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Abstract
Variable selection, or more generally, model reduction is an important aspect of 
the statistical workflow aiming to provide insights from data. In this paper, we dis-
cuss and demonstrate the benefits of using a reference model in variable selection. 
A reference model acts as a noise-filter on the target variable by modeling its data 
generating mechanism. As a result, using the reference model predictions in the 
model selection procedure reduces the variability and improves stability, leading to 
improved model selection performance. Assuming that a Bayesian reference model 
describes the true distribution of future data well, the theoretically preferred usage 
of the reference model is to project its predictive distribution to a reduced model, 
leading to projection predictive variable selection approach. We analyse how much 
the great performance of the projection predictive variable is due to the use of ref-
erence model and show that other variable selection methods can also be greatly 
improved by using the reference model as target instead of the original data. In sev-
eral numerical experiments, we investigate the performance of the projective pre-
diction approach as well as alternative variable selection methods with and without 
reference models. Our results indicate that the use of reference models generally 
translates into better and more stable variable selection.

Keywords Model reduction · Projection predictive approach · Bayesian statistics

1 Introduction

In statistical applications, one of the main steps in the modelling workflow is vari-
able selection, which is a special case of model reduction. Variable selection (also 
known as feature or covariate selection) may have multiple goals. First, if the varia-
bles themselves are of interest, we can use variable selection to infer which variables 
contain predictive information about the target. Second, as simpler models come 
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with the advantages of reduced measurement costs and improved interpretability, 
we may be interested in finding the minimal subset of variables which still pro-
vides good predictive performance (or good balance between simplicity and predic-
tive performance). When the predictive capability is guiding the selection, the true 
data generation mechanism of future data can be approximated either by using the 
observed data directly or alternatively by using predictions from a reference model 
(Vehtari and Ojanen 2012).

In data-based approaches, such as Lasso selection (Tibshirani 1996) or step-
wise backward/forward regression (Venables and Ripley 2013; Harrell 2015), the 
observed empirical data distribution is utilised as a proxy of future data, usually in 
combination with cross-validation or information criteria to provide estimates of 
out-of-sample predictive performance. In contrast, reference model based methods 
approximate the future data generation mechanism using the predictive distribution 
of a reference model, which can be, for example, a full-encompassing model includ-
ing all variables.

We assume all models are wrong, but we assume we have constructed a model 
which reflects our beliefs about the future data in the best possible way and which 
has passed model checking and criticism (Gelman et al. 2020; Gabry et al. 2019). 
Using the usual best practices for constructing the reference model is important, 
as using a bad reference model can only lead to selecting a similarly bad smaller 
model. If the reference model is considered to have useful predictions, then the 
smaller models selected will also have similar useful predictions. The reference 
model approach has been used in Bayesian statistics in some form at least since the 
seminal work of Lindley (1968). For more historical references, see Vehtari and 
Ojanen (2012) and Piironen and Vehtari (2017a), and for most recent methodologi-
cal developments see Piironen et  al. (2020). Examples of useful reference models 
can be found for example for small-n-large-p regression and logistic regression 
by Piironen and Vehtari (2017a) (with spike-and-slab prior), Piironen and Vehtari 
(2015) (with horseshoe prior), and Piironen et al. (2020) (with iterative supervised 
principal components), for generalized linear and additive multilevel models by Cat-
alina et al. (2020), for regression models with non-exponential family observation 
models by Catalina et al. (2021), and for generic multivariate non-linear regression 
with higher order interactions by Piironen and Vehtari (2016).

Reference models have been also used in non-Bayesian context. Harrell (2015) 
describes them as full models that can be thought of as a “gold standard” (for a 
given application). Faraggi et al. (2001) deal with the necessity of identifying inter-
pretable risk groups in the context of survival data using neural networks, which 
typically perform very well in terms of prediction, but whose variables are difficult 
to be understood in terms of relevance. Paul et al. (2008), using the term precondi-
tioning, explore approximating models fitting Lasso or stepwise regression against 
consistent estimates ŷ of a reference model instead of the observed responses y.

All these methods can be framed into the family of reference model approaches. 
The common denominator is the use of the reference model predictive information 
instead of simply observed data to guide the selection. Whatever the terminology 
or applied statistical framework, reference models offer a powerful approach to 
improving variable selection, as we will demonstrate in the present paper.
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The goal of the present paper is to study the impact of reference model approaches 
by disentangling the benefit of using reference models per se from the benefit of spe-
cific variable selection algorithms. In particular, we:

• propose a simple and intuitive approach to combine any variable selection 
method with the reference model approach. This allows us to investigate the 
benefit of using reference models independent of the specific variable selection 
method;

• perform extensive numerical experiments to compare variable selection methods 
with or without using a reference model, both for complete and minimal subset 
variable selection and assessing the quality of the selection;

• provide evidence supporting, in particular, the projection predictive approach as 
a principled way to use reference models in minimal subset variable selection.

The paper is structured as follows. In Sect. 2, we review the concept of the reference 
model, its benefits with examples and how it can be used as a filter on data in a sim-
ple way. In Sects. 3 and 4, we show the benefits of a reference model approaches for 
minimal and complete variable selection, respectively, before we end with a conclu-
sion in Sect. 5. The code to run all the experiments is available on GitHub.1

2  Reference models in variable selection

In this section, we will provide an initial motivation and intuition for the use of 
reference models to improve variable selection methods. We will start with a case 
study that is repeatedly used throughout the paper to illustrate the benefits of refer-
ence models before we dive deeper into the theoretical reasons why reference mod-
els help in variable selection.

2.1  Body fat example: part 1

To motivate the further discussion and experiments, we start by a simple variable 
selection example using body fat data by Johnson (1996). The same data was used 
illustrate the variable selection with classic stepwise backward regression by Heinze 
et  al. (2018). We compare the projective prediction approach (projpred, Piironen 
et al. 2020) which uses a reference model, and classic stepwise backward regression 
(steplm). The experiments are implemented in R (R Core Team 2018).

The target variable of interest is the amount of body fat, which is obtained by 
a complex and expensive procedure consisting in immersing a person in a water 
tank and carrying out different measurements and computations. Additionally, we 
have information about 13 variables which are anthropometric measurements (e.g., 
height, weight and circumference of different body parts). The variables are highly 

1 https:// github. com/ fpavo ne/ ref- appro ach- paper.

https://github.com/fpavone/ref-approach-paper
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correlated, which causes additional challenge in the variable selection. In total, we 
have 251 observations. The goal is to find the model which is able to predict the 
amount of body fat well while requiring the least amount of measurements for a new 
person.

Heinze et al. (2018) report results using steplm with a significance level of 0.157 
with AIC selection (Akaike 1974), fixing abdomen and height to be always included 
in the model. For better comparison, we do not fix any of the variables. The steplm 
approach is carried out combining the step and lm functions in R.

For the selection via projpred, the Bayesian reference model includes all the vari-
ables using a regularised horseshoe prior (Piironen and Vehtari 2017b) on the vari-
able coefficients. Submodels are explored using forward search (the results are not 
sensitive to whether forward or backward search is used), and the predictive utility 
is the expected log-predictive density (elpd) estimated using approximate leave-one-
out cross-validation via Pareto-smoothed importance-sampling (PSIS-LOO-CV; 
Vehtari et al. 2017). We select the smallest submodel with an elpd score similar to 
the reference model when taking into account the uncertainty in estimating the pre-
dictive model performance. See Appendix A for a brief review of projection predic-
tive approach, and papers by Piironen and Vehtari (2017a) and Piironen et al. (2020) 
for more details. The complete projpred approach is implemented in the projpred 
R package (Piironen et al. 2019).

The inclusion frequencies of each variable in the final model given 100 bootstrap 
samples are shown in Fig.  1. In case of projpred there are two variables, ‘abdo-
men’ and ‘weight’, which have inclusion frequencies above 50% (‘abdomen’ is the 
only one included always), the third most frequently included is ‘wrist’ at 44%, and 
the fourth one is ‘height’ at 35%. The steplm approach has seven variables with 
inclusion frequencies above 50%. Such a higher variability and lower stability of 
steplm can be observed also in the bootstrap model selection frequencies reported 
in Table 1. For example, the first five selected models have a cumulative frequency 
of 76% with projpred, but only of 14% with steplm. In addition, the sizes of the 
selected models with projpred are much smaller than the ones selected with steplm.

The first two rows of Table 2 show the predictive performances, in terms of cross-
validated root mean square error (RMSE), of the full model and the selected models 
using projpred or steplm. There is no significant difference in predictive performance 
of the selected models by different approaches, even if there is clear difference in the 

0%

25%

50%

75%

100%

abdomen weight wrist height age neck chest biceps thigh ankle forearm hip knee

projpred

steplm

Fig. 1  Body fat example: bootstrap inclusion frequencies calculated from 100 bootstrap samples. The 
projpred approach has less variability on which variables are selected
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number of selected variables. This can be explained by high correlation between the 
variablesm and different combinations can provide similar predictive accuracy.

We repeat the experiment with a modified data set by adding 84 unrelated noisy 
variables, resulting in 100 variables in total. The last two rows of Table 2 show the 
cross-validated RMSE, the size of the selected model and the number of selected 
noisy variables using projpred or steplm. The results show that projpred has simi-
lar predictive performance and the same number of selected variables as with the 
original data, whereas the stepwise regression has worse predictive performance and 
the number of selected variables is much higher and include a large number of irrel-
evant variables.

Both projpred and steplm compare a large number of models using either forward 
or backward search, which can lead to selection induced overfitting, but even with 
100 variables, projpred is able to select a submodel with similar performance as the 
full model. In this example, the two compared methods also differ in other aspects 
than the usage of a reference model, such as that projpred uses Bayesian inference 
and steplm uses maximum likelihood estimation. To separate the effect of using a 
reference model, we show that performance of other variable selection methods, 
including steplm, can also be improved by using reference models.

2.2  Benefits and costs of using a reference model

A properly designed reference model is able to filter parts of the noise present in 
the data, and hence to provide an improved and more stable selection process. This 
holds even if the reference model does not perfectly resemble the true data gen-
erating process. Clearly, the reference model approach requires a sensible model. 
The construction of such a model should follow proper modelling workflow (see, 
e.g.  Gelman et  al. 2020). Better predictive models imply better selection results. 
The goodness of a reference model comes from its predictive ability which should 
be assessed via proper validation methods. Our analyses indicate that the substan-
tial reduction of variance attributable to noise is usually more important than small 
potential bias due to model misspecification. When the goal is ranking the variables 

Table 2  Body fat example: predictive performances with original data (first two rows) and with extra 
noisy variables (last two rows) estimated with tenfold cross-validation

RMSE root mean squared error, Full full model, Sel selected submodel, # Sel total number of selected 
variables, # Sel noisy number of selected noisy variables. 10-cv avg = average over the tenfolds in cross-
validation. 10-cv sd = standard deviation over the tenfolds in cross-validation

Data Method RMSE Full RMSE sel # Sel (10-cv avg, sd) # Sel noisy 
(10-cv avg, 
sd)

Body fat Projpred 4.4 4.5 2 (2.3, 0.5)
Steplm 4.4 4.5 7 (6.0, 0.9)

+ Noisy variables Projpred 4.5 4.5 2 (2.0, 0.0) 0 (0, 0)
Steplm 5.7 5.1 23 (26, 4.5) 15 (19, 4)
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for importance to perform variable selection, it is known that large variance is gen-
erally more harmful than small bias (Piironen and Vehtari 2017a).

In general, there is no restriction on the type of model the reference models 
should be, and a sensible reference model does not even need to be Bayesian nec-
essarily. However, Bayesian methods can help in some of those situations where 
MLE procedures struggle. It is known that as the number of parameters in the model 
increases, the MLE estimator is dominated by shrinkage estimators (Stein 1956; 
Stein and James 1961; Parmigiani and Inoue 2009; Efron 2011). The use of a prior 
in Bayesian inference automatically incorporates some kind of shrinkage in the 
Bayesian estimator under a given loss function (see, e.g. Rockova et al. 2012). For 
the sake of our study, we rely on simple data structure which can be well described 
by linear regression models. However, more complex data can arise in practice, for 
example, including hierarchical structures. In these cases, MLE inference tends to 
become cumbersome, whereas the Bayesian framework provides a natural way to 
convey uncertainties and make inference through the joint posterior distribution of 
all parameters.

We argue that, regardless of how the reference model is set up and used in the 
inference procedure, it can be always seen as acting as a filter on the observed data. 
Furthermore, regardless of what specific model selection method is used, a reference 
model can be used instead of raw data during the selection process to improve the 
stability and selection performance. Our results indicate that the core reason why 
the reference model based methods perform well is the reference model itself, rather 
than the specific way of using it. In general, the less data we have and the more com-
plex the estimated models are, the higher is the benefit of using a reference models 
as the basis for variable selection.

If one of the models to be compared is the full model, which can be used as a 
reference model, there is no additional cost of using a reference model as it was 
estimated as part of the analysis anyway. Sometimes, including all the available vari-
ables in an elaborate model can be computationally demanding. In such a case, even 
simpler screening or dimensionality reduction techniques, as for example the super-
vised principal components (Bair et al. 2006; Piironen and Vehtari 2018), can pro-
duce useful reference models (Piironen et al. 2020). As an example, Table 3 reports 

Table 3  Computational time (in seconds) of body fat example of Sect. 2.1

The reported times for each each method on the three last columns are sums of the time to fit the refer-
ence model (second column) and to explore the search path (third column)

Data Reference 
model

Search path Projpred Step.lm Ref + Step.lm

Body fat 38 15 53
0.08 0.08

38 0.08 38
+ Noisy variables 170 78 247

12 12
170 12 182
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the computational time for the body fat data example of Sect.  2.1. For reference 
model approaches, i.e. projpred and ref+step.lm, the main time consuming opera-
tion is to fit the reference model. The burden of it depends clearly on the specific 
application and type of model used.

2.3  Why the reference model helps

A good predictive model is able to filter part of the noise present in the data. The 
noise is the main source of the instability in the selection and tends to obscure the 
relevance of the variables in relation to the target variable of interest. We demon-
strate it with the following simple explanatory example taken from Piironen et al. 
(2020). The data generation mechanism is

where f is the latent variable of interest of which Y is a noisy observation. The first 
k variables are strongly related to the target variable Y and correlated among them-
selves. Precisely, � is the correlation among any pair of the first k variables, whereas √
� and 

√
�∕2 are the level of correlation between any relevant variable and, respec-

tively, f and Y. If we had an infinite amount of observations, the sample correlation 
would be equal to the true correlation between Xj and Y. However, even in this ideal 
asymptotic regime, this correlation would still remain a biased indicator of the true 
relevance of each variable (represented by the correlation between Xj and f) due to 
the intrinsic noisy nature of Y.

When using a reference model, we first obtain predictions for f using all the vari-
ables {Xj}

p

j=1
 taking into account that we have only observed the noisy representation 

(1)

f ∼ N(0, 1)

Y�f ∼ N(f , 1)

Xj�f
iid
∼ N(

√
�f , 1 − �) j = 1,… , k

Xj�f
iid
∼ N(0, 1) j = k + 1,… , p,

Fig. 2  Sample correlation plot 
of each variable (relevant in red, 
non-relevant in blue) with the 
target variable y and the latent 
variable f respectively on the 
x- and y-axes. Simulated data 
are generated according to (1) 
with parameters n = 70 , � = 0.3 , 
k = 100 , p = 1000
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Y of f. If our model is good, we are able to describe f better than Y itself can, which 
improves the accuracy in the estimation of the relevance of the variables. Figure 2 
illustrates this process in the form of a scatter plot of (absolute) correlations of the 
variables with Y against the corresponding correlations with the predictions of a ref-
erence model (in this case, the posterior predictive means of model (7); see 
Sect. 4.3). Looking at the marginal distributions, we see that using a reference model 
to filter out noise in the data, the two groups of variables (relevant and non-relevant) 
can be distinguished much better than when the correlation is computed using the 
observed noisy data directly.

3  Minimal subset variable selection

In the body fat example above, our two simultaneous goals were to obtain good pre-
dictive performance and to select a smaller number of variables. When the goal is 
to select a minimal subset of variables, which have similar predictive performance 
as the full model, we call it minimal subset variable selection. This minimal subset 
might exclude variables which have some predictive information about the target 
but, given the minimal subset, these variables are not able to provide such additional 
information that would improve predictive performance in a substantial manner. The 
usual reason for this is that the relevant variables which are not in the minimal sub-
set are highly correlated with variables already in the minimal subset. Such nature 
of the minimal subset makes the solution not unique, except in the particular case 
of completely orthogonal predictors. The non-uniqueness of the solution is not a 
problem per se, as different samples of the data are expected to give possible differ-
ent minimal subsets but with same predictive power. However, it makes it difficult to 
define a proper concept of stability of the selection. We will return to a problem of 
finding all the variables with some predictive power in Sect. 4.

3.1  Simulation study 1

Using the data generating mechanism (1), we simulate data sets of different sizes 
with a relatively large number of variables p = 70 , with k = 20 of them being pre-
dictive. We compare the minimal subset variable selection performance of the pro-
jection predictive approach (which uses a reference model and it is referred to as 
projpred), a Bayesian stepwise backward selection with and without a reference 
model, and maximum likelihood stepwise backward selection with and without a 
reference model (steplm). The following is a summary of the implementation of the 
compared methods:

• projpred: the projective prediction approach is used. The reference model is a 
Bayesian linear regression model using the first five supervised principal com-
ponents (Piironen and Vehtari 2018) as predictors and the full posterior predic-
tive distribution as the basis of the projection. The search heuristic is forward 
search and the predictive performance is estimated via 10-fold cross-validation. 
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The selection continues until the predictive performance is close to the predic-
tive performance of the reference model. See more details in Appendix A.

• Bayesian stepwise selection (without a reference model): at each step, the fit-
ted model is a Bayesian linear regression using the regularised horseshoe prior 
and the variable excluded is the one with the highest Bayesian p-value defined as 
min{P(𝜃 ≤ 0|D),P(𝜃 > 0|D)} , where D stays for the observed data. The selec-
tion continues if the reduced model has an elpd score higher (i.e., better) than the 
current model.

• Bayesian stepwise selection (with a reference model): the reference model is 
the same as for projpred, but only point predictions (posterior predictive means) 
ŷ are used to replace the target variable y. The same Bayesian p-value selection 
strategy as in the data based Bayesian stepwise selection is used.

• steplm (without a reference model): stepwise selection using AIC as in the 
body fat example.

• steplm (with a reference model): the reference model is the same as for pro-
jpred, but only point predictions (posterior predictive means) ŷ are used to 
replace the target variable y. The same AIC selection strategy as in the data based 
steplm is used.

In Fig. 3, the predictive performance is shown for different values of n and � in terms 
of RMSE and the false discovery rate (FDR, the ratio of the number of non-relevant 
selected variables over the number of selected variables) of the selected submodel, 
averaged after 100 data simulations. Use of a reference models greatly reduces the 
overfitting in the selection process, and thus produces much lower test set RMSE 
of the selected model for all the methods. projpred has the lowest FDR and RMSE. 
Using a reference model improves also FDR of steplm stepwise Bayesian linear 
regression significantly.

When the variable selection is repeated with different simulated data sets, there 
is some variability in the selected variables. We measure the stability of variable 
selection by computing the entropy of the observed distribution of the included vari-
ables over different models. The smallest entropy would be obtained if the approach 
always selected the same set of variables, and the largest entropy would be observed 

n=80 n=100 n=150

rho=0.3
rho=0.5

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

1

2

3

4

1

2

3

4

False discovery rate

R
M

SE

Approach
data

ref

Method
projpred

step.bayes

step.lm

Fig. 3  Simulation study 1: root mean square error (RMSE) against false discovery rate in the minimal 
subset variable selection with one standard deviation error bars. Use of a reference model reduces RMSE 
of the selected model for all the methods. The projpred approach has the smallest RMSE and false dis-
covery ratio
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if the approach would always select different sets of variables. Therefore, lower 
entropy corresponds to a more stable selection. Highly correlated predictive vari-
ables may happen to be selected alternately, thus making stability estimation of the 
selection a non-trivial task. Entropy can not distinguish the interchangeability due to 
correlation from instability. Thus, such a measure should be considered as a relative, 
and not as an absolute, measure of stability. Figure 4 shows the entropy scores for 
the different compared methods. The use of a reference model improves the stability 
of steplm in variable selection slightly, while it makes little difference for the Bayes-
ian linear regression. The projpred approach turns out to be far more stable than 
all other methods. This is likely due to projpred being based on a better decision 
theoretical formulation which (1) takes into account the full predictive distribution 
and not just a point estimate and (2) projects the reference model posterior to the 
submodel instead of using a simple refit of submodels.

3.2  Body fat example: part 2

Here, we repeat the selection of Sect. 2.1 via stepwise backward regression. In this 
case, the overall number of variables (original plus noisy) is 100, as it was in the 
last part of Sect. 2.1. We compare results with and without using a simple reference 
model approach outlined in (7) with steplm. Figure 5 shows the number of irrelevant 
variables included in the final model and the out-of-sample root mean square error 
(RMSE). Results are based on 100 bootstrap samples on the whole dataset, and the 
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Fig. 4  Simulation study 1: entropy score in the minimal subset variable selection. The projpred approach 
has much smaller entropy score than the other approaches
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Fig. 5  Body fat example: stepwise backward selection with and without using a reference model. The 
x-axis denotes the number of selected irrelevant variables on the left and the out-of-sample RMSE on 
the right-hand side based on 100 bootstrap samples. The reference approach reduces the number of noisy 
variables selected and the out-of-sample RMSE
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predictive performance is tested on the observations excluded at each bootstrap sam-
ple. We observe that the reference model reduces the number of irrelevant variables 
included in the final model. This leads to less overfitting and thus to improved out-
of-sample predictive performance in terms of RMSE. The reference model approach 
applied to the stepwise backward regression achieves outstanding improvements 
considering its simplicity, although it does not reach the goodness of the much more 
sophisticated projective prediction approach (see results of Sect. 2.1).

3.3  Reference model’s effect and the projection predictive approach

The previous experiments allowed us to study the impact of using reference mod-
els in variable selection and to disentangle their influence from that of the actual 
variable selection method, specifically in the minimal subset selection case. The 
simulation study based on artificial data of Sect. 3.1 shows clear improvements in 
terms of predictive performance of the selected model and false discovery rate when 
the selection is based on a reference model, regardless of the actual variable selec-
tion method applied. These results are confirmed also in the real word data example 
with the body fat dataset. The stepwise selection achieves far better selection when 
coupled with the reference model approach (see Fig. 5 and Table 4). However, the 
projection predictive approach remains the best method in any of the experiments 
we run and on all the performance indexes we measured. Although we designed 
a reference model approach for general selection method, the projection predictive 
approach is a principled and validated way to do the selection. Indeed, the purpose 
of the former is only for fair comparisons in our study rather than a ready-to-use 
selection method.

4  Complete variable selection

An alternative to minimal subset variable selection is complete variable selection, in 
which the goal is to find all relevant variables that have some predictive information 
about the target. In complete variable selection, it is possible that there are theoretically 
relevant variables, but given finite noisy data we are not able to infer their relevance. 
The projection predictive approach was originally designed for the minimal subset 
variable selection, but we will test a simple iterative variant for the complete varia-
ble selection case in this section. In addition, we analyse the benefits of the reference 
model approach in combination with three other methods which have been specifically 
designed for complete variable selection. As the criteria of selection performance, we 

Table 4  Body fat example: 
means and standard deviations 
(between brackets) of the results 
shown in Fig. 5

Method RMSE Selected noisy

Stepwise selection 6.9 (0.7) 48 (7)
Reference model + stepwise 

selection
4.7 (0.5) 25 (7)
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evaluate the average false discovery rate and the average sensitivity (i.e., the ratio of 
the number of relevant selected variables over the total number of relevant variables). 
We also provide a comparison of the stability of the selection by means of a stability 
measure proposed by Nogueira et al. (2017), which goes from 0 to 1 and a higher value 
means a more stable selection.

4.1  Iterative projections

Projection predictive approach has been originally designed for minimal subset selec-
tion. For the comparison purposes, we modify the projection predictive approach for 
complete variable selection by using it iteratively. Applying the straightforward imple-
mentation of projpred, we are able to select a minimal subset of variables, which yield 
to a model with a predictive performance comparable to the full model’s predictive per-
formance. The iterative projection repeats the projpred selection for different iterations, 
at each time excluding the variables selected in the previous iterations from the search. 
At each iteration, the selected submodel size corresponds to the one having a predictive 
performance close enough to the baseline model, which in this iterative version is the 
submodel with the highest predictive score explored at the current iteration. This trans-
lates in the following stopping rule at each iteration:

where i indexes the submodel size, “best” stands for the best predictive explored 
submodel at the considered iteration, and the probability is computed from a nor-
mal approximation of the uncertainty in the cross-validation performance compari-
son using the mean and standard error of the elpd difference between reference and 
submodel (Vehtari et al. 2017; Piironen et al. 2020; Sivula et al. 2020). The algo-
rithm terminates when the empty model (only intercept) satisfies the stopping rule 
(see Algorithm 1). The choice of the hyperparameter � is non-trivial, and we have 
observed sensitivity of the selection to such a choice, mainly when using cross-val-
idation with a small number of observations or not very predictive variables. We 
have used the stopping rule recommended by Piironen et al. (2020) for the minimal 
subset selection, but other stopping rules would be possible in the iterative case and 
may be worth further research. In our experiments, we chose the default value used 
in the projpred R-package, that is, � = 0.16 . The choice of � to determine the 
submodel size is discussed in Piironen et al. (2020). One possible way to proceed, 
but just as rule of thumb, is to choose � = 0.16 , which correspond to requiring that 
the submodel predictive score is at most at one standard deviation distance from the 
best submodel predictive score.

(2)min{i ∈ {0,… , p} ∶ P(elpdi − elpdbest > 0) ≥ 𝛼},
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Algorithm 1 Automated iterative projections
Output: R := {selected variables}

F := {set of variables}
R = {Ø}
Fit reference model
while F �= {∅} do

projection.HeuristicSearch()
projection.elpdEstimate()
S = min{sub : P (elpdsub − elpdbest > 0) ≥ α)}
if S = {Ø} then

break
else

R = R ∪ S
F = F \ S

end if
end while

In the experiments shown in the next sections, we include an additional iterative 
method, which we refer to as ‘iterative lasso’. It consists of the same iterative algo-
rithm as iterative projpred except for not using any reference model, but the lasso 
method for variable selection, instead. That is, it uses the observed target values 
instead of predictions of the reference model. The comparison with iterative lasso 
can help to disentangle the effects of the iterative procedure and the usage of a refer-
ence model in complete feature selection.

4.2  Alternative complete variable selection methods

We consider three alternative complete selection methods: the control of the local 
false discovery rate (Efron 2008, 2012), the empirical Bayes median (Johnstone and 
Silverman 2004), and the selection by posterior credible intervals.

The control of the local false discovery rate consists of testing the z-values {zj}
p

j=1
 

of a normal mean problem (explained in Sect. 4.3) on whether they belong to the 
theoretical null distribution f0 (i.e., the null hypothesis H0 meaning no relevance) 
against the alternative hypothesis distribution f1 . In our case, f0 corresponds to the 
standard normal distribution (see expression (6)). The quantity of interest is the local 
false discovery rate (loc.fdr) defined as:

where �0 is the prior probability of H0 and f (z) = �0f0(z) + (1 − �0)f1(z) is the mar-
ginal distribution of the z-values. The latter is estimated using splines with 7 degrees 
of freedom. We select variables with local false discovery rate below 0.2, which is 

(3)loc.fdr(z) = P(H0|z) =
f0(z)�0

f (z)
,
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suggested by Efron (2012) as it corresponds to a Bayes factor larger than 36 (assum-
ing �0 ≥ 0.9 ). The results of the comparison are not sensitive to the specific value. 
To estimate �0 from the data, we use the default setting provided by the R-package 
locfdr (Efron et al. 2015).

The empirical Bayes median approach consists of fitting a Bayesian model with a 
prior composed by a mixture of a delta spike in zero and a heavy-tailed distribution. 
We use the implementation in the R-package EbayesThresh (Silverman et  al. 
2017). As suggested by Johnstone and Silverman (2004), we use a Laplace distribu-
tion resulting in a thresholding property, that is, there exists a threshold value such 
that all the data under that threshold have posterior median equal to zero. Therefore, 
the selection is done by selecting only those parameters whose posterior median is 
different from zero. The hyperparameter of the Laplace distribution and the mixing 
weight of the prior are estimated by marginal maximum likelihood.

The selection by 90% posterior credible intervals is done using the regularised 
horseshoe prior (Piironen and Vehtari 2017b) and selecting those variables whose 
posterior distribution does not include zero in the interval between the 5% and the 
95% quantiles.

All of these methods provide a complete selection approach, and we compare 
their performance with and without using a reference model. That is, in the data 
condition, we apply the method on the original data y while, in the reference model 
condition, we replace y by their mean predictions ŷ based on the reference model.

4.3  Simulation study 2

The iterative projection applies straightforwardly to data, whereas to investigate the 
performance of the three alternative complete selection approaches, we are going to 
use simulations based on the normal means problem. The normal means problem 
consists of estimating the (usually sparse) vector of means of a vector of normally 
distributed observations. The dimensionality of the vector of means is denoted by p 
and {zj}

p

j=1
 is the vector of observations of the random variables {Zj}

p

j=1
 . The task is 

to estimate the latent variables {�j}
p

j=1
 of the following model:

This is equivalent to a linear regression where the design matrix is the identity 
matrix with the number of variables being equal to the number of observations. This 
formulation can be found in practice, for example, in the analysis of microarray data, 
where a large set of genes are tested in two groups of patients labeled as positive 
or negative to some disease (Efron 2008, 2012). The objective of the analysis is to 
select the subset of genes statistically relevant to the disease. One common way to 
proceed is to compute the two-sample t-statistic for every gene separately. After nor-
malising these statistics, they then become the data Z in the normal means problem 
(4). For further details, see the examples by Efron (2008) and Efron (2012).

In our experiments, we retrieve the normal means problem from the sample cor-
relations between the target and the variables using the Fisher z-transformation 

(4)Zj|�j, �
ind
∼ N(�j, �

2), j = 1,… , p.
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(Hawkins 1989). Suppose we have a continuous target random variable Y,  a set of p 
continuous variables {Xj}

p

j=1
 , and denote �j = Cor(Y ,Xj) . Further, suppose we have 

observed n statistical units and define rj the sample correlation between the observa-
tions of the target variables {yi}ni=1 and the j-th variable {xij}ni=1 . Finally, we refer to 
the Fisher z-transformation function tanh−1(⋅) as TF(⋅) . Assuming each pair (Y ,Xj) to 
be bivariate normally distributed, the corresponding transformed correlations are 
approximately normally distributed with known variance:

Therefore, rescaling the quantities TF(rj) by 
√
n − 3 and denoting the results as zj , we 

have the formulation (4) of the normal means problem, this time with unit variance:

In this case, the quantities of interest �j are equal to 
√
n − 3 TF(�j).

In our simulations, we use different levels of correlation � ∈ {0.3, 0.5} and num-
bers of observations n ∈ {50, 70, 100} . The total number of variables p and the 
number of relevant variables k are fixed to p = 1000 and k = 100 , respectively. In 
general, the lower � and n, the more challenging the variable selection is. For this 
example, Piironen et al. (2020) proposed to use a reference model which a Bayesian 
linear regression using the first five supervised principal components (SPC) as vari-
ables and imposing a hierarchical prior on their coefficients:

In the above, uij represents the j-th SPC evaluated at observation i, and smax denotes 
the sample standard deviation of the largest SPC. The SPCs are computed using 
the R-package dimreduce (https:// github. com/ jpiir onen/ dimre duce) setting the 
screening threshold parameter at 0.6smax . In our experiments, the results are not 
sensitive to the specific choice of the screening threshold, yet a more principled 
approach would be to use cross-validation to select the threshold as done by Pii-
ronen et al. (2020).

Figure 6 shows the average sensitivity on the vertical axis and the average false 
discovery rate on the horizontal axis based on 100 data simulations for the different 
combinations of n and � . The best selection performance is on the top-left corner 
of each plot, as it implies the lowest false discovery rate and the highest sensitivity. 
We see that for all tested selection methods, the use of a reference model improves 
the selection performance, as it reduces the false discovery rate (shifting to the left) 
and increases the sensitivity (shifting upwards). In accordance with what can be 
expected, the larger data set size (n) and the higher the true correlations ( � ), the 

(5)TF(rj)
ind
∼ N

(
TF(�j),

1

n − 3

)
, j = 1,… , p.

(6)Zj|�j
ind
∼ N(�j, 1), j = 1,… , p.

(7)

Yi|�, �2, ui
ind
∼ N(uT

i
�, �2) i = 1,… , n

�j|
�

iid
∼ N(0, �2)

� ∼ t+
4
(0, s−2

max
)

j = 1,… , 5

� ∼ t+
3
(0, 10).

https://github.com/jpiironen/dimreduce
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easier the selection is. Thus, for easier selection scenarios, the benefits of the refer-
ence model are smaller since the raw data already provide enough information to 
identify the relevant variables. The iterative projpred has good false discovery rate 
in all cases, and the sensitivity is good except when the number of observations and 
the correlation level are small. It performs better than the iterative lasso selection in 
all simulated scenarios. For all these variable selection methods, tuning the corre-
sponding method parameters could affect the balance between FDR and sensitivity, 
and thus the methods could made to produce more similar results. This was not done 
in this experiment, as the main point was to show that all methods can perform bet-
ter with a reference model.

Figure 7 shows the estimates of the stability measure proposed by Nogueira et al. 
(2017) with 0.95 confidence intervals based on 100 simulations. Such a measure 
takes to account the variability of the subset of the selected variables at each simula-
tion (originally at each bootstrap sample), modelling the selection of each variable 
as a Bernoulli process. Further details are available in Nogueira et al. (2017). Use of 
a reference model improves the stability of all selection methods. The improvement 
is larger when the problem is more difficult (small n and � ). In addition, we observe 
less uncertainty in the stability estimates for the reference approach (i.e., smaller 
width of the 95% intervals), which can be still connected to the overall stability of 
the procedure. As in Fig.  6, the iterative projection does not perform well in the 
hardest scenarios.
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Fig. 6  Simulation study 2: complete variable selection sensitivity against false discovery rate based on 
100 data simulations with one standard deviation error bars. The reference approach improves sensitivity 
and reduces false discovery rate for all methods
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Fig. 7  Simulation study 2: complete variable selection stability estimates with 95% intervals based on 
100 data simulations. The reference approach improves stability for all methods
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4.4  Body fat example: part 3

We conclude our complete selection experiments using the body fat dataset one 
more time. As earlier, we add noisy uncorrelated variables to the original data to 
get a total of 100 variables. Since we do not have a ground truth available with 
regard to the original variables of the data, we assume it is reasonable to con-
sider all of them relevant, at least to some degree. The artificially added variables 
are naturally irrelevant by construction. We compute correlations between each 
variable and the target variable, that is the amount of fat, and transform them 
by Fisher-Z-transformation. The original assumption in order for (5) to hold is 
that the variables are jointly normally distributed. In our experience the normal 
approximation in (5) is still reasonable, but after rescaling by 

√
n − 3 we do not 

fix the variance to be one, and instead estimate it from the data. We compare 
the iterative projection, the control of the local false discovery rate (loc.fdr), the 
empirical Bayes median (EB.med) and the selection by posterior credible inter-
vals at level 90% (ci.90). In order to vary the difficulty of the selection, we boot-
strap subsamples of different sizes, going from n = 50 up to n = 251 (i.e., the full 
size of the data). For each condition, results are averaged over 100 bootstrap sam-
ples of the respective size.

Figure  8 shows the sensitivity against the false discovery rate. In almost all 
of the bootstrapped subsamples, the reference model improves the selection both 
in terms of sensitivity and false discovery rate. When n = 50 , we observe worse 
false discovery rates, yet by a lower amount compared to the gain in sensitivity. 
Again, we observe that the benefits are more evident as the selection becomes 
more challenging (i.e., lower number of observations). The great performance of 
projpred in minimal subset selection is not carried over for the complete variable 
selection with iterative projpred (even changing the reference model with a full 
encompassing linear regression with regularised horseshoe prior), and the meth-
ods specifically designed for the complete variable selection perform better. How-
ever, we still observe a better selection with respect to iterative lasso in any of the 
examined scenarios, mainly in terms of false discovery rate. Figure 9 shows the 
stability results using the measure by Nogueira et al. (2017). The benefits of the 
reference model are here marginal, with only small improvements.

Fig. 8  Body fat example with noisy variables: complete variable selection sensitivity against false dis-
covery rate based on 100 bootstrap samples with one standard deviation error bars. The improvement 
from using the reference approach is small (except that the projpred is much better than lasso)
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In this example, we have used the reference model defined as a linear regression 
over some supervised principal components, because it is natural for a large number 
of correlating variables, and has fairly good predictive performance plus it is com-
putationally efficient. We do not argue that this is always the best choice, and more 
sophisticated models can lead to even better results. Here the purpose of the experi-
ments were to motivate the use of reference models in general, and as we needed to 
average results over a lot of repetitions per simulation condition, we preferred such a 
comparably simple and computationally fast reference model.

5  Conclusion

In this paper, we demonstrated the benefits of using a reference model to improve 
variable selection, or more generally, model reduction. We have motivated and 
explained the general benefits of a reference model regardless of the method it is 
applied in combination with. Specifically, we have seen how the reference model 
acts as an approximation of the data generation mechanism through its predictive 
distribution. Such approximation is generally less noisy than the sample estimation 
available purely from the observed data, leading to the main benefits of the refer-
ence model approach. In our comparisons, we have analysed the effect of a reference 
model in the form of a filter on the observed target values on top of different widely 
used variable selection methods. Overall, using a reference model leads to more 
accurate and stable selection results independently of the specific selection method. 
These benefits apply to a large family of different methods, all involving a reference 
model in one way or the other. Some of these approaches have been present in the 
literature for some time (e.g., see references in Vehtari and Ojanen 2012; Piironen 
et al. 2020) but often without a clear explanation of why they are actually favourable 
and how they connect to other related approaches. We hope that the present paper 
can fill some of these gaps by providing a unifying framework and understanding of 
reference models.

We argue that, whenever it is possible to construct a reasonable reference model, it 
should be employed on top of the preferred selection procedure or as an integral part of 
more complex methods, for example, the projective prediction approach (Piironen et al. 
2020). Note that one of the main challenges in many real world application will consist 
in devising a sensible reference model itself and assessing its predictive performance. 

Fig. 9  Body fat example with noisy variables: complete variable selection stability estimates with 
0.95 confidence intervals based on 100 bootstrap samples. The improvement from using the reference 
approach is small (except that the projpred is much better than lasso)
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To build good predictive reference models, which are specifically tuned to the data and 
problem at hand, we recommend them to be developed using a robust Bayesian model-
ling workflow, for instance, as outlined by Gelman et al. (2020) and Gabry et al. (2019).

Another main result of this paper is that the projective prediction approach shows 
superior performance in minimal subset variable selection compared to alterna-
tive methods, whether or not these methods make use of a reference model. That is, 
while the reference model is certainly one important aspect of the projective prediction 
approach, it is not the only reason for its superior performance. Rather, by incorporat-
ing the full uncertainty of the posterior predictive distribution into the variable selection 
procedure (instead of just using point estimates) and using a principled cross-validation 
method, projective predictions combine several desirable variables into a single proce-
dure (Piironen et al. 2020). In summary, we would strongly recommend using projec-
tive predictions for minimal subset variable selection if possible and computationally 
feasible. However, if this is not an option in a given situation, we would in any case 
recommend using a reference model on top of the chosen variable selection method.

The projective prediction approach was not designed for the complete variable selec-
tion. We tested a simple iterative version of projpred, with mixed results, and the meth-
ods specifically designed for complete variable selection (especially loc.fdr) performed 
better in our experiments. It is left for future research to develop a better projective 
prediction approach for complete variable selection problems.

All Bayesian models in this paper have been implemented in the probabilistic pro-
gramming language Stan (Carpenter et  al. 2017) and fit via dynamic Hamiltonian 
Monte Carlo (Hoffman and Gelman 2014; Betancourt 2017), through the R-packages 
rstan (Stan 2019) and rstanarm (Goodrich et  al. 2019). Graphics elaborations 
have been done using ggplot2 (Wickham 2016) and the tidyverse framework 
(Wickham et al. 2019).

Appendix 1: Projective predictions

The projective prediction (projpred) approach was developed and is thoroughly 
described by Piironen et al. (2020). In this appendix, we provide a high level descrip-
tion of the method so that readers do not need to study paper by Piironen et al. (2020) 
in detail to understand the main ideas behind projpred.

The parameter distribution of a given candidate submodel is denoted by � and the 
induced predictive distribution by q𝜋(ỹ) . We would like to choose � so that q𝜋(ỹ) max-
imises some predictive performance utility, for example, the expected log-predictive 
density (elpd) defined as:

where pt(ỹ) denotes the (usually unknown) true generating mechanism of future 
data ỹ . If we refer to the posterior predictive distribution of a reference model with 
p(ỹ|D) , where D stands for the data on which we conditioned on, we can approxi-
mate (A1) using p(ỹ|D) instead of the true data generation mechanism pt(ỹ) . The 

(A1)elpd[q𝜋] = ∫ log q𝜋(ỹ)pt(ỹ)dỹ,
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maximisation of the elpd using the reference model’s predictive distribution is 
equivalent to the minimisation of the Kullback-Leibler (KL) divergence from the 
reference model’s predictive distribution to the submodel’s predictive distribution:

The term on the right-hand side of Eq. (A2) describes what is referred to as the pro-
jection of the predictive distribution, which is the general idea behind the projection 
predictive approach (see Piironen et al. 2020). We now summarise the workflow of 
the projection predictive approach in the particular case of the draw-by-draw pro-
jection (original formulation by Dupuis and Robert 2003), following Piironen et al. 
(2020). Suppose we have observed n statistical units with target values {yi}ni=1 and a 
set of observed variables for which we want to obtain a minimally relevant subset. 
Then, the main steps are the following: 

1. Devise and fit a reference model. Let {�s
∗
}S
s=1

 be the set of S draws from the refer-
ence model’s posterior.

2. Rank the variables according to their relevance using some heuristics and consider 
as candidate submodels only those which preserve this order, starting from includ-
ing only the highest ranked variable. The submodels are then naturally identified 
by their model size. This step is not strictly necessary but reduces the number of 
submodels considered in the following steps and thus reduces computation time.

3. For each submodel � selected in Step 2, project each of the reference model’s 
posterior draws �s

∗
 as follows: 

 where p(ỹi|�s
∗
) stands for the predictive distribution of the reference model with 

parameters fixed at �s
∗
 and conditioning on all the variable values related to the 

statistical unit (identified by the subscript i), whereas q𝜋(ỹi|�s) is the predictive 
distribution of the submodel. The projected draws �s

⟂
 then present the projected 

posterior for the submodel.
4. For each submodel (size), test the predictive performance for a chosen predic-

tive utility score, for example, via cross-validation. Fast cross-validation can be 
performed using approximate leave-one-out cross-validation via Pareto-smoothed 
importance-sampling (PSIS-LOO-CV; Vehtari et al. 2017).

5. Choose the smallest submodel (size) that is sufficiently close to the reference 
model’s predictive utility score. The results in this paper were not sensitive to 
the specific choice of how “sufficiently close” is defined, and we used the same 
definition as (Piironen et al. 2020).

In general, Expression (A3) is not an easy optimisation problem However, in the 
special case of the submodels being generalised linear models with a likelihood 
coming from the exponential family, (A3) reduces to a maximum likelihood esti-
mation problem, which can be easily solved (Dupuis and Robert 2003). For further 

(A2)max
𝜋 ∫ log q𝜋(ỹ)p(ỹ�D) dỹ ⇔ min

𝜋
KL[p(ỹ�D) ‖ q𝜋(ỹ)]

(A3)�s
⟂
= argmin

�s∈Θ

1

n

n�

i=1

KL
�
p(ỹi��s

∗
) ‖ q𝜋(ỹi��s)

�
,
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details on the projective prediction workflow and implementation, see the paper by 
Piironen et al. (2020).
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