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Electrostriction, the deformation of dielectric materials under the influence of an electric field, is of
continuous interest in optics. The classic experiment by Hakim and Higham [Proc. Phys. Soc. 80, 190
(1962)] for a stationary field supports a different formula of the electrostrictive force density than the recent
experiment by Astrath et al. [Light Sci. Appl. 11, 103 (2022)] for an optical field. In this work, we study the
origin of this difference by developing a time-dependent covariant theory of optical force densities in photonic
materials. When a light pulse propagates in a bulk dielectric, the field-induced force density consists of two
parts: (i) The optical wave momentum force density fowm carries the wave momentum of light and drives forward
a mass density wave of the covariant coupled field-material state of light. (ii) The optostrictive force density fost

arises from the atomic density dependence of the electric and magnetic field energy densities. It represents an
optical Lorentz-force-law-based generalization of the electro- and magnetostrictive force densities well known
for static electromagnetic fields and derived from the principle of virtual work. Since the work done by fost is not
equal to the change of the field energy density during the contraction of the material, we have to describe this
difference with optostriction-related dissipation terms to fulfill the energy conservation. The detailed physical
model of the dissipation is left for further work. The optostrictive force density can be understood in terms of
field-induced pair interactions inside the material. Because of the related action and reaction effects, this force
density cannot contribute to the net momentum transfer of the optical field. The theory is used to simulate the
propagation of a Gaussian light pulse through a dielectric material. We calculate the electric and magnetic fields
of the Gaussian light pulse from Maxwell’s equations and simultaneously solve Newton’s equation of motion of
atoms to find how the velocity and displacement fields of atoms develop as a function of time under the influence
of the field-induced force density.

DOI: 10.1103/PhysRevA.107.023525

I. INTRODUCTION

Electrostriction is a phenomenon where materials mechan-
ically deform under the action of an applied electric field in
a way that the magnitude of this deformation is proportional
to the square of the electric field [1]. The magnetic analog is
called magnetostriction. The theory of electrostriction dates
back to the early work of Helmholtz in 1881 [2]. Despite the
long history, the knowledge of electrostriction in optical fields
has remained in many ways incomplete due to the challenges
in measuring weak optical forces inside materials with an ac-
curacy that would enable detailed comparison with the theory.
This situation is, however, changing as new technologies are
continuously developed.

An interesting recent discovery by Astrath et al. [3] has
shown that the conventional theory of electrostriction, which
explains the results of the classic Hakim-Higham experiment
for static fields [4], does not reproduce the magnitude of
the electrostriction effect in water at optical frequencies. The
difference between the conventional theory of electro- and
magnetostriction for static fields and the corresponding the-
ory for time-dependent optical fields and their relation to
recent experiments is the starting point of the present work.

Several experiments of electrostriction at optical frequen-
cies have been carried out also previously [5–14], but their
accuracy has not enabled detailed analysis of the time depen-
dence of the optical electro- and magnetostriction effects. We
also point out that most theoretical and experimental stud-
ies of the static electro- and magnetostriction correspond to
the thermodynamical equilibrium limit. Experimental studies
of electrostriction have also revealed interesting phenom-
ena, such as the giant electrostriction [15–25], negative
electrostriction [26,27], and deformations of liquid crystals
[28,29] and biological cells [30]. On the theoretical side,
electrostriction has also been under extensive study [31–48].

When a light pulse propagates in a bulk dielectric, the
field-induced force density consists of two parts: (i) The op-
tical wave momentum force density fowm carries the wave
momentum of light and drives forward a mass density wave
of the covariant coupled field-material state of light [49–53].
It has been extensively studied regarding its relation to the
Abraham-Minkowski controversy of the momentum of light
[54–64]. (ii) The optostrictive force density fost arises from
the atomic density dependence of the electric and magnetic
field energy densities. The starting point of the present work is
the recently developed mass-polariton theory of light [49–53],
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which enables a relativistically consistent study of fowm and
the momentum transfer associated with the propagation of
light. We generalize the mass-polariton theory to include fost

in a way that preserves the relativistic covariance when both
force densities are included in the theory.

The force density fost has conventionally been investigated
in the limit of thermodynamics and quasistatic fields, and it
has been extended to time-averaged optical fields [65]. As
briefly discussed in Ref. [49], the full time- and position-
dependent relativistically consistent theory of fost, in the
optical regime, has not been presented in detail previously
to the best of our knowledge. The present theory enables a
formulation of the optical electrostriction and optical magne-
tostriction in terms of time- and space-dependent force fields
without the need to introduce time or harmonic averages.
The unified theory of the time-dependent force density of the
optical field on the material has obvious potential in tailoring
acousto-optical coupling [66–73] for both fundamental sci-
ence and technological needs.

The Lorentz-force-law-based derivation of the optical
force density leads to an expression of the sum of fowm and
fost. The origin of fowm relies in the definition of the Poynting
vector, describing the optical energy flux, and the covariance
principle of light in dielectric and magnetic media [49–53].
In contradistinction, fost originates from the atomic density
dependence of the electric and magnetic field energy densities.
Thus, fost can be traced back to pair interactions, and due to
this force and counterforce nature, the resulting momentum
densities always integrate to zero over the volume of the
material. Therefore, there is no net momentum transfer related
to fost.

We assume that the material is lossless, linear, isotropic,
optically nondispersive, and that the Clausius-Mossotti rela-
tion is satisfied. These conditions exclude complex molecular
materials, in which, e.g., giant electrostriction [15–25] and
negative electrostriction [26,27] have been discovered. Ther-
mophotonic effects are also excluded. Since the investigations
of the present work do not deal with thermodynamical
equilibrium, we do not consider extensions of the Clausius-
Mossotti relation, which include wavelength, temperature,
or density-dependent corrections [74,75]. Even with the
restrictions above, the theory has a wide range of appli-
cations in photonics technologies. It is, however, obvious
that the theory can be extended to more complex materi-
als, but these extensions are not discussed in detail in the
present work.

This work is organized as follows. Section II presents the
conservation laws of the material, fields, and interactions, and
how the force density appears in them. Section III summa-
rizes the relations of the macroscopic and local electric and
magnetic fields and flux densities and the relations of the po-
larization and magnetization fields. These relations determine
the density dependence of the permittivity and permeability of
the material. Section IV presents in detail the different contri-
butions of the force density which the material experiences
under the influence of an electromagnetic field. Section V
describes simulations of optical electrostriction in silicon.
Section VI presents the stress-energy-momentum (SEM) ten-
sors of different parts of the field-material system and its
interactions. Section VII discusses implications of the present

theory to the previous mass-polariton theory of light. Finally,
conclusions are drawn in Sec. VIII.

II. CONSERVATION LAWS

As the foundation of the theory, we use the fundamental
conservation laws of energy and momentum. Together with
Maxwell’s equations and the Lorenz force law, this is a widely
used and evidently the most fundamental starting point for de-
scribing optical forces [49,51,76–79]. In particular, we focus
on writing a relativistically consistent theory, which can be
applied to all inertial observers independent of their velocities
with respect to the material. This condition imposes strong
limitations for possible forms of the SEM tensors and the re-
lated force fields as discussed further in Sec. VI. Accordingly,
when writing the conservation laws below and the general
expressions of the SEM tensors in Sec. VI, we assume a
general inertial frame. In the presentation of the force density
in Sec IV, we present the equations for the laboratory frame,
which is a special inertial frame, where the material atoms
are at rest before the force density of the electromagnetic
field starts to accelerate them. In the presentation below, we
split the field-material system into two parts: (1) the material
subsystem and (2) the field+interaction subsystem and write
the conservation laws for both of these subsystems satisfying
the law of action and reaction.

A. Force density and conservation laws of the material

We assume that the material is composed of identical
atoms. For a single atom, the rest mass is denoted by m0,
the velocity is va, and the momentum is pa = γva m0va, where
γva = 1/

√
1 − |va|2/c2 is the Lorentz factor, in which c is

the speed of light in vacuum. In the laboratory frame, the
atomic velocities caused by the optical field are very small,
and thus the Lorentz factor is close to unity. However, for
the consideration of relativistic invariance properties later in
this work, we use the general form that applies to all inertial
observers. The atomic number density is denoted by na. The
fundamental definition of the force density f = naF, where F
is the force on a single atom, is given by Newton’s equation of
motion, written in any inertial frame as [51,76]

na
dpa

dt
= f . (1)

First, by using the material derivative d
dt = ∂

∂t + va · ∇ to
Eq. (1), second, multiplying the conservation law of the
atomic number density, ∂

∂t na + ∇ · (nava ) = 0, by pa, and,
third, adding the resulting two equations side by side gives
after some vector algebra [51,76]

∂Gmat

∂t
+ ∇ · T mat = f . (2)

Here Gmat = napa is the momentum density of the ma-
terial and T mat = napa ⊗ va, where ⊗ denotes the outer
product of vectors, is the stress tensor of the material,
which does not account for the stresses associated to the
mechanical or electromagnetically induced pressures. Cor-
respondingly, these phenomena are included through the
force density on the right-hand side of Eq. (2) as described
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below. Equation (2) is the conservation law of momentum.
The conservation law of energy of the material reads

1

c2

∂Wmat

∂t
+ ∇ · Gmat = φ

c2
, (3)

where Wmat = γva m0c2 is the energy density of the material
and φ = va · f is the power conversion density of the kinetic
energy of the material, in accordance with Eq. (2). In previ-
ous literature, the material subsystem described above is also
called the kinetic subsystem [76].

B. Conservation laws of the field and electromagnetic
and mechanical pressure effects

After defining the energy and momentum densities and the
stress tensor of the material and their conservation laws in
Eqs. (2) and (3), we will now define the energy density Wemi,
the momentum density Gemi, and the stress tensor T emi and
their conservation laws for the rest of the field-material system.
We call this subsystem the field+interaction subsystem in
accordance with previous literature, where it is the sum of
the field and interaction subsystems [76]. The conservation
laws of the momentum and energy of the field+interaction
subsystem are written as [1,76,80]

∂Gemi

∂t
+ ∇ · T emi = −f, (4)

1

c2

∂Wemi

∂t
+ ∇ · Gemi = − φ

c2
. (5)

The force density and power-conversion density are generally
nonzero, which means that the field+interaction subsystem is
exchanging energy and momentum with the material subsys-
tem, whose conservation laws are given in Eqs. (2) and (3).
Due to the law of action and reaction, there are opposite signs
in the momentum conservation laws in Eqs. (2) and (4) and
the energy conservation laws in Eqs. (3) and (5).

III. MICROSCOPIC AND MACROSCOPIC FIELDS
AND THE DENSITY DEPENDENCE

OF PERMITTIVITY AND PERMEABILITY

Before studying the electromagnetic force densities in
detail, in this section, we consider the dependence of the
permittivity and permeability of the material on the atomic
density. This dependence originates from the microscopic ex-
pressions of the polarization field P and the magnetization
field M and from their relation to the macroscopic fields
[80,81]. The macroscopic electric field E and magnetic field H
are related to the electric flux density D, magnetic flux density
B, and the fields P and M by the well-known constitutive
relations of a nondispersive material, given by

D = ε0εrE, P = ε0(εr − 1)E, (6)

B = μ0μrH, M = (μr − 1)H. (7)

Here ε0 is the permittivity of vacuum, εr is the relative permit-
tivity of the material, μ0 is the permeability of vacuum, and
μr is the relative permeability of the material. In terms of the
relative permittivity and permeability, the refractive index of
the material is given by n = √

εrμr.

As conventional, we can write the microscopic expressions
of the polarization and magnetization fields as dipole moment
densities, given by [80,81]

P = nap = naαeEeff , (8)

M = nam = naαmBeff . (9)

Here na is the number density of atoms, p = αeEeff is the
atomic electric dipole moment, m = αmBeff is the atomic
magnetic dipole moment, αe and αm are the atomic polar-
izability and magnetizability, which are independent of the
atomic density, and Eeff and Beff are the effective local electric
and magnetic fields at the site of the atom, given for isotropic
cubic materials by [80–87]

Eeff = E + P
3ε0

= E
∞∑

l=0

(
naαe

3ε0

)l

= E
1 − naαe

3ε0

, (10)

Beff = B − 2μ0M
3

= B
∞∑

l=0

(
−2μ0naαm

3

)l

= B

1 + 2μ0naαm

3

.

(11)

The calculation of the local fields for other symmetries of
the materials, e.g., for anisotropic materials, is discussed in
Ref. [84].

Using the relation between P and E in Eq. (6) together with
Eqs. (8) and (10) and the relation between M and B, obtained
from Eq. (7), together with Eqs. (9) and (11), we obtain
the well-known Clausius-Mossotti relation and its magnetic
analog, given by [80,81,88,89]

εr − 1

εr + 2
= naαe

3ε0
, εr = 1 + naαe/ε0

1 − naαe
3ε0

, (12)

μr − 1

μr + 2
= μ0naαm

3
, μr = 1 + μ0naαm

1 − μ0naαm

3

. (13)

For anisotropic materials, for which Eqs. (10) and (11) do
not apply, the relations of the permittivity and permeability
in Eqs. (12) and (13) also become more complicated [84]. For
dielectric materials with εr = n2, the Clausius-Mossotti rela-
tion in Eq. (12) is also known as the Lorentz-Lorenz relation
[90,91]. The Lorentz-Lorenz relation is generally applicable
to a wide range of photonic materials as such. However, to
fine tune this relation to account for more detailed wave-
length, temperature, and density-dependent characteristics of
specific materials, experimental parametrizations have been
presented so that the right hand side of Eq. (12) is replaced
by a parametrized sum of the wavelength, temperature, and
pressure-dependent terms [74,75].

IV. FORCE DENSITY

Next, we consider different parts of the force density. The
force density f and the field+interaction subsystem quantities
Wemi, Gemi, T emi can be split into electromagnetic field and
mechanical pressure parts. For the force density, this splitting
reads

f = fem + fmech, (14)

where fem is the total electromagnetic force density and fmech

is the mechanical pressure force density. Here we briefly note

023525-3



PARTANEN, ANGHINONI, ASTRATH, AND TULKKI PHYSICAL REVIEW A 107, 023525 (2023)

that fmech is given for materials with negligible shear strain,
e.g., for liquids and gases, by [92]

fmech = −∇pmech. (15)

Here pmech is the mechanical pressure. The mechanical pres-
sure is given in terms of the atomic position field ra of a
homogeneous material as pmech = −K∇ · ra [92]. The general
elastic force density, from which Eq. (15) is a special case, is
obtained by using the elasticity tensor of the specific material
as described in Sec. IV C below.

A. Electromagnetic force density

The total electromagnetic force density fem, appearing in
Eq. (14), can be split into two parts as

fem = fowm + fost. (16)

The optical wave momentum force density fowm acts, in the
laboratory frame, along the propagation direction of light, and
it is responsible for carrying the wave-momentum of light
[49,93]. This force density acts on the material atoms at inter-
faces in such a way that the interface takes the difference of the
wave momentum of light in the material and the momentum of
light in vacuum. In the bulk, fowm accelerates and decelerates
atoms in such a way that the atoms carry part of the total
wave momentum of light, and the rest energy of the atomic
mass density wave needed for the relativistic covariance of
the theory [50–53]. In contradistinction, the optostrictive force
density fost is an electromagnetic force density acting between
the constituents of the material. Therefore, it has a character of
action and reaction between the material constituents, and its
volume integral including the interface contribution is, thus, at
any time equal to zero. Although fost can give rise to nonzero
momentum densities, the total volume integral of the momen-
tum density caused by fost is zero, and therefore, it does not
carry net momentum. In a recent experiment of Astrath et al.
[3], acoustic waves caused by the radial component of fost due
to a light pulse were discovered.

The accurate position- and time-dependent form of fowm

has been described in detail, e.g., in Ref. [49]. The elec-
trostrictive and magnetostrictive force densities in fost are both
experimentally and theoretically widely known only in the
thermodynamical and static field limits. The thermodynami-
cal theory of electrostriction and magnetostriction cannot be
applied to optical fields. Therefore, in the present work, we
focus in finding the exact position- and time-dependent form
of fost in the optical regime. The total force density in Eq. (14),
consisting of the terms discussed in the present work, explains
the available experimental results for the forces at liquid in-
terfaces [94–96], for the force on a mirror immersed in a
liquid [97,98], and for the radial optostrictive force component
inside the bulk liquid [3].

1. Optical wave momentum force density

In the rest frame of a nondispersive material, the optical
wave momentum force density fowm is given by the Abraham
stress-energy-momentum tensor model [50,58]. It can be de-
rived from the conservation laws by requiring that the coupled
field-material state of light satisfies the covariance principle
of the special theory of relativity [50]. In the rest frame of the

material, fowm is given by

fowm = −1

2
ε0|E|2∇εr − 1

2
μ0|H|2∇μr + n2 − 1

c2

∂

∂t
(E × H).

(17)

The first two terms of fowm represent the interface force den-
sity and the last term is the Abraham volume force density,
which has an effect in the direction of the propagation of light.
The interface force density has been experimentally verified
in several works [94–98], while the Abraham volume force
density still lacks direct compelling experimental verification
at optical frequencies. The Abraham volume force density,
however, has experimental support in the quasistatic limit
[99]. There are works reporting measurements of the Abraham
force at optical frequencies [100–102], but the interpretation
of the results of these measurements is nontrivial [103–108].

2. Optostrictive force density

Next, we investigate the optostrictive force density fost,
which originates from the atomic density dependence of the
energy density of the electric and magnetic fields. It can be
calculated using the principle of virtual work as discussed in
Sec. IV B below, but here we present first a concise Lorentz-
force-law-based derivation of the optostrictive force density.
According to Eq. (16), fost = fem − fowm. We know that the
force density fem can be derived from the Lorentz force law as
discussed in Appendix A, and the expression of fowm is given
in Eq. (17). Thus, by using Eqs. (17) and (A10), we obtain

fost = foes + foms, (18)

where the optoelectro- and optomagnetostrictive force densi-
ties foes and foms are given by

foes = 1
2∇(P · E), (19)

foms = 1
2∇(M · B). (20)

It is conventional to define the optoelectro- and opto-
magnetostrictive pressures poes and poms related to the force
densities foes and foms in Eqs. (19) and (20) by foes = −∇poes

and foms = −∇poms. Thus, these pressures can be written as

poes = − 1
2 P · E = − 1

2ε0(εr − 1)|E|2, (21)

poms = − 1
2 M · B = − 1

2μ0μr (μr − 1)|H|2. (22)

As discussed in the next section, the compressive work done
by the optoelectro- and optomagnetostrictive force densities
in Eqs. (19) and (20) on the material is found to be less than
the change of the field energy. Therefore, we will introduce
dissipation terms in the calculation of the optostrictive force
density using the principle of virtual work. This is a fun-
damental change in the conventional way of calculating the
electrostrictive and magnetostrictive force densities.

B. Virtual work approach to the optostrictive force density

Next, we investigate the optostrictive force density based
on the principle of virtual work [76,109]. According to the
principle of virtual work, the atoms tend to convert the atomic-
density-dependent part of the energy of the field into kinetic
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and strain energies of the material. The atomic forces fol-
lowing from this principle of virtual work can always be
understood as force pairs between atoms, and the resulting
total force on the material is a sum of such atomic force pairs.
Since the sum of any momentum impulses resulting from pairs
of opposite forces is zero, the force density fost cannot lead to
transfer of net momentum in the material, in contrast to the
optical wave momentum force density fowm in Eq. (17).

The energy density of the electromagnetic field depends
on the density of the material through the permittivity and
permeability. Depending on which of the fields D, B, E, and
H are kept independent variables during the compression or
expansion of the material, the optostrictive force densities foes

and foms can be calculated from the electric and magnetic
energy densities or from their Legendre transforms [1]

Fe(D) = We, F̃e(E) = Fe − E · D = −We, (23)

Fm(B) = Wm, F̃m(H) = Fm − H · B = −Wm, (24)

in analogy to how the elastic force density is calculated from
the strain energy density of the material [92]. Here We =
1
2ε0εr|E|2 = 1

2ε0εr
|D|2 is the energy density of the electric field

and Wm = 1
2μ0μr|H|2 = 1

2μ0μr
|B|2 is the energy density of

the magnetic field. The independent variables in Eqs. (23)
and (24) are indicated by parentheses. Conventionally, in the
thermodynamical derivation of the electro- and magnetostric-
tive force densities [1], Eqs. (23) and (24) correspond to the
field-dependent parts of the free energy densities of the sys-
tem. In previous literature, the thermodynamical derivation is
considered to be extended to time-dependent fields as such or
by considering the time-averages of free energy densities over
the harmonic cycle [1,65,106]. For a discussion of the electro-
and magnetostriction for stationary fields, see Appendix B.

In the case of an optical field, the compression or expan-
sion of the material associated with optostriction takes place
simultaneously with the flow of energy and momentum into
direction of the propagation of light. Therefore, we can define
boundary conditions related to energy and momentum fluxes
in the calculation of the optostrictive force density, which
are different from the boundary conditions used in Eqs. (23)
and (24), where we keep certain fields constant. We do not
elaborate these flux-based boundary conditions further in this
work.

In the following, we propose that the changes of the
dipole moments p and m by the atomic number density vari-
ation δna, in the time-dependent case, introduce a hitherto
unknown dissipation mechanism to be accounted for. This
dissipation can, for example, correspond to radiation loss
and be related to nonconservativity of time-dependent opti-
cal forces [110]. We determine its contribution by requiring
that the sum of the work done by the Lorentz-force-law-
based optostrictive force density fost in Eq. (18) and the
dissipation terms is equal to the change of the field energy
density. Consequently, in the calculation of the force den-
sities below, from the full differentials (δF̃e )E = −(δWe )E =
− 1

2ε0
∂εr
∂na

|E|2δna and (δFm )B = (δWm )B = − 1
2μ0μ2

r

∂μr

∂na
|B|2δna,

for fixed E and B, we subtract the dissipation-related dif-
ferentials (δWe,diss)E = − 1

2 na( ∂p
∂na

)E · Eδna and (δWm,diss)B =
− 1

2 na( ∂m
∂na

)B · Bδna. Thus, we obtain the dissipation-reduced

differentials as (δF̃ ′
e )E = (δF̃e )E − (δWe,diss)E and (δF ′

m )B =
(δFm )B − (δWm,diss)B. Therefore, the optoelectro- and opto-
magnetostrictive force densities are given by

foes =
3∑

i=1

3∑
j=1

∂ j

(
δF̃ ′

e

δ(εa )i j

)
E

êi

= −∇
[

na

(
δF̃ ′

e

δna

)
E

]

= 1

2
∇(nap · E)

= 1

2
∇(P · E), (25)

foms =
3∑

i=1

3∑
j=1

∂ j

(
δF ′

m

δ(εa )i j

)
B

êi

= −∇
[

na

(
δF ′

m

δna

)
B

]

= 1

2
∇(nam · B)

= 1

2
∇(M · B). (26)

Here êi, i ∈ {x, y, z} are the three unit vectors of the Carte-
sian coordinate system. The subscripts E and B indicate
that these fields are taken as constants in the calculation
of the differentials. In the second equalities of Eqs. (25)
and (26), we have assumed that the material is isotropic.
In this case, we can convert the derivatives with respect
to the components of the atomic position strain tensor
εa = 1

2 [∇ ⊗ ra + (∇ ⊗ ra )T ], where the superscript T denotes
the transpose, into derivatives with respect to the atomic den-
sity as

∑3
i=1

∑3
j=1 ∂ j ( ∂F

∂ (εa )i j
)êi = −∇(na

∂F
∂na

) [1,111].
If the derivation of the force densities is done in analogy

to Eqs. (25) and (26) except that the we use the energy
functions without the subtraction of the dissipation terms,
the optoelectro- and optomagnetostrictive pressures become
pes = − 1

2 P · Eeff and pms = − 1
2 M · Beff . This means that the

time-dependent macroscopic fields are replaced by the corre-
sponding local fields. By their definition, these optoelectro-
and optomagnetostrictive pressures are inherently energy-
conserving during the compression. Using Eqs. (10)–(13), we
can relate these pressures to the pressures in Eqs. (21) and (22)
as pes = εr+2

3 poes and pms = μr+2
3μr

poms. The relation of these
pressures to experiments is discussed in Sec. VII.

C. Optoelastic strain force density

Next, we present how the mechanical pressure and op-
tostrictive force densities, fmech and fost, can be obtained
simultaneously using the elasticity theory formalism of the to-
tal strain. As described below, the force densities of Eqs. (15)
and (18) are obtained as special cases of the general force
density expressions of this section. The total strain energy
density is given by [92]

Wstrain = 1

2

3∑
i=1

3∑
j=1

σi jεi j . (27)
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Here σi j are elements of the elastic stress tensor σ and εi j are
elements of the total strain tensor ε. The total strain tensor ε is
given by [92]

ε = εa − εe − εm. (28)

Here the atomic strain tensor εa is given by

εa = 1
2 [∇ ⊗ ra + (∇ ⊗ ra )T ]. (29)

For the electric and magnetic strain tensors, we adopt the
most general description from previous literature [112]. The
electric and magnetic strain tensors are given by

εe = Q(1)
e : P + Q(2)

e : (P ⊗ P) + · · · ,

εm = Q(1)
m : M + Q(2)

m : (M ⊗ M) + · · · . (30)

The first terms are associated with the piezoelectricity and
piezomagnetism, and the second terms are associated with
the electro- and magnetostriction. Also, higher-order terms
can be accounted for. In Eq. (30) the quantities Q(1)

e and Q(1)
m

are the piezoelectric and piezomagnetic tensors, and Q(2)
e and

Q(2)
m are the electro- and magnetostriction tensors.
Using the elasticity tensor C of an isotropic material with

bulk modulus K and shear modulus G, the elastic stress tensor
σ is given by

σ = C : ε = (
K − 2

3 G
)
Tr(ε)I + 2Gε. (31)

Here Tr(x) denotes the trace of a matrix and I is a 3 × 3 unit
matrix. In this case, the total optoelastic strain force density is
given by

fstrain = ∇ · σ =
3∑

i=1

3∑
j=1

∂ j

(
∂Wstrain

∂ (εa )i j

)
êi

=
(

K + 4

3
G

)
∇[∇ · ra] − G∇ × [∇ × ra]

−
(

K + 4

3
G

)
∇Tr(εe + εm ) − 2G∇ · (εe + εm ).

(32)
In our special case of a material with no shear strain, i.e., a

liquid or gas, we can set G = 0. We assume no piezoelectricity
and -magnetism, use the conventional constitutive relations of
the fields in a nondispersive material, and give for the fourth-
rank optical electro- and magnetostriction tensors the values

Q(2)
e = − I

2Kε0(εr − 1)
, Q(2)

m = − μ0μrI
2K (μr − 1)

, (33)

where I is the identity operator for the matrices P ⊗ P and
M ⊗ M in Eq. (30). Thus, we obtain εe = − 1

2K P ⊗ E, εm =
− 1

2K M ⊗ B, and consequently Eq. (32) becomes

fstrain = fmech + fost, (34)

where fmech is equal to the expression given in Eq. (15) and
fost is equal to the expression given in Eq. (18), with the
optoelectro- and optomagnetostrictive force densities given in
Eqs. (19) and (20).

V. SIMULATION OF OPTICAL
ELECTROSTRICTION IN SILICON

Next, we study the implications of the theory above by sim-
ulating the electrostrictive effect using first a Gaussian light

pulse and second a continuous-wave Gaussian light beam.
We have selected silicon as an example of an electrostric-
tive photonic material for which we carry out the numerical
simulations. The refractive index of silicon is n = 3.4757 for
the selected vacuum wavelength of λ0 = 1550 nm [113]. The
density of silicon is ρa = 2329 kg/m3 [114], the bulk modulus
is K = 97.8 GPa, and the shear modulus is G = 79.6 GPa
[115]. These values correspond to the compressibility of C =
1/(K + 4

3 G) = 4.90 × 10−12 Pa−1. In the present work, we
do not account for the elastic anisotropy of the silicon crystal,
but model it using the scalar elastic parameters above, in the
case of which the elastic strain force density is given by the
first two terms of Eq. (32) [92,116–118].

In more accurate simulations, the elastic parameters K and
G and the associated elastic force density in Eq. (32) can be
replaced by the use of the complete elasticity matrix and the
corresponding elastic force density [92]. For silicon, and more
generally for solids and liquids, which are hard to compress,
the elastic parameters and derivatives with respect to the den-
sity are very accurately equal for isothermal and isentropic
processes. Thus, we can neglect thermal effects in the studies
of electrostrictive compression in low-loss materials, such as
silicon at the wavelength used in our simulations.

A. Gaussian light pulse

Next, we perform simulations for a continuous-wave Gaus-
sian light beam. The electric field of a one-dimensional
Gaussian light pulse [83], linearly polarized in the direction of
the x axis and propagating along the positive z axis in silicon,
is given in cylindrical coordinates r = (r, φ, z) by

E(r, t ) = E0e−r2/w2
0 cos[kz − ωt]e−(k)2(z−ct/n)2/2êx. (35)

Here E0 is the electric field amplitude, w0 is the beam waist
radius at which the intensity drops to 1/e2 of its axial value,
k = nω/c = 2πn/λ0 is the wave number, and k is the stan-
dard deviation of the wave number, for which we use k =
10−5k. For the beam waist radius w0, we use the value of
w0 = 3.489 mm, and for the electric field amplitude E0, we
use the value of E0 = 1.972 × 107 V/m. These values corre-
spond to the total electromagnetic energy of the pulse equal
to U0 = ε0εrE2

0 π3/2w2
0/(4k) = 5.00 mJ. The magnetic field

corresponding to the electric field above is determined by
Maxwell’s equations.

Figure 1(a) shows the atomic mass density disturbance
resulting from the total force density of a Gaussian light
pulse in silicon at the instant of time when the center of the
Gaussian light pulse propagating along the positive z axis
is at z = 20 mm. The mass density disturbance is spatially
averaged over the harmonic cycle. It is seen that the mass
density disturbance has positive values at the z axis behind
the light pulse (z < 20 mm, |y| < 2 mm), and negative values
are obtained away from the z axis (z < 20 mm, 2 mm < |y| <

6 mm). The corresponding atomic displacement distribution
is depicted in Fig. 1(b) and the atomic velocity distribution is
shown in Fig. 1(c). The radial component of the optostrictive
force density fost dominates over the optical wave momentum
force density fowm and the longitudinal component of fost in
producing the atomic distributions in Figs. 1(a)–1(c). The
atomic mass density disturbance, atomic displacement, and
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FIG. 1. Simulation of a Gaussian light pulse propagating along the positive z axis marked by a dashed line ellipse centered at position
z = 20 mm (a–f). The panels represent (a) the mass density disturbance, (b) atomic displacement, and (c) atomic velocity resulting from
the total force density f = fowm + fost of a Gaussian light pulse in silicon. The optoelectrostrictive force density fost is the dominating force
density in these figures. Panels (d)–(f) show the mass density disturbance, atomic displacement, and atomic velocity contributions resulting
from fowm. Simulation of optically generated elastic waves after the light pulse has passed is presented in panels (g)–(i). These panels show the
time dependence of (g) the mass density disturbance, (h) atomic displacement, and (i) atomic velocity at z = 0 mm. The colorbars show the
magnitudes, and the arrows show the directions of the vector quantities.

atomic velocity components following from fowm are depicted
in Figs. 1(d)–1(f). These distributions are fractions of the total
distributions in Figs. 1(a)–1(c).

Figures 1(g)–1(i) show the time-dependence of the elastic
relaxation of the mass density disturbance, atomic displace-
ment, and atomic velocity by elastic waves at z = 0 mm
after the light pulse has passed. The distributions at t = 0 µs
correspond to the quantities of Figs. 1(a)–1(c) behind the
light pulse at z = 0 mm. The relaxation takes place at the
velocity of sound after the light pulse has passed. The sound
waves, caused by the optoelectrostrictive force density, prop-
agate radially outward from the beam axis (x = 0 mm). The
displacement of the material by the optostrictive force density
takes place also parallel to the beam axis. The relaxation of
this displacement is not depicted in Fig. 1. The emergence
of the mass density disturbance and the related elastic waves
have been experimentally detected for a light pulse in water
[3]. The detection of optostrictively produced elastic waves in
the present example case of silicon should also be experimen-
tally feasible.

Figure 2 presents the momentum components that follow
from our unified optical force theory when a Gaussian light
pulse crosses a vacuum-silicon interface with an antireflective
coating. For simplicity, the pulse is assumed to propagate

along the surface normal and the antireflective coating is
assumed to be perfect. The center of the pulse reaches the
interface at t = 200 ps. At t = 0 ps, the pulse is entirely in
vacuum, its momentum is pvac = p0 = U0/c, and the other
momentum components are zero. When the pulse has fully
crossed the interface, the momentum of the electromagnetic
field part of the pulse is pem = p0/n, which is equal to the
Abraham momentum of light. The atomic mass density wave,
driven by the optical wave momentum force density fowm, has
momentum powm,vol = (n − 1/n)p0, which together with the
electromagnetic momentum component pem = p0/n gives the
total wave momentum of light. The total wave momentum
powm,vol + pem = np0 is equal to the Minkowski momentum
of light. In the bulk silicon, the optoelectrostrictive force
density foes gives rise to the momentum component equal
to poes,vol = − 1

2 (n − 1/n)p0. The material interface takes the
momentum component powm,int = (1 − n)p0 from fowm and
poes,int = 1

2 (n − 1/n)p0 from foes. The sum of all momen-
tum components is equal to p0 at all times. Since moreover
poes,vol + poes,int = 0 at all times, the optoelectrostriction does
not lead to transfer of volume integrated net momentum.

In the mass-polariton theory of light [50,52], the momen-
tum of the atomic mass density wave is given, using the
notation of the present work, by powm,vol and the momen-
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FIG. 2. Unified picture of the momentum components for a
normally incident Gaussian light pulse crossing a vacuum-silicon
interface with an antireflective coating. The center of the pulse is at
the position of the interface at t = 200 ps. The normal components
of the momenta are given in units of p0 = U0/c, the total momentum
of the pulse in vacuum. The component pvac is the momentum of the
part of the pulse located in vacuum, and pem is the momentum of
the electromagnetic field in silicon. The material momentum driven
by fowm in the bulk silicon is denoted by powm,vol, and the material
momentum generated by fowm at the interface is denoted by powm,int .
Correspondingly, the material momentum driven by foes in the bulk
silicon is denoted by poes,vol, and the material momentum generated
by fowm at the interface is denoted by poes,int . Note that the radial
momentum densities integrate out in this figure, which represents
only the total volume integrated values.

tum of the mass-polariton state of light is correspondingly
pMP = powm,vol + pem = np0. This is the refractive-index-
proportional momentum of light in a material, which is
observed in most experiments [97,98,119]. The present theory
is, thus, in full agreement with the covariant quasiparticle
properties of the mass-polariton theory [50–52].

B. Continuous-wave Gaussian light beam

The electric field of an incident continuous-wave Gaussian
light beam propagating along the negative z axis, polarized
along the x axis, and focused to x = y = z = 0 is given in
cylindrical coordinates by [120]

E(r, t ) = E0
w0

w(z)
e−r2/w2(z) cos

[
kz + ωt + kr2

2R(z)
− ϕ(z)

]
êx.

(36)

Here w(z) = w0

√
1 + (z/zR)2 is the position-dependent beam

radius, zR = πw2
0n/λ0 is the Rayleigh range, R(z) = z[1 +

(zR/z)2] is the radius of curvature of the wavefronts, and
ϕ(z) = arctan(z/zR) is the Gouy phase. The electric field
amplitude at the focus is given by E0 =

√
4P0n/(πw2

0cε0εr ),
where P0 is the average power of the beam. In the simulation
of the continuous-wave beam, for the beam waist radius w0,
we use the value of w0 = 40 µm, and for the average power
of the beam, we use P0 = 1 W.

In order to obtain a stationary atomic distribution as a result
of the simulation, in Newton’s equation we add the force

density term fdamping = −�ρava, which is associated with the
damping of mechanical waves [121], quantified here by the
damping frequency �. In the case of a continuous-wave field,
the damping frequency determines the timescale at which the
excess mass density and atomic displacement distributions
studied below are formed, but it does not affect the values of
the final distributions.

Figure 3(a) presents the excess mass density resulting from
the electrostriction induced by the Gaussian light beam of
Eq. (36) in a homogeneous silicon crystal. The field is only
slightly focused, and thus, the variations in the mass density
along the z axis are not visible, while in the transverse plane,
the excess mass density follows the Gaussian form of the light
beam. Apart from very small variations, the result is indepen-
dent of whether the square of the electric field used in the
simulations is averaged over the harmonic cycle or not. The
atomic displacement field corresponding to the excess mass
density of Fig. 3(a) is presented in Fig. 3(b). This displace-
ment field is radially directed toward the beam axis, where the
displacement field is zero. Far from the beam axis, the atomic
displacement field asymptotically approaches zero again. This
takes place outside the region depicted in the figure.

Figure 3(c) shows the excess mass density resulting from
the electrostriction induced by the Gaussian light beam of
Eq. (36) when the beam is reflected from a perfect mirror
positioned at z = 0 nm. The excess mass density follows the
standing wave pattern of the square of the electric field as
expected. Due to the reflection and the standing wave pattern,
the highest values of the excess mass density in Fig. 3(c)
are four times the highest values the same quantity for the
Gaussian light beam without reflection from the mirror in
Fig. 3(a). The atomic displacement field corresponding to the
excess mass density of Fig. 3(c) is depicted in Fig. 3(d). Due
to the standing wave pattern, the atomic displacement field
associated with electrostriction has an additional nonradial
contribution. This component is, however, so small that it is
not visible in Fig. 3(d).

VI. STRESS-ENERGY-MOMENTUM TENSORS

The SEM tensor of a physical system or a subsystem com-
piles the energy and momentum densities and the stress tensor
of the conservation laws, exemplified by Eqs. (2)–(5), in a
single second-rank physical quantity. The contravariant form
of an arbitrary SEM tensor in the Minkowski space-time is
defined by T = T αβ êα ⊗ êβ , where the Einstein summation
convention is used, and êα and êβ are unit vectors of the
four-dimensional space-time, i.e., (ct, x, y, z). The Greek in-
dices range over the dimensions of the space-time. The matrix
representation of T is given by [49,80,122,123]

T =
[

W cGT

cG T

]
=

⎡
⎢⎢⎣

W cGx cGy cGz

cGx T xx T xy T xz

cGy T yx T yy T yz

cGz T zx T zy T zz

⎤
⎥⎥⎦. (37)

In some previous literature, asymmetric SEM tensors have
been introduced [76], but in our work, all SEM tensors are
symmetric and strictly based on the classical definition in
Eq. (37).
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FIG. 3. Simulations of optoelectrostriction for a radially Gaussian continuous-wave light beam. (a) The excess mass density and (b) the
atomic displacements for a light beam propagating along the z axis in a homogeneous silicon crystal. (c) The excess mass density and (d) the
atomic displacements for the standing wave of a light beam incident from silicon along the negative z axis and reflected from a perfect mirror
at z = 0 nm. The figures show the quantities for the length of two wavelengths in the cylindrical central region of the simulation geometry. The
colors show the magnitude, and the arrows show the direction of the vector quantities.

We require that the SEM tensors of the total system and
its subsystems, e.g., the material and field+interaction sub-
systems, must all transform between inertial frames in a rela-
tivistically covariant way. This imposes strong limitations on
the possible forms of the SEM tensors. Since the SEM tensor
is a derived quantity made of basic physical quantities, such
as the atomic density, atomic velocity, and the electric and
magnetic fields, it can be transformed between inertial frames
by transforming the basic physical quantities in its elements.
Simultaneously, the SEM tensor must satisfy the Lorentz
transformation of second-rank tensors [51,52,76,79]. Thus,
arbitrary combinations of basic physical quantities forming
the SEM tensor are not possible. In addition, one cannot ar-
bitrarily mix tensor elements between the SEM tensors of two
subsystems. Below, the SEM tensors are presented so that they
each satisfy the condition discussed above. They are presented
in terms of four-dimensional quantities, such as four-vectors,
field tensors, and Lorentz scalars, which makes the fulfillment
of the relativistic covariance property transparent.

The total SEM tensor of the system of the electromagnetic
field and a perfect fluid is given by a sum of the SEM tensor
Tmat of the material subsystem, and the SEM tensor Temi of
the field+interaction subsystem as

Ttot = Tmat + Temi. (38)

By defining the four-fource density as F = (φ/c, f ), the
conservation laws in Eqs. (2)–(5) are compactly written as
∂β (Tmat )αβ = Fα and ∂β (Temi)αβ = −Fα . For the total iso-

lated system, the conservation laws are correspondingly given
by ∂β (Ttot )αβ = 0.

In accordance with the splitting of the force density
into parts in previous sections, the SEM tensor of the
field+interaction subsystem can be written as

Temi = Towm + Tost + Tmech. (39)

Here Towm is the optical generalized Abraham SEM tensor
of the field corresponding to fowm, Tost is the electro- and
magnetostriction SEM tensor corresponding to fost, and Tmech

is the SEM tensor of mechanical pressure corresponding to
fmech.

Using the diagonal Minkowski metric tensor g with sign
convention g00 = 1, g11 = g22 = g33 = −1, the subsystem
SEM tensors above are given in contravariant forms applica-
ble to a general inertial frame as

Tmat = ρaUa ⊗ Ua, (40)

Towm = 1

2
(FgD + DgF ) − 1

4
gTr[FgDg]

− 1

2c2
[(FgD − DgF )g(Ua ⊗ Ua )

+ (Ua ⊗ Ua )g(DgF − FgD)], (41)

Tost = (poes + poms)

(
Ua ⊗ Ua

c2
− g

)
, (42)

Tmech = pmech

(
Ua ⊗ Ua

c2
− g

)
. (43)
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Here Ua = γva (c, va ) is the four-velocity of the material, and
the contravariant forms of the electromagnetic field tensor F
and the electromagnetic displacement tensor D are given by

F =

⎡
⎢⎢⎣

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎤
⎥⎥⎦, (44)

D =

⎡
⎢⎢⎣

0 −Dxc −Dyc −Dzc
Dxc 0 −Hz Hy

Dyc Hz 0 −Hx

Dzc −Hy Hx 0

⎤
⎥⎥⎦. (45)

The electro- and magnetostrictive pressures poes and poms,
the mechanical pressure pmech, and the mass density ρa are
Lorentz scalars.

The Lorentz invariant form of the electrostrictive pressure
is given by poes = − 1

2 [P · E − va · (P × B)] and the mag-
netostrictive pressure is given by poms = − 1

2 [M · B + va ·
(M × E)/c2]. The second terms of these expressions are ex-
pected to be related to the Röntgen and Aharonov-Casher
interactions of previous literature since they have similar

forms [124]. As conventional, the factor 1
2 is related to the fact

that we are here dealing with induced dipoles and not perma-
nent ones or a system of free charges. In the special case of
the laboratory frame, where the atomic velocity is negligible
as va ≈ 0, we have poes ≈ − 1

2 P · E and poms ≈ − 1
2 M · B in

agreement with Eqs. (21) and (22).
The SEM tensor of the material in Eq. (40) is of the well-

known form [123,125]. The optical generalized Abraham
SEM tensor in Eq. (41) has appeared in previous literature in
Refs. [51,126,127], and it has been generalized for dispersive
materials in Ref. [49]. The SEM tensors of the optostriction
and mechanical pressure in Eqs. (42) and (43) are of the
well-known form of the pressure term appearing in the SEM
tensor of a perfect fluid [123].

In the special case of the laboratory frame, where the
atomic velocity is negligibly small, the general expressions
of the SEM tensors in Eqs. (40)–(43) reduce to the following
simple formulas:

Tmat =
[

ρac2 ρavT
a c

ρavac ρava ⊗ va

]
, (46)

Towm =
[

1
2 (E · D + H · B) 1

c (E × H)T

1
c E × H 1

2 (E · D + H · B)I − E ⊗ D − H ⊗ B

]
, (47)

Tost =
[

0 0
0 (poes + poms)I

]
, (48)

Tmech =
[

0 0
0 pmechI

]
. (49)

Here, for the optoelectro- and optomagnetostrictive pressures
poes and poms, one can use the laboratory frame expressions,
given in Eqs. (21) and (22).

VII. DISCUSSION

An obvious question arising from the present theory of
optostriction is how it influences existing theories of the
forces of light [77]. We discuss in particular the implications
to the previous mass-polariton theory [49–53,128–130]. As
we pointed out in the analysis of Fig. 2, the optostrictive
force density does not lead to net momentum transfer between
the field and the material. Thus, it does not contribute to the
transfer of wave momentum by the optical field or the net mo-
mentum carried by the material. Therefore, the optostrictive
force density does not either lead to net mass transfer of the
material, i.e., it does not contribute to the transferred mass
of the mass-polariton state. Accordingly, the law of constant
velocity of the center of energy of an isolated system re-
mains fulfilled within this generalization of the mass-polariton
theory.

The theory can, however, lead to a locally nonzero mo-
mentum density of the material, and actually, in homogeneous

materials, the optostrictive force density for light beams and
pulses typically dominates over the optical wave momentum
force density. In particular, the optostrictive force density
has a radial component, which for typical light pulses and
beams, is larger than longitudinal force density component
of the Abraham force term, which contributes to the trans-
fer of wave momentum. Consequently, the optostrictive force
density must be included in the force densities of light beams
and pulses, and it is especially important in the modeling of
experimentally observed displacements of the material caused
by optical fields.

Both the optical wave momentum force density fowm and
the optostrictive force density fost act in the elastic wave
equation of the material as driving forces of the dynamics. For
short optical pulses, in the regime, where the field is nonzero,
fowm and fost dominate over reactive elastic forces. This means
that, in the time and displacement scale of the optical pulse,
the changes in the interatomic distances are so small that
elastic forces have negligible contribution. Thus, the optical
pulse gives a forced displacement and impulse of atoms that
can be calculated from the sum of fowm and fost. After the field
fades out, these displacements and related momenta form the
initial state of the elastic relaxation, which is seen as sound
waves. In this respect, fowm and fost behave qualitatively in the
same way.

From the point of view of the SEM tensors, discussed in
Sec. VI, the relativistic covariance of the theory is preserved
since the optostriction is described by the SEM tensor Tost in
Eq. (42), whose relativistic covariance is independent of the
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covariance of Towm in Eq. (41). The relativistic covariance of
the theory would be preserved even if the dissipation terms
introduced in the calculation of the optostrictive force density
were neglected. However, in this case, the form of the op-
tostrictive pressure in a general inertial frame would become
more complicated.

We can conclude that the optostrictive force density is an
essential addition to the optical wave momentum force density
of the mass-polariton theory used in previous works. It is
important in describing the position- and time-dependent dy-
namics of the material, but it does not influence the relativistic
covariance of the theory. The theory of optoelectro- and opto-
magnetostrictive force densities presented in this work gives
a possibility to calculate the full position and time-dependent
dynamics of the material under the influence of the optical
field. Thus, time or harmonic cycle averaging is not needed
within this theory.

From the experimental point of view, it is interest-
ing to compare the optoelectro- and optomagnetostrictive
pressures poes and poms to the electrostrictive and mag-
netostrictive pressures pes and pms, derived originally for
stationary fields [106]. It is found that these pressures are
related by pes = εr+2

3 poes and pms = μr+2
3μr

poms. While the
electrostrictive pressure pes explains the results of the clas-
sic Hakim-Higham experiment [4] for stationary fields, the
optoelectrostrictive pressure poes explains the results of the
recent measurement by Astrath et al. [3] for an optical field.
At optical frequencies, in the case of water, poes is about
20% smaller than pes, so the relative accuracy of the mea-
surement does not need to be exceptionally high to observe
which one of the formulas agrees with the results better.
However, since the amount of quantitatively accurate mea-
surements of electrostriction is very limited, it is desired
to verify the reproducibility of the results, to narrow down
error margins, and to carry out similar measurements for
other materials.

The condition of a linear, isotropic material and the appli-
cability of the Clausius-Mossotti relation limit the possibility
to use the present theory for all materials. However, extension
of the present theory to cover materials with different relations
between the polarizability of the material and the macroscopic
electric field can be developed following the principles pre-
sented in this work.

Regarding the anisotropy of the electrostrictive tensor of a
deformed material, we note that the anisotropy is negligible
for typical field strengths in common photonic materials. In
the case of light pulses, the optostrictive forces give an im-
pulse to the material atoms. The associated momenta later
result in atomic displacement. These displacements develop at
acoustic velocities and do not have time to become significant
during the short optical transient. Anisotropies resulting from
faster processes, such as the Kerr effect, could in principle
take place. However, these effects are also negligible for
common photonic materials. For example, in a recent work
in Ref. [131], it was found that the change generated in the
refractive index of water due to the Kerr effect is negligible
being of the order of 10−10. Furthermore, the anisotropy in
the electrostrictive tensor must vanish in the limit of low field
strength.

VIII. CONCLUSIONS

In conclusion, we have derived a time-dependent theory
of force densities generated on the material by an optical
field. The theory extends the previous mass-polariton theory
of light to include optoelectro- and optomagnetostrictive force
densities, which arise from the atomic density dependence
of the energy density of the electric and magnetic fields. By
introducing additional dissipation terms, nonexistent in the
conventional theory of electrostriction and magnetostriction,
we were able to explain the difference between the existing
experimental results for a stationary field and for an optical
field. The dissipation terms we have introduced are necessary
to conserve the total energy when the optostrictive force does
contraction work on the material. In the present work, we have
determined the magnitude of this dissipation starting from the
Lorentz force model of the optostrictive force and the require-
ment of the conservation of energy during the contraction of
the material. Developing a physical model for this dissipation
is a topic of further work. We have shown that the theory is
relativistically covariant, meaning that it can be applied to
an arbitrary inertial observer independent of its velocity with
respect to the material. This is a strong condition limiting
the number of possible theories. The understanding of elec-
trostrictive and magnetostrictive forces at optical frequencies,
developed in the present theory, is expected to revive interest
in experimental studies of optical forces in various photonic
materials. We also expect that the unified electromagnetic
force theory for optical fields will open new approaches to
develop our understanding of physics and engineering of ther-
mal and acousto-optical coupling of light and dielectrics.
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APPENDIX A: LORENTZ FORCE DENSITY

In this Appendix, we present the total electromagnetic
force density fem based on the Lorentz force law. This force
density can be split into the force density fe for induced
electric dipoles and fm for induced magnetic dipoles. These
parts and their sum are given in the subsections below.

1. Force density on induced electric dipoles

For electric dipoles generating the polarization field P,
the Lorentz force density is well known to be given by
[1,76,132–135]

fe = (P · ∇)E + ∂P
∂t

× B. (A1)

Using P = ε0(εr − 1)E and applying the mathematical iden-
tity (E · ∇)E = ∇( 1

2 |E|2) − E × (∇ × E) with Faraday’s law
∇ × E = −∂B/∂t and the product rule of differentiation, we
can rewrite the force density in Eq. (A1) as

fe = 1

2
∇(P · E) − 1

2
ε0|E|2∇εr + ∂

∂t
(P × B). (A2)
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The derivation of the force density fe from the Lorentz forces
on the individual charges of the induced electric dipole is
presented briefly below.

The force applied on a single electric charge ±qe in an
electromagnetic field at position r±qe is known as the Lorentz
force [80,122], and it is given by

F±qe (t ) = ±qe

[
E(r±qe , t ) + dr±qe

dt
× B(r±qe , t )

]
. (A3)

Let us take a point r0 as the center of mass of two charges,
which make the electric dipole. Then we write the macro-
scopic electric and magnetic fields, E and B, around r0 by
using two first terms of their truncated Taylor series as

E(r, t ) = E(r0, t ) + [(r − r0) · ∇]E(r, t )|r=r0 . (A4)

B(r, t ) = B(r0, t ) + [(r − r0) · ∇]B(r, t )|r=r0 . (A5)

Next, we write the net force on the center of mass of
an electric dipole made of two opposite charges, given by
Fe = Fqe + F−qe . Using the field approximations in Eqs. (A4)
and (A5) with dropping out the second term of Eq. (A5), since
the resulting force density terms are negligible in comparison
with the terms included [135], the net force on an electric
dipole then becomes [1,76,132–135]

Fe(t ) = qe

[
E(rq, t ) − E(r−q, t )

+ drq

dt
× B(rq, t ) − dr−q

dt
× B(r−q, t )

]

= (p · ∇)E(r, t )|r=r0 + dp
dt

× B(r0, t ). (A6)

Here we have defined the electric dipole moment as p =
qe(rq − r−q ). By defining the polarization field P as the dipole
moment density through P = nap, where na is the number
density of electric dipoles, the force density fe = naFe is then
obtained as given in Eq. (A1).

2. Force density on induced magnetic dipoles

For magnetic dipoles, the derivation of the Lorentz force
density is less straightforward than for electric dipoles and
involves the enigma of the hidden momentum [136,137]. The
resulting force density is given by [3,138]

fm = (M · ∇)B + M × (∇ × B) − 1

c2

∂

∂t
(M × E). (A7)

Using the constitutive relations in Eq. (7), which give M =
μr−1
μ0μr

B, and applying the mathematical identity (B · ∇)B =
∇( 1

2 |B|2) − B × (∇ × B) and the product rule of differenti-
ation, we can rewrite the force density in Eq. (A7) as

fm = 1

2
∇(M · B) − 1

2
μ0|H|2∇μr − 1

c2

∂

∂t
(M × E). (A8)

3. Total force density on atomic dipoles

The total electromagnetic force density fem in Eq. (16) on
a material made of both induced electric and magnetic dipoles
can be written as a sum of the electric and magnetic parts in

Eqs. (A1) and (A7) as fem = fe + fm, resulting in

fem = (P · ∇)E + (M · ∇)B + M × (∇ × B)

+ ∂P
∂t

× B − 1

c2

∂

∂t
(M × E). (A9)

Alternatively, using Eqs. (A2) and (A8) for fe and fm and
applying the constitutive relations in Eqs. (6) and (7) to com-
bine the time derivative terms of fe and fm into a single term
n2−1

c2
∂
∂t (E × H), where we have used εrμr = n2 and taken this

factor out of the time derivative, we obtain

fem = 1

2
∇(P · E) + 1

2
∇(M · B) − 1

2
ε0|E|2∇εr

− 1

2
μ0|H|2∇μr + n2 − 1

c2

∂

∂t
(E × H). (A10)

APPENDIX B: ELECTROSTRICTION AND
MAGNETOSTRICTION FOR STATIONARY FIELDS

In the calculation of the conventional electro- and magne-
tostrictive force densities for stationary fields, one makes use
of the conservation of energy when a small change is made
in the density of the material [1,65]. The Clausius-Mossotti
relation in Eq. (12) and its magnetic analog in Eq. (13) show
that the increase of the density of the material corresponds to
the increase of the relative permittivity and permeability. This
can be concluded from the derivatives of the relative permit-
tivity and permeability with respect to the atomic density, for
which Eqs. (12) and (13) give na

∂εr
∂na

= 1
3 (εr − 1)(εr + 2) and

na
∂μr

∂na
= 1

3 (μr − 1)(μr + 2). Thus, if the fields D and B are
kept constant, the electric and magnetic field energy densities
We = 1

2ε0εr
|D|2 and Wm = 1

2μ0μr
|B|2 decrease when the den-

sity of the material is increased. Then, following the principle
of virtual work, the field energy density acts a potential en-
ergy, which tends to compress the material. The reduction of
the field energy density must be equal to the increase of the
elastic and thermal energy densities of the material. At equi-
librium, the electro- and magnetostrictive force density is then
equal to the thermodynamical force density corresponding to
the compressibility of the material for the given thermody-
namical process [65]. For an isothermal process taking place
at constant temperature T , we then obtain the electrostrictive
force density fes and magnetostrictive force density fms from
the electric and magnetic free energy densities Fe = We and
Fm = Wm as

fes = −∇
[

na

(
∂Fe

∂na

)
D,T

]

= 1

2
ε0∇

[
na

(
∂εr

∂na

)
T

|E|2
]

= 1

2
∇(P · Eeff ), (B1)

fms = −∇
[

na

(
∂Fm

∂na

)
B,T

]

= 1

2
μ0∇

[
na

(
∂μr

∂na

)
T

|H|2
]

= 1

2
∇(M · Beff ). (B2)

023525-12



TIME-DEPENDENT THEORY OF OPTICAL ELECTRO- AND … PHYSICAL REVIEW A 107, 023525 (2023)

Equations (B1) and (B2) define the conventional stationary
electrostrictive and magnetostrictive pressures pes and
pms through fes = −∇pes and fms = −∇pms. Thus,
pes = − 1

2ε0na( ∂εr
∂na

)T |E|2 = − 1
6ε0(εr − 1)(εr + 2)|E|2 and

pms = − 1
2μ0na( ∂μr

∂na
)T |H|2 = − 1

6μ0(μr − 1)(μr + 2)|H|2
[1,65]. The stationary electrostrictive pressure has
been quantitatively measured for selected nonpolar
isotropic liquid dielectrics in the classic Hakim-Higham
experiment [4].

Alternatively, if the fields E and H are kept constant, the
electric and magnetic field energy densities We = 1

2ε0εr|E|2
and Wm = 1

2μ0μr|H|2 increase when the density of the mate-
rial is increased. At first sight, this seems to be in contradiction
with the argumentation above. However, in this case one must
do external work to preserve the values of the fields E and
H at the same time when the density of the material is in-
creased. When this external work is accounted for, the free
energy densities Fe and Fm become replaced by F̃e = −We and
F̃m = −Wm, and we obtain fes = −∇[na( ∂F̃e

∂na
)E,T ] and fms =

−∇[na( ∂F̃m
∂na

)H,T ]. As a result, the values of the electrostrictive
and magnetostrictive force densities are not changed from

those obtained by using Eqs. (B1) and (B2). In an example
of a dielectric material placed between capacitor plates, keep-
ing the field D constant corresponds to having fixed charges
on the capacitor plates, while keeping the field E constant
corresponds to having fixed potential between the capacitor
plates (Sec. 4.7 of Ref. [80]). In the latter case, one must do
work to increase the charges on the capacitor plates when the
permittivity of the dielectric is increased.

Note that the stationary electrostrictive and mag-
netostrictive force densities in Eqs. (B1) and (B2)
could also be calculated as gradient force densities
from the potential energy density resulting from the
Stark [E (n)

e = − 1
2 (αe)(n)

ik (Eeff )i(Eeff )k] and Zeeman
[E (n)

m = − 1
2 (αm )(n)

ik (Beff )i(Beff )k] shifts [139] of atomic
energy levels in an external electromagnetic field. The
equivalence of this approach with the last rows of Eqs. (B1)
and (B2) can be seen by assuming a single ground-state energy
level, assuming that its polarizability and magnetizability
tensors (αe )(n)

ik and (αm )(n)
ik are diagonal as (αe )(n)

ik = αeδik

and (αm )(n)
ik = αmδik , and noting that pi = αe(Eeff )i and

mi = αm(Beff )i are the electric and magnetic dipole moments
of the atom.
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