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Low-Rank Room Impulse Response Estimation

Martin Jdlmby *, Filip Elvander

Abstract—In this paper we consider low-rank estimation of room
impulse responses (RIRs). Inspired by a physics-driven room-
acoustical model, we propose an estimator of RIRs that promotes
a low-rank structure for a matricization, or reshaping, of the
estimated RIR. This low-rank prior acts as a regularizer for the
inverse problem of estimating an RIR from input-output observa-
tions, preventing overfitting and improving estimation accuracy.
As directly enforcing a low rank of the estimate results is an
NP-hard problem, we consider two different relaxations, one using
the nuclear norm, and one using the recently introduced concept of
quadratic envelopes. Both relaxations allow for implementing the
proposed estimator using a first-order algorithm with convergence
guarantees. When evaluated on both synthetic and recorded RIRs,
it is shown that under noisy output conditions, or when the spectral
excitation of the input signal is poor, the proposed estimator out-
performs comparable existing methods. The performance of the
two low-rank relaxations methods is similar, but the quadratic
envelope has the benefit of superior robustness to the choice of
regularization hyperparameter in the case when the signal-to-noise
ratio is unknown. The performance of the proposed method is
compared to that of ordinary least squares, Tikhonov least squares,
as well as the Cramér-Rao lower bound (CRLB).

Index Terms—Low-rank modeling, quadratic envelopes, room
impulse responses.

1. INTRODUCTION

ONSIDERING the acoustics of a room as a linear time-

C invariant (LTI) system, room impulse responses (RIRs)
describe the impact of the room on a sound signal, between
a point source and a point receiver. They play a vital part in
algorithms within a multitude of acoustic signal processing
tasks, such as source localization [ 1], speech dereverberation [2],
auralization [3], source separation [4], and echo cancellation [5].
There are several ways of modeling the RIR. Among the most
popular ones are the infinite impulse response (IIR) (seee.g., [6],
[7]) and finite impulse response (FIR) models (see e.g., [6], [8]).
The IR model offers the possibility of a more compact rep-
resentation, however with the downside of possible difficulties
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estimating the filter parameters [9], and potential issues with
instability [10]. The FIR model is simple and straightforward,
but with the disadvantage that comparatively many coefficients
are needed to accurately represent the RIR [9]. For a regular
office-sized room, the FIR model can be several thousands of
taps long [2], which can be prohibitive from a computational
and memory requirement point for view [11], [12].

If the RIR is estimated from an output signal originating from
an input signal with poor spectral excitation, i.e., lacking power
in certain frequency bands, the estimation problem can become
ill-posed, and the resulting estimation could suffer from large
variance. To counteract this, it is common to use regularization,
see e.g., [13]. The standard approach in RIR estimation is to use
Tikhonov regularization [14], a special case of the types of reg-
ularization presented in [13]. However, we will demonstrate in
this work that by exploiting an (approximate) low-rank structure
of RIRs, estimation performance may be improved as compared
to state-of-the-art estimators with and without regularization. As
of late, low-rank modeling, and low-rank regularization, has be-
come increasingly popular in signal processing, data science and
related fields, such as machine learning [15], video background
subtraction [16], and matrix completion [17].

In these applications, low-rank structures of matrices or ten-
sors parametrizing the signals under consideration are exploited
as to, e.g., obtain compact representations or to regularize
otherwise ill-posed estimation problems. The class of signals
amenable to this type of treatment includes polynomials, rational
functions, smooth and periodic functions, and what will be used
in this paper as a model for motivating low-rank structure of
RIRs, sums of decaying sinusoids [18].

It should here be noted that in the system identification
literature, low-rank structures are most commonly utilized for
describing the Toeplitz matrix representing the discrete convo-
lution operation, i.e., the LTI system acting on an input. This
has been discussed by, e.g., Marconato et al. in [19] and [20].
In these works, empirical Bayes methods are primarily being
used, and it is shown that low-rank regularization acts as a pow-
erful method for improving the accuracy of the estimation. In
particular, promoting Toeplitz matrices with low-rank is shown
to add robustness in the face of input signals with poor spectral
excitation.

In contrast, the low-rank structure considered herein does
not refer to aforementioned Toeplitz matrix, but rather to a
matricization of the impulse response itself. Specifically, we here
aim to exploit that RIR vectors when reshaped into a matrix
allow for low-rank approximations, something we have taken
advantage of in our recent work [21] (see also [18], [22] for
relevant work outside the domain of acoustic signal processing).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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System identification with this type of low-rank structure has
earlier been explored by Paleologu et al. in works like [23],
[24], [25] using iterative Wiener filter, recursive least-squares,
and Kalman filter respectively, but there under the name nearest
Kronecker product. The main focus there are shorter impulse re-
sponses, particularly for network echo cancellation. In contrast,
the scenario considered in this paper concerns longer impulse
responses for applications in acoustic signal processing.

Furthermore, the estimation algorithms in the above men-
tioned papers require the user to exactly specify the number of
low-rank components to be estimated, thereby relying on oracle
knowledge of the system complexity. In the work presented
herein, we instead propose an estimator where the rank of the
estimate is implicitly controlled by means of hyperparameters.
In particular, the proposed estimator poses RIR estimation as
an inverse problem, with low-rank estimates being promoted by
the use of a regularization term.

It may here be noted that directly penalizing the rank of an RIR
matrix yields an NP-hard problem [26]. A popular remedy to this
in general low-rank estimation is nuclear norm regularization,
i.e., penalizing the sum of the singular values, since it yields
a convex optimization problem that can be solved by standard
methods. This approach has however been shown to introduce
a shrinkage, or bias towards zero, of the singular values (see
e.g., [15]).

In this work, we propose to counter this bias by utilizing
the so-called quadratic envelope of the rank penalty. Quadratic
envelopes, introduced in [27], constitute a class of minorizers
constructed from point-wise best function approximations from
below by quadratic functions, and have recently been used for
addressing bias issues in sparsity problems within the realm of
image processing and computer vision by Carlsson et al. in works
like [27], [28], [29], [30]. A drawback of this relaxation is that
the resulting optimization problem is not necessarily convex, but
in many cases this is outweighed by the very attractive property
that, for appropriate hyperparameter values, the relaxation does
not move any local minima of the problem being approximated.
Its merit is, however, to the best of the authors’ knowledge, yet
to be explored in the context of acoustic signal processing. In
addition, the problem considered herein falls into a class of prob-
lems for which convergence of the proximal gradient method,
or forward-backward splitting (FBS), to a local minimum can
be guaranteed.

The contribution of this paper is therefore to provide a frame-
work for low-rank estimation of room impulse responses. We
present an easy-to-use algorithm and show that low-rank reg-
ularization outperforms benchmark methods, that is, ordinary
least squares and Tikhonov regularized least squares. This is
demonstrated using synthetic as well as real-life RIRs, driven
by synthetic as well as real-life signals and it is shown that this
works well on real life-recorded RIRs. The outperformance is
consistent, but particularly noticeable when the SNR is low, or
when the spectral excitation is poor. Further, the quadratic enve-
lope performs exceptionally well when prior knowledge about
the SNR can not be assumed. Finally, it should be noted that the
use of the proposed algorithm is not restricted to acoustics and
RIRs, but rather it is applicable to any physical system of which

the impulse response is well modeled by a sum of decaying
sinusoids.

This paper is organized as follows: first, Section I is con-
cluded with an introduction of the notation used throughout
the paper. In Section II, the signal model is introduced. In
Section I1I, different possible relaxations of the low-rank penalty
term are discussed, and in Section IV, the proposed algorithm
is introduced. Numerical results are presented in Section V.
Finally, in Section VI, conclusions of the work presented here
are discussed, and possible avenues for future research are being
pointed out.

A. Notation

Vectors are denoted by lower case, bold letters, such as h,
and matrices are denoted by upper case, bold letters, such as
H. Subscript on an upper case bold letter indicates matrix
column, i.e., H; denotes the jth column of H, and on a lower
case bold letter it indicates vector element, i.e., h; denotes the
jth element of h. A bar, -, denotes complex conjugation of a
complex number and the hat symbol, *, denotes an estimated
quantity. The symbol ® denotes the Hadamard product, i.e.,
element-wise multiplication of vectors or matrices, the nabla
operator, V, refers to the gradient of a function, and E[-] denotes
statistical expectation. Linear operators are denoted by upper
case calligraphic letters, such as A, and an asterisk, -*, denotes
adjoint. Sets are also denoted by upper case calligraphic letters,
but it will be obvious from context what is considered. The norm
of a matrix or an operator is denoted || - || and refers to || - |2,
(u,v), = >_}_; u;v; denotes the inner product between two

vectors u, v € R", and ¢ = y/—1 denotes the imaginary unit.

II. SIGNAL MODEL

We assume an observed acoustic pressure signal in discrete

time y(n),n =1,2,...,n,, with corresponding signal vector
y € R™. This observed signal is the result of a known signal
x(n),n=1,2,...,n,, with corresponding vector x € R"=,

being generated by a point source in aroom, and can therefore be
modeled as the convolution of x with the room impulse response
h(n),n =1,2,...,n,, with corresponding vector h € R"",
x * h, where

nh

(xxh)p = hXpin, &, (1)
k=1

forn=1,2,...,n,,ie., we consider only the part of the RIR
where the system is fully excited. We will assume that n,, > ny,
tonot have to consider initial conditions. We further assume mea-
surement noise e € R™v, that we assume to be white Gaussian
with variance 02, i.e., e € N'(0,0°1,), where I, € R™v*"v
denotes the identity matrix. In the more general case of non-
white, non-stationary noise, a combination of prefiltering and
regularization can be used, as elaborated on in [14]. Taken
together, we have that

y=xx*xh+e, 2)
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which can also be written as
y = Xh + e, 3)

where X € R™v*"n is the Toeplitz matrix corresponding to the
convolution operation in (2).

We will have that n, = n, — ny + 1. We define the linear
operator A : R™ — R™, such that A(h) = x *h. Here we
also define the adjoint operator A* : R"™v — R™", as the unique
operator for which

(b, A(¥))ny, = (A(D),¥)n,, Vh eR™ y € R™.  (4)

III. ESTIMATION WITH LOW-RANK HEURISTICS

The room impulse response h can be estimated from the input
and observed signal vectors with the least squares method,

1
minihmize §Hy - A(h)||§, ®)

and under the assumption that the noise e is white Gaussian,
this yields the maximum likelihood estimator. Inverse problems
like these are, however, often ill-posed [31], [32], particularly
in acoustic signal processing, where poor excitation is a com-
mon occurrence [14]. The inverse mapping from y to h might
therefore be unstable due to ill-conditioning. The fact that the
output is corrupted by noise could yield an over-fitted solution,
and finally, the solution could be non-unique [32]. In order
to have a well-posed problem, a possible approach is to use
regularization [13]. This is done by appending a penalty term
to the optimization problem (5). With that, the problem can be
written as

miniﬁnize f(h) + g(h). (6)

We consider the function f : R™ — R to be the data-fit term
lly — A(h)|3, i.e., a function penalizing the distance between
the model output and the observation. The functiong : R"» — R
is the regularization term. Note that this seemingly simple form
includes constrained optimization problems, since we can let g
be an indicator function for some non-empty set S,

0 ,heS

>~ ,h¢S’ @

g(h) =Zs(h) = {
This form also includes the aforementioned Tikhonov regular-
ization, where g(h) = Ar|/h||3, yielding

|
mlmhmlzeiHy—A(h)”%+)\THh||§, ®)

where A > 0 is a parameter controlling the degree of regular-
ization.

The regularization should, however, preferably be designed
using prior knowledge about the problem [14]. We will therefore
demonstrate the low-rank properties of RIRs, and argue how
these can be exploited in regularization. An RIR can be well
modelled as an infinite sum of decaying sinusoids, see e.g., [33].
The frequencies of these decaying sinusoids correspond to the
modes of the room, i.e., frequencies at which standing waves
would occur in the absence of wall absorption. The number
of room modes, Ny, below a certain frequency f satisfies

959

Ny =~ %ffﬂ [34], where c is the speed of sound. One might
therefore expect to have to use a large number of terms to approx-
imate this sum. However, in [10] it is concluded that the large
overlap between the modal curves, which occurs particularly
at higher frequencies [9], makes the number of distinguishable
peaks in the frequency magnitude response much smaller, and it
is justified to approximate the infinite sum with a finite one. For
a longer exposition, see e.g., [10] and [21]. With this, the room
impulse response can be modeled by

h(r,,rs,n) = Z um(r,.7rs)e’ﬁm” cos(wmn + ¢m), 9)
m=1

forn=1,2,...,n,. Here, u,, denotes the initial amplitude,
r., 1, € R? the position of the receiver and the source, respec-
tively, 3,, € R the exponential decay constant, w,,, € [0, 7] the
angular frequency ¢,, € [0,27), the phase, and m € N is the
number of decaying sinusoids used in the model. For ease of
notation we will drop the dependence on r, and rg and refer
to h(r,,rs,n) simply as h(n), the same h(n) as presented in
Section II.

When a vector consisting of the sum of mg discrete time
decaying sinusoids is reshaped into a matrix, that matrix will
have rank 2mg, see e.g., [35]. Further, as previously mentioned,
there is a large spectral overlap of some of the modal curves
of the decaying sinusoids that make up the RIR, particularly
at higher frequencies. These two facts taken together makes
for good conditions for enforcing a low-rank structure on the
solution, i.e., that when the solution vector is reshaped into a
matrix, that matrix should have low rank. In previous work we
have shown the connection between the physics driven modeling
of room acoustics and the use of the sum of decaying sinusoids
model, along with the connection to low rank modeling [21].
For more on the physical motivation we refer to [21], but for
the convenience of the reader, we here reiterate the low-rank
motivation. It should be noted that a measured RIR will, when
matricized, not be low-rank in the strict sense, because of mea-
surement noise and model errors. Low-rank is here meant in a
less strict sense, i.e., that a low-rank approximation of the RIR
will render a small approximation error.

Let us define the reshaping operator R, : R"* — RP*9, that
reshapes a vector h € R™ into a matrix H € RP*9, for which
np, = pq. Then, if we assume that ¢ = /n;, € N, the RIR vector
h can be reshaped into a square matrix H = R4(h) € R9%9,
h(1)

h(g+1) h(qlg—1)+1)

H-=

h(q) h(2q) h(nn)
(10)

Then, H =H; + Hy + --- + H,,,_, where H,,, corresponds to
the mth decaying sinusoid of (9),
hn (1)

P (2q) B (1)
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Zm

e (¢-1)q

L
Zin

—ipm | Z
m€ m _
+“T , [1 2,2 ”q], (11)
Zin

where z,, = ¢*“m~Bm_We see that each of the m, terms that
make up H, can be written as a sum of two rank-1 matrices,
i.e., as a rank-2 matrix. As long as z,,, are distinct, the matrix H
will have rank 2m [36]. In general, H could be a non-square
matrix, but here we consider the square case, as to simplify the
exposition.

In light of this discussion, the problem to be solved would
ideally be

1
e - _ h 2
mlnlgmze 2||y »A( )“2

s.t. rank (Ryq(h)) < 2my, (12)
or, equivalently, using the form of (6),
L 1
minimize  o[ly — A(h)||3 + Zom, (Rgq(h)),  (13)

where the penalty function, Zs,,_, is the indicator function for
the set of matrices of rank at most 2m. This problem, however,
is non-convex and NP-hard [26]. Furthermore, the exact rank,
2my, is typically not known. Instead of the constrained problem
of (12) and (13), one could consider the penalized version,

minimize % |y — A(h)||3 + Arank (R, (h)).  (14)

Here, A > 01is a parameter controlling the degree of penalization
of the rank of the solution, in analogy to At in (8). This transforms
the problem of not knowing the rank 2mg, into the problem of
choosing A, but the problem remains NP-hard [15]. Considering
that the rank of a matrix is equal to the number of non-zero
singular values, (14) is equivalent to

... 1
minimize - [y — A + o (Ryg(m)lo- (15)

where || - ||o is the ¢p-pseudo-norm and o(H) : R7*? — R? is
the function that takes an R?*?-matrix and returns a vector of its
singular values in non-increasing order, given its singular value
decomposition (SVD) H = USV7, for U € R7%9, S € R4,
VT ¢ R9%%. The NP-hardness persists, however, so in order to
be able to find an approximate solution to (15), the problem
needs to be relaxed. This can be done in different ways, which
will now be further explored.

A. Nuclear Norm Regularization

In order to achieve low-rank solutions, throughout this paper,
two different kinds of penalty functions will be used and com-
pared. Firstly, the popular approach of using the ¢; -norm instead

of the £p-norm in the penalization of o (H) [37],

minimize L ly — A()[3 + s [Ryg(B) .. (16)
where ||HJ|, denotes the nuclear norm of H, defined as
|H]. = trace((H'H)'/2) = 30, 0, (H) = |o(H)|, and
ANN > 0 is analogous to A in (14). This is the first of the two
optimization problems we will aim to solve in Section IV. The
advantage of problem (16) is that it is convex and can be solved
efficiently [38]. The disadvantage is that this solution will be
biased, in that the singular values will be shrunk [15].

Several different methods have been proposed in an attempt
to remedy the issue of the shrinking of large singular values.
Among them, the weighted nuclear norm [39], which has been
generalized to so called generalized singular value thresholding
in [40].

B. Quadratic Envelope

The second approach to achieving a low-rank solution that
will be used in this paper, is the use of a function created
in attempt to closer emulate the ¢y-pseudonorm, the so called
quadratic envelope of the {y-norm. The quadratic envelope of
a function consists of pointwise, quadratic approximations, that
nowhere overestimate the original function. For the function
g : R™ — R, the quadratic envelope, at the point u € R", is
defined as

Q(9)(w)

= sup
acR,veR"

i 0
{a=3lu=v|?:a=Tjz—v|? < g(2), ¥z},

a7

i.e., the supremum of all functions of the form o — %Hu —vl2,

that nowhere overestimates the original function g(-). The pa-
rameter v > 0 controls how close this envelope will be to the
original function. A smaller value of v means a larger degree of
smoothing of the function, whereas Q., (g) converges point-wise
to g asy — oo [27].

Firstly, it is readily verified that

zn

Mullo =2 luallo-
n=1

In other words, the problem decouples in all dimensions, and
we can, without loss of generality, look at a one-dimensional
version of the aforementioned function, i.e., u = u. This has
been considered before, in works like [41] and [42], with support
of the theory in [43] and [44], but we restate the results here.
Further, since this is to be applied to the singular values, we will,
to simplify the exposition, only consider u > 0.

Proposition: The quadratic envelope of Agg||u||o is given by

(18)

V2 oyt — 1u? , u<
Q, (el - [lo) (u) = { VT2 GL)
AQE < u
or, equivalently,
Q, (el - lo) () = Age — gmax (u —w,0*,  (20)
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—NN Ay =1 QE, v =3, Agp =1

—QBE.v=1Ar=1-—QE 7=3 \gr =2

Fig. 1. Nuclear norm and quadratic envelope, for varying parameter values.
For reference, the £y-pseudo-norm is indicated by the dashed green line.

where 1 = \/2AqE/7, and Age > 0 is analogous to Any in (16).

Proof: The proof is based on [44], but for the convenience of
the reader we iterate it here. See Appendix A.

The major benefit of the quadratic envelope, as compared to
the nuclear norm, manifests itself'in (19). For values u larger than
1, the quadratic envelope is constant. The differences between
the nuclear norm and the quadratic envelope in approximating
|lu||o are further illustrated in Fig. 1. The effect of the parameter
~ is noticeable, in that a larger v yields an envelope closer to
||w|lo- Further, it can be seen that the main effect of increasing
AgE 1s raising the level at which the function remains constant.

A particular case of the penalty (20), when v = 2, has been
considered in [29]. Adding (20) to (5) yields the final form
of the second optimization problem we are aiming to solve in
Section IV,

.. 1
minimize o ||y — AD)[3 + Q(Ryq (b)), (21)
where we, for ease of notation, for a matrix X, define
Q(X) = Q, (el - [lo) (¢ (X)) (22)

As previously mentioned, 7 is a parameter that controls the
fidelity of Q,(g) to the original function g. If v < ||AJ|, then
the objective function in (21) is convex. This is of course a very
desirable property as these problems are generally considered
comparatively easy to solve. However, for v > ||.A|| we have
the following upside: if hisa (strict) local minimizer of (21),
then h is also a (strict) local minimizer of (15). In addition to
this, their global minima coincide [27].

IV. ALGORITHM
A. Preliminaries

As previously indicated, the optimization problem will be
solved using the proximal gradient method, also known as
forward-backward splitting (FBS), which can be seen in Algo-
rithm 1. It has become very popular recently due to its ability to
handle non-smooth functions. For more on the proximal gradient
method, see e.g., [32], [45], [46]. The general idea is to alternate
between taking a step in the negative direction of the gradient of
the smooth data-fit term f, and trying to minimize the (possibly

Algorithm 1: Proximal Gradient Method (PG).

Set u’ € R™ and p € (0,2L71)
for k. =0,1,.... do
| ubt = prox, (u¥ — pV f(u*))

non-smooth) penalty function g, using the so-called proximal
operator. For a function g(V) : R7*? — R, with the step length
parameter p > 0, it is defined as

. 1
prox,, (V) = argzmln <g(Z) + %HZ - V||2F> (23)

In Algorithm 1, the gradient step, u® — pV f(u”), is to be inter-
preted as the forward step, and the proximal mapping, prox ,,(-),
as the backward step.

Here, L denotes the Lipschitz constant of V f. In order to
guarantee that Algorithm 1 will converge, a few additional tech-
nical assumptions have to be made about f and g respectively.
These are all met for the problems considered in this paper, more
details can be found in [47].

In order to facilitate the exposition we will introduce a cou-
ple of linear operators. The operator H : R™ — R" denotes
the reversion of the order of the elements in a vector, i.e
H(x) = [Xn, sXn,-1,--- ,x1]T. The operator F : R* — C"
denotes the discrete Fourier transform (DFT), and 7! : C"* —
R™ the inverse DFT.! The operator P* : R” — R"** denotes
padding of a vector with k zeroes at the end. Finally, the operator
Cp:R™ — R" 1 where n > k and m > n — k + 1, is the
linear operator that picks out the kth till the nth element of a

vector, i.e., C (y) = [yk, Ye4+15 ---5 Yn|-

B. Proposed Algorithm

The previously introduced operators A and A* can now be
expressed in terms of these operators,

A(h) =C (]-'1 (]-'(P”m’l(h)) ® I(P"hl(x)))>,

(24)
and
)= (7 (P ) © F P )
(25)
respectively.

The first step in iteratively solving (16) and (21), respectively,
is the gradient step, with respect to the data-fit term f in the cost
function. The gradient of (5) is given by

Vf = A (A(h) - A(y). (26)

For the backward step, there is a seemingly complicating fact in
that this is to be taken with respect to a matrix and its singular
values. This, however, turns out not to be a problem. After the

'In the general case, 7! : C® — C", but because of the conjugate symmetry
properties of the signals considered here, we will have F~1 : C* — R™
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Algorithm 2: Low-Rank RIR Estimation Algorithm.

Input: hO, P Y Ay X, Y, tol, maxlter
for £ =0,1,..., maxlter do
1: wF=hF— p(A*(A(h*))—A*(y)) {Forward step}
2 WF = Ry (wh)
3a); HFI! = proprNNH,”*(Wk) {Backward step}
3b): HM' = prox o) (W*) {Backward step)
4 p =R I(HM)

if |h*+1 — h*||/(]|h*|| + &) < tol then

break

end if

end for

gradient step, the vector is reshaped into a matrix, and an SVD
is performed on that matrix.
Proposition: The proximal operator of Q(H) is given by

prox,oy(H) =U D(proprW(AQEH,HO) (U(H))) vt @7

and the proximal operator of Ann||o(H)||1 is given by
prox .. 1.1, (H) = U D(proprNNH_Hl (a(H))) vT,  (28)

where D : R? — R9*Y is the operation of creating a diagonal
q X g-matrix, with the argument of the operator as the diagonal.
The explicit expressions for prox g, (H) and prox,,; .- (H)
are given in Appendix B.

Proof: See Appendix B. It may be noted that this is due to
the orthogonal invariance of Q(H) and Ann|jo(H)||1, respec-
tively [46].

After either of the proximal operators has acted on the vector
of singular values, all that remains is to reassemble the matrix,
with the adjusted singular values, and then vectorize, in order to
get the current iterate of the estimated RIR. Finally, a check is
made to see if the algorithm is making enough progress, i.e., if
the new iterate is sufficiently different from the previous one, or
if the iterative procedure should be terminated. These steps are
summarized in Algorithm 2. Solving (16) or (21) differs only
in the use of proximal operator. That is reflected in step 3 of
Algorithm 2, in that 3a) corresponds to solving (16) and 3b)
corresponds to solving (21).

The parameter p in (23) controls the balance between mini-
mizing the penalty function, and staying close the current point
V, and serves as step-size for the proximal gradient algorithm.
Small values of p will yield a Z close to V, whereas larger values
of p will result in Z being closer to the minimum of g(Z). In
order to assure that the sequence generated by Algorithm 1 is
bounded, we must chose p € (0,2/L) [48].

We have that |V f(w)— Vf(z)| <|A*A|l|lw — z|| ie.,
L < || A* A||. For alinear operator, the norm of the operator is the
same as for the corresponding matrix, i.e., [|A* Al = [|XTX]],
where X € R"v*" ig the Toeplitz matrix s.t. A(h) = Xh.
Computing || X7'X]|| is, however, computationally demanding
and something that should be avoided if possible. In this instance,
it is possible to use a bound on ||X||. It is shown in [49] that
IX]| <2 M, where M denotes the essential supremum of the
absolute value of the Fourier series of x. Taken together with the

well-established fact that, for any two linear operators .4 and B,
I AB|| < |lAl||B]|, we have that L < 4 M?. In order to ensure
that the strict inequality is upheld, we let

p=099(2M>)". (29)

Finally, three more parameters need to be set by the user.
A maximum number of iterations, maxlter, that the user is
willing to run, a tolerance level, tol, to determine when the
algorithm is not making sufficient progress anymore and should
be terminated, and a small number § to avoid division by zero
in the normalization of the norm of the difference between
the new and the old iterate. Preliminary simulations showed
that mazlter = 104, tol = 1074, and § = 10~ % were suitable
choices, and these values will be used throughout this paper.

C. Computational Complexity

In this Section we study the computational complexity of
Algorithm 2, as a function of the length of the RIR, nj. The
difference between using the nuclear norm or quadratic enve-
lope penalty is negligible, in terms of complexity per iteration.
Asymptotically, as nj, — oo, the most demanding steps of the
algorithm is step 3. In step 3, we perform a singular value
decomposition of the \/nj, x /nj,-matrix WF, which requires
O(n‘:’/ %) multiplications. Then, two V/ih X /Np-matrix multi-
plications are carried out, which, if naively executed, requires
O(ni/ %) multiplications.

In terms of wall time, for problems of the size studied in this
paper, step 1 of the algorithm is the most demanding. Although
the fast Fourier transform (FFT) require only O(ny4, log (ny))
multiplications, the fact that we in step 1 have to carry out 4 of
these (including the IFFT’s) each iteration, makes this the most
time-consuming part of the algorithm.

V. NUMERICAL RESULTS

In order to visualize the dependence of the proposed and
benchmark algorithms’ performance on room related parame-
ters, we will first provide numerical results using synthetically
generated RIRs. Then, to demonstrate the practical applicability
of the proposed algorithm, we proceed by presenting results of
simulations using real-life RIRs. The accuracy of an RIR esti-
mate, fl, is measured by the normalized misalignment, defined

as
; [~ b,
h) =201 ——
Man (1) =20 g( A

where h is the RIR we are aiming to estimate. In Sections V-I
and V-J we will use slightly modified evaluation measures, which
will be further explained there. Throughout this Section we will
compare the performance of the two proposed methods to that
of two benchmark methods. Firstly, ordinary least squares, i.e.,
without regularization, corresponding to solving (5). Secondly,
least squares, with Tikhonov regularization, i.e., solving

(30)

|
minimize [y — A(h)[3 + Ar|[h]Z, G

where At controls the degree of regularization.
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Fig. 2. Normalized misalignment as a function of Tgq.

A. Impact of Tso

First we present simulations performed on synthetically gen-
erated RIRs, in order to show how the algorithms under compar-
ison perform, as a function of the reverberation time, 7§, of the
room. The Tj is defined as the time required for the sound level
to drop 60 dB after switching off a stationary source. The RIRs
are generated by letting each tap independently be drawn from
anormal distribution, with an exponentially decaying envelope,
corresponding to the given Tg(. This is a stochastic reverberation
model [50], and can be attributed to [51] and [52]. In this
simulation example, for each value of T§g, taken from a a grid
of 9 values in the range [33, 300] ms, 10 synthetic RIRs were
generated. The system was driven by a white Gaussian noise.
Finally, independent white Gaussian measurement noise was
added, with signal-to-noise ratio (SNRyg) = 10, defined as

SNRgg = 10 log;, (PS) , (32)
Py

where Ps and Py denote the power of the output signal without
the noise, and the power of the noise, respectively. The RIR
length, n,, was set to correspond to the reverberation time, and
n, was setto 1.2n,, in order to have comparable overdetermined
systems, for the various values of To. The hyperparameters A,
ANN, AQE, and y were tuned for each individual setting, by finding
the optimal values using another set of randomly generated
RIRs. The results are shown in Fig. 2. There it can be seen that
the performance is close to constant as a function of 7§ for all
the analyzed methods, and that the low-rank models outperform
ordinary least squares, as well as Tikhonov-regularized least
squares, with a slight preference for the quadratic envelope.

B. SMARD

In order to demonstrate the proposed methods’ applicability to
actual measured RIRs, we apply it to the single- and multichan-
nel audio recordings database (SMARD) [53]. These recordings
are sampled at 48 kHz, for 12 seconds, yielding impulse re-
sponses of 576 - 103 taps. These are recorded at various source
and receiver positions, and with varying equipment, in a room
of size 7.34 m x8.09 m x2.87 m, with a reverberation time of
approximately 0.15 s. In total, the dataset contains 1008 RIRs.
Two things should be noted regarding the numerical simulations
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Fig. 3. Linear regression for Aqg (top) and Ann (bottom), respectively, as a

function of SNRgg.

performed here. Firstly, the RIRs are truncated at some discrete-
time index N < 576 - 10°. Secondly, the truncated RIRs are set
to start at the, in absolute value, largest value of the original RIR
recording, i.e., at the point where the direct component hits the
microphone.

C. Hyperparameter Tuning

As with any algorithm requiring hyperparameters, the pa-
rameters of the proposed algorithm need to be rigorously set,
in order for the algorithm to be effective. In this Section we
expand on the tuning of the hyperparameters for the compared
methods. The dependance on the variables of the problem largely
decouples between the hyperparameters, with the optimal choice
of ~y being impacted by the input signal x, and Agg, Ann, and A
depending on the SNR, much like in sparse estimation. Using
a random subset of 20 of the RIRs of SMARD, we here vary
the SNRyg for white Gaussian measurement noise from O to
20 in steps of 2, and find the optimal choice of Agg, Ann, and A
respectively, for each value of the SNR. We then perform linear
regression to find models for Agg, Ann, and A, as a function
of the SNR. This is done with nj, = 3600, n,, = 4320, v = 102
and with white Gaussian noise of unit power as input. In ac-
cordance with the results of this, we let Ao = 100-4-0.14-SNRqp |
Ay = 10737-0-085NRw and jp = 10%:6-0-1NRw_For Ao and
ANN, this can is illustrated in Fig. 3. Different choices of n;, and
n,, would yield different values for the model parameters, hence
simulations from hereon throughout this paper will be done with
ny = 3600and n, = 4320, respectively. The performance of the
proposed algorithms, as a function of SNR, will be discussed in
Section V-D.

As for 7, the main dependency is on the input x, but the
dependency is more involved. The optimal choice is impacted
by the power of the input signal, as well as the length of
the RIR, n;, (and thereby the length of the input signal, n,),
and finally also the frequency content of the input signal. It is
therefore very difficult to find a model that covers all possible
choices of these variables. For a vast majority of the experiments
performed, preliminary simulations showed that v = 10 was
a good enough choice. In Sections V-G and V-I, where the
frequency content of the input signal is varied, each scenario
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TABLE I
PARAMETER VALUES USED WHEN VARYING o

Lo v [re] dw [ M |
-1 J107%2 7107 [ 107> ] 102
-0.5 | 10738 | 10% 10-° 1022
0 1073.2 104 1074.6 102.6
05 [ 1072% [ 107 | 107%8 103
1 10—1.8 104 10—5.6 103.6

Least Squares

al X Quadratic Envelope
Tikhonov Least Squares

Nuclear Norm

Map(h)

10
SNRap

Fig. 4. Normalized misalignment as a function of SNRgg.

requires its own opitimized -y, which can be found in Table I.
In Section V-H, where snippets of speech are used as input,
~ = 1072 proved to be a good choice.

D. SNR

The benefit of low-rank modeling of the RIR becomes par-
ticularly evident when the signal-to-noise ratio is low. With
white Gaussian noise as input and values of Agg, ANN, AT,
and + as described in Section V-C, and using all of the 1008
RIRs from SMARD, we showcase the adequacy of the proposed
modeling framework. The results can be seen in Fig. 4. The
low-rank enforcing methods are clearly preferable to ordinary
least squares, as well as Tikhonov regularized least squares. As
expected, the difference compared to ordinary least squares is
particularly apparent when the SNR is low.

E. Convergence Analysis

For the least squares methods, ordinary and with Tikhonov
regularization, we have closed-form expressions, and no itera-
tive procedure is needed. For the nuclear norm and quadratic
envelope, however, we here showcase the difference in speed of
convergence, using part of the simulations done in Section V-D.
In Fig. 5, we see the averaged normalized misalignment for
the two iterative methods, as a function of the iteration index,
for the case where SNRyg = 10. The difference in average
number of iterations needed for convergence for the quadratic
envelope and nuclear norm, for this particular value of SNR, was
negligible. We see in Fig. 5 that the normalized misalignment, for
a given number of iterations, is lesser for the quadratic envelope,
compared to the nuclear norm. Preliminary simulations showed
similar behaviour for other SNR values, both in terms of the

— Quadratic Envelope|
A — Nuclear Norm

I | n
200 250 300 350 400 450 500
Iteration

I
50 100 150

Fig. 5. Normalized misalignment as a function of number of iterations.
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Fig. 6. Normalized misalignment with perturbed parameters.

relation between the number of iterations needed for conver-
gence of the respective methods, and the decay of the normalized
misalignment, as a function of the iteration index.

FE. Hyperparameter Sensitivity

In Section V-D we saw that the quadratic envelope and nu-
clear norm regularizations performed similarly as a function of
the SNR, when oracle knowledge of the SNR was assumed.
Using all the 1008 RIRs of SMARD, with SNRyg = 10, and
white Gaussian noise as input, we here consider what happens
if the algorithms are provided over- or underestimated values
of their respective regularization parameters. According to the
formulas provided in Section V-C, we set Agg = 109-470-14-10,
AN = 10737700810 " and A = 103:6-0-1-10 respectively. We
then look at what happens if these parameters are multiplied by
afactor of 10! or 10!, so as to simulate an underestimation and
an overestimation respectively. The averaged results are found
in Fig. 6. There it can be seen that the quadratic envelope clearly
is the method losing the least in accuracy, for the perturbed
parameter values. This suggests that the quadratic envelope
would be particularly useful in scenarios where the SNR is not
known exactly. For reference, the average misalignment using
ordinary least squares is on the order of —5 dB, indicating that
when the knowledge of the SNR is poor and the regularization
parameter is overestimated, some types of regularization do
more harm than good.
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G. Frequency Content of Input Signal

In this Section, we investigate how the proposed method
performs as a function of inverse frequency power of the input,
i.e., colored noise with the power spectral density 1/|f]|“. As
previously mentioned, the hyperparameter values’ dependency
on the variables of the problem is complicated. Therefore, when
displaying the aptitude of the proposed method as a function of
«, the hyperparameters were tuned on 20 randomly selected
RIRs. These parameter values are shown in Table 1. Then,
with these hyperparameter values, simulations were done on
all of the RIRs of SMARD, and with SNR4g = 10. The results
are displayed in Fig. 7. There it can be see that the low-rank
estimation methods, nuclear norm regularization as well as the
quadratic envelope of the £y-norm, are particularly successful, in
comparison to ordinary least squares, when the color of the noise
is not white. As for the performance of Tikhonov least squares,
we note that it is fairly constant as a function of «. Thus, the
difference in performance between the low-rank methods and
Tikhonov least squares is largest for « close to zero.

H. Speech Signal Input

As indicated in Section V-G, the proposed method provides
the most improvement to the RIR estimation when the spectral
excitation by the input signal is poor. We study this input by
letting the driving signal be a speech signal. Yet again, we set
all the parameter values in accordance with the discussion in
Section V-C (note that here v = 10~2), and use 100 randomly
chosen RIRs from SMARD, all driven by 10 different snippets
of anechoic male and female speech, chosen at random from
the TSP Speech Database [54]. In order to make sure that the
speech snippets contained enough power, they where all chosen
with the criterion that ||x|| > 2. The results can be seen in Fig. 8.
Here, we have opted to not plot the normalized misalignment
of the ordinary least squares estimation. It was consistently at
least two orders of magnitude larger than the other methods,
and the inclusion of it in Fig. 8 would cloud the difference
between the other methods. It can be seen that, the low-rank
methods outperform Tikhonov regularized least squares. This
further strengthens the hypothesis that the low-rank modeling is
most useful when the input spectral excitation is poor.
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1. Input-Output Relations

In order to further investigate the merit of the low-rank esti-
mation, we will in this Section, as previously indicated, use a
slightly modified evaluation measure. Instead of, as previously,
looking at the distance between the estimated RIR and the
measured RIR, we will here look at the following metric,

Hfl*x—h*x||2

M§, (fl) =20log;, | E Th*x )

(33)

where x is a previously unseen signal, with the same properties
as the input signal generating the output y, from which h is
estimated, and the expectation is with respect to x. We will
refer to this as normalized output misalignment. Under these
conditions, we replicate the experiment in Section V-G. The
same parameter values as in Section V-G are used, i.e., the
ones found in Table I. Here, a subset of 100 randomly chosen
RIRs from SMARD were used, and (33) was estimated using 50
different instances of x, drawn from the same distribution as the
input signal. The results can be seen in Fig. 9. It can be noticed
that, for all but ordinary least squares, the normalized output
misalignment is decreasing as a function of «. One possible
explanation for this is the discrepancy in spectral excitation. For
«a = —1, poor estimation at a certain frequency is more likely to
be masked by poor spectral excitation by the input signal, at that
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particular frequency. The benefit of the low-rank regularization
is, however, evident all across the board.

J. Cramér-rao Lower Bound
In this Section we study the mean squared error (MSE),

MSE (h) ~E [||ﬁ—h|\§}, (34)

of the suggested estimators, in relation to theoretical bounds
given by the Cramér-Rao Lower Bound (CRLB), the smallest
variance that can be achieved by an unbiased estimator. Let

Eh_E{(Bh) (ﬁh)T}

denote the error covariance matrix of an unbiased estimator h.

We have that MSE(h) = tr(Xy,), and it can also be noticed that

(35)

MSE (h) — Var (h) + Bias (ﬁ, h>2 . (36)
We then define
MSEgs (h) = 20 log,, (MSE (h)) 37

The CRLB of the variance of low-rank estimation algorithms
has been explored by Tang et al. in [55]. For the convenience of
the reader, we here reiterate the principal content of their results.
Let 3 denote the measurement noise covariance matrix. We then
have that

2, > P[P (XT21X) P]1PY, (38)

with
P:[v®ﬁ VeU v@t‘J}eRqQW*’“z, (39)

U=[UU]=[U;U,...U,U,,...U,], V=[VV]=
[ViVe ...V, V,;...V,], U; and V; denoting the jth
column of U and V respectively, 7 is the rank, and we remind
the reader that U and V come from the SVD of H = USV7T,
and that X is the Toeplitz matrix from (3). Further, A > B
means that A — B is positive semidefinite. It follows from (38)
that, by taking the trace of both sides of the inequality, using
the cyclic property of the trace operation, and the fact that
PTP = I(2q77‘)r,

MSE > tr ([PT (X5 1X) P]_l) : (40)
i.e., the right hand side of (40) is the CRLB.

As previously touched upon, an RIR from SMARD will, when
matricized, not be low-rank in a strict sense. In order to avoid
complicated error bounds depending on the misspecification of
the model, we will therefore, in this Section, make low-rank
approximations of the matricized RIRs, in order to be able to
study the properties of the estimation, in relation to the CRLB.
Hence, h will in this Section be a rank-20 approximation of the
recorded and truncated RIR. This is a meritable approximation,
as per the discussion in [21]. A rigorous analysis of performance
bounds for a not strictly low-rank RIR that has (purposefully)
been misspecified as low-rank, is beyond the scope of this paper,
and will be left for future work.

Quadratic Envelope /- Tikhonov Least Squares
Nuclear Norm ~——CRLB, Low Rank Unknown
Least Squares —CRLB, Low Rank Known

SNRup

Fig. 10.  Comparison with CRLB.

Comparison is made with two different theoretical bounds.
The first one is under the assumption that the low-rank property is
unknown. For the second bound, the low-rank property is known.
Yet again, the parameter values from Section V-C are used. Ex-
periments were performed using 50 randomly chosen RIRs from
SMARD, and for each RIR running 20 Monte Carlo-simulations.
The results, averaged over the Monte Carlo-simulations and the
different RIRs, can be seen in Fig. 10. As expected, the first
bound is greater than the second one. The low-rank methods
consistently outperform the first bound, which is to be expected,
since they are using information not available to that theoretical
bound. In relation to the second bound, the low-rank methods
outperform the bound for lower values of SNR. This is possible
since the estimator is biased. Also this outperformance is ap-
pealing to intuition. For a lower SNR, the gain that comes from
the regularization in terms of improved conditioning, can reduce
variance so that it outweighs the added bias, something that is
generally not possible with an increasing SNR.

VI. CONCLUSION

In this paper we have presented a method for exploiting
low-rank, or close to low-rank, properties of RIRs. The low-
rank penalty serves as a regularizer and prevents an overfitted
solution, similar to the idea of sparse estimation. The low-rank
penalty is enforced on a matricization of the coefficient vector,
and consists of either the nuclear norm, or the quadratic envelope
of the £y-pseudo-norm of the vector of singular values of the
matrix. The results of the proposed methods are compared to
those of ordinary least squares, as well as Tikhonov regularized
least squares. It is shown that the low-rank methods work very
well in general, but excel particularly when either the SNR
is low, or when the input spectral excitation is poor, which
can stem from the input signal being either colored noise or
a speech signal. The difference between the two investigated
low-rank methods, i.e., nuclear norm and quadratic envelope, is
comparatively small. The main benefit of the nuclear norm is the
convexity, and that only one hyper parameter has to be tuned.
The quadratic envelope, on the other hand, displays superior
robustness to a suboptimally chosen regularization parameter,
in the case where oracle knowledge about the SNR cannot be
assumed.
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Future work will focus on investigating the properties of the
error introduced by the low-rank estimation. A structure to this
error could indicate possible improvements, as well as potential
applications, for the methods proposed here. The interplay be-
tween the bias introduced by a misspecification, and the possible
reduced estimation variance, is another research area we aim to
explore.

APPENDIX A
QUADRATIC ENVELOPE OF A|| X ||o

When trying to find Q. (Aggl| - [lo)(w), we notice two things.
Firstly, @~ (Aqel| - [/0)(0) = 0, and secondly, Yus.t. |u| > C, for
some constant C' > 0, Q~ (Aggl| - [Jo)(v) = Age. The question is
then what the value of C' is, and what values Q. (Aqg|| - [/o)(w)
takes on for u € (—C, C). The limiting factor for the envelope
is that Aqg||0lo = 0, i.e., the negative quadratic function must
pass through, or below, the origin. This yields the constraint that
o — Zv? <0< a < Zv? Looking for the supremum, we want
to chose the largest possible «, hence av = %vQ. Inserting this
into (17) and simplifying yields

2 2
u z
sup 4 yuv — Lt yzo — o < agellzllo, V2 € R P (41)
veER 2 2

We know this is valid in z = 0 so we can write

2 2
sup{vuv—w :'yzv—K < AQE, VZGR\{O}}.
veER 2 2

(42)

If the peak of the parabola is at or below v = Aqg then, naturally,
all other points on the parabola will be as well. Therefore we
insert z = v and simplify

2 2 2
sup fyuv—ﬂ:ﬂg)\@; = sup 'yuv—ﬂ:|v|§,u ,
veER 2

veR 2 2

(43)
where p = \/2xqg/7v. The expression we aim to maximize,
Yuv — 77“2, is growing inv if v > 0,and in —v if v < 0. In other

words, we want to chose v as big as possible, in modulo, without
ever overestimating g(z), yielding y = sign(u)u. Inserting this
value for v into Q. (Aqe|| - ||o)(w) and setting this expression
equal to Aqg yields that this occurs at w = £y, thus, the sought
after point C' = pi. Taken together we have

QA0 — 2u? , u <
Q. (haell - o)) = {m 2 b
AQE s <
or, equivalently,
Q. (hqell - lo) (u) = 2ge — gmax (u—w,0)*.  (45)

2

APPENDIX B
PROXIMAL OPERATORS

The regularization terms of (16) and (21) are both orthog-
onally invariant [46]. A function g : R?*? — R is said to be
orthogonally invariant if

g(8) = g(USVT) (46)

967

forall S € R?7*9, U € R?7*9 and VT € R7*9, where U and VT
are orthogonal matrices. More specifically, this means that

g(H) = g(D (o (H)).

A function g is orthogonally invariant if and only if g = g o o,
where g : R? — R is absolutely symmetric. More details can be
found in [46]. This implies that, for the proximal operator of an
orthogonally invariant function g, it holds that

(47)

prox ,,(H) = U D(prox ,; (o (H))) vT, (48)

i.e., the proximal step is performed on the vector of singular
values [46]. For the nuclear norm regularizer, the correspond-
ing proximal operator prox; ., (c(H)) in (28) is given by
element-wise applying the so-called soft-thresholding operator
Siw : RT — RY[56],

Sinn (0(H),,) = max (o(H),, — Ann, 0) (49)

n=1,2,...,q,where 0(H),, denotes the nth element of o (H).

For the penalty term in (21), we make use of the fact that
the function decouples and that we therefore, without loss of
generality, can consider the one-dimensional case. Further, since
this is to be used for singular values, we consider only v > 0
as argument and z > 0 as function value. Finally, in order for
the proximal operator to be single-valued, we must have that
vp < 1, since this guarantees that the curvature is strictly posi-
tive everywhere.

The proximal operator (23) returns the argument that
minimizes the sum of two terms; the original function
Q. (Aqel - [lo)(2), and the proximity term, 5 (u — 2). What is
sought after is the argument z that minimizes the sum of these,
for a given w. First, it can be concluded that for u = 0, where the
proximal operator is not differentiable, the optimal choice of z
is 0. This renders a cost of 0, so no choice can be better. Next,
the question is if there is a « > 0, for which choosing a z > 0
yields a lower cost than z = 0 and, if so, what u? For z > 0 the
proximal operator is differentiable. We can set that derivative
equal to zero to find the optimal choice of z there, zop. This

yields that
u—pyp
Zopt = 1=vp

u u <,

O0<u<p (50)

where p1 = \/2Agg/7. Comparing the costs and determining
when it is better to choose z > 0, as opposed to z =0, is
equivalent of finding for which z

1 1
AQE — %max (1 — Zopts 0)2 + %(u — zopt)2 < ?puz. (51

Inserting z,p from (50) yields that x > pyp. Taken together,

0, 0<u<pyp
PIOX 0, (el o) (W) =  Toaps HYP<u<p.  (52)
u, p<u

To the best of the authors’ knowledge, the explicit expression
has not been published before.
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