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ABSTRACT: Finding low-energy conformers of organic molecules
is a complex problem due to the flexibilities of the molecules and the
high dimensionality of the search space. When such molecules are
on nanoclusters, the search complexity is exacerbated by constraints
imposed by the presence of the cluster and other surrounding
molecules. To address this challenge, we modified our previously
developed active learning molecular conformer search method based
on Bayesian optimization and density functional theory. Especially,
we have developed and tested strategies to avoid steric clashes
between a molecule and a cluster. In this work, we chose a cysteine
molecule on a well-studied gold−thiolate cluster as a model system to test and demonstrate our method. We found that cysteine
conformers in a cluster inherit the hydrogen bond types from isolated conformers. However, the energy rankings and spacings
between the conformers are reordered.

■ INTRODUCTION
Organic−inorganic hybrid systems composed of a metal core
and organic molecules have become increasingly important in
modern nanotechnology. The physical and chemical properties
of the organic−inorganic heterostructures are highly tunable
by, e.g., engineering the metal core, the molecules, and the
molecule−metal interfaces. Their potential applications in-
clude catalysis,1 molecular sensors,2 bioimaging,3 and nano-
medicine.4 However, hybrid material design and optimization
remain fundamentally challenging because the desired proper-
ties often depend on the microscopic structure of the system,
which is typically unknown.

Computational simulations, especially density functional
theory (DFT), have proven essential for microscopic structure
determinations of hybrid systems as they can accurately predict
the structure on an atomic level, which experiments often
cannot resolve. For a given molecule−cluster system, atomic
models of the metal part and metal−molecule interface can be
built from experimental data (e.g., electron microscopy),5

previous reported crystal structures,6 chemical intuition,7 or
data-driven methods.8 However, the configurations of
adsorbed molecules are difficult to determine.

Finding low-energy molecular conformers in the gas phase is
already a challenging problem. Organic molecules are usually
flexible and have a high-dimensional structural search space
with many local minima. In addition, to accurately predict
structures and energies of molecular conformers, costly
quantum mechanical accuracy is required.9 To address this
conformer-search challenge, a variety of methods and tools
such as systemic methods,10 stochastic methods,11,12 hier-

archical methods,13,14 and machine learning techniques15−18

have been developed for molecular conformer search.
In recent years, Bayesian Optimization in combination with

DFT has been widely applied to molecules and materials for
structure search and property optimization.19−21 In our recent
work, we developed an active machine learning procedure for
molecular conformer identification and ranking. We first fix the
bond lengths and angles and choose the molecular dihedral
angles as features to reduce the dimension of the search space.
Then, we employ the Bayesian Optimization Structure Search
(BOSS) code19,22 to build a surrogate potential energy surface
(PES) model in the reduced dimensions with iterative
Bayesian Optimization (BO) sampling.16 After the model
converges, we extract the local minima from the surrogate PES
and optimize the corresponding structures with DFT before
adding free-energy contributions and quantum chemistry
corrections. More details can be found in ref 16.

We have validated the accuracy and efficiency of our
procedure on cysteine, serine, tryptophan, and aspartic acid.16

However, the BOSS conformer search was not directly
applicable to molecular conformers on a cluster, because
close molecule−cluster contact or steric clashes could not be
handled. If atoms in a structure come too close, the DFT
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energy diverges or the DFT code returns an error, which
means that no data point is returned to continue the iterative
algorithm. This presents a problem in active learning. It leads
to large model uncertainties and causes the acquisition
function to repeatedly query the unphysical region of the
search space. In this work, we developed strategies to address
steric clashes in active learning by constructing different
solutions in the regions where energy data could not be
evaluated.

We used a cysteine molecule adsorbed on a well-studied
thiolate-protected Au25 cluster6,23 as a model system to test
and demonstrate our method. We chose the system for several
reasons. First, it offers us an ideal situation of cysteine in a
complicated, confined environment. Second, the cluster
contains a Au13 icosahedral core, protected by six SCH3-Au-
SCH3-Au-SCH3 V-shaped staples.6,23 Consequently, cysteine
can adsorb at two inequivalent S sites: one on the top of the V-
shape staple, and the other on the side, as shown in Figure 1a
and b. This allows us to study how the different surrounding
environments affect the structures of cysteine. Third, we can
compare to cysteine conformers in the gas phase from our
previous study16 to elucidate confinement and proximity
effects.

In brief, we used a cysteine on a gold−thiolate cluster as a
model system to develop and test strategies for avoiding steric
clashes in BOSS active learning in the Methods section. In the
Results and Discussion section, we compared the different
strategies and applied the optimal one to investigate how the
gold−thiolate cluster affects the structures and energy rankings
of the cysteine conformers.

■ METHODS
Our procedure contains three steps: (i) system preparation,
(ii) BOSS strategic structure search, and (iii) refinement, in
analogy with the procedure we had developed for the
molecular conformer search in the gas phase.16

In step (i), we first build an atomic model of the
Au25(SCH3)17(Cys) (Cys: cysteine) by replacing one SCH3
in the well-studied Au25(SCH3)18 cluster with a deprotonated
cysteine molecule. SCH3 was chosen here to reduce the
computational cost and the complexity. We optimized this
structure with DFT and set the total energy of the optimized
structure as the energy reference 0 eV for the BOSS sampling
in the next step. Since we are interested in searching the
configurations of cysteine here, we adopt the “building block”
concept.19,24 Except for the atoms in cysteine, all other atoms

are constrained during the machine learning procedure. As in
our previous work,16 we choose dihedral angles as the most
informative degrees of freedom to describe the different
cysteine configurations and refer to the dihedral angle space as
phase space. The bond lengths and angles are fixed at their
optimized values during BOSS sampling, because they are
relatively rigid. Cysteine has two nonequivalent bonding sites
on the Au25(SCH3)17 cluster as illustrated in Figure 1a and b.
We consider both of them and refer to them as system A and
system B in the rest of the paper (Figure 1).

In step (ii), we employ BOSS to actively learn the PES of the
system by BO iterative sampling. Each sample point contains
dihedral angles di (i = 1, 2, 3, 4, 5) of cysteine (Figure 1) and
the corresponding energy of Au25(SCH3)17(Cys).

For small molecules in the gas phase, each dihedral angle
contributes 360° to the full phase space (discounting possible
rotational symmetries). This angular range might be restricted
for a molecule on a cluster. Configurations that lead to steric
clashes typically have a high energy and are therefore not
important in the search for global minima, but they present a
challenge to active learning. DFT calculations either crash for
steric clashes or they return unfavorably high energies. The
inability to sample a region of the search space leads to large
uncertainties in the surrogate model, promoting explorative
sampling and causing the active learning algorithm to
repeatedly query this, ultimately irrelevant, part of the search
space. Even if a DFT computation could proceed, including
very high energies into the energy landscape produces a large
model variance. This makes the model less accurate in the low-
energy PES regions of interest, which then requires more
sampling to refine.

To address these technical challenges, we devised and tested
three different strategies to prevent sampling nonphysical
structures. In strategy i, we try to identify a continuous region
in phase space that is free of steric clashes. BOSS then samples
only in this restricted phase space. In strategy ii, we define a
“safe minimum distance” D0 between any two atoms in the
system to preselect physically meaningful structures. If the
shortest distance between the cysteine and other atoms is
longer than D0, the energy of the structure will be calculated by
DFT, otherwise a constant energy will be returned. In strategy
iii, we use a logarithmic energy transformation to suppress high
energy regions and apply an energy penalty to nonphysical
structures for which DFT cannot return an energy. We discuss
the details of the strategies and their advantages and limitations
below.

Figure 1. Ball−stick model of cysteine on Au25(SCH3)17 cluster: (a) system A and (b) system B. Gold color is used for gold atoms, red for oxygen,
white for hydrogen, gray for carbon, blue for nitrogen, and yellow for sulfur. d1, d2, d3, d4, and d5 label the five dihedral angles of cysteine that we use
to define our search space.
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After the PES has been learned sufficiently well, in step (iii),
we use the BOSS postprocessing routines to analyze the
surrogate PES and extract the local minima configurations and
related structures. In this step, we relax all degrees of freedom
in the systems to refine the structures and energies.

The all-electron code FHI-aims25−27 was applied for all DFT
calculations. “Tight” numerical settings, “tier 2” basis sets for S,
C, O, N, H, and the “tier 1” set for Au were used throughout.
Following our previous work,16 we used the Perdew−Burke−
Ernzerhof (PBE) functional28 with many-body dispersion
corrections29 in all DFT calculations. For structure optimiza-
tions, the geometry was considered to be converged when the
maximum residual force (fmax) was below 0.01 eV/Å.

During the sampling, BOSS employed Gaussian process
(GP) models to fit a surrogate PES to the data points, and then
refined it by acquiring more data points at locations that
minimize the exploratory lower confidence bound (eLCB)
acquisition function. We applied a “rbf” kernel for the
nonperiodic di in strategy i and a “stpd” kernel for the periodic
di in strategies ii and iii.

In the interest of open science,30,31 we make the results of all
relevant calculations freely available on the Novel Materials
Discovery (NOMAD) repository.32

Sampling in the Limited Phase Space. The most
intuitive way to avoid steric clashes is to exclude those regions
of phase space from sampling. To investigate whether such a
“safe” region exists for our systems, we randomly generated
100,000 di (i = 1, 2, 3, 4, 5) structures for both systems A and
B. Then, we calculated the shortest atomic pair distance Dmin
between cysteine and Au25(SCH3)17 in each structure and
plotted Dmin against di in Figures S1−S3. If we limit the
sampling range of d1, there is a region where the cysteine and
cluster will not become too close (Figure S1). However, we
cannot exclude all the structures with steric clashes by
restricting d2, d3, d4, or d5 (Figures S2−S3). The reason is
that d1 is the closest rotational bond to the cluster, thus
determining the overall structure.

Figure 2a and b presents the d1−d2 2-D distribution of Dmin
for systems A and B. The panels suggest that we can obtain a
“safe” sample region by restricting d1 to [70°, 210°] for system
A or [140°, 240°] for system B. In such a region, 99.7% of the
structures have Dmin > 1.0 Å; d1 has a narrower “safe” region in
system B than in system A due to the more restricted local
environment. This strategy is easy to apply and very unlikely to
sample the nonphysically meaningful structures, but it may
miss parts of phase space that correspond to low-energy
structures, such as the yellow areas to the left or the right of the
red dashed region in Figure 2a and b.
Safe Distance Selection. In strategy ii, we address the

clash problem by introducing a safe distance D0 to classify
“safe” and “unsafe” structures and treat them differently. If the
shortest atomic distance Dmin between the cysteine and the
Au25(SCH3)17 is larger than D0, the structure will be identified
as a physically meaningful one, and its energy will be its DFT
energy E. Here, we chose D0 equal to 1.4 Å, which lies around
the typical bond length in organic molecules. In contrast, if
Dmin is smaller than D0, the structure will be considered
nonphysical, and no DFT calculation will be performed.
Instead, a constant energy E0 will be assigned to the structure.
The energy Enew for updating the GP in BOSS sampling is

=
>l

moo
noo

E
E D D

E D Dnew
0

0 0 (1)

In our tests, we tried constant and harmonic potentials for
E0. The agreement between the surrogate BOSS energy and
DFT single-point energies for selected structures did not
improve for harmonic potentials. Therefore, we discuss only
constant potentials in this work. We tested E0 = 2.0, 4.0, and
6.0 eV and found that the sampled structures have a similar
energy distribution for system A (Figure S4). Therefore, we
only present the results for E0 = 6.0 eV here.

The advantage of strategy ii is its capacity to sample the
entire phase space without performing DFT calculations for
nonphysical structures. The disadvantages are that the
surrogate PES is not accurate for structures with Dmin < D0,
and the energy−structure relation is discontinuous around D0
which could lead to suboptimal surrogate PES model fits. Since
a structure with Dmin smaller or close to D0 typically has a high
energy, these disadvantages should not affect the low-energy
PES prediction.
Energy Transformation. In strategy iii, we introduce an

energy cutoff Ecut. For a structure with a high DFT energy E ≥
Ecut, we use a logarithmic energy transformation to attenuate
the high energy of the nonphysical structure during BOSS
sampling. In addition, for the structures where DFT
simulations fail, we apply a penalty energy Ep to update the
GP during BOSS sampling.

Figure 2. Two-dimensional (d1 and d2) maps of the shortest atomic
pair distance Dmin between cysteine and the cluster for (a) system A
and (b) system B. In the plots, a light color means the structures have
large Dmin, while a dark color means the structures have small Dmin,
where the steric clash may happen. Strategy i only sampled d1
between dashed red lines.
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We adopted Ecut = 2.0 eV and Ep = 4.5 eV in this work. Using
Ecut = 1.0 or 3.0 eV did not change the main feature of Enew
distribution (Figure S5). Strategy iii ensures a full phase space
search and does not change the energy order of the structures
where DFT calculations complete successfully. We employ
smooth energy attenuation to bridge the landscape between
high but chemically valid energies and the artificial energy
penalty values and also to avoid introducing unphysical and
sharp features into the model. The limitation is that the PES in
the high-energy region is inaccurate, but this should not affect
our low-energy structure search.

■ RESULTS AND DISCUSSION
We first monitor PES model convergence for the three
strategies employed. Since our previous study on the 5-D or 6-
D PES of amino acids showed that 1000 iterations are
sufficient for learning their low-energy PES,16 we sample the
PES of system A with 1000 BOSS iterations. The hyper-
parameters length scales for BOSS GP fitting stabilized around
600, 600, and 800 iterations for strategies i, ii, and iii, as shown
in Figure S6. Figure S7 illustrates the refinement of the
predicted global minimum with iterative configurational
sampling for the three strategies. Both the energy and the
dihedral angles of the predicted global minimum conformer
converged around iteration 200 for strategy iii, while the
energy and the dihedral angles of the predicted global
minimum converged around iteration 800 for using strategy i
and strategy ii. From this analysis, we can conclude that our
surrogate PES was sufficiently converged with 1000 iterations.

After 1000 BOSS iterations, we extracted the local minima
locations and their related structures from the surrogate PES
and refined the structures by DFT optimization. Then, we
purged duplicate structures and only kept unique config-
urations (Δdmax > 10° and ΔE > 0.0057 eV). Using strategies i,
ii, and iii, we finally obtained 37, 45, and 39 unique
configurations within energy windows of 0.40, 0.68, and 0.63
eV from the global minimum, respectively.

We evaluated the strategies from two aspects: the accuracy
of the surrogate PES and the energies of the final local minima
structures we obtained. We picked the 30 lowest-energy
structures after DFT relaxation for the evaluation. The
accuracy of the surrogate PES is measured by the differences
between the BOSS-predicted energies and the DFT single-
point energies of the 30 structures before optimization. Figure
3a−c show that the DFT energy is generally higher than the
BOSS-predicted energy for a given structure. The mean
differences are 0.29, 1.14, and 0.52 eV for strategies i−iii. A
smaller difference between the BOSS-predicted energy and the
DFT single-point energy indicates that the surrogate PES is
more accurate. From this perspective, strategies i and iii are
better than strategy ii.

Systematic overestimation of BOSS minima values over
DFT indicates a sharp variation of energy across the many
peaks and minima in the interpolated surrogate model, but this
is not relevant in our workflow. It is more important to retrieve
the locations of the energy basins in the global landscape,

which serve to initiate further local optimizations and compute
local minima conformers.

Figure 4 shows the energies of the 30 lowest-energy
structures after DFT structure optimization. Overall the curves

Figure 3. BOSS-predicted and DFT single-point energies of the 30
lowest-energy structures of system A with (a) strategy i, (b) strategy
ii, and (c) strategy iii. The DFT energy of the atomic model we
obtained in step (i) for the BOSS sampling was set to 0 eV.

Figure 4. Relative energies of the 30 lowest-energy structures of
system A after DFT optimization and removing duplicates. The DFT
energy of the atomic model we obtained in step (i) for the BOSS
sampling was set to 0 eV.
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generated by strategy ii and strategy iii are very close to each
other, suggesting strategies ii and iii have obtained very similar
local minima structures. In the higher energy region, the three
curves are almost on top of each other, indicating the three
strategies found the same structures in this energy region.
However, in the low-energy region, the green curve lies below

the other two, because strategy iii found more stable
structures.

Strategy i missed the global minimum structure, while
strategies ii and iii succeeded in finding it. This is because
system A has low-energy regions which cannot be sampled in
strategy i (i.e., any yellow area to the left or the right of the red
dashed region in Figure 2). Unfortunately, the global minimum
of system A falls into such an unsampled low-energy region.
Overall, strategy iii exhibits the best performance, and we
chose strategy iii to study system B.

Next, we present the results of an active learning structure
search for systems A and B. We obtained 39 unique local
minima structures for system A and 31 unique local minima
structures for system B. These structures have the relative
energy within 0.63 eV from global minimum in system A and
within 0.40 eV in system B. Similar to the isolated cysteine
molecule, internal hydrogen bonds are commonly formed in
the low-energy structures of adsorbed cysteine. If we use a
cutoff of rHB = 3.5 Å to define a hydrogen bond, all the local
minima structures within a relative energy of 0.34 eV from
global minimum in system A and 0.35 eV in system B contain
at least one intramolecular hydrogen bond in cysteine.

We assess how Au25(SCH3)17 affects the configurations of
cysteine and compare them to the isolated cysteine con-
formers. We choose the 11 cysteine conformers (Ia, Ib, I′b, IIa,
IIb, IIc, IIIαa, IIIαb, IIIαc, IIIβb, IIIβc), identified in ref 33 and
our previous work ref 16, as the reference structures for
comparison. The conformers were named I, II, and III
depending on the type of hydrogen bond (Figure 5) and as

Figure 5. Types of hydrogen bonds between the amino group and the
carboxyl group in cysteine.

Figure 6. Similarity Scos between the 11 reference cysteine conformers and the cysteine in the local minimum structures of (a) system A and (b)
system B. The y-axis represents the 11 references; the x-axis lists the local minima structures of system A or system B in the increasing order of
energy.
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a, b, and c according to the configuration of the −CH2SH side
chain.

The similarity of the two structures a and b can be measured
with the following similarity index

= ·
| |
v v
v v

S a b

a b
cos

(3)

Here, va and vb are the vectors [cos(d2), cos(d3), cos(d4),
cos(d5)] of the two structures (the definition of di is shown in
Figure 1). Since d1 has an ambiguous meaning among the
molecule conformers and systems A and (the H atom binding
to the S atom in cysteine molecule was replaced by a gold atom
for the adsorbed molecule), we did not include d1 in the
similarity calculation. Scos lies in the interval [−1,1]. The higher
the value of Scos is, the more similar the two structures are.

The Scos of the cysteine configurations in systems A and B
are plotted against the reference cysteine conformers in Figure
6a and b. Red colors indicate high similarity and blue low
similarity. The red horizontal regions of high similarity in
Figure 6 suggest that cysteine may form types I, II, and III
hydrogen bonds when it adsorbs on Au25(SCH3)17. However,
there are local minima structures in systems A and B where the
configurations of cysteine are not similar to any reference
molecular conformers. After analysis, we found that most of
these structures form a new type of hydrogen bond (NH−O�
C hydrogen bond, trans-COOH configuration), which we
named type IV (Figure 5).

Figure 7. Predicted top ten low-energy conformers of system A (a) and system B (b) from the BOSS search.

Figure 8. Relative energies of the ten most stable structures of
cysteine molecules, system A, and system B. The red line means the
structure contains a type II hydrogen bond in cysteine, while the
green line means other types of hydrogen bonds in cysteine.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01120
J. Chem. Inf. Model. 2023, 63, 745−752

750

https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01120?fig=fig8&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01120?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 7a depicts the predicted 10 lowest-energy structures
of system A. The orange dashed lines mark the hydrogen
bonds, while the blue dashed lines indicate the shortest atomic
distance between the cysteine and Au25(SCH3)17. Eight out of
the ten structures have type II hydrogen bonds, and two have
type IV. Although structures II1−II8 all have the same kind of
hydrogen bond, the energy varies by 0.33 eV, suggesting that
the interactions between the cluster and cysteine play
important roles in stabilizing the systems. In the structures
shown in Figure 7a, the shortest distance between cysteine and
the cluster is either from a hydrogen atom in the cysteine to a
gold atom in the cluster or from a hydrogen atom in cysteine
to a sulfur atom in the cluster. This suggests that the week H−
Au and H−S interactions help to stabilize the system. These
interactions could also explain why type IV hydrogen bonds do
not exist in the reference cysteine conformers but often appear
in systems A and B: the trans-COOH configurations facilitate
the formations of the H−Au and H−S interactions.

Figure 7b depicts the predicted 10 lowest-energy structures
of system B. The four lowest-energy structures have type II
hydrogen bonds followed by four structures with type IV
hydrogen bonds and one with type I. Similar to system A, the
H−Au and H−S interactions help to stabilize the low-energy
structures in system B. However, comparing Figure 7a and b, it
is clear that the local environments significantly affect the
energy ranking of the cysteine conformers on the cluster.

We plot the energies of the structures shown in Figure 7 in
Figure 8 and include the energies of the top ten most stable
gas-phase cysteine conformers. Comparing the energy ranking,
we observe that systems A and B exhibit larger energy spacings
between different configurations than the isolated cysteine
molecular conformers. Second, type II hydrogen bonds are
dominant in systems A and B. The structures within 0.15 eV
from the global minimum of systems A and B all have type II
hydrogen bonds. In contrast, for isolated cysteine, most
conformers in the same energy window have other types of
hydrogen bonds (types I and III). In addition, the energy
difference between the lowest and the second-lowest structure
is much larger in system A than in system B or in the isolated
molecule. We attribute this difference to short H−S and H−Au
distances we found in system A, but not in the other two.

■ CONCLUSION
In summary, we have developed three simple strategies to
handle steric clashes during the active learning. We proposed
an approach that combines the strategies with BO and DFT to
search for low-energy structures of a molecule on a cluster. We
chose a cysteine molecule on a well-studied gold−thiolate
cluster as a model system to test and demonstrate our method.
Based on the tests in this work, we recommend an “energy
transformation” strategy that suppresses high energies with a
logarithmic transformation and applies an energy penalty to
nonphysical structures where DFT computations fail. This
strategy results in a smooth BOSS simulation and effective
learning of the low-energy region of the PES. However, for a
system whose physical and nonphysical areas in phase space
can be well separated by restricting one sampling parameter,
strategy i could be a practical choice.

For cysteine on the gold−thiolate cluster, we obtained the
low-energy configurations with only 1000 single-point energy
calculations and a few tens of structure optimizations. The
number of DFT calculations required is similar to our previous
work on gas-phase molecules, again demonstrating the high

efficiency of active learning with BOSS. We found that the
cysteine on the cluster inherit the conformer types of an
isolated cysteine molecule. The whole system is stabilized by
both internal hydrogen bonds in cysteine and the H−Au and
H−S interactions between the cysteine and the gold−thiolate
cluster. However, the cluster environment reorders the
energies of the conformer types and enlarges the energy gaps
between different configurations.

Our approach is computationally tractable and versatile. The
strategies developed in this work to avoid steric clashes are not
limited to BO applications. Although we chose a molecule on a
cluster as a test system, our approach is suitable for other
systems prone to steric clashes, such as long-chain molecules,
metal−organic clusters, molecules on nanoparticles, etc. The
identified molecular configurations on clusters could also be
used as building blocks to construct molecule−metal hybrid
clusters such as ligand protected clusters, which we will
investigate in future work.
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