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Optimum Multiantenna Ambient Backscatter
Receiver for Binary-Modulated Tag Signals

Hüseyin Yiğitler , Xiyu Wang , Graduate Student Member, IEEE, and Riku Jäntti , Senior Member, IEEE

Abstract— Ambient backscatter communication (AmBC) is
becoming increasingly popular as a green Internet-of-things
technology by enabling ultra-low-power data exchanges among
simple tags. The bit-error-rate (BER) performance of the AmBC
receivers is hampered by the low signal-to-interference-plus-noise
ratio (SINR), which limits either the range or the data rate that
can be supported by these systems. Among the alternatives, the
solutions provided by a multiantenna receiver enable several
practical methods to improve the SINR using array signal
processing. In this paper, the optimum multiantenna AmBC
receiver for any binary modulated tag signal is presented. Two
receivers are derived from the maximum-a-posterior probability
criterion for deterministic-unknown and for Gaussian distrib-
uted ambient signals. The closed-form cumulative distribution
functions are derived for both of the receivers for performance
evaluation purposes. It is discussed that these two receivers are
equivalent under practical conditions, and the optimum receiver
is a generalization of the multiantenna receivers available in
the literature. Several implementation details are discussed, and
numerical evaluation is provided to validate the development.
Therefore, the presented receiver accommodates different tag
modulations and achieves the best possible BER performance,
which opens up new application possibilities by improving AmBC
system flexibility.

Index Terms— Ambient backscatter communication, Internet-
of-Things, green communication, receiver design, receiver per-
formance analysis.

I. INTRODUCTION

INTERNET-OF-THINGS (IoT) technologies continue to be
rolled out around the world to accommodate numerous

use-cases with Internet connectivity. The total number of IoT
devices is forecast to reach 25 billion in 2025 [1]. The increas-
ing number of devices inevitably consumes a large amount
of both energy and spectrum resources, which in turn limits
the widespread deployments of IoT applications. The recently
emerging ambient backscatter communication (AmBC) tech-
nology relieves both of these two limitations. In a foreseen
AmBC deployment scenario (see Fig. 1a), a transmitter of
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an ambient system emits a radio frequency (RF) signal to
serve its devices. A passive backscatter device (BD) of an
AmBC system harvests energy from the pervasive ambient RF
signal of the legacy transmitter to support its operations and to
modulate its information. A composite signal traversing two
paths, the backscattered path modulated by the BD, and the
direct path that is not affected by BD operations, impinges
at the AmBC receiver antenna. Then, the receiver uses the
composite signal to decode the backscatter data. By requiring
neither power-hungry nor expensive RF components for the
transceiver circuits at the BD, the AmBC paradigm realizes the
ultra-low-power and ultra-low-cost green communication [2].
It further provides significant bandwidth efficiency by enabling
data exchange among the devices on the spectrum allocated for
the ambient system. With these two inherent properties, AmBC
is promising to become a crucial component for realizing
sustainable IoT.

The main obstacle in front of widespread acceptance of
the AmBC systems is the poor error-rate performance of its
receiver. One factor that hampers the performance is the strong
direct path interference (DPI), which is due to the tremendous
power degradation experienced by the backscatter signal while
propagating through the channels between transmitter and
BD, and BD and receiver. The other factor is the lack of
cooperation between the legacy and AmBC systems so that
AmBC receivers have little information about the ambient
signal. These two factors, in turn, degrades the signal-to-
interference-plus-noise ratio (SINR) of the AmBC signal at
the receiver, which is the main reason for poor receiver
performance.

The SINR of the backscatter signal can be improved by
exploiting frequency [3], [4], spatial [5], [6], [7], [8] or
phase [9] differences between direct path signal and backscat-
tered path signal, or using complex signal processing tech-
niques to cancel the direct path signal [10]. Among these
solutions, multiantenna receivers can mitigate the adverse
impact of the DPI without the ambient system assistance or
a need for information about the channels. A multiantenna
receiver provides this option by solely exploiting the direc-
tional differences between the signals. Therefore, adopting
multiple antennas at the receiver is a practically advantageous
method for improving receiver performance.

Available works on multiantenna AmBC receivers mostly
consider the BDs that perform on-off-keying (OOK) mod-
ulation. However, an OOK demodulator requires a higher
SINR to achieve a certain bit-error-rate (BER)-performance
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compared with the other binary demodulators. For instance,
binary phase-shift keying (BPSK) demodulator can achieve
the same BER performance with up to 6 dB less SINR.
This gain, however, comes at the cost of solving several
other practical problems and does not generalize well to all
AmBC deployment conditions. For example, receiver symbol
synchronization is more difficult for BPSK modulation than it
is for OOK modulation. Therefore, having optimal receivers
for different modulation techniques requires implementing
different receivers, which restrains the system flexibility for
adapting to different practical situations. In this regard, hav-
ing a generalized optimal receiver that can support vari-
ous binary-modulated signals is desirable, and the optimum
multiantenna receiver for the binary-modulated backscatter
signal for Gaussian distributed ambient signal has already been
presented [8].

In this paper, an optimum multiantenna receiver, which
works on any binary-modulated backscatter signal and all
types of ambient signals, is presented. The receiver is derived
from the maximum-a-posteriori probability (MAP) criterion,
which yields a simple and clear structure. The resultant
receiver avoids a complicated DPI cancellation and carrier and
phase synchronization by exploiting the directional differences
of the direct path and backscattered path signals impinging on
the receiver antennas. Its performance primarily depends on
the directional variation in the received signal. As such, if the
direction of the composite signal changes with the backscatter
symbol, its error rate decreases. Its operation has no constraint
on the type of modulation of neither backscatter signal nor
ambient signal, although its performance changes.

In this paper, we make the following contributions:

• We formulate and solve the optimum multiantenna
receiver design problem for a general binary-modulated
backscatter signal and for two types of ambient signal: i)
deterministic-unknown ambient signal; and ii) Gaussian
distributed ambient signal, which is equivalent to the
optimal receiver presented in [8]. Both of the optimum
receivers take a weighted square-sum form that can be
implemented using two beamformers and a threshold
device. Then, we show that these two receivers are
equivalent under certain practical conditions. As such,
this work generalizes the optimal receiver presented in [8]
by discussing that Gaussian ambient signal assumption is
not required for most of the practical scenarios.

• We derive the cumulative distribution functions of the test
statistics for both of the optimum receivers. These func-
tions are used for calculating the BER performance of
the receivers. The resultant distributions have clear closed
forms, and improves the derivations presented in [8]. The
optimum receiver achieves the same BER-performance as
the coherent receiver of the BPSK-modulated backscatter
signal, although it avoids phase-coherent demodulation.

• We provide practical methods for estimating the beam-
formers that construct the test statistics of the optimal
receivers. We discuss several practical implementation
issues and provide solutions to the identified problems.
In particular, we present an analog-digital hybrid imple-

mentation to solve dynamic range problem of AmBC
receivers. We also compare the derived receiver with the
available optimal receivers in the literature, specifically
the receiver of [8].

The remainder of the paper is organized as follows.
In Section II, the related works are reviewed, the notation
used throughout the paper is introduced, and a general system
model is given. The optimum receivers and their performance
metric are derived in Section III. The implementation of
the optimum receiver is discussed in Section IV. Simulation
results are presented and discussed in Section V. Finally,
conclusions are drawn in Section VI.

II. BACKGROUND

In this section, we first summarize the related works.
We give the general notations before introducing the system
model and basic assumptions used throughout the paper.

A. Related Work

This paper aims to investigate the optimum multiantenna
receiver for demodulating any binary-modulated backscatter
signal. We first give a literature review for receivers of different
binary modulated backscatter signal. Then, we review existing
AmBC systems with a multiantenna receiver.

The low SINR at AmBC receiver has attracted a significant
amount of interest in the literature, although available solutions
for mitigating the impact of the strong DPI and unknown
ambient signals mostly solve the problem for a specific setup.
For backscatter devices adopting the OOK or differential
BPSK modulations, the received signal strength varies as
the BD switches the signal state according to its symbol.
This property has motivated non-coherent receivers based on
energy detector to average out the fast varying phases before
comparing the energy levels associated with two backscatter
signal states [2], [3], [6], [8], [10], [11], [12]. In these systems,
DPI is mitigated by considering some specific properties of the
legacy system. For orthogonal frequency division multiplex-
ing (OFDM) ambient signal, the BD shifts the frequency of
the ambient signal [4]. Since the coherent receiver requires
lower SNR to achieve a BER value compared with that
of a non-coherent receiver, it has also been investigated in
the prior works. The receivers studied by Vougioukas et al.
require phase estimate associated with BD operation and
backscatter channel [13], and the one proposed by Yang et al.
needs additional cooperation between the legacy system and
backscatter system [10] because phases of both ambient signal
and channels are not known to the receiver. Different from the
receivers alluded above, in this work, we derive a more general
receiver that has no constraint on the modulation type of the
backscatter signal, special properties of the ambient signal and
that does not require phase-coherent operation.

The attractive advantages of multiantenna AmBC receivers
have recently motivated several works. The multiple antennas
enable detecting a backscatter signal by using the variation
in the signal strength [11], [14], or the phase [9] between
antenna elements. However, these methods take advantage of
the spatial diversity of the received signal among different
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Fig. 1. In (a), an illustration of the AmBC systems. An ambient system transmitter (Tx) and the AmBC receiver (Rx) are placed on the horizontal axis of a
Cartesian reference frame, the mid-point of the line segment connecting a reference Rx antenna to the Tx antenna is assigned as the reference frame origin.
A backscatter device (BD) transmits its information by re-modulating the ambient system signal. The channel between Tx and Rx not affected by the BD
operation is α, and the composite channel between the Tx and the BD, and the BD and the Rx is β. In (b), a schematic design of a binary BD modulator
using two switches and a quarter wavelength λ transmission line.

antennas but lose the array gain that can be provided by array
signal processing. In contrast, our proposed receiver obtains
array gain in addition to the diversity gain.

Recent works also exploit multiple antennas at the receiver
to alleviate the adverse impact of both DPI and unknown
ambient signals. Specifically, the multiantenna receiver enables
mitigating the DPI by separating the desired backscatter sig-
nal from the direct path signal using beamforming without
additional information about ambient signals or channels.
The multiantenna receivers in [15] and [16] make use of
an ensemble of temporal measurements in order to make
a decision. Such receivers can only be implemented by
oversampling when the BD is transmitting the same data
bit. Such a design uses the time diversity [17, Sec. 3.2] as
well as antenna diversity. In this paper, we take a holistic
approach and derive the optimal receivers that can operate
even when only a single temporal sample of a BD symbol is
available.

The multiantenna receiver for BPSK modulated BD signals
proposed by Duan et al. [7] aims at mitigating the impact of
DPI while solving the dynamic-range problem of all-digital
implementations. This receiver is heuristic in nature, and the
authors neither studied optimality nor derived the receiver per-
formance. The main idea of this receiver is improved by phase-
coherent receivers recently investigated by our group [18],
[19]. These receivers achieve a phase-coherent operation by
using machine learning based phase estimators, which is then
used by their demodulators. In this work, the derived optimum
receiver is non-coherent, but it does not require marginaliz-
ing over the unknown phase of the BD symbol. Therefore,
our receiver achieves the same performance as the coherent
receivers although it does not require phase estimation.

The multiantenna receivers presented by Guo et al. [6] test
the energy of the beamformed received signal to detect the
OOK-modulated backscatter signal illuminated by Gaussian
ambient signal. One of the receivers studied by the authors
is the optimal multiantenna receiver for OOK modulated BD
signal and Gaussian distributed ambient signal, which is a
generalization of the single antenna optimal receiver presented
in [20]. The same receiver has recently been studied by also

Tao et al. [8], where the authors provide performance deriva-
tions in terms of BER. The optimal receiver of these works
is the same as our optimal receiver for Gaussian distributed
ambient signal. The main limitation of this receiver is due to
Gaussian distributed ambient signal assumption, and cannot
be generalized to all AmBC deployment conditions. The
presented BER performance derivations in [8] have infinite
series, which do not converge for all practical parameter
ranges. In this work, we generalize the optimal receiver by
separately considering deterministic-unknown ambient signals
and Gaussian distributed ambient signals. We show that the
optimal receiver for deterministic-unknown ambient signal
can also be used for Gaussian signals without a signifi-
cant performance loss for practical parameter ranges. Our
BER performance derivations yield closed-form distributions.
Furthermore, we thoroughly discuss the receiver and BD
implementations, their practical implications on the receiver
performance, and the conditions on preserving the optimality.
Therefore, this work is holistic in nature so that the derived
optimum receivers can be used in several AmBC systems,
as such, it covers most of the reported receivers as its special
cases.

B. Notations

Throughout the paper, scalars are denoted by italic font
letters a, vectors and matrices are represented by lower-case a
and upper-case A boldface italic letters, respectively. Complex
scalars are assumed, and their set is denoted by C. The
Euclidean norm of a vector a is represented by ‖a‖ and
the absolute value of a is represented by |a|. The n × n
identity matrix is In, and the subscript n may be omitted
sometimes for simplicity. The conjugate-transpose, conjugate,
and transpose of a matrix A are AH , A∗ and AT , respectively.
The trace, the rank and the determinant of a matrix A are
represented by Tr(A), rank(A) and |A|. The distribution of a
complex Gaussian random vector is N (a, A), and CN (a, A)
denotes circularly symmetric complex Gaussian vector [21,
sec. 7.8] with mean a and covariance matrix A. The statistical
expectation is E{·}. The imaginary unit is j =

√−1.
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C. System Model

In this paper, a typical bi-static narrow-band AmBC system,
depicted in Fig. 1a, is considered. An ambient system serves
its devices with the ambient signal source (Tx), while an
AmBC receiver (Rx) with Nr-antenna linear array is decoding
the backscatter signal emitted by a single-antenna backscatter
device (BD). Three nodes are placed in the Cartesian reference
frame of a two-dimensional Euclidean space, as shown in
Fig. 1a. The �Nr/2�-th antenna of the Rx is selected as
the reference antenna, where �·� denotes the ceiling function,
which assumes the least integer greater than or equal to its
argument. The line segment connecting the Tx antenna and the
Rx reference antenna is set as the x-axis of the reference frame,
and its midpoint is selected as the origin. In this reference
frame, the locations of the Tx, the BD and the i-th Rx antenna
(for i = 1, · · · , Nr) are denoted by pt, p and pr,i, respectively.
Then, the distances between the Tx and the i-th Rx antenna,
the BD and the i-th Rx antenna, and the Tx and the BD are

d0,i =‖pt−pr,i‖, d1,i = ‖p − pr,i‖, and d2 = ‖pt − p‖,
respectively. For notational simplicity, the distances between
the Tx and the Rx reference antenna, and the BD and the
reference Rx antenna are denoted by d0 and d1, respectively.
The distance between the Tx and the Rx also refers to d0, and
the distance between the BD and the Rx refers to d1.

In the following, we assume a narrow-band receiver, which
cannot resolve individual multipath components. For this sys-
tem, the vector α = [α1, · · · , αNr ]T denotes the channel
gains of the direct path observed by each Rx antenna. The
components of α are the phasor sum of all multi-path com-
ponents that are not affected by the operation of the BD.
Let us denote the vector composed of the phasor sum of
all other multi-path components, which are affected by the
operation of the BD, by β = [β1, · · · , βNr ]T . We refer to α
as the direct path channels, and β as the backscatter path
channels. For a quasi-static deployment, the coherence time
of the channels exceeds the duration of several BD symbols,
that is, the received signal experiences a block-fading, so that
the channels stay constant for a duration.1 Although the
channels α and β experience independent fading realizations,
their large-scale spatial average can be calculated using the
deployment geometry and free-space path-loss model as

αi = ρα
c0/fc

4πd0,i
exp

(
j2π

d0,i

c0/fc

)
,

βi = ρβ
c0/fc

4πd2

c0/fc

4πd1,i
exp

(
j2π

d1,i + d2

c0/fc

)
, (1)

where fc is the carrier frequency and c0 is the free-space
electromagnetic propagation speed, c0/fc is the wavelength;
ρα and ρβ are fading losses in the current fading block
affecting the direct path channels and backscattering path
channels in respective order.

1For a deployment experiencing block-fading, it is customary to assume
that the channels stay approximately constant for a duration longer than the
longest BD frame, which is often referred to as a codeword block, so that
the channels’ estimates stay valid within a BD frame. However, both of the
channels may assume different realizations among different blocks.

Let us denote the binary-modulated backscatter signal trans-
mitted by the BD as x, and the unknown ambient signal
transmitted by the Tx as s̄. The k-th digital sample of the
receiver can be written as

y[k] = αs̄[k] + βs̄[k]x[k] + n[k],

where x[k] is the BD symbol and s̄[k] is the ambient signal
during the k-th sample, and n is standard circularly-symmetric
complex Gaussian noise, whose components are independent
of x and s̄. The received signal-to-noise ratio (SNR) of the
direct path signal at the i-th antenna is |αi|2|s̄|2, since the
components of the noise n have unity variance.2 It follows
that the average SNR3 is

γ � ‖αs̄‖2/Nr. (2)

The amplitude of the ambient signal can be represented by the
observed average SNR γ and ‖α‖2. Then, the ambient signal
can be defined as

s �
√

γNr

‖α‖
s̄

|s̄| . (3)

The ratio of average channel gains of the direct and the
backscattered path signals is ‖α‖2/‖β‖2. It is discussed
in [18] thoroughly that this ratio can reach up to 40 dB
when the BD is 5 meters away from the Rx. Therefore, the
backscattered path signal has a particularly low SNR, which
should be improved by the receiver to reach an acceptable
error-rate performance.

In this paper, the BD adopts a binary modulation x ∈ X =
{x0, x1} using the BD design shown in Fig. 1. This design
is a realization of well-studied backscatter modulators, e.g.,
in [22], which are also used for ambient BD design in [23].
It can be used for implementing BPSK modulation by closing
one of the switches S1 and S2 depending on the BD symbol,
e.g., when x = x0, S1 is closed while keeping S2 open;
when x = x1, S2 is closed while S1 is open. It can also
realize OOK modulation by keeping either S1 or S2 open
and opening/closing the other switch. The impact of the BD
implementation on the receiver performance is discussed in
Sec. IV-B2.

For the considered AmBC system, the duration of x is
longer than the duration of the ambient symbol s so that each
temporal sample of the received signal y[k] is affected by
independent symbol of s. Now, let us denote the compound
channel by g� so that the received signal reads as

g� � g(x�) = α + βx�, y[k] = g(x�)s[k] + n[k], (4)

for � = 0, 1. In the following, we occasionally drop the time
dependence of y when the content is restricted to a single
temporal measurement sample.

2The variance of the noise process is mainly defined by the receiver
hardware quality including the quantization noise variance. By assuming unity
variance noise, we implicitly assign a higher transmit power, and use the
SNR as a replacement of signal power. For a receiver with an acceptable
sensitivity level, 30 dB SNR does not require the receiver to be very close to
the transmitter in terms of wavelengths.

3The total received SNR for Nr-antenna receiver is ‖αs̄‖2, where Nr|s̄|2 is
the array gain, and ‖α‖2/Nr is the diversity gain [17, Sec. 3.3.1]. In this
paper, we follow this definition of the total received SNR, and ignore the
divergence of array gain when Nr → ∞.
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III. OPTIMUM MULTIANTENNA RECEIVER

In this section, the optimum multiantenna receiver for
binary-modulated backscatter signal is derived for two cases:
deterministic-unknown ambient signal and Gaussian distrib-
uted ambient signal together with their performances analyses.
The practical implementations details of the optimum receiver
are discussed in the next section.

The optimum receiver of a binary-modulated signal makes a
decision using the MAP principle, which chooses the symbol
that has a higher posterior probability for a given measurement
[24, ch. 4], that is

Pr{x = x0|y}
H0
≷
H1

Pr{x = x1|y}, (5)

where the null hypothesis H0 is x0 is transmitted, and H1 is
the alternative hypothesis. For a random vector y with proba-
bility density function (PDF) f(y), the posterior probabilities
can be computed using Bayes’ Theorem

Pr{x = x�|y} =
f(y|x = x�) Pr{x = x�}

f(y)
, for � = 0, 1.

Since the denominator is common under two hypothesis and
the BD adopts binary modulation, MAP criterion can be
written as

f(y|x = x0)q
H0
≷
H1

f(y|x = x1)(1 − q), (6)

where we have defined Pr{x = x0} = q, which leaves Pr{x =
x1} = 1 − q.

The likelihood functions and prior BD symbol probabilities
yield a test statistic z and a threshold value V to make a
decision. Once the distribution of z is determined, performance
of a receiver is quantified by its probability of error, which is
the average of the probability of false alarm (also known as
Type-I error) Pf and the probability of miss (also known as
Type-II error) Pm. For the problem at hand, these probabilities
are given by

Pf = (1 − Fz(V |x = x0)), Pm = Fz(V |x = x1),
Pe = qPf + (1 − q)Pm, (7)

where Fz(·|x) is the conditional cumulative distribution func-
tion (CDF) of the test statistic z.

For the AmBC receivers that are implemented independent
of the ambient receiver, the ambient signal s is not available.
For this case, the receiver design problem should be solved
by assuming certain signal type for s, which changes the
likelihood functions in Eq. (6). In the sequel, we consider two
types of s. The worst case is when the AmBC receiver has no
prior knowledge about the ambient signal so that s is treated as
a deterministic-unknown parameter. Since we restrict the scope
to the receivers that can sample at the rate or slower than the
data rate of the ambient signal, the ambient signal s affecting
the measurement y is also an unknown constant. The other
case is when the receiver assumes a prior distribution for s.
In particular, it can be assumed as a zero-mean Gaussian with
constant variance. This prior arises in many practical ambient
signal sources with fast amplitude variation. Therefore, these
two cases arise frequently in practice, and each can be useful
for an AmBC deployment.

A. Deterministic and Unknown Ambient Signal

We first consider the ambient signal s as a constant that
can be estimated using a single temporal measurement y so
that s is an unknown parameter that defines the distribution of
y. In this subsection, we first derive the optimal receiver, and
then elaborate on its performance.

1) Receiver Design: In case s is an unknown constant, the
likelihood functions in Eq. (6) can be obtained by first estimat-
ing s as ŝ. Now, the measurement has a joint distribution of
the estimation error εs = s− ŝ and the measurement noise n.
Then, the likelihood functions are obtained by marginalizing
εs out,

f(y|x = x�) =
∫
S

f(y|x = x�, εs)f(εs)dεs, (8)

where S is the support of the ambient signal estimation error
εs, and f(εs) denotes its PDF. Thus, the marginal density of
εs and the conditional density f(y|x = x�, εs) are required to
find the likelihoods.

Let us suppose that the Nr measurements of a multiantenna
receiver y is used by an unbiased and efficient estimator
to obtain an estimate of the ambient signal as ŝ. These
requirements are readily satisfied by Maximum Likelihood
estimator [25, ch. 5], and its estimate ŝ using the measurement
vector y for a given x = x� value, and associated estimation
error εs are

ŝ =
gH

� y

‖g�‖2
, εs = ŝ − s =

gH
� n

‖g�‖2
.

The estimation error εs is complex Gaussian random variable
with

E{εs} = 0, E{εsε
∗
s} = 1

/‖g�‖2.

As the number of receiver antennas Nr increases,
‖g�‖2 monotonically increases, and E{εsε

∗
s} → 0. This,

in turn, implies that f(εs) → δ(εs) in mean square, where
δ(·) is the Dirac delta function, so that this estimator is
asymptotically consistent.

The density function of the estimation error εs and the
conditional distribution of the measurement is required to
marginalize εs. For this purpose, substituting ŝ into Eq. (4)
yields

y = ŝg� + ñ, ñ � n − εsg� =
(

I − g�g
H
�

‖g�‖2

)
n. (9)

Hence, the conditional distribution of the measurement y,
when x = x� and εs are given, is N (μy|x�,εs

,Σy|x�,εs
) with

μy|x�,εs
= ŝg�, Σy|x�,εs

= Gd(x�),

Gd(x�) � I − g�g
H
�

‖g�‖2
. (10)

It follows that Eq. (6) is obtained by substituting the PDF
of N (μy|x�,εs

,Σy|x�,εs
) as a likelihood function, since the

integral in Eq. (8) results the conditional PDF. Then, taking
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the logarithm of both sides yields the binary hypothesis test
for the optimal receiver as

ln f(y|x = x0, εs)
H0
≷
H1

ln f(y|x = x1, εs) + ln
(

1 − q

q

)
.

(11)

The conditional density of the measurement y, when x = x�

and εs are given, is a degenerate multi-variate Gaussian,
of which, PDF does not exist in CNr , but it can be defined in
a subspace [26, Sec. 8a.4]. Since the conditional covariance
matrix Gd(x�) is idempotent matrix of rank Nr − 1, the
conditional PDF can be defined in the (Nr − 1)-dimensional
subspace as

f(y|x = x�, εs) =
exp

(
− (y − g�ŝ)

H Gd(x)† (y − g�ŝ)
)

πNr−1det∗(Gd(x))
,

where det∗(Gd(x)) is the product of non-zero eigenvalues
of Gd(x), which is equal to 1, and Gd(x)† denotes Moore–
Penrose generalized inverse of Gd(x), which, in our case,
is Gd(x) itself.

If the receiver can oversample with respect to the BD
symbol data rate, but the sampling rate is slower than the data
rate of ambient signal s, it might acquire K samples for one
BD symbol, which we refer to as oversampling rate. Since
the noise samples n[k] are independent in time, it follows
that the received signal samples conditioned on x� and εs[k]
are independent, and their joint density is just their respective
products. Then, taking the logarithm of the conditional joint
PDF yields

ln f(y[1], · · · , y[K]|x = x�, s = ŝ)

= −(Nr − 1)K ln π −
K∑

k=1

yH [k]Gd(x�)y[k]. (12)

Now, substituting log-likelihood functions for two possible
values of x into Eq. (11) for K samples, the binary hypotheses
test simplifies to

K∑
k=1

yH [k]
(
Gd(x1) − Gd(x0)

)
y[k]

H0
≷
H1

K ln
(

1 − q

q

)
. (13)

Therefore, the optimum receiver first needs to calculate the
test statistic zd,

zd �
K∑

k=1

yH [k]
(

g0g
H
0

‖g0‖2
− g1g

H
1

‖g1‖2

)
y[k], (14)

and then compares its output value with the decision threshold
Vd = 0 when BD symbols have equal probability.

2) Receiver Performance: In order to investigate the distri-
bution of the test statistic zd in Eq. (14), let us first define the
matrix

Md =
g0g

H
0

‖g0‖2
− g1g

H
1

‖g1‖2
, (15)

so that zd = yHMdy. Since the distribution of the quadratic
form defining zd is a function of spectral properties of Md, the
following proposition provides the key ingredient in deriving
the conditional density functions of zd under two hypothesis.

Proposition 1: The matrix Md is a rank-2 indefinite Her-
mitian matrix with the non-zero eigenvalues

λ1(Md) = −λ2(Md) = κ =

√
1 − |gH

0 g1|2
‖g0‖2‖g1‖2

, (16)

and the corresponding normalized eigenvectors

u1 =

√
1 − κ

2κ2

(
I +

1
κ − 1

g0g
H
0

‖g0‖2

)
g1

‖g1‖
, (17a)

u2 =

√
1 + κ

2κ2

(
I − 1

κ + 1
g0g

H
0

‖g0‖2

)
g1

‖g1‖
, (17b)

when κ �= 1, and when κ = 1, eigenvectors are u1 = g1/‖g1‖
and u2 = g0/‖g0‖.

Proof: See Appendix A.
Since Md is a rank-2 matrix, its spectral decomposition is

given by Md = κ(u1u
H
1 − u2u

H
2 ), so that the test statistic

zd can be written as

zd = κ

⎛
⎜⎜⎜⎜⎝

K∑
k=1

|uH
1 y[k]|2

︸ ︷︷ ︸
t

−
K∑

k=1

|uH
2 y[k]|2

︸ ︷︷ ︸
r

⎞
⎟⎟⎟⎟⎠

H0
≷
H1

0. (18)

The random variables t and r are independent and non-central
chi-square distributed [27, ch. 2], both with degrees of free-
dom 2K and variance 1/2, but with different non-centrality
parameters given by

θt(x�) = 2|uH
1 g�|2

K∑
k=1

|s[k]|2

= ‖g�‖2(1 + (−1)�κ)
K∑

k=1

|s[k]|2, (19a)

θr(x�) = 2|uH
2 g�|2

K∑
k=1

|s[k]|2

= ‖g�‖2(1 − (−1)�κ)
K∑

k=1

|s[k]|2. (19b)

The distribution of the test statistic in Eq. (18) can be
obtained by defining it as a difference of two independent
non-central chi-square variables t and r, of which density is
given in [28]. However, the resultant density function does
not converge for the parameter ranges we are interested in.
An alternative approach is to define the ratio of t and r as the
test statistic,

zr � t

r

H0
≷
H1

1.

so that it is compared against threshold value Vr = 1. The test
statistic zr is a doubly non-central F random variable [29,
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ch. 30], of which CDF reads as

F (zr|x = x�)

= exp
(‖sg�‖2

2

)

×
∞∑

i=0

∞∑
j=0

θi
r(x�)θ

j
t (x�)

i!j!
1

2i+j
B̄ zr

zr+1
(i + K, j + K),

(20)

where B̄x(a, b) denotes the (regularized) incomplete Beta
function [30, Sec. 26.5]. The main difficulty in calculat-
ing the probability of error in Eq. (7) using Eq. (20) is
slow convergence of the sums as discussed thoroughly by
Paolella [31, Sec. 10.2]. This problem is usually overcome by
utilizing an approximation of the exact CDF. In the following
sections, probability of error is calculated using the saddle
point approximation.

B. Gaussian Distributed Ambient Signal

When the distribution of s is given, the individual compo-
nents of y has a joint distribution of s, x and n. Then, the
likelihood f(y|x = x�) can be derived using the independence
of these random variables. In this subsection, we assume that
the ambient signal is s ∼ N (0, σ2

s), and we first derive the
optimal receiver, and then study its error performance.

1) Receiver Design: For a Gaussian distributed s, the mea-
surement y has the Gaussian density function, but it is not a
multivariate Gaussian distributed random variable. However,
the conditional densities for a given BD symbol x = x�

are jointly Gaussian with mean 0 and conditional covariance
matrix Σy|x�

. It is straightforward to show that

Σy|x�
= σ2

sg�g
H
� + I. (21)

The conditional covariance matrix has a full rank, and its
eigenvalues are {1+σ2

s‖g�‖2, 1, · · · , 1}. Thus, the conditional
PDF exists, and it is given by

f(y|x = x�) =
1

πNr |Σy|x�
| exp

(
−yHΣ−1

y|x�
y
)
. (22)

It follows from the definition of the conditional covariance
matrix that

Σ−1
y|x�

= I − σ2
sg�g

H
�

1 + σ2
s‖g�‖2

, |Σy|x�
| = 1 + σ2

s‖g�‖2.

Let us make the following definitions to simplify the notations,

c� � σ2
s‖g�‖2

1 + σ2
s‖g�‖2

, Gg(x�) � I − c�
g�g

H
�

‖g�‖2
. (23)

In case the receiver can acquire K samples in a BD symbol
duration, the joint conditions density of y[k] for k = 1, · · · , K
is the product of individual samples due to the independence
of noise process samples. Then, after substituting K products
of Eq. (22) into Eq. (6), and taking the logarithm of both sides,
the binary hypotheses test for a general binary-modulated

backscatter signal and a Gaussian distributed ambient signal
is obtained as
K∑

k=1

y[k]H (Gg(x1) − Gg(x0))y[k]

H0
≷
H1

K ln
(

1 − q

q

1 + σ2
s‖g0‖2

1 + σ2
s‖g1‖2

)
. (24)

The test statistic zg and the decision threshold Vg for equally
probable BD symbols for this case are

zg � 1
K

K∑
k=1

yH [k]
(

c0
g0g

H
0

‖g0‖2
− c1

g1g
H
1

‖g1‖2

)
y[k],

Vg � ln
(

1 + σ2
s‖g0‖2

1 + σ2
s‖g1‖2

)
. (25)

Therefore, the optimal receiver for this case, first calculates
the test statistic zg , and then compares its value with Vg .

2) Receiver Performance: The test statistic zg is a quadratic
form, and it is a Gaussian quadratic form for a given BD sym-
bol x. In order to obtain its distribution under two hypothesis,
let us first define,

Mg � c0
g0g

H
0

‖g0‖2
− c1

g1g
H
1

‖g1‖2
. (26)

Then, zg can be written as

zg =
K∑

k=1

vH [k]
1
K

Σ1/2
y|x�

M gΣ
1/2
y|x�

v[k], (27)

where v[k] are independent and standard Gaussian v[k] ∼
N (0, I). Since the distribution of this quadratic form depends
on the eigenvalues of the matrix Σ1/2

y|x�
MgΣ

1/2
y|x�

/
K , the

following proposition is crucial.
Proposition 2: The matrix W � = Σ1/2

y|x�
M gΣ

1/2
y|x�

/K is a
rank-2 indefinite Hermitian matrix with non-zero eigenvalues

λ1,2(W 0)

=
1

2K

(
c1 − σ2

s‖g0‖2κ2
1

)
± 1

2K

√
(c1 + σ2

s‖g0‖2κ2
1)2 − 4 c1

‖g0‖2

‖g1‖2
(1 − κ2

1)

(28a)

λ1,2(W 1)

=
1

2K

(−c0 + σ2
s‖g1‖2κ2

0

)
± 1

2K

√
(c0 + σ2

s‖g1‖2κ2
0)2 − 4 c0

‖g1‖2

‖g0‖2
(1 − κ2

0)

(28b)

where we have defined

κ� =

√
1 − cl

|gH
0 g1|2

‖g0‖2‖g1‖2
for � = 0, 1. (29)

Proof: See Appendix B.
The distribution of the indefinite Hermitian Gaussian

quadratic form has already been studied by Al-
Naffouri et al. [32]. Since Eq. (27) is a sum of independent
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quadratic forms, its CDF can be derived as a straightforward
extension of the results presented in [32]. The CDF of zg is
obtained as

F (zg|x = x�)

=

⎧⎪⎪⎨
⎪⎪⎩

K∑
j=1

(−1)K−jzj−1
g

j!(K−j)!|λ1|K exp
(
− zg

λ1

)
aj(λ1) zg < 0

1 +
K∑

j=1

zj−1
g

j!(K−j)!|λ2|K exp
(
− zg

λ2

)
aj(λ2) zg ≥ 0,

(30)

where λm = λm(x�) ≡ λm(W �) for m = 1, 2, aj(λ1)
aj(λ2) are partial fraction expansion coefficients that can be
calculated using

aj(λ1) = lim
ζ→−1

λ1

dK−j

dζK−j

1
ζ(1 + ζλ2)K

,

aj(λ2) = lim
ζ→−1

λ2

dK−j

dζK−j

1
ζ(1 + ζλ1)K

. (31)

After calculating the derivatives at the specified limits, this
CDF can be used to determine the probability of error in
Eq. (7) when Vg is available.

When K = 1, this CDF is belongs to an
asymmetric-Laplace random variable [33, ch. 3] with
scale parameter

√−1/(λ1(x�)λ2(x�)) and asymmetry
parameter

√−λ1(x�)/λ2(x�).

IV. RECEIVER IMPLEMENTATION

The test statistics zd in Eq. (14) and zg in Eq. (25) are both
difference of quadratic functions of the measurement y. Let
the matrix G(x�) denote either Gd(x�) defined in Eq. (10)
or Gg(x�) defined in Eq. (23) for � = 0, 1, and similarly let
z denote either zd or zg so that a general test statistics be
defined as

z =
K∑

k=1

(
yH [k]G(x1)y[k] − yH [k]G(x0)y[k]

)

=
K∑

k=1

‖BH(x1)y[k]‖2 −
K∑

k=1

‖BH(x0)y[k]‖2, (32)

where B(x�) satisfies G(x�) = B(x�)BH(x�), and is
referred to as beamforming matrix. Since G(x�) is Hermitian,
B(x�) is also Hermitian so that BH(x�) = B(x�), and B(x�)
is the square root of G(x�). In case the AmBC system assumes
constant ambient signal s, the beamforming matrix, denoted
as Bd(x�), is equal to Gd(x�), since Gd(x�) is idempotent,

Bd(x�) = G
1
2
d (x�) = Gd(x�) = I − g�g

H
�

‖g�‖2
. (33)

For the Gaussian distributed ambient signal s case, it is given
by

Bg(x�) = G
1
2
g (x�) = I − (1 − 1√

1 + σ2
s‖g�‖2

)
g�g

H
�

‖g�‖2
. (34)

A receiver that makes a decision using the test statistic in
Eq. (32) can be implemented as a square-sum device after
beamforming y using the matrix B(x�), as illustrated in

Fig. 2a. The received signal is split into two streams to feed
two branches. Each of the streams goes through a beamformer
to calculate B(x0)y or B(x1)y, and through a square-sum
device to calculate their norm-squares. The receiver makes a
decision by comparing the difference of the norm-square with
the decision threshold V .

The optimum receiver given in Fig. 2a requires i) the
beamforming matrices B(x0) and B(x1), and ii) the decision
threshold value V . In the remaining part of this section,
we first present different methods to estimate the beamforming
matrices, and thereafter, we discuss the practical details and
implications of the presented receivers.

A. Estimation of the Beamformers

The beamformers B(x0) and B(x1) are required for con-
structing the optimum receivers. The beamforming matri-
ces B(x�) can be calculated by estimating the matrix
G(x�). These matrices are functions of the conditional auto-
correlation matrix of the measurements when the BD symbol
is given, which reads as

Ry|x�
= Σy|x�

+ E{y|x = x�}EH{y|x = x�}, (35)

where Σy|x�
is the conditional covariance matrix. For the

unknown ambient signal case, the auto-correlation matrix is
obtained as

R
(d)
y|x�

= I + |s|2g�g
H
� ,

whose eigenvalues are {1 + ‖sg�‖2, 1, · · · , 1}, and the eigen-
vector corresponding to its largest eigenvalue is g�/‖g�‖. The
beamforming matrix Bd(x�) in Eq. (33) is the projection
matrix onto the linear subspace orthogonal to the space
spanned by the largest eigenvector. The threshold value Vd

is constant and equal to 0 when BD symbols have equal
probability. For the Gaussian distributed ambient signal case,
on the other hand, we have

R
(g)
y|x�

= I + σ2
sg�g

H
� ,

with eigenvalues {1+σ2
s‖g�‖2, 1, · · · , 1}, and the eigenvector

corresponding to its largest eigenvalue is g�/‖g�‖. For this
case, the beamforming matrix Bg(x�) in Eq. (34) can be
calculated from the largest eigenvalue and the corresponding
eigenvector. The threshold value Vg is the ratio of the largest
eigenvalues of the measurement auto-correlation matrices
under two hypotheses. In either case, an estimate of Ry|x�

in Eq. (35) is required.
The auto-correlation matrix estimation has well-known solu-

tions. Among the alternatives, the easiest is to collect samples
when a known symbol is transmitted by the BD for a certain
duration, referred to as preamble.4 In particular, two length-
P preambles represented by x[1] = · · · = x[P ] = x0 and
x[P + 1] = · · · = x[2P ] = x1 can be used for estimating
Ry|x0 and Ry|x1 , respectively. Let us define the sample matrix
of the measurements acquired when the BD is transmitting x�

as

Y � =
[
y[1 + �P ]

... · · · ... y[P + �P ]
]

(36)

4The preamble refers to the preamble transmitted by the BD. The preamble
of the ambient system is not needed for estimating the beamformers.
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Fig. 2. In (a), implementation of the optimum receiver with two beamformers. In (b), an analog-digital hybrid implementation of the optimum receiver
with two beamformers, one in analog domain that suppresses the direct path signal before automatic gain control (AGC) operating before analog-to-digital
converter (ADC). The digital beamformers are either Bd(x�) in Eq. (33) or Bg(x�) in Eq. (34) for � = 0, 1. The analog side beamformer is the inverse of
the positive-definite auto-correlation matrix in Eq. (35) for x = x0. The resultant square-sum value of branch x0 is subtracted from the other branch, and the
difference is compared with the decision threshold.

Then, the auto-correlation matrix can be estimated as

R̂y|x�
=

1
P

P∑
p=1

y[p + �P ]yH [p + �P ] =
1
P

Y �Y
H
� . (37)

The conditional measurement auto-correlation matrix esti-
mate R̂y|x�

in Eq. (37) converges to a positive definite
Hermitian matrix for some P > Nr. Let us suppose that
P is selected such that R̂y|x�

≈ Ry|x�
. Since the optimum

receiver only needs the largest eigenvalue and its associated
eigenvector, the power method [34, Sec. 8.2.1] is an iterative
algorithm to calculate these by

û(ι+1) =
Y �Y

H
� û(ι)

‖Y �Y
H
� û(ι)‖

,

for the iteration number ι = 0, 1, · · · . The calculation is
stopped when the eigenvector estimate û(ι) satisfies a con-
vergence criteria for its associated eigenvalue estimate, given
by

λ̂(ι) =
1
P
‖Y H

� û(ι)‖2.

This algorithm converges if i) the initial vector û(0) has a
non-zero and significant component along the largest eigenvec-
tor, and ii) the largest eigenvalue is unique, and its separation
from the closest eigenvalue is high enough with respect to the
machine precision.

For the considered problem this method converges when
|s|2‖g�‖2 or σ2

s‖g�‖2 is high and the eigenvector estimate is
initialized appropriately. In practice, the initial estimate of the
eigenvector can be set to an estimate of direct path channel
α, which can be calculated using the measurements acquired
when the BD is not operating. Therefore, power iteration
is a practically appealing method to find the the largest
eigenvalue and associated eigenvector of the measurement
auto-correlation matrix to estimate the beamformers.

B. Discussion

The designed receivers are based on the MAP principle,
which is equivalent to maximum likelihood (ML) criterion
when the BD symbol probabilities are equal. The ML criterion
arises naturally in likelihood ratio tests, which is the optimal
detector that maximizes the detection probability for a given
false alarm rate (significance level) due to Neyman-Pearson
Theorem [35, Vol. II, Sec. 3.3]. The equivalent Bayesian

approach is derived when prior probabilities of each hypothesis
can be assigned, as it is for communication systems. In this
case, the MAP criterion, which yields a receiver that minimizes
the Bayesian Risk, is the optimal (also referred to as the
strongest) binary hypothesis test although it does not require
a specific false alarm probability to maximize the detection
probability [35, Vol. II, Sec. 3.7]. Therefore, the developed
receivers are optimal in Bayesian sense and have the lowest
probability of error among all possible binary hypothesis tests.

The difference between receivers for Gaussian distributed
and deterministic-unknown ambient signal s arises due to the
coefficients c� in Eq. (23). For deterministic-unknown s case
c� = 1. When the total received SNR of the ambient signal is
high, say more than 20 dB, we have σ2

s‖g�‖2 > 100, which
implies c� ≈ 1. In this case, the test statistic zg in Eq. (25)
approximates to zd in Eq. (14). Furthermore, for Gaussian case
the decision threshold in Eq. (25) can be written as

Vg = ln
(

c1

c0

‖g0‖2

‖g1‖2

)
.

For all practical AmBC deployments, the channel gains α
and β in Eq. (4) has a significant gain difference as discussed
earlier. This implies that ‖g0‖2/‖g1‖2 ≈ 1, and Vg ≈ 0.
Therefore, when total received SNR of the ambient signal
is high and the channel gain difference between the direct
path and backscatter path is significant, the receivers for
deterministic-unknown s and Gaussian distributed s are equiv-
alent. In the remaining part of the discussions, we analyze the
supported ambient systems and signals, highlight the physical
parameters defining the receiver performance, and investigate
possible practical implementation issues. Before we delve into
these discussions, let us summarize the advantageous features
of the optimum receiver shown in Fig. 2a:

i.) The receiver does not require an explicit ambient signal
estimate, but implicitly handles its impact through
the beamformers. Furthermore, its operation does not
depend on the ambient signal type as long as the
ambient system uses a modulation scheme with a
symmetrical signal constellation around zero of the
complex plane.

ii.) The receiver is a non-coherent receiver since it does not
require BD symbol phase. It does not require explicit
knowledge of channels α and β, but only composite
channel g� defined in Eq. (4). This channel is estimated
for different BD symbols as described in Sec. IV-A.
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iii.) The receiver does not assume a specific value for
the transmitted BD symbol, and a BD symbol value
is solely defined by the preamble sequence. The BD
can use any binary tag symbols during one frame
transmission without explicitly informing the receiver;
it chooses the symbol values during the preamble
transmission, and then uses the same values during the
frame transmission.

1) Supported Ambient Systems and Signals: The auto-
correlation matrix estimate in Eq. (37) using the measurement
matrix Y � in Eq. (36) can be written as

R̂y|x�
= g�g

H
�

1
P

P∑
p=1

|s[p + �P ]|2 + I, (38)

which is valid when P is large, the measurement noise process
n is ergodic in wide-sense,5 it is independent of the ambient
signal s, and it has a zero mean. These are all implied by
the definition of the measurement noise and selection of the
preamble length. This expression also requires the channel
gains g� to be constant, which is valid for a block-fading chan-
nel with coherence time exceeding the longest frame duration.
The square sum of the time samples of s should be finite
to guarantee convergence of the sum, which implies that the
ambient signal should have a finite power. This requirement
is not restrictive for a practical ambient transmitters, since all
ambient systems must possess this property. Therefore, for
all practical ambient sources, the auto-correlation estimate in
Eq. (38) is valid.

In order to investigate what type of ambient signals are
supported, let us assume that s is a wide-sense ergodic random
process with mean μs and variance σ2

s . Then, the sum in
Eq. (38) converges to

1
P

P∑
p=1

|s[p + �P ]|2 → σ2
s + |μs|2.

The mean μs = 0 for all modulation types with signal con-
stellation points symmetrical around the zero of the complex
plane.6 The variance σ2

s is defined by the transmitted binary
data sequence, modulation type and the spectral properties
of the transmitter filter, and for a given transmitter filter and
equally probable symbols, the variance can be calculated from
the power spectral density of the modulation [27, Sec. 3.4]. For
equally probable frequency shift keying and phase shift keying
modulations, the variance σ2

s is equal to the symbol power,
and all symbols have equal amplitude |s|. For amplitude shift
keying, the variance is equal to the average signal power. The
more complex modulations, such as orthogonal frequency divi-
sion multiplexing, have more involved variance expressions,
and their signals can be treated as Gaussian s. Therefore, all
ambient signals from symmetrical constellations are supported
by the AmBC receiver for deterministic-unknown s, and
ambient signals of more complex modulations are supported

5A random process is ergodic in wide-sense when it is both mean and
covariance ergodic.

6On-off keying has a non-zero mean. However, since in zero state no
energy is transmitted, ambient systems using on-off keying modulation are
not considered.

by the receiver for Gaussian s. Since these two receivers are
equivalent when SNR is high, the receiver for deterministic-
unknown s supports all types of ambient signals with zero
mean.

The derivations in Sec. III assume that the ambient signal
s always present. When this assumption fails, the receiver
must identify first the presence of s, and then try to decode
the BD symbol. This problem has well-known solutions in
cognitive radio literature, e.g., the solutions provided by
Zhang et al. [36]. Since ambient systems that transmit infor-
mation in a sporadic basis require a more careful AmBC
system design, we have not considered such systems in our
analysis.

2) Receiver Performance: The existence of BD in the
propagation environment inevitably alters the channel between
Tx and Rx (direct path channel). This is known as structural
mode of the BD, and is defined as scattering of the incident
signal, which is independent of the BD operation [37]. Its
mere impact is to add an additional multipath component to the
channel α, but does not affect the channel β. This also implies
that the structural mode is not expected to alter the operation
of the receiver since the beamformer estimates already contain
its impact. The channel models used in this work are general
and covers the impact of structural mode, and therefore, the
designed receivers do not require any special treatment for this
mode.

The channel realizations affect the received signal y in
Eq. (4) by changing the vector g so that they should be
taken into account when deriving the likelihood functions.
However, since the channels assume a single realization during
a frame transmission, the conditional density of y for a given
BD symbol x can be equivalently written conditioning on g,
i.e., f(y|x = x0) ≡ f(y|g = g0), and f(y|x = x1) ≡
f(y|g = g1). This also implies that once the beamformers are
estimated, the unknown phase of the backscatter channels are
constant throughout the frame transmission. Thus, the derived
likelihoods do not depend on the phase, and the receiver does
not require phase-coherent operation.

The performance of the receiver depends on the estimation
quality of the beamformers. In order to investigate the impact
of beamformer estimation error, let us assume that the power
iteration has converged to a vector

ĝ� =
g� + e�

‖g� + e�‖ ,

such that eH
� g� = 0. When x = x1, the noise term independent

test statistic in Eq. (14) changes approximately by

zΔ ≈ |s|2
(

gH
1 e0g

H
1 g0

‖g0 + e0‖2
+

gH
1 g0e

H
0 g1

‖g0 + e0‖2
+

|gH
1 e0|2

‖g0 + e0‖2

)
.

The common denominator is ‖g0 + e0‖2 = ‖g0‖2 + ‖e0‖2.
Thus, the impact of beamformer estimation error should be
quantified by both

be,m � ‖e0‖ + ‖e1‖, and

be,a � |eH
0 g1|

‖e0‖‖g1‖
+

|eH
1 g0|

‖e1‖‖g0‖
. (39)



818 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 2, FEBRUARY 2023

In the next section, we investigate the impact of these on the
BER performance.

In general, the benefit of using BPSK modulation compared
with OOK is a lower BER for a given SNR value. This can
be investigated by observing the eigenvalues in Eq. (28) for
Gaussian distributed ambient signal when its SNR is high. For
this case, the eigenvalues simplify to

λ1(x0) ≈ −σ2
s‖g0‖2κ2, λ2(x0) ≈ 1,

λ1(x1) ≈ −1, λ2(x1) ≈ σ2
s‖g1‖2κ2,

and the decision threshold is Vg ≈ 0. Substituting these into
Eq. (30) for K = 1, and then into Eq. (7) for zg = Vg = 0,
the probability of error can be approximated to

Pe ≈ 1
2

(
1

1 + σ2
s‖g0‖2κ2

+
1

1 + σ2
s‖g1‖2κ2

)
≈ 1

2σ2
sκ2

(
1

‖g0‖2
+

1
‖g1‖2

)
.

Thus, the BER decreases in such a way that the higher
κ2 and ‖g1‖2 − ‖g0‖2 are, the better the performance is.
For BPSK modulation, κ = 1 when the normalized channels
are orthogonal, which also yields ‖g1‖2 − ‖g0‖2 = 2‖β‖2.
However, for OOK modulation we have κ ≤ 1/

√
2, and

κ = 1/
√

2 implies ‖g1‖2 − ‖g0‖2 = ‖β‖2. Therefore, for
a fixed BER, BPSK requires up to 10 log10(4) ≈ 6.02 dB less
SNR.

The received BD signal strength has been studied by Griffin
and Durgin [38], and several key parameters affecting the
signal strength are identified. The Tx and Rx antenna gains,
propagation related losses, the BD antenna gain, and polar-
ization mismatch of the links between Tx and BD, and Rx
and BD affect the signal strength. In addition to these, the
practical losses due to BD modulator circuit implementation
may degrade the BD signal strength. The modulator losses may
arise from the mismatch of the antenna impedance, the trans-
mission line characteristic impedance and/or the impedance
of the dissipating load, and the non-zero impedance of the
switches when they are in ‘on’ state. In this paper, we make
the following simplifying assumptions: 1.) Tx, Rx and BD
have ideal isotropic antennas with unity gain; 2.) the links
between Tx and BD, and BD and Rx polarization mismatches
are ignored by assuming perfect polarization matching; and
3.) the implementation is close to ideal. Since the considered
system is the same as bistatic and dislocated backscatter
systems [38], under these assumptions, the link budget of
the backscatter signal is mainly defined by the propagation
losses. The effects of other parameters can be added to the
logarithmic propagation losses, for instance, the impact of
transmission power, antenna gains etc. If the antennas are
directive, their impact can be included by adding/subtracting
directive antenna gains for a given BD location. If there is
a polarization mismatch, the amount of mismatches can be
taken into account by subtracting a positive number since
it is a real non-negative constant smaller than 1 in linear
scale.

The propagation losses associated with the backscattered
signal of an AmBC system operating at 500 MHz is shown in

Fig. 3.a, where the path-loss exponents all set to ideal value
of 2. Event for this ideal scenario, although the ambient signal
experiences only 46.83 dB propagation loss, the BD losses are
between 80 and 110 dB. These values imply that the backscat-
ter signal is very weak compared to the strength of the ambient
signal, and successful BD operation is possible when it is
placed close to either Tx or Rx. Let us consider the well-known
large-scale propagation loss model Lη(d) = L0 + 10η log(d),
where η is the path-loss exponent, L0 is the loss measured at
a reference distance, and d is the link-length scaled with the
reference distance. For this model, the direct link experiences
a loss of L0 + 10ηtr log(d0) dB, while the backscatter path
experience 2L0 +10ηtb log(d2)+10ηbr log(d1) dB where ηtr,
ηtb and ηbr are path-loss exponents of the links between Tx
and Rx, Tx and BD, and BD and Rx respectively. However,
Fig. 3.a implies that ηtr, ηtd and ηdr cannot assume arbitrary
values. On the contrary, it implies that, when BD is close to
Tx, ηtb ≈ 2 and ηbr ≈ ηtr; and when BD is close to Rx,
ηbr ≈ 2 and ηtb ≈ ηtr. Consequently, the path loss exponent
ηtr value merely alters the ambient signal power, and scales
the SNR of the ambient signal. Therefore, the results presented
in Sec. V are valid under different path loss exponents, and its
impact on the ambient signal SNR plots in logarithmic scale
is just to shift the curves to either left (when ηtr < 2) or right
(when ηtr > 2).

The performance of the receiver has a strong dependence
on the parameter κ. By definition, it is the absolute value
of sine of the rotation angle between g0 and g1, which we
refer to as angular variation, and takes a real value between
0 and 1. It is 0 when the vectors are parallel, and 1 when they
are orthogonal. Correspondingly, κ attains its maximum when
the channel gains β and α are perpendicular to each other,
and its minimum when they are parallel. The two dimensional
variation in κ is shown in Fig. 3b. The depicted result implies
that the angular variation is the largest when the BD is close
to Rx or Tx. Therefore, the derived optimum receiver has the
best performance when the BD has a suitable location, and it
may perform at its best when BD is within ±10 wavelength
distance from the Rx’s location or close the Tx (approximately
±5 wavelengths).

The channel gains α and β defined in Sec. II-C do not
discriminate between different fading processes as long as their
individual components experience a single realization of the
channel gain. This assumption is valid when the environment,
the BD, the transmitter and the receiver are all quasi-stationary
for the duration of a single BD frame transmission. The
small-scale fading changes the observed SNR of both ambient
and backscatter signal, and might yield poor receiver perfor-
mance. The impact of fading losses defined in Eq. (1) on
BER performance of Gaussian modulated ambient signal s
for the simulated scenario described in Sec. V is shown in
Fig. 3. As can be observed, as long as the fading gain ρβ

is larger than 0.6, the receiver performs well. Therefore, the
mere impact of small scale fading losses is to shift BER
performance curves slightly toward lower SNR values, which
can be compensated by increasing number of samples acquired
for each backscattering symbol K , and are not considered in
Sec. V. Therefore, the derived receivers can handle small-scale
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Fig. 3. In (a), the variation in link losses in dB experienced by the backscatter signal at the reference antenna with the backscatter device location when the
ambient transmitter is placed (−40, 0) and the reference receive antenna is at (40, 0) and the wavelength λ is 0.6 m. In (b), the variation in 20 log10(κ) in
Eq. (16) with backscatter device location for the same ambient system as in (a), and the number of receiver antennas is Nr = 16, backscatter device uses
BPSK modulation, and only the free-space path loss is considered when calculating g� defined in Eq. (4). In (c), the variation in bit error rate with fading
parameters ρα and ραβ in Eq. (1) for Gaussian ambient signal and BPSK modulated backscattering symbol when SNR γ = 24 db and oversampling K = 4.

fading affects without a need for a special treatment in the
receiver architecture.

The projected BD ranges are larger than the reported
ranges for different AmBC implementations. For an AmBC
system using TV signal as ambient source [2], the trans-
mission distance between a passive BD and Rx is up to
1 meter (1.5 wavelength) when the TV tower (Tx) is more
than 4 kilometers away from BD and Rx. In [39], the
BD achieves successful communication when the distance
between BD and Rx is 50 meters and the distance between
Tx and BD is fixed to be 1 meter (4 wavelengths) for the
802.11b ambient signal. The communication range for long-
range (LoRa) ambient signal can reach up to 1.1 kilometers
between BD and Rx when BD is placed 0.2 meter (less than a
wavelength) apart from Tx [40]. The projected ranges can be
drastically improved by using time-diversity by increasing the
oversampling rate K or using coding. Therefore, the proposed
receiver is expected to improve the AmBC system range
significantly.

3) Receiver Implementation: The beamformer products in
the optimum receiver shown in Fig. 2a at first glance can
be implemented as a matrix vector product processors. How-
ever, since the beamformers are difference between identity
matrix and a rank-one matrix, it requires only one inner
product and a vector difference processor. Thus, their hardware
implementation requirements are not higher than standard
multiantenna receivers. However, the beamformer estimator
requires Nr digital streams, which implies that the receiver
can be implemented using Nr number of RF front-ends each
followed by an analog-to-digital converter (ADC).

The receiver given in Fig. 2a is an example implementation
in the digital domain. In practice, the dynamic range of the
ADC determines the quality of the numerical representation
of the measurement y. In this regard, since the direct path
channel gains are much stronger than the backscatter path
channel gains, the significant bits of the digital value of y
are representing the direct path signal, while the backscatter
signal is limited toward the least significant bits. One solution
to overcome the dynamic range problem is to eliminate the
direct path in the analog domain before ADC of the receiver

as proposed in [7]. However, this approach requires significant
modifications to the receiver since the direct path should be
estimated. An alternative solution is to implement one of the
beamformers in the analog domain and the other in the digital
domain as shown in Fig. 2b. Although this implementation
provides practical gains, it requires additional implementation
details such as resetting the analog beamformer gains when
a frame reception is over. Nonetheless, the receiver shown in
Fig. 2b can handle numerical problems that might occur in
fully digital implementation. The equivalence of the receiver
implementations in Fig. 2a and in Fig. 2b are shown in the
next section.

V. SIMULATION RESULTS

In this section, the optimum receivers are numerically eval-
uated with respect to their BER performance. We first evaluate
the impact of the number of receiver antennas Nr, the pream-
ble length P , and beamformer estimation error and ambient
signal type on the BER. Then, the identified set of parameters
are used for investigating the achievable BER performance for
different types of BD modulations. In this section, we refer to
the optimum receiver for Gaussian distributed ambient signal
in Eq. (24) as Gaussian receiver, and the optimum receiver
for deterministic-unknown s in Eq. (13) as deterministic
receiver.

The numerical evaluation is based on the following assump-
tions. The system experiences a fading process which can
be presumed constant during a frame transmission, and the
channel gains α and β can be calculated using the free-space
path-loss model in Eq. (1) for a receiver with Nr-antennas
linear array with half wavelength λ/2 separation. The deploy-
ment scenario is fixed for comparative fairness. The distance
between the Tx antenna and the reference Rx antenna is
d0 = 80λ, and placed in the reference frame shown in
Fig. 1a. The BD is placed at [(40 − 4/

√
2)λ, (4/

√
2)λ] so

that d1 = 4λ, which corresponds to 33.7 dB gain difference
between the channels α and β. The ambient transmitter
emits a random symbol with amplitude ‖sα‖ so that the
average SNR is as defined in Eq. (2). The QPSK and 64-
ary QAM symbol bits are drawn from uniform distribution,
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Fig. 4. Numerical evaluation of the optimum receiver parameters for a backscatter device using BPSK modulation. In (a), variation in Bit Error Rate (BER)
of the receiver for Gaussian (in Eq. (24)) ambient signal s with number of antennas Nr and number of samples acquired for each symbol Kfor the mean
ambient signal SNR γ = 24 dB when the beamformers are perfectly known. In (b), variation in the BER of the receivers with preamble length P when the
maximum eigenvalue and corresponding eigenvectors of the measurement auto-correlation are perfectly known (known) and when they are estimated using
power iteration (p.i.) for Nr = 4 and γ = 24 dB. In (c), variation in the BER and total beamformer estimation error in Eq. (39) with SNR for QPSK
modulated ambient signal, Nr = 4, oversampling rate K = 4 and P = 32. The left axis shows the BER of the receivers implemented using perfectly known
beamformers and power iteration estimated beamformers. The right axis shows the total beamformer error.

and Gaussian symbols are drawn from standard complex
Gaussian distribution. The BD transmits a frame of 1000 sym-
bols drawn from discrete discrete alphabet with equal prob-
abilities, and 1000 realizations are used for calculating the
average BER.

In Fig. 4, the impact of different system parameters on
the BER performance of the optimum receiver for a BD
using BPSK modulation are shown. The impact of number
of receiver antennas Nr and oversampling rate K on the
BER of the Gaussian ambient signal is studied in Fig. 4a.
The acceptable BER is achieved when Nr ≥ 4 and K ≥
4, and for the following evaluations we fix Nr = 4 and
K = 4. In Fig. 4b, the impact of preamble length P
on the BER performance is shown when K = 1. The
receiver is implemented using perfectly known beamformers
or power iteration (p.i.) (maximum 10 iterations for 10−16

tolerance level) estimated beamformers. When s is Gaussian
distributed signal, the two Gaussian receiver implementations
have negligible performance difference in the considered
parameter ranges. For QPSK modulated ambient signal, the
implementations have a small BER performance difference,
but the difference decreases with increasing P . Thus, the
preamble length P = 32 provides enough samples for power
iteration to estimate the beamformers. The impact of the total
beamformer estimation error be,m + be,a defined in Eq. (39)
is shown in Fig. 4c, where both BER and beamformer error
is depicted for QPSK modulated ambient signal. In this
evaluation, we omit Gaussian distributed ambient signal case
since the estimation error is the same as it is for QPSK
modulated ambient signal, and for P = 32, BER difference
between perfectly known beamformers and power iteration
estimated beamformers is negligible. As can be observed, the
total beamformer estimation error degrades the observed SNR
by small amount, and gets smaller when the system SNR

increases. Once the SNR exceeds 25 dB, the estimation error
gets smaller than 0.03, and the SNR penalty can be safely
ignored.

The BER performance of an Nr-antenna optimal receiver
for different ambient signals and binary modulated BD signals
are shown in Fig. 5. The impact of ambient signal modulation
on the BER performance is shown in Fig. 5a, where three
different signals are studied. When s is Gaussian distributed,
both Gaussian and deterministic receivers have the same
performance. This is because for Gaussian distributed s, its
amplitude has a high variability, whereas for QPSK it is
constant. An intermediate case is when s is 64-ary QAM
modulated. This modulation introduces some variability on
the amplitude of s, but its entropy is smaller than Gaussian
distributed s case. Correspondingly, M -ary QAM is expected
to have a performance close to QPSK modulated s case when
M is low, and approaches to Gaussian s performance as M
increases. Therefore, the deterministic receiver in Eq. (13) can
handle different types of ambient signals, but it has different
performance. In Fig. 5b, the BER performance variation of
different receivers with average SNR γ and ambient signal
type is shown. When ambient signal s is Gaussian distributed,
the derived CDF function of the test statistics zg in Eq. (30)
has the same result as the BER curve obtained by simulations.
Similarly, for QPSK modulated s, the BER result of the CDF
in Eq. (20) is very close to the BER curve of the simulations.
The same conclusions are valid also for BPSK modulated tag
signals shown in Fig. 5c. Therefore, the performance analysis
in Sections III-A2 and III-B2 are valid, and the CDF in
Eq. (30) for OOK modulated tag can be used for receivers in
the earlier literature to evaluate their expected performance.
In particular, since the receiver for Gaussian distributed ambi-
ent signal for OOK modulation is the same as the one studied
in [8], the benefits of using BPSK modulated BD signal and



YIĞITLER et al.: OPTIMUM MULTIANTENNA AMBIENT BACKSCATTER RECEIVER FOR BINARY-MODULATED TAG SIGNALS 821

Fig. 5. Variation in Bit Error Rate (BER) of the receivers for Gaussian (in Eq. (24)) and for deterministic-unknown (in Eq. (13)) ambient signal s as a
function of mean ambient signal SNR γ when the beamformers are perfectly known for a number of receiver antennas Nr = 4 and oversampling rate K = 4.
The legend uses ambient signal type – receiver type notation for numerical results, and theoretical BER curves are indicated with their names. The Gaussian
Theory curves are calculated using the CDF in Eq. (30), Deterministic Theory curves are calculated using the CDF in Eq. (20). In (a), the ambient signal is
Gaussian distributed, 64-QAM and QPSK modulated when BD uses BPSK modulation. In (b), the BD uses OOK modulation, and in (c), BPSK modulation.

the generality of the proposed receiver are implied by the
results shown in Figures 5b and 5c. The BER performance
of the analog-digital hybrid receiver in Fig. 2b is also shown
in Fig. 5c (see the curve QPSK – Deterministic hybrid). It has
the same performance as digital only implementation, and can
be used as a practically advantageous implementation of the
optimum receiver.

VI. CONCLUSION

In this paper, the optimum multiantenna ambient backscatter
communication (AmBC) receiver for any binary modulated
tag signal is presented. Starting from the maximum-a-posterior
probability criterion, different optimum receivers are derived
for deterministic-unknown and Gaussian distributed ambient
signals separately. The cumulative distribution functions of
the test statistics for both of the receivers are derived. The
conditions on equivalence of these receivers are identified, and
it is concluded that the receiver for deterministic-unknown
ambient signal can be used as is with Gaussian distributed
ambient signals. The resultant receiver is composed of two
beamformers, and practical solutions to several implementa-
tion issues are provided. It is discussed that the developed opti-
mum receiver generalizes the multiantenna AmBC receivers
presented earlier in the literature while having practically
appealing advantages. In particular, the receiver does not
assume a particular tag symbol value, and the tag is free to
switch between different modulations on the fly. Although its
operation does not require explicit tag signal phase estimate, its
performance is close to the performance of the phase-coherent
receivers of phase modulated tag signals. The receiver does
not necessitate explicit ambient signal estimate, but the impact
of ambient signal is mitigated implicitly by the beamformers.
Therefore, the work in this paper enables a high-performance
and practical multiantenna receivers that can support several
AmBC applications.

APPENDIX A
PROOF OF PROPOSITION I

The range space of the matrix Md in Eq. (15) is spanned
by vectors g0 and g1 so that it is a rank-2 matrix with
only two non-zero eigenvalues. In order to find these non-
zero eigenvalues, we invoke a well-known theorem in matrix
analysis, which states that the non-zero eigenvalues of the
product of two normal matrices A and B, say AB, has the
same eigenvalues as BA (see, e.g., [41, Theorem 1.3.22]).
To this end, we rewrite

Md =
g0g

H
0

‖g0‖2
− g1g

H
1

‖g1‖2
=
[

g0

‖g0‖2
− g1

‖g1‖2

] [
gH

0

gH
1

]
,

which has the same non-zero eigenvalues as[
gH

0

gH
1

][
g0

‖g0‖2
− g1

‖g1‖2

]
=

⎡
⎢⎣ 1 − gH

0 g1

‖g1‖2

gH
1 g0

‖g0‖2 −1

⎤
⎥⎦ .

Therefore, the non-zero eigenvalues of Md are ±κ, defined in
Eq. (16), and the corresponding normalized eigenvectors are
as given in Eq. (17).

APPENDIX B
PROOF OF PROPOSITION II

The non-zero eigenvalues of the matrix Σ1/2
y|xMgΣ

1/2
y|x can

be obtained by repeatedly applying the Theorem [41, Theo-
rem 1.3.22] as in Appendix A. Applying the theorem for the
first time yields that the matrix Σ1/2

y|xM gΣ
1/2
y|x has the same

non-zero eigenvalues as MgΣy|x. Since the eigenvalues of
this matrix for x = x1 can be found exactly the same way
as it is for x = x0 case, here we just show the x = x0 case.
Now, we have

M gΣy|x0

=
[(

c0σ
2
s +

c0

‖g0‖2

)
g0−

c1σ
2
sgH

1 g0

‖g1‖2
g1 − c1

‖g1‖2
g1

] [
gH

0

gH
1

]
.
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Applying the theorem one more time yields[
gH

0

gH
1

] [(
c0σ

2
s +

c0

‖g0‖2

)
g0 −

c1σ
2
sgH

1 g0

‖g1‖2
g1 − c1

‖g1‖2
g1

]

=

⎡
⎢⎢⎣σ2

s‖g0‖2κ2
1 −c1

gH
0 g1

‖g1‖2

c1
gH

1 g0

‖g1‖2
−c1

⎤
⎥⎥⎦ ,

where κ1 is defined in Eq. (29). The non-zero eigenvalues
of the last 2 × 2 matrix are the roots of its characteristics
polynomial, which yields the eigenvalues given in Eq. (28).
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