
 0.1745 1.00888 0.960
 0.2098 1.01046 0.970
 0.3583 1.01712 1.005

l-threonine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl]
 0.0000 0.99922 0.908
 0.0606 1.00172 0.920
 0.0744 1.00230 0.925
 0.0901 1.00299 0.931
 0.0998 1.00341 0.936
 0.1292 1.00471 0.948
 0.1496 1.00560 0.957
 0.1668 1.00635 0.963
 0.1961 1.00762 0.973

l-threonine in aqueous solutions of 0.07 mol·kg−1 [HOOCEMIM][Cl]
 0.0000 1.00018 0.915
 0.0391 1.00182 0.928
 0.0748 1.00336 0.939
 0.0898 1.00402 0.944
 0.1013 1.00452 0.947
 0.1499 1.00662 0.962
 0.1663 1.00734 0.967
 0.2010 1.00885 0.977
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[Cl]) [14]. Also, to better show the effect of ILs on the studied amino acids, the experi-
mental and calculated values of apparent molar volume from Eq. 4 were drawn according 
to the molality of amino acids for ternary systems [HOOCEMIM][Cl] +  l-serine + H2O 
and [HOOCEMIM][Cl] + l-threonine + H2O in different molality of the studied IL and 
temperature in Fig. 2. As can be seen from Table 2 and Fig. 1, the apparent molar volume 
increases with increasing concentration for both ionic liquids. The increase in the apparent 
molar volume with the increase in molality is the result of the decrease in the water mol-
ecules around the IL. The V

�
 of [HOOCEMIM][Cl] is larger than that of [HOOCMMIM]

[Cl], which is due to the bulkiness of the carboxyethyl group compared to carboxymethyl. 
Figure 2 and Table 4 show that the apparent molar volume decreases with the increase of 
amino acids in the IL solution. This decrease in V

�
 can be attributed to the phenomenon 

that the addition of amino acid to the system (IL + water) causes strong interaction between 

Table 6   Limiting apparent molar volume ( V0

�
 ) and adjustable parameters SV and BV of Eq.  4 along with 

standard deviations ( �(V
�
) ) for [HOOCEMIM][Cl] + H2O, [HOOCEMIM][Cl] + L-serine + H2O and 

[HOOCEMIM][Cl] + l-threonine + H2O solutions at 298.15 K

106⋅V0

�
 (m3·mol−1) 106⋅SV (m3·kg·mol−2) 106⋅BV (m3·kg1/2 mol−3/2) 106⋅�(V

�
) 

(m3·mol−1)

[HOOCEMIM][Cl] + H2O
143.89 − 1.14 11.69 0.04
l-serine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl]
61.52 − 3.35 2.90 0.03
l-serine in aqueous solutions of 0.09 mol·kg−1 [HOOCEMIM][Cl]
61.15 − 2.47 1.78 0.01
l-threonine in aqueous solutions of 0.05 mol·kg−1 [HOOCMMIM][Cl]
82.14 − 21.35 18.51 0.07
l-threonine in aqueous solutions of 0.07 mol·kg−1 [HOOCMMIM][Cl]
79.52 − 15.18 16.39 0.04

Table 7   Limiting apparent molar isentropic compression ( K0

S,Φ
 ) and adjustable parameters S

�
 and B

�
 of 

Eq. 5 along with standard deviations ( �(K
S,Φ) ) for [HOOCEMIM][Cl] + H2O, [HOOCEMIM][Cl] + l-ser-

ine + H2O and [HOOCEMIM][Cl] + l-threonine + H2O solutions at 298.15 K

1014⋅K0

S,Φ
 

(m3·mol−1·Pa−1)
1014⋅S

�
 (kg1/2·m3mol−3/2·Pa−1) 1014⋅B

�
 (kg·m3·mol−2·Pa−1) 1014 �(K

S,Φ) 
(m3·mol−1·Pa−1)

[HOOCEMIM][Cl] + H2O
 − 1.75 0.41 0.50 0.006
l-serine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl]
 − 2.98  − 0.13 0.52 0.004
l-serine in aqueous solutions of 0.09 mol·kg−1 [HOOCEMIM][Cl]
 − 3.05 0.15 0.18 0.003
l-threonine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl]
 − 3.26 0.28 0.80 0.004
l-threonine in aqueous solutions of 0.07 mol·kg−1 [HOOCEMIM][Cl]
 − 3.36  − 0.21 1.48 0.005
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the ionic species of the IL and the dipolar ion part of amino acid molecules as well as water 
molecules. More information about these interactions can be obtained from the standard 
volumes of transfer ( ΔtV

0 ) which is calculated using the apparent molar volume at infinite 
dilution. The ΔtV

0 of amino acids from water to aqueous solution of IL is calculated from 
the following relationship:

The values of V0
�
 for amino acids l-serine and l-threonine in aqueous solution and 

temperature of 298.15 K are 60.6 and 76.81 cm3.mol−1, respectively, which are reported 

(6)ΔtV
0(water → aqueous IL) = V0

�
(in aqueous IL) − V0

�
(inwater).

Fig. 1   Experimental and calcu-
lated values of apparent molar 
volume ( V

�
 ) from Redlich–

Meyer equation versus the IL 
molality for aqueous binary 
solutions of ILs at 298.15 K: 
filled triangle, [HOOCEMIM]
[Cl] + H2O; filled diamond, 
[HOOCMMIM][Cl] + H2O from 
our previous work [14]; and 
the lines calculated from the 
Redlich–Meyer (Eq. 4)

Fig. 2   Experimental and calculated values of apparent molar volume ( V
�
 ) from Redlich-Meyer equation 

versus the amino acid molality for aqueous ternary solutions at 298.15 K and different molality of IL (mIL): 
filled diamond, mIL = 0.05  mol·kg−1 for [HOOCEMIM][Cl] + l-serine + H2O; × , mIL = 0.09  mol·kg−1 for 
[HOOCEMIM][Cl] + l-serine + H2O; filled circle, mIL = 0.05  mol·kg−1 for [HOOCEMIM][Cl] + l-threo-
nine + H2O; filled Square, mIL = 0.07  mol·kg.−1 for [HOOCEMIM][Cl] + l-threonine + H2O; and the lines 
calculated from the Redlich–Meyer (Eq. 4)
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in the reference [29]; the obtained results for the ΔtV
0 are given in Table 8. This Table 

clearly shows that ΔtV
0 is positive. Positive values ​​can be justified using the cosphere over-

lap model [28, 30]. Based on this model, interactions between IL and amino acids can be 
divided into four categories [30]:

1.	 Hydrophilic–ion interactions.
2.	 Hydrophilic–hydrophilic interactions.
3.	 Interaction between hydrophilic and hydrophobic.
4.	 Hydrophobic–hydrophobic interaction.

According to this model, the first two types of interactions lead to positive and the third 
and fourth types of interactions lead to negative values [30]. In general, it can be said that 
it will be positive when the sum of the interactions of the first and second categories are 
dominant compared to the interactions of the third and fourth categories. These interactions 
cause water molecules to be released in the solution and consequently it will be positive 
[30]. The positive values for the systems [HOOCEMIM][Cl] +  l-serine/ l-threonine + H2O 
indicates the predominance of the first two classes of interactions to the interactions are in 
the third and fourth categories.

Table 2 shows that the obtained values for apparent molar isentropic compression are 
negative and become less negative as the concentration of IL increases. The negative val-
ues indicate that the compressibility of the hydration layer around the ions is lower than the 
bulk of the solvent, and this is due to the hydration of the ions at low concentrations [31]. 
By increasing the concentration of the IL, the ion–solvent interaction becomes weaker and 
the compressibility of the water molecules around the dissolved ions increases, and as a 
result, it becomes less negative. In Fig. 3, the experimental and calculated values of appar-
ent molar isentropic compression from Eq. 3 are plotted versus the IL molality and com-
pared with the results obtained from our previous work for [HOOCMMIM][Cl] [14]. This 
figure shows that KS,Φ becomes less negative with increasing chain length. This issue can 
be attributed to the reduction of the ion–solvent interactions due to the reduction of the 
hydration of the IL and the electrostatic interaction with water, resulting in the release of 
some water molecules into the solution mass [32]. The plot of the change of KS,Φ in differ-
ent molality of IL is shown in Fig. 4 for ternary systems. In general, K0

S,Φ
 for ionic species 

are large negative, positive for hydrophobic solutes, and small negative for polar species 
[33]. The results obtained in Table 7 show that all the values calculated for K0

S,Φ
 are mar-

ginally negative. Negative values indicate that the water molecules surrounding the solute 
are more resistant to condensation than the solution [33].

Table 8   Standard volumes of transfer ( Δ
t
V
0 ) of amino acid transfer from water to aqueous solutions of 

[HOOCEMIM][Cl] at 298.15 K

System 106⋅Δ
t
V
0 ( 

m3·mol−1)

l-serine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl] 0.91
l-serine in aqueous solutions of 0.09 mol·kg−1 [HOOCEMIM][Cl] 0.54
l-threonine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl] 5.27
l- threonine in aqueous solutions of 0.07 mol·kg−1 [HOOCEMIM][Cl] 2.65
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The relative viscosity data ( �r ) of binary and ternary systems were fitted with the 
Jones–Dole model [23] of Eq. 6 in order to calculate the viscosity B-coefficients, which 
provides information about the solvent–solute interactions.

(7)�r =
�

�0

= 1 + Bc.

Fig. 3   Experimental and calcu-
lated values of apparent molar 
isentropic compression ( K

S,Φ ) 
from Eq. 5 versus the IL molality 
for aqueous binary solutions of 
ILs at 298.15 K: filled triangle, 
[HOOCEMIM][Cl] + H2O; 
filled diamond, [HOOCMMIM]
[Cl] + H2O from our previous 
work [14]; and the lines calcu-
lated from the Eq. 5

Fig. 4   Experimental and calculated values of apparent molar isentropic compression ( K
S,Φ ) from 

Eq.  5 versus the amino acid molality for aqueous ternary solutions at 298.15  K and different molal-
ity of IL (mIL): filled triangle, mIL = 0.05  mol·kg−1 for [HOOCEMIM][Cl] + l-serine + H2O; open cir-
cle, mIL = 0.09  mol·kg−1 for [HOOCEMIM][Cl] + l-serine + H2O; filled diamond, mIL = 0.05  mol·kg−1 
for [HOOCEMIM][Cl] + l-threonine + H2O; × , mIL = 0.07  mol·kg−1 for [HOOCEMIM][Cl] + l-threo-
nine + H2O; and the lines calculated from Eq. 5
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In this model, c and �0 are molarity and the viscosity of pure solvent where aqueous 
solution of IL is considered as a solvent in ternary systems. B-coefficients values along 
with standard deviation values ​​are reported in Table 9. As we know, Jones–Dole B-coeffi-
cient is a measure of ion–solvent interactions, and positive Jones–Dole coefficient values ​​
indicate that ion–solvent interactions are strong. In other words, the positive B-coefficient 
in the studied systems means that the solvent is a structure builder, i.e. solutes causes regu-
larization of the solvent structure [33]. Also, the standard deviations obtained for viscosity 
in Table 9 show the efficiency of Eq. 6 for fitting the viscosity values. Figure 5 shows the 
changes in the viscosity of the solutions in the studied systems according to their molar-
ity. The drawn lines show the viscosity calculated from Eq. 7 with the parameters listed in 
Table 9 and are in good agreement with the experimental viscosity data.

Using the isopiestic technique and with the following equation, the partial pressure of 
water (p) for aqueous systems of l-serine has been calculated at 308.15 and 318.15 K [34, 
35]:

In this equation information of water as the second virial coefficient ( Bm ) is calculated 
from the Rard and Platford equation [36]; the state equation of Saul and Wagner [37] is uti-
lized to estimate the vapor pressure ( pm ) of water; density of water [38] is utilized to esti-
mate the molar volume ( Vm ) of it. R and T are, respectively, universal constant of gases and 
absolute temperature. am is the water activity in the solutions studied which is calculated 
applying the following equation [34, 35]:

In this equation, �NaCl is the osmotic coefficients of aqueous solution of NaCl which 
can be estimated using the following equation proposed by Colin et al. [39]:

In Eq. 9 vNaCl , mNaCl and Mm are, respectively, total stoichiometric numbers of ani-
ons and cations in NaCl solutions, the molality of aqueous solution of NaCl and 
molecular mass of water. In Eq.  10, parameters adjusted by Colin et  al. (A, Q, B, C, 
D and E) have, respectively, values of 0.391942, 0.280069, 0.079776, 1.565033 × 10–3, 
−  2.048323 × 10–4 and 8.748618 × 10–6 at 298.15  K [39]. The experimental results 
of osmotic coefficient, activity and partial pressure of water for binary system l-ser-
ine + water at temperatures of 308.15 and 318.15  K were calculated and reported in 
Table  10. As can be seen in this table, with increase in the molality, the activity and 

(8)ln(p) = ln(ampm) −

(

Bm − Vm

)(

p − pm
)

RT
.

(9)am = exp(−vNaClmNaCl�NaClMm).

(10)
�NaCl = 1 − A

√

mNaCl

�

1 + 1.2
√

mNaCl)
−1 + QmNaCl exp(−2

√

mNaCl

�

+ BmNaCl + Cm
2
NaCl

+ Dm
3
NaCl

+ Em
4
NaCl

.

Table 9   Viscosity B coefficient along with standard deviations (σ(η)) for [HOOCEMIM][Cl] + H2O, 
[HOOCEMIM][Cl] + l-serine + H2O and [HOOCEMIM][Cl] + l-threonine + H2O solutions at 298.15 K

System B (dm3.mol−1) σ(η) (mPa·s)

[HOOCEMIM][Cl] in water 0.2681 0.002
l-serine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl] 0.2412 0.0009
l-serine in aqueous solutions of 0.09 mol·kg−1 [HOOCEMIM][Cl] 0.2409 0.004
l-threonine in aqueous solutions of 0.05 mol·kg−1 [HOOCEMIM][Cl] 0.3427 0.004
l- threonine in aqueous solutions of 0.07 mol·kg−1 [HOOCEMIM][Cl] 0.3421 0.001
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partial pressure of water decreases. Figures 6 and 7 show the effect of temperature on 
the activity and vapor pressure of the solvent for the l-serine system. The water activ-
ity data for 298.15 K is taken from our previous work [12]. According to these figures 
and Table  10, it is clear that the activity and partial pressure of water increases with 
the increase in temperature. The partial pressure is directly related to the activity of the 
solvent, the higher the activity of the solvent in the solution, the higher the vapor pres-
sure of the solvent. As can be seen from these figures, changes in vapor pressure due to 
temperature are more intense than activity.

Water activity data were fitted by local composition models (Wilson [24], NRTL 
[25], NRF-NRTL [26] and UNIQUAC [27]) using the following relation

where, xm and �cal
m

 are respectively the water mole fraction and water activity coefficient 
calculated by Flory–Huggins relation (FL) [41] and aforementioned local composition-
based models (LC) as ln�cal

m
= ln�FL

m
+ ln�LC

m
 . Flory–Huggins relation is as follow [41]:

where rJ is the number of polymer segments, subscript J denote the component J. XJ is the 
effective local mole fractions of species J and Xm = xm . The necessary equations of these 
models are given in the appendix. The results of fitting are given in Table 11 and the effi-
ciency of Wilson model is shown in Figs. 6 and 7. As can be seen from these figures and 
Table 11, the performance of all models is good in fitting the water activity data. The activ-
ity coefficients for the studied system were calculated by the considered local combination 
models and the results of the NRTL model as an example are shown in Fig. 8. As seen in 
this figure, the activity coefficient of amino acid increases with increasing temperature. 

(11)lnam = ln�cal
m

+ lnxm,

(12)ln�FL
m

= ln

(

X
m

x
m

)

+ 1 −
∑

J

X
J

r
J

Fig. 5   Experimental and calculated values of viscosity (η) from Eq.  7 versus the amino acid molar-
ity for aqueous ternary solutions at 298.15  K and different molality of IL (mIL): filled diamond, 
mIL = 0.05  mol·kg−1 for [HOOCEMIM][Cl] + l-serine + H2O; Δ, mIL = 0.09  mol·kg−1 for [HOOCEMIM]
[Cl] + l-serine + H2O; × , mIL = 0.05  mol·kg−1 for [HOOCEMIM][Cl] + l-threonine + H2O; filled circle, 
mIL = 0.07 mol·kg−1 for [HOOCEMIM][Cl] + l-threonine + H2O; and the lines calculated from Eq. 6
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This result is in accordance with the studies conducted by Romero et al. [40] on the effect 
of temperature on aliphatic amino acids. But there is no interpretation about the effect of 
temperature on the activity coefficient. It seems that with the increase in temperature, the 
values of the solute activity coefficient deviate less than the ideal state due to the decrease 
in the solute–solute interaction.

4 � Conclusion

The density, speed of sound and viscosity of binary and ternary solutions of 
(2-carboxyethyl)-3-methylimidazolium chloride ([HOOCEMIM][Cl]) in aqueous 
solution of amino acids in the structure of proteins, namely l-serine and l-threonine 
within ionic liquid (IL) molality range of (0.05, 0.07 and 0.09 mol·kg−1) were meas-
ured at 298.15  K. From these quantities, apparent molar volume, limiting appar-
ent molar volume, apparent molar isentropic compression, limiting apparent molar 

Table 10   Molality (m), osmotic 
coefficient (ϕ), water activity 
(am) and partial pressure of 
water (p) for (l-serine + H2O) 
at temperatures of 308.15 and 
318.15 K and total experimental 
pressure (ptotal) of 85.7 kPa

σ(am) = 0.008; σ(T) = 0.1  K; σ(p) = 0.005  kPa; σ(ptotal) = 6  kPa; 
(100.ur(m)) = 1; � is standard uncertainty and ur(m) is relative standard 
uncertainty of molality

ml-serine/(mol·kg−1) mNaCl/(mol·kg−1) ϕ am p/kPa

T = 308.15 K
 0.8347 0.4207 0.928 0.9861 5.497
 0.9250 0.4671 0.930 0.9846 5.489
 1.1212 0.5582 0.919 0.9816 5.472
 1.2083 0.5972 0.913 0.9803 5.465
 1.2523 0.6165 0.910 0.9797 5.462
 1.5691 0.7579 0.897 0.9750 5.435
 1.5960 0.7713 0.898 0.9745 5.433
 1.9015 0.9067 0.891 0.9699 5.407
 2.0137 0.9566 0.889 0.9683 5.398
 2.1420 1.0046 0.880 0.9666 5.388
 2.4218 1.0995 0.855 0.9634 5.371
 2.5457 1.1671 0.866 0.9610 5.357
 2.6296 1.2006 0.864 0.9599 5.351
 2.9549 1.3327 0.859 0.9553 5.325

T = 318.15 K
 0.9150 0.4665 0.936 0.9847 9.362
 0.9172 0.4566 0.914 0.9850 9.365
 1.1606 0.5637 0.894 0.9815 9.332
 1.2603 0.6156 0.900 0.9798 9.315
 1.3929 0.6819 0.904 0.9776 9.294
 1.7365 0.8373 0.895 0.9724 9.245
 1.7645 0.8534 0.898 0.9718 9.239
 1.8633 0.9064 0.906 0.9701 9.223
 2.0880 0.9603 0.858 0.9682 9.205
 4.5493 1.9296 0.832 0.9341 8.880
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isentropic compression, transfer standard volumes for amino acids from water to the 
aqueous IL solutions and viscosity B-coefficients were calculated using the equa-
tions of Redlich–Meyer and Jones–Dole. It was found that apparent molar volume 
( V

�
 ) decreases with the increase of amino acids in the IL solution. This decrease in 

V
�
 can be attributed to the phenomenon that the addition of amino acid to the sys-

tem (IL + water) causes strong interaction between the ionic species of the IL and the 
dipolar ion part of amino acid molecules as well as water molecules. In the systems 
of [HOOCEMIM][Cl] + l-serine/l-threonine + H2O, hydrophilic–ion interactions and 
hydrophilic–hydrophilic interactions are dominant compared to interactions of hydro-
philic–hydrophobic and hydrophobic–hydrophobic. The compressibility of the hydra-
tion layer around the ions is lower than the bulk of the solvent, and this is due to the 
hydration of the ions at low concentrations. By increasing the concentration of the 

Fig. 6   Solvent activity accord-
ing to amino acid molality 
(ml-serine) for binary system 
(l-serine + H2O) at different tem-
peratures: filled square, 298.15 K 
[42]; open triangle, 308.15 K; × , 
318.15 K; Lines calculated from 
the Wilson model

Fig. 7   partial pressure of water 
according to amino acid molal-
ity (ml-serine) for binary system 
(l-serine + H2O) at different tem-
peratures: filled square, 298.15 K 
[42]; open triangle, 308.15 K; × , 
318.15 K; Lines calculated from 
the Wilson model
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IL, the ion–solvent interaction becomes weaker and the compressibility of the water 
molecules around the dissolved ions increases. In ternary systems, the water molecules 
surrounding the solute are more resistant to condensation than the solution; and the 
solvent is a structure builder, i.e. solutes causes regularization of the solvent structure. 
Osmotic coefficient, water activity, vapor pressure and activity coefficient for l-ser-
ine + H2O at 308.15 and 318.15 K were measured and correlated with Wilson, NRTL, 
NRF-NRTL and UNIQUAC models. It is clear that the activity and partial pressure 
of water increases with the increase in temperature. The partial pressure is directly 
related to the activity of the solvent, the higher the activity of the solvent in the solu-
tion, the higher the vapor pressure of the solvent. With the increase in temperature, 
the values of the solute activity coefficient deviate less than the ideal state due to the 
decrease in the solute–solute interaction.

Appendix 1

Wilson Equation

The coefficient equation of the solvent for Wilson model [24] is as follow:

Table 11   Parameters of local composition models obtained from fitting the experimental data of water 
activity for the system of l-serine + H2O along with standard deviations (sd) at 308.15 and 318.15 K

Subscript m and w stand l-serine and water, respectively

sd =

�

∑

i
(a

exp
m −acal

m
)2

N
 where N, cal and exp are the number of data points, the calculated values and the exper-

imental data

308.15 K 318.15 K

Wilson

Emw (J·mol−1) Ewm (J·mol−1) 100.sd Emw (J·mol−1) Ewm (J·mol−1) 100.sd

 − 23,735.9587 36,445.5603 0.02  − 23,936.0603 36,710.9031 0.04
NRTL
τmw (J·mol−1) τwm (J·mol−1) τmw (J·mol−1) τwm (J·mol−1)
 − 2.3601 4.1214 0.02  − 2.3416 4.1126 0.04
NRF-NRTL
4.0036 3.8436 0.02  − 1.8889 3.8645 0.04
UNIQUAC​
∆umw (J·mol−1) ∆uwm (J·mol−1) ∆umw (J·mol−1) ∆uwm (J·mol−1)
 − 1056.9 1607.04 0.02  − 1009.898 1558.022 0.04
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Here, EmE , EEm , EsE , EEs , Esm and Ems are the adjustable parameters of Wilson model; R is 
the universal constant of gases; C is the coordination number of the model which was set 
to 10.

NRTL Equation

The activity coefficient equation of the solvent for NRTL model [25] is as follow:

(13)

ln �∗,Wilson
m

= − C ln(xm + exp(−
Esm

CRT
)xs + exp(−

EEm

CRT
)
(

xa + xc
)

−
Cxm

(

xa + xc + xs − exp(−
Esm

CRT

)

xs − exp(−
EEm

CRT
)
(

xa + xc
)

xm + exp(−
Esm

CRT
)xs + exp(−

EEm

CRT
)
(

xa + xc
)

+
Cxs

(

xs − exp(−
Ems

CRT

)

(

xa + xc + xs
)

+ exp(−
EEs

CRT
)
(

xa + xc
)

xs + exp(−
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)xm + exp(−
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)
(
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)

+
Cxa

(

xc + exp(−
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)

xs − exp(−
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(
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)

(
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)

(

xc + exp(−
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)
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+
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(

xa − exp(−
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)
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(

exp(−
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)
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CRT
))

(

xa + xs + xm
)

(

xa + exp(−
EsE

CRT

)

xs + exp(−
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Fig. 8   activity coefficient of 
l-serine (γm

*) calculated from 
NRTL model for binary system 
(l-serine + H2O) at different 
temperatures: filled diamond, 
298.15 K [42]; open square, 
308.15 K; × , 318.15 K; Lines 
calculated from the Wilson 
model
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Here, x is mole fraction; subscripts E, m and s denote IL, water and drug, respectively; � 
is non-randomness factor and in this work its values are set to 0.2 for obtaining the better 
fitting quality.�mE , �Em , �sE , �Es , �sm and �ms are the adjustable parameters of NRTL model.

NRF‑NRTL Equation

The activity coefficient equation of the solvent for NRF-NRTL model [26] is as follow:

where the nonrandomness factor values are set to 0.3 for obtaining the better fitting qual-
ity in this work.�mE , �Em , �sE , �Es , �sm and �ms are the adjustable parameters of NRF-NRTL 
model.

UNIQUAC Equation

The activity coefficient equation of the solvent for UNIQUAC model [27] is as 
follow:Where

(14)
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z which is the coordination number whose value is equal to 10; and the values of r and q 
which are parameters related to size can be calculated by the group theory.
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