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ABSTRACT Previous studies on the automatic classification of voice disorders have mostly investigated
the binary classification task, which aims to distinguish pathological voice from healthy voice. Using multi-
class classifiers, however, more fine-grained identification of voice disorders can be achieved, which is more
helpful for clinical practitioners. Unfortunately, there is little publicly available training data for many voice
disorders, which lowers the classification performance on data from unseen speakers. Earlier studies have
shown that the usage of glottal source features can reduce data redundancy in detection of laryngeal voice
disorders. Another approach to tackle the problems caused by scarcity of training data is to utilize deep
learning models, such as wav2vec 2.0 and HuBERT, that have been pre-trained on larger databases. Since
the aforementioned approaches have not been thoroughly studied in the multi-class classification of voice
disorders, they will be jointly studied in the present work. In addition, we study a hierarchical classifier, which
enables task-wise feature optimization and more efficient utilization of data. In this work, the aforementioned
three approaches are compared with traditional mel frequency cepstral coefficient (MFCC) features and one-
vs-rest and one-vs-one SVM classifiers. The results in a 3-class classification problem between healthy voice
and two laryngeal disorders (hyperfunctional dysphonia and vocal fold paresis) indicate that all the studied
methods outperform the baselines. The best performance was achieved by using features from wav2vec 2.0
LARGE together with hierarchical classification. The balanced classification accuracy of the system was
62.77% for male speakers, and 55.36% for female speakers, which outperformed the baseline systems by an
absolute improvement of 15.76% and 6.95% for male and female speakers, respectively.

INDEX TERMS Pathological voices, voice disorders, hierarchical classification, glottal source extraction,

multi-class classification, Wav2vec, HuBERT.

I. INTRODUCTION

Automatic classification of voice disorders has been stud-
ied widely in the past two decades. The focus has been on
detection of voice disorders (i.e., the binary classification
problem) [1], [2], [3], [4], [5], [6], [7], [8], while classification
of multiple voice disorders (i.e., the multi-class problem) [9],
[10], [11], [12], [13] has remained less studied. In the detec-
tion problem, the automatic system distinguishes disordered
voice from healthy voice. As there are many voice disorders,
including both organic and functional, a multi-class classifier,
which enables the classification between healthy voice and
several different disorders, would be more useful for clinical

practitioners. In the current study, a 3-class voice pathology
classification problem is studied by investigating the classifi-
cation between two laryngeal voice disorders (hyperfunctional
dysphonia and vocal fold paresis) and healthy voice.
Traditionally, automatic detection systems have been con-
structed as pipelines that consist of separate feature extraction
and classification steps [2], [3], [4], [5], [6], [7], [8]. In the
feature extraction, the voice signal is mapped into a vector
in a suitably designed feature space. The mapped vector rep-
resentations are then used by a machine learning algorithm
to separate healthy voices from disordered voices. In contrast,
some recent studies have studied deep learning -based systems

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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that combine the feature extraction and classification steps
into a single neural network that inputs a voice signal (or its
spectrogram) and gives the classification label as output [6],
[14], [15]. Such systems are often referred to as end-to-end
classifiers.

In general, pipeline systems require smaller amounts of
training data than end-to-end systems. This is because the
classification problem of end-to-end systems is more com-
plex, requiring the model to learn the optimal feature mapping
from the data. As the amount of available training data in
voice disorder databases is typically small, the focus of this
paper is on pipeline systems. However, a small amount of
training data is a problem for pipeline systems too, and it
may cause low classification performance on unseen data. The
problems caused by the scarcity of training data are partic-
ularly severe for multi-class classification tasks that call for
training data representing several voice pathologies.

In the current study, we investigate three approaches to
improve multi-class classification of voice disorders based on
the pipeline system architecture. The first approach corre-
sponds to using the glottal source signal in feature extraction.
The second approach corresponds to using self-supervised
models as pre-trained feature extractors. The third approach
corresponds to using a hierarchical multi-class classifier ar-
chitecture. The first and second approaches are related to
feature extraction, and the third one is related to classification.
Hypothetically, the best benefit may be gained by using the
feature-based and classification-based approaches together,
and combining them with data augmentation methods, as pro-
posed by [11] and [16]. However, data augmentation is outside
of the scope of the current study.

The first approach aims to take advantage of the source of
voiced speech, the glottal excitation, in the feature extraction.
The glottal excitation is first estimated using a glottal inverse
filtering algorithm, and the estimated source signal is ex-
pressed using the mel frequency cepstral coefficient (MFCC)
features. This approach helps the classifier learn more gener-
alizable functions from small data sets, because vocal tract
information, which is removed by glottal inverse filtering,
may be mostly redundant for the classification of the selected
disorders. Glottal source features have been studied in a few
earlier studies in automatic detection of voice pathologies [7],
[8], [17]. However, the glottal source has not been used previ-
ously in multi-class classification tasks, where the problem of
small data is most severe.

In the second approach, we take advantage of wav2vec
2.0 [18] and HuBERT [19], which are frameworks for
self-supervised learning of representations from raw speech
signals. The self-supervised models were pre-trained on
databases in automatic speech recognition (ASR). In the pre-
training phase, the models have learned to extract features that
generalize well to a variety of speech-related tasks and unseen
data. Therefore, the pre-trained models are used as feature
extractors by utilizing their hidden layer outputs.

Pre-trained self-supervised models have been used before
to improve performance of ASR systems in recognition of
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disordered speech [20], [21]. The wav2vec 2.0 models have
also been used, for example, for detection of aphasia [22], for
detection of stuttering [23], and for speech rating of disor-
dered children’s speech [24]. Various pre-training approaches
have been used to detect Alzheimer’s disease [25], [26], and
heart failure [27]. However, only a few studies have applied
these techniques on multi-class classification of voice disor-
ders. In [28], the pre-trained VGGish model was used for
feature extraction in several multi-class problems. In [29],
transfer learning methods between three disorders were stud-
ied. However, as per our knowledge, the utilization of the
state-of-the-art self-supervised models as feature extractors
in multi-class classification of voice disorders has not been
studied before.

The third approach aims to improve the multi-class clas-
sification of voice disorders by using a hierarchical classifier
architecture that combines two binary classifiers into a 3-class
classifier. In the first step, a binary classification is done
between healthy and disordered voices. In the second step,
the samples that were classified as disordered are classified
into the two selected laryngeal disorders. This approach is an
efficient way to use training data, as each voice sample can be
utilized twice in learning the two sub-problems. In this work,
SVMs and fine-tuned self-supervised models are used as the
two binary classifiers.

Hierarchical architectures have been used in earlier works
for the classification of laryngeal voice disorders [28], [30],
[31], and to classify between dysarthria, apraxia of speech,
and neurotypical speech [12]. The work in [17] evaluated
hierarchical sub-problems individually instead of the full
multi-class problem. However, the classification of the
two voice pathologies studied in the current paper (hyper-
functional dysphonia and vocal fold paresis) has not been
investigated before using hierarchical classifier architectures.
One important criterion for the selection of these disorders
was the relatively small amount of training data of the two
disorders, which makes them difficult to classify.

In summary, this work studies the effectiveness of three
different approaches to alleviate the data scarcity problem
in multi-class classification of voice disorders. These three
approaches are highlighted with green color in Fig. 1, and they
are:

1) The usage of glottal source signals in feature extraction.

2) The usage of a pre-trained self-supervised model

(wav2vec 2.0 and HuBERT) as a feature extractor.

3) The usage of a hierarchical classifier.

The three approaches are compared to commonly used
baselines. The glottal MFCCs and self-supervised feature ex-
tractors are compared to traditional MFCCs, which are the
most popular features in voice disorder detection [2], [3],
[41, [5], [7], [9], [10], [13], [17], [32]. Hierarchical classifiers
are compared to SVM in the popular one-vs-one (OvO) and
one-vs-rest (OvR) architectures [9].

The remaining part of the paper is structured as follows.
Section II describes the proposed methods and their technical
details. Section III describes the details of the experimental
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FIGURE 1. Block diagram of the pipeline system. The proposed methods
for feature extraction and classification are indicated by green color.

setup, including the database, training and evaluation process,
and the experiment runs. The experimental results are pre-
sented in Section I'V. Finally, Section V summarizes the paper
and presents final conclusions.

Il. PROPOSED SYSTEM

In this work, voice disorder classification is performed by us-
ing a pipeline system that consists of separate feature extrac-
tion and classification steps. The classification is performed
between three voice classes (healthy voice, hyperfunctional
dysphonia, and vocal fold paresis) as illustrated in Fig. 1. The
following sub-sections describe the technical details of the
feature extraction and classification steps.

A. FEATURES

The voice signal is first pre-processed by re-sampling it
to 16 kHz and by removing silent segments. All samples
shorter than 750 ms are left out. Each utterance is normal-
ized by dividing it with the signal’s maximum absolute value.
The baseline MFCC features are extracted by computing 13
coefficients with their delta and delta-delta coefficients. A
frame-length of 25 ms is used with a shift of 5 ms.

As described in Section I, the first proposed approach to
improve multi-class classification of voice pathologies corre-
sponds to using MFCCs computed from glottal source wave-
forms (denoted as MFCC-glottal) in the feature extraction.
First, the glottal source waveform is estimated using the quasi-
closed phase (QCP) glottal inverse filtering method proposed
in [33]. MFCCs are then extracted from the glottal waveform
using the same procedure as in the baseline MFCCs.

The second approach introduced in Section I is to ex-
tract features by utilizing a self-supervised model that has
been pre-trained using ASR databases. Three different self-
supervised models are included in this work. Firstly, we use
pre-trained wav2vec 2.0 BASE [18] that was pre-trained and
fine-tuned using 960 hours of Librispeech [34]. Secondly,
we use pre-trained wav2vec 2.0 LARGE [18], [35], which
was pre-trained using a combination of three ASR databases
(CommonVoice [36], BABEL [37], and Multilingual Lib-
rispeech [34]). Thirdly, we use HUBERT LARGE [19], which
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was pre-trained on the Libri-Light database [38] and further
fine-tuned using 960 hours of Librispeech [34].

Both wav2vec 2.0 LARGE and HuBERT LARGE include
24 transformer blocks in their context networks and the model
dimension is 1024, whereas wav2vec BASE only includes 12
transformer blocks and the model dimension is 768. For each
of these models, the feature vectors are derived by computing
the temporal averages of the relative positional embeddings
from the output of each transformer layer of the context
network. Similar computation is also done for the input of
the first transformer layer. Therefore, the number of feature
vectors is 25 for LARGE variations and 13 for BASE varia-
tions, and the dimension of the feature space equals the model
dimension. In order to denote the feature vectors from each
layer, the feature vectors are indexed in an increasing order.
The input to the context network has index 0, and the output
of the final embedding layer has indexes 24 and 12 for the
LARGE and the BASE variations, respectively.

B. CLASSIFIERS

The third approach to improve multi-class classification of
voice disorders is the use of a hierarchical classifier, which
consists of two binary classifiers. Fig. 2 shows an illustration
of a hierarchical classifier with two binary SVMs (SVM-hier)
that is used in this work. The first classifier (SVM-1) distin-
guishes disordered voices from healthy voices. For the voice
samples detected as disordered, the second classifier (SVM-2)
classifies the pathology either as hyperfunctional dysphonia
or vocal fold paresis. In addition to SVM-hier, another hier-
archical system is examined that uses fine-tuned wav2vec 2.0
LARGE models as binary classifiers. This model is referred
to as wav2vec-LARGE-hier. The hierarchical classifiers are
compared with SVMs based on OvO (SVM-OvO) and OvR
(SVM-OvR), as they have been widely used in multi-class
classification [9], [10].

Hierarchical classifier, as well as the baseline OvO and
OVR systems, divides the full multi-class problem into less
complex sub-problems. These sub-problems are solved indi-
vidually by dedicated classifiers, which effectively shares the
total complexity of the task between them. This ensures that
each training sample can be utilized in several parts of the
architecture to learn different parts of the full problem, which
can increase the utility of each training sample. This can help
to train classifiers with small databases. In addition, the mod-
ularity of hierarchical classifiers can also be taken advantage
of by medical practitioners. The hierarchical structure namely
makes it possible to perform diagnosis as a sequence of
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increasingly detailed evaluations, starting from the detection
of disordered markers, and ending at a detailed diagnosis of
the disorder type. Furthermore, each classifier in the hierarchy
can be replaced without a need to modify or change any other
classifiers. This is naturally a desirable feature of a system, as
it allows for easy maintenance and continuous development.

1Il. EXPERIMENTAL SETUP

This section describes the experimental setup that is used in
the current study. First, the voice database used in the study
is described. Second, the training and testing processes of the
classifiers are discussed. Finally, the details of each individual
experiment are provided.

A. DATABASE

The current study uses voice data of the Saarbriicken
Voice Disorders (SVD) database [39], [40]. We selected this
database, because it is publicly available and covers voice
samples from both genders for a variety of laryngeal voice
disorders. The database contains 71 different disorders. The
recordings were conducted in sessions, where each speaker
conducted four speaking tasks: a pronunciation of the German
sentence ‘Guten Morgen, wie geht es Thnen?” (’Good morn-
ing, how are you?’), and sustained pronunciations of three
vowels (/a/, /i/, /u/). The vowels were pronounced by varying
pitch in four types (low, normal, high, and low-high-low).
The database contains samples from 1853 speakers in 2225
sessions.

This work includes samples of healthy voices, as well
as pathological voice samples of hyperfunctional dyspho-
nia and vocal fold paresis. These two voice disorders were
selected because they are among the most prevalent voice
disorders! [41], [42], [43]. Another reason for the selection
is the small amount of data for both of the voice disorders
in SVD (213 recording sessions for hyperfunctional dyspho-
nia and 213 recording sessions for vocal fold paresis). This
enables studying the 3-class classification task using pipeline
classifiers in a scenario with a small amount of training data
as discussed in Section I. Furthermore, in order to simulate
a voice data scenario which is not only of a small size but
which also could be generalized to other databases than SVD,
we only selected voices that represent one popular speaking
task, namely the sustained phonation of the vowel /a/ in nor-
mal pitch. We used samples from the speakers who had not
had any surgeries or voice therapy prior to recordings, and
who were 19-60 years old at the time of the recordings. In
addition, we left out samples that were shorter than 750 ms.
This resulted in data subsets that are visualized in Fig. 3.

B. TRAINING AND TESTING

All classifiers were trained by using 5-fold cross-validation
(CV). All samples from each speaker were always contained
within a single fold, to ensure that a model does not learn

Uhttps://www.tgh.org/institutes-and-services/conditions/hyperfunctional-
dysphonia
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FIGURE 3. Number of recording sessions in the selected subset of the
database. Included are healthy voices, and voices with hyperfunctional
dysphonia and vocal fold paresis.

to classify voice samples based on speaker identity. In each
iteration, one of the folds was reserved for evaluation, and the
other folds were used for training. Performance metrics were
computed based on the predictions that were made on the
evaluation fold. The metrics include balanced classification
accuracy, class-wise precision, class-wise recall, and class-
wise F1 score. The 5-fold CV was performed 4 times with
different random states, to get a total of 20 evaluations. For
all hierarchical classifiers, the training process was performed
separately for the two binary sub-problems.

As part of the cross-validation process, the number of sam-
ples in the different classes was balanced by duplicating the
samples of the smallest classes. Even though this approach
is most likely not optimal, it performed better in our initial
tests compared to balancing the classes by leaving out samples
from the majority classes. The balancing was done for each
fold, which resulted in balanced data for both training and
evaluation.

Some aspects of the training process were different between
the experiments where the SVM-based classifiers were used
and the experiments where the self-supervised models were
fine-tuned and used as classifiers. When SVMs were used, the
training and test features were both z-score normalized with
the mean and standard deviation of the training data. Also, for
each of the SVM classifiers, hyperparameters were optimized
by grid-search. The searched parameter values were identical
to the ones used and described in [44, p. 27-28]. For each of
the fold iterations, all parameter combinations were evaluated,
and the one that achieved the best mean balanced accuracy
was selected.

In contrast, when the self-supervised models were fine-
tuned, the input signals were pre-processed as in the pre-
processing stage of feature extraction (see Section II-A). Grid-
search was not applied to any hyper-parameters. Fine-tuning
was conducted once for each CV iteration by minimizing
cross-entropy loss by using the AdamW optimizer [45] with
B1 = 0.9and B = 0.999. The initial learning rate was 0.0005
and it was reduced linearly. Batch size was 32 and the maxi-
mum number of epochs was 50.

C. EXPERIMENTS
The experiments consisted of two parts. The first part eval-
uates the two feature-based approaches glottal MFCCs and
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FIGURE 4. Classification accuracies obtained in binary tasks of healthy vs. disordered (SVM-1) and hyperfunctional dysphonia vs. vocal fold paresis
(SVM-2). The green dashed line represents the baseline MFCC features. The orange dashed line represents the MFCC-glottal features. The solid lines
represent the self-supervised features, with the tick labels indicating the index of the corresponding layer. Index 0 refers to the input to the first

embedding layer, other indexes refer to the output of the corresponding layer. For each self-supervised feature, the best values are highlighted with

larger circles.

self-supervised features, and the second part evaluates the
classifier-based approach (hierarchical classification).

In the first part, the comparison of the baseline MFCC,
MFCC-glottal and self-supervised features was conducted us-
ing two binary classification tasks: healthy vs. disordered,
and hyperfunctional dysphonia vs. vocal fold paresis. These
binary problems were selected for the feature-related experi-
ments, because they are the two sub-problems of hierarchical
classification.

In the second part, hierarchical multi-class classification
was examined. The comparison was first made between SVM-
hier and the baseline classifiers (SVM-OvO and SVM-OvR)
by using MFCCs. In addition, we examined the effect of
using the self-supervised models together with hierarchical
classification. For both hierarchical steps, we selected the
self-supervised model that achieved the best performances in
the corresponding sub-problems (SVM-1 and SVM-2) in the
first part of the experiments. These models were then used in
the hierarchical framework in two alternative ways. Firstly,
by extracting the self-supervised features from the models
and using them together with SVM-hier. In this case, the
best features were selected separately for both sub-problems,
based on the results of SVM-1 and SVM-2 in the first part of
the experiments. Secondly, by fine-tuning the models in the
two binary sub-problems and combining them into a hierar-
chical multi-class classifier. In the latter case, the fine-tuning
effectively replaces the manual selection of the best features,
as the utility of the final embedding layer was automatically
maximized.

It is worth pointing out that the number of trainable clas-
sifier parameters differs between the multi-class classification
systems. This is because 3 SVMs were included in SVM-OvO
and SVM-OvR, but only 2 SVMs were included in SVM-
hier. Also, the self-supervised models were trained on SVD
data only in the final experiment where all parameters of
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the self-supervised models were fine-tuned in the two binary
sub-problems.

IV. RESULTS

This section describes the results of our experiments. First,
the results regarding the self-supervised and MFCC-glottal
features are discussed. It is followed by a discussion of the
results of hierarchical classification.

A. MFCC-GLOTTAL AND SELF-SUPERVISED FEATURES

The obtained classification accuracies for all the features are
shown in Fig. 4. They include evaluations in the two binary
sub-problems of SVM-hier: healthy vs. disordered (SVM-
1), and hyperfunctional dysphonia vs. vocal fold paresis
(SVM-2). The other performance metrics than classifica-
tion accuracies are shown in Table 1. As can be seen, the
self-supervised features outperformed the baseline MFCCs
consistently. Moreover, the MFCC-glottal features outper-
formed the baseline MFCCs in almost all scenarios. The
best accuracies for male speakers were 75.65% for SVM-1
and 71.95% for SVM-2, and they were obtained using the
wav2vec-LARGE-6 and wav2vec-BASE-0 features, respec-
tively. The MFCC-glottal accuracies were 74.48% for SVM-1
and 69.05% for SVM-2, and the baseline MFCC accuracies
were 72.01% for SVM-1 and 61.60% for SVM-2.

The best accuracies for female speakers were 74.50% for
SVM-1 and 63.06% for SVM-2, and they were obtained
using the HUBERT-0 and wav2vec-LARGE-13 features, re-
spectively. The MFCC-glottal accuracies were 66.13% for
SVM-1 and 59.96% for SVM-2, and the baseline accuracies
were 68.15% for SVM-1 and 57.09% for SVM-2.

As the wav2vec-LARGE features were generally the best
self-supervised features, they were used in the next set of
experiments with the SVM-hier classifier. All performance
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TABLE 1 Performance Metrics Obtained in Binary Tasks of Healthy Vs. Disordered (SVM-1) and Hyperfunctional Dysphonia Vs. Vocal Fold Paresis (SVM-2).
PREC Represents Precision, REC Represents Recall, and F1 Represents F1 Score. The Numbers 0, and 1 in the Metric Names Represent the Classes, Which
are Healthy (0) and Disordered (1) for SYM-1, and Hyperfunctional Dysphonia (0), and Vocal Fold Paresis (1) for SYM-2. The Mean Values Over the Folds
are Reported for All Metrics. In Addition, the Standard Deviations are Reported for Accuracy, and the Best Mean Accuracy Values are Highlighted for Each
Classifier and Gender. Results of All the Self-Supervised Features are Not Included, Only the Layers With the Highest Performance are Included (See

Fig. 4). In the Feature Column, the Feature Names Include Their Corresponding Layer Numbers for Self-Supervised Features

Gender | Classifier | Feature Accuracy [%] | PREC_0 | REC_0 | F1_0 | PREC_1 | REC_1 | F1_1
SVML1 wav2vec-LARGE-6 75.65 + 5.81 0.91 0.82 0.87 0.50 0.69 0.58

Male wav2vec-BASE-0 70.92 + 6.81 0.89 0.83 0.86 0.46 0.60 0.52
HuBERT-LARGE-11 | 72.14 + 7.93 0.89 0.85 0.87 0.50 0.59 0.54

MFCC-glottal 74.48 + 5.85 0.90 0.84 0.87 0.51 0.64 0.57

MFCC 72.01 £ 7.75 0.89 0.88 0.88 0.54 0.56 0.55

SVM.2 wav2vec-LARGE-14 | 69.97 + 11.89 0.71 0.84 0.77 0.74 0.56 0.64
wav2vec-BASE-0 71.95 + 12.62 0.74 0.75 0.74 0.67 0.66 0.66

HuBERT-LARGE-1 71.88 + 10.56 0.73 0.80 0.76 0.70 0.62 0.66

MFCC-glottal 69.05 + 9.67 0.73 0.74 0.73 0.66 0.64 0.65

MFCC 61.60 + 8.86 0.65 0.76 0.70 0.60 0.47 0.53

SVM.1 wav2vec-LARGE-3 73.80 + 5.03 0.84 0.77 0.80 0.60 0.71 0.65

Female wav2vec-BASE-0 73.33 £ 4.13 0.85 0.75 0.79 0.58 0.72 0.64
HuBERT-LARGE-0 74.50 + 4.38 0.85 0.76 0.81 0.60 0.72 0.65

MFCC-glottal 66.13 + 3.11 0.80 0.66 0.72 0.49 0.66 0.56

MFCC 68.15 + 4.59 0.81 0.68 0.74 0.51 0.68 0.58

SVM.2 wav2vec-LARGE-13 | 63.06 + 6.77 0.74 0.83 0.78 0.57 0.44 0.50
wav2vec-BASE-3 61.47 + 4.65 0.72 0.92 0.81 0.68 0.31 0.43

HuBERT-LARGE-7 61.31 £ 594 0.73 0.78 0.75 0.52 0.45 0.48

MFCC-glottal 59.96 + 7.91 0.72 0.81 0.76 0.52 0.40 0.45

MFCC 57.09 + 7.48 0.71 0.74 0.72 0.45 0.42 0.43

TABLE 2 Performance Metrics for the Multi-Class Classifiers. PREC Represents Precision, REC Represents Recall, and F1 Represents F1 Score. Numbers 0,
1, and 2 in the Metric Names Represent Healthy Voice, Hyperfunctional Dysphonia, and Vocal Fold Paresis, Respectively. The Mean Values Over the Folds

are Hi

are Reported for All Metrics, and the Best Mean Accuracy Val
Reported for Accuracy

hlighted for Each Classifier and Gender. In Addition, the Standard Deviations are

Gender | Classifier Feature Accuracy [%] | PREC_0 | REC_0 | F1.0 | PREC_1 | REC_1 | F1_1 | PREC_2 | REC_2 | F1_2
Male wav2vec-LARGE-hier | fine-tuned 62.77 + 10.94 0.92 0.79 0.85 0.30 0.55 0.39 0.47 0.53 0.50
SVM_hier wav2vec-LARGE | 61.29 + 7.95 091 0.83 0.87 0.35 0.58 0.44 0.45 0.43 0.44
MFCC-glottal 57.53 £ 6.79 0.91 0.84 0.87 0.28 0.38 0.33 0.41 0.48 0.44

MFCC 53.76 £ 9.35 0.89 0.87 0.88 0.26 0.31 0.29 0.43 0.42 0.42

SVM-OvR MFCC 47.01 £ 6.13 0.87 0.84 0.86 0.23 0.30 0.26 0.33 0.28 0.30
SVM-OvO MFCC 46.38 + 6.52 0.86 0.89 0.87 0.30 0.27 0.28 0.31 0.24 0.27

Female | wav2vec-LARGE-hier | fine-tuned 54.12 £5.23 0.83 0.70 0.76 0.37 0.44 0.4 0.32 0.49 0.38
SVM-hier wav2vec-LARGE | 55.36 + 4.99 0.84 0.78 0.81 0.39 0.50 0.43 0.43 0.39 0.41
MFCC-glottal 49.27 + 5.80 0.80 0.65 0.72 0.30 0.49 0.37 0.37 0.33 0.35

MFCC S51.11 £ 7.08 0.82 0.69 0.75 0.34 0.47 0.39 0.31 0.37 0.34

SVM-OvR MFCC 47.70 + 6.33 0.78 0.71 0.75 0.33 0.45 0.38 0.32 0.28 0.30

SVM-OvO MFCC 48.41 + 5.67 0.79 0.72 0.75 0.34 0.47 0.39 0.34 0.27 0.30

metrics of the best layers and their respective baselines are
shown in Table 1.

B. HIERARCHICAL CLASSIFICATION

The results of the experiments with hierarchical classifiers are
shown in Fig. 5 and Table 2. First, the baseline classifiers,
SVM-OvO and SVM-OvR, were trained and evaluated with
MFCCs. For male speakers, the baseline classification accura-
cies were 47.01% for SVM-OvR and 46.38% for SVM-OvO.
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For female speakers, the baseline classification accuracies
were 47.70% for SVM-OvVR and 48.41% for SVM-OvO.
Then, SVM-hier was trained and evaluated with MFCCs, and
the results were better than those of the baselines (i.e., SVM-
OvR and SVM-OvO). For male speakers, the accuracy was
53.76%, and for female speakers, the accuracy was 51.11%.
Then, the hierarchical classification was examined together
with the self-supervised models. Wav2vec 2.0 LARGE was
used as the self-supervised model, because it was generally
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FIGURE 5. Classification accuracies obtained in multi-class classification.
Heights of the bars represent the mean accuracies over the folds and the
tails represent the standard deviations. Wav2vec-LARGE-hier refers to the
scenario where fine-tuned wav2vec 2.0 LARGE model was used in
hierarchical classification. For other models, the used features are
indicated within parentheses.

the best self-supervised model in Section IV-A. First,
SVM-hier was used and the best wav2vec-LARGE features
were selected for both hierarchical steps (SVM-1 and SVM-2)
separately, based on their performance in Section IV-A. For
female speakers, wav2vec-LARGE-3 was used for SVM-1
and wav2vec-LARGE-13 was used for SVM-2. For male
speakers, wav2vec-LARGE-6 was used for SVM-1 and
wav2vec-LARGE-14 was used for SVM-2. The resulting
multi-class accuracies were 61.29% and 55.36% for male
and female speakers, respectively. This was the best obtained
performance for female speakers.

Finally, wav2vec 2.0 LARGE was fine-tuned for the two
binary sub-problems separately, after which the fine-tuned
models were combined into a hierarchical classifier, wav2vec-
LARGE-hier. The obtained classification accuracies were
62.77% and 54.12% for male and female speakers, respec-
tively. This was the best obtained performance for male
speakers. Therefore, the highest absolute improvements to the
baseline SVM systems were 15.76% and 6.95% for male and
female speakers, respectively.

The confusion matrices for all the hierarchical systems, as
well as for the SVM-OvR baseline are visualized in Fig. 6.
The values in the confusion matrices are normalized over the
true values (rows). It can be seen that hierarchical classifi-
cation mainly increases the performance of the two smallest
classes. For instance, in comparison to the baseline SVM-OvR
with MFCCs, SVM-hier with the wav2vec-LARGE features
increased the recall of the smallest class (vocal fold pare-
sis) from 0.28 to 0.43 for male speakers, and from (.28
to 0.39 for female speakers. Moreover, the recall of hyper-
functional dysphonia increased from 0.30 to 0.58 for male
speakers, and from 0.45 to 0.50 for female speakers. In ad-
dition, fine-tuning further improved the performance of the
smallest class without largely affecting the classification ac-
curacy. In comparison to SVM-hier with wav2vec-LARGE
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FIGURE 6. Confusion matrices of the multi-class classification systems.
The horizontal axis represents the predicted classes, and the vertical axis
represents the true classes. Class labels 0, 1, and 2 represent healthy
voice, hyperfunctional dysphonia, and vocal fold paresis, respectively. The
values are normalized over true values (rows). Wav2vec-LARGE-hier refers
to the scenario where fine-tuned wav2vec 2.0 model was used in
hierarchical classification. For other models, the used features are
indicated within parentheses.

features, wav2vec-LARGE-hier increased the recall of vocal
fold paresis by 0.10.

V. CONCLUSION
In this paper, a 3-class voice pathology classification task was
studied to automatically classify two laryngeal voice disor-
ders (hyperfunctional dysphonia and vocal fold paresis) and
healthy voice. Samples from the Saarbriicken Voice Disor-
ders (SVD) database were used. The study examined three
approaches that may alleviate the problem of data scarcity in
the multi-class classification of voice disorders and, therefore,
improve the classification performance of a pipeline classifier.
For the feature extraction phase, the proposed approaches
corresponded to the extraction of the MFCC-glottal features,
and the usage of the pre-trained self-supervised models as
feature extractors. For the classification phase, a hierarchical
classification approach was used. Comparisons were made
to commonly used baseline approaches: MFCCs for feature
extraction, and SVM-OvO and SVM-OvVR for classification.
The two feature-based approaches were first evaluated in
the two binary sub-problems of the hierarchical classification
framework. The results indicate that both the MFCC-glottal
and self-supervised features increase the classification per-
formance in most scenarios, when comparing to the baseline
MEFCCs. For male speakers, there is no large difference be-
tween MFCC-glottal and the best self-supervised features
(1.17% for SVM-1 and 2.90% for SVM-2), which may im-
ply that they are equally effective methods to capture the
glottal information that is discriminative between the classes.
However, the glottal MFCCs performed consistently well for
male speakers but not for female speakers. In fact, the glottal
MFCCs were outperformed by the baseline MFCCs for SVM-
1 with female speakers, with an absolute difference of 2.02%.
This difference between the genders might be caused by the
fact that the glottal source extraction by inverse filtering is
more difficult for high-pitch speech, because less samples are
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available for the estimation of vocal tract filter for each glottal
cycle.

In general, the positive effect of the feature-based ap-
proaches is largest in the task of classification between the
two pathologies, which is also the task which typically suffers
most severely from the data scarcity problem. This finding
supports our hypothesis that these approaches effectively al-
leviate the problems caused by scarcity of training data.

The implications are similar, when evaluating the hierarchi-
cal systems in the multi-class problem. In comparison to the
baseline OvO and OvR approaches, all hierarchical systems
increase the classification accuracy. The confusion matrices
show that the performance improvements are almost com-
pletely caused by an improvement in the two smallest classes
(hyperfunctional dysphonia and vocal fold paresis).

For both genders, the best performance was achieved
by using self-supervised models together with hierarchical
classification. For female speakers, the best classification ac-
curacy (55.36%) was achieved by using the non-fine-tuned
wav2vec-LARGE features, whereas for male speakers, the
best accuracy (62.77%) resulted from using the fine-tuned
wav2vec-LARGE models. Therefore, the total improvements
to the baseline multi-class classifiers were 15.76% and 6.95%
(absolute) for males and females, respectively.

Overall, the performance difference between the fine-tuned
and non-fine-tuned self-supervised models was not large
(1.24% for female speakers and 1.48% for male speakers).
However, fine-tuning effectively balanced the performance
differences between the unbalanced classes. In particular, fine-
tuning resulted in an absolute improvement of 0.10 to the
recall of the smallest class (vocal fold paresis), while keep-
ing the balanced classification accuracy almost unchanged.
This effect was similar for both genders, and it may indicate
that fine-tuning further improves the system performance in
small-data scenarios, by balancing the performance differ-
ences between the classes of different sizes.

The obtained performance metrics in the binary detection
between healthy and disordered speech are generally compa-
rable with existing studies that have used the SVD database.
For example, the best classification accuracies with recordings
of the vowel /a/ in normal pitch were 75.42%, 74.32 %, 67.0%
in [5], [8], and [4], respectively. Some works exist that report
very high accuracies. For example, the reported classification
accuracies were 96.96 % in [3] and 96.5 % in [2]. How-
ever, those studies did not use class balancing or balanced
classification accuracy metric, which can result overly opti-
mistic performance values due to over-emphasizing the largest
healthy class. In this study, the classes were balanced in both
training and evaluation data. There is evidence showing that
the performance with the SVD data can be largely dependent
on the selected experimental setup [1].

The multi-class classification results of this study are not
directly comparable to any existing studies, because of the
differences in the used databases and included disorders. The
work in [11] utilized the SVD database in multi-class clas-
sification between healthy, reflux laryngitis, hyperfunctional
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dysphonia and hypofunctional dysphonia, and achieved true
negative and true positive rates of 92.2% and 88.9%, respec-
tively. In [28], SVD was used in a multi-modal classification
in several different multi-class classification problems, and
the obtained classification accuracy in the 3-class classifica-
tion was 94.3%. In [12], a 3-class classification was carried
out between neurotypical speech, dysarthria and apraxia of
speech, and the best balanced classification accuracy of 79.7%
is reported. Similar to our work, the best performance was
obtained by using a hierarchical SVM classifier.

Finally, it should be noted that this study uses the non-
nested cross-validation (CV) instead of nested CV, which
might result in overfitting, as discussed in [46]. The usage of
nested CV has not usually been reported in studies related to
detection and classification of voice disorders.
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