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The locality of a graph problem is the smallest distance T such that each node can choose 
its own part of the solution based on its radius-T neighborhood. In many settings, a graph 
problem can be solved efficiently with a distributed or parallel algorithm if and only if it 
has a small locality.
In this work we seek to automate the study of solvability and locality: given the description 
of a graph problem �, we would like to determine if � is solvable and what is the 
asymptotic locality of � as a function of the size of the graph. Put otherwise, we seek 
to automatically synthesize efficient distributed and parallel algorithms for solving �.
We focus on locally checkable graph problems; these are problems in which a solution is 
globally feasible if it looks feasible in all constant-radius neighborhoods. Prior work on such 
problems has brought primarily bad news: questions related to locality are undecidable in 
general, and even if we focus on the case of labeled paths and cycles, determining locality 
is PSPACE-hard (Balliu et al., PODC 2019).
We complement prior negative results with efficient algorithms for the cases of unlabeled
paths and cycles and, as an extension, for rooted trees. We study locally checkable graph 
problems from an automata-theoretic perspective by representing a locally checkable 
problem � as a nondeterministic finite automaton M over a unary alphabet. We identify 
polynomial-time-computable properties of the automaton M that near-completely capture 
the solvability and locality of � in cycles and paths, with the exception of one specific case 
that is co-NP-complete.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this work, our goal is to automate the design of efficient distributed and parallel algorithms for solving graph problems, 
as far as possible. In the full generality, such tasks are undecidable: for example, given a Turing machine M , we can easily 
construct a graph problem � such that there is an efficient distributed algorithm for solving � if and only if M halts [33]. 
Nevertheless, we are here to bring good news.

We focus on so-called locally checkable graph problems in paths, cycles, and rooted trees, and we show that in many cases, 
the task of designing efficient distributed or parallel algorithms for such problems can be automated, not only in principle 
but also in practice.
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We study the locality of graph problems from an automata-theoretic perspective. To introduce the concrete research ques-
tions that we study, we first define one specific model of distributed computing, the LOCAL model—through this model we 
can define the fundamental concept of locality. However, as we will later see, our results are directly applicable in many 
other synchronous models of distributed and parallel computing as well.

1.1. Prior work

Background: locality and round complexity in distributed computing In classical centralized sequential computing, a particularly 
successful idea has been the comparison of deterministic and nondeterministic models of computing. The question of P vs. 
NP is a prime example: given a problem in which solutions are easy to verify, is it also easy to solve?

In distributed computing a key computational resource is locality, and hence the distributed analogue of this idea can be 
phrased as follows: given a problem in which solutions can be verified locally, can it also be solved locally?

This question is formalized in the study of so-called locally checkable labeling (LCL) problems in the LOCAL model of 
distributed computing. LCL problems are graph problems in which solutions are labelings of nodes and/or edges that can be 
verified locally: if a solution looks feasible in all constant-radius neighborhoods, then it is also globally feasible [33]. A simple 
example of an LCL problem is a proper 3-coloring of a graph: if a labeling of the nodes looks like a proper 3-coloring in 
the radius-1 neighborhood of each node, then it is by definition a feasible solution.

In the LOCAL model of computing [31,34], we assume that the nodes of the input graph are equipped with unique 
identifiers from {1, 2, . . . , poly(n)}, where n is the number of nodes. A distributed algorithm with time complexity T (n) is 
then a function that maps the radius-T (n) neighborhood of each node into its local output. The local output of a node is 
its own part of the solution, e.g., its own color in the graph coloring problem. Here we say that the algorithm has locality 
T (n); the locality of a problem is the smallest T (n) such that there exists an algorithm for solving it with locality T (n).

If we interpret the input graph as a computer network, with nodes as computers and edges as communication links, then 
in T (n) synchronous communication rounds all nodes can gather full information about their radius-T (n) neighborhood. 
Hence time (number of communication rounds) and distance (how far one needs to see) are interchangeable in the LOCAL
model. In what follows, we will primarily use the term round complexity.

Prior work: the complexity landscape of LCL problems Now we have a natural distributed analog of the classical P vs. NP
question: given an LCL problem, what is its round complexity in the LOCAL model? This is a question that was already 
introduced by Naor and Stockmeyer in 1995 [33], but the systematic study of the complexity landscape of LCL questions 
started only very recently, around 2016 [6–8,11,12,15,16,23,25,26,37].

By now we have got a relatively complete understanding of possible complexity classes: to give a simple example, if we 
look at deterministic algorithms in the LOCAL model, there are LCL problems with complexity �(log∗ n), and there are 
also LCL problems with complexity �(logn), but it can be shown that there is no LCL problem with complexity between 
ω(log∗ n) and o(logn) [11,15].

However, much less is known about how to decide the complexity of a given LCL problem. Many such questions are 
undecidable in general, and undecidability already holds in relatively simple settings such as LCLs on 2-dimensional grids 
and tori [12,33]. We will zoom into graph classes in which no such obstacle exists.

1.2. New results

Our focus: cycles, paths, and rooted trees Throughout this work, our main focus will be on paths and cycles. This may at first 
seem highly restrictive, but as we will show in Section 7, once we understand LCL problems in paths and cycles, through 
reductions we will also gain understanding on so-called edge-checkable problems in rooted trees.

In cycles and paths, there are only three possible round complexities: O (1), �(log∗ n), or �(n) [1]. Randomness does not 
help in cycles and paths—this is a major difference in comparison with trees, in which there are LCL problems in which 
randomness helps exponentially [9,15,35].

If our input is a labeled path or cycle (nodes and edges may be assigned labels from an alphabet of finite size), the 
round complexity is known to be decidable, but unfortunately it is at least PSPACE-hard [1]. On the other hand, the round 
complexity of LCLs on unlabeled directed cycles (nodes and edges are unlabeled) has a simple graph-theoretic characteriza-
tion [12].

However, many questions are left open by prior work, and these are the questions that we will resolve in this work:

• What happens in undirected cycles?
• What happens if we study paths instead of cycles?
• Can we also characterize the existence of a solution for all graphs in a graph class?

To illustrate these questions, consider the following problems that can be expressed as LCLs:

• �2col: finding a proper 2-coloring,
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Table 1
Classification of LCL problems in cycles and paths. This table defines 11 types, labeled with A–K, based on six properties 
of the automaton representing the LCL problem (Definitions 2.3, 3.1–3.6); see Fig. 3 for examples of problems of each 
type. For each problem type, we show what is the number of solvable instances, the number of unsolvable instances, 
and the distributed round complexity for both directed and undirected paths and cycles. The cases marked with “×” 
refer to problems that are not well-defined or that are never solvable. For the cases labeled with “?” deciding the 
number of unsolvable instances is NP-complete (or co-NP-complete depending on the way one defines the decision 
problem); see Section 4. However, for all other cases the type directly determines both solvability, and all these cases 
are also decidable in polynomial time; see Section 5. The correctness of this classification is proved in Section 6.

Type A B C D E F G H I J K

Definition 2.3: symmetric problem yes yes yes no yes yes no yes no yes no
Definition 3.1: repeatable state yes yes yes yes yes yes yes yes yes no no
Definition 3.2: flexible state [12] yes yes yes yes yes yes yes no no no no
Definition 3.3: loop [12] yes yes yes yes no no no no no no no
Definition 3.4: mirror-flexible state yes yes no — yes no — no — no —
Definition 3.6: mirror-flexible loop yes no no — no no — no — no —

Number of instances: 0 = zero < = finite ∞ = infinite ? = NP-complete to decide
· solvable cycles ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0
· solvable paths ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ < <

· unsolvable cycles 0 0 0 0 < < < ∞ ∞ ∞ ∞
· unsolvable paths < < < < < < < ? ? ∞ ∞
Distributed round complexity: � = O (1) � = �(log∗ n) � = �(n) × = N/A
· directed cycles [12] � � � � � � � � � × ×
· directed paths � � � � � � � � � � �
· undirected cycles � � � × � � × � × × ×
· undirected paths � � � × � � × � × � ×

• �orient: finding a globally consistent orientation (i.e., an orientation of edges such that it does not contain a node with 
two incoming or outgoing edges).

The round complexity of �2col is �(n) both in cycles and paths, regardless of whether they are directed or undirected, while 
the complexity of �orient is �(n) in the undirected setting but it becomes O (1) in the directed setting. Problems �2col and 
�orient are always solvable on paths, and �orient is always solvable on cycles, but if we have an odd cycle, then a solution 
to �2col does not exist. In particular, for �2col there are infinitely many solvable instances and infinitely many unsolvable 
instances. Our goal in this work is to develop a framework that enables us to make this kind of observations automatically
for any given LCL problem.

Contributions We study LCL problems in unlabeled cycles and paths, both with and without consistent orientation. For 
each of these settings, we show how to answer the following questions in a mechanical manner, for any given LCL problem 
�:

• How many unsolvable instances there are (none, finitely, or infinitely many)?
• How many solvable instances there are (none, finitely, or infinitely many)?
• What is the round complexity of � for solvable instances (O (1), �(log∗ n), or �(n))?

We show that all such questions are not only decidable but they are in NP or co-NP, and almost all such questions are in 
P, with the exception of a couple of specific questions that are NP-complete or co-NP-complete. We also give a complete 
classification of all possible case combinations—for example, we show that if there are infinitely many unsolvable instances, 
then the complexity of the problem for solvable instances cannot be �(log∗ n).

We give a uniform automata-theoretic formalism that enables us to study such questions, and that makes it possible 
to leverage prior work on automata theory (see Section 1.3). We also develop new efficient algorithms for some automata-
theoretic questions that to our knowledge have not been studied before.

Finally, we show that our results can be also used to analyze a family of LCL problems in rooted trees. This demonstrates 
that the automata-theoretic framework considered here is also applicable beyond the seemingly restrictive case of cycles 
and paths.

Our main result—the complete classification of the solvability and distributed round complexity of all LCL problems in 
undirected and directed cycles and paths is presented in Table 1. The classification shows that all questions about the round 
complexity and solvability of any LCL problem in undirected and directed cycles and paths can be characterized by six 
properties of the automaton representing the LCL problem, except for the solvability of undirected paths. We will show 
that all these six properties can be decided in polynomial time, so all these questions about the round complexity and 
solvability can be answered in polynomial time.
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Extensions to other models of distributed and parallel computing While we use the LOCAL model of distributed computing 
throughout this work, our results are also directly applicable in many other models of distributed and parallel computing.

In distributed computing we usually assume that the input graph represents the communication network; each node is a 
computer, each edge is a communication link, and the nodes can communicate by passing messages to each other. However, 
in parallel computing we usually take a very different perspective: we assume that the input graph is stored as a linked 
data structure somewhere in the shared memory, and we have multiple processors that can access the memory. In such a 
setting, directed paths and rooted trees are particularly relevant families of input, as they correspond to linked lists and tree 
data structures.

While the settings are superficially different, our upper bounds apply directly in all such settings. All of our distributed 
algorithms are based on the observation that there are two canonical problems: distance-k anchoring (Definition 3.9) and 
distance-k orientation (Definition 3.10). Both of the canonical problems can be solved in the message-passing setting with 
small messages and with little local memory. Furthermore, when we look at rooted trees (Section 7), our algorithms are 
“one-sided”: each node only needs to receive information from its parent. It also follows that our algorithms work e.g. in 
the CONGEST model [34] of distributed computing, and they can be efficiently simulated e.g. in the classic PRAM model, 
as well as various modern models of massively parallel computing.

Our lower bounds are also broadly applicable, as they hold in the LOCAL model, which is a very strong model of dis-
tributed computing (unbounded message size; unlimited local storage; unbounded local computation; nodes can talk to 
all of their neighbors in parallel). In particular, the lower bounds trivially hold also in the CONGEST model. Adapting the 
lower bounds to shared-memory models takes more effort, but it is also possible—see Fich and Ramachandran [22] for an 
example of how to turn �(log∗ n) lower bounds for the LOCAL model into �(log log∗ n) lower bounds for variants of the 
PRAM model.

Comparison with prior work In comparison with [1,12,15,16,33], our work gives a more fine-grained perspective: instead of 
merely discussing decidability, we explore the question of which of the decision problems are in P, NP, and co-NP.

In comparison with the discussion of directed cycles in [12], our work studies a much broader range of settings. Previ-
ously, it was not expected that the simple characterization of LCLs on directed cycles could be extended in a straightforward 
manner to paths or undirected cycles. For example, we can define an infinite family of orientation problems that can be 
solved in undirected cycles in O (1) rounds but that require a nontrivial algorithm; such problems do not exist in directed 
cycles, as O (1)-round solvability implies trivial 0-round solvability.

Furthermore, we study the graph-theoretic question of the existence of a solution in addition to the algorithmic question 
of the complexity of finding a solution, and relate solvability with complexity in a systematic manner; we are not aware of 
prior work that would do the same in the context of LCLs in the LOCAL model.

Our work also takes the first steps towards an effective (i.e., polynomial-time computable) characterization of LCL prob-
lems in trees, by showing how to characterize so-called edge-checkable problems in rooted trees.

For general LCL problems on bounded-degree trees, previous work [6,14,16] showed that it is decidable to distinguish 
between the complexity pairs O (logn) – n�(1) and O (n1/(k+1)) – �(n1/k) for any constant k ≥ 1. These algorithms are not 
efficient, as these are EXPTIME-hard problems [14].

The previous work [1,6,14,16] studying the complexity landscape of LCL problems on paths, cycles, and bounded-degree 
trees with input labels uses a different connection to automata theory. In their proofs, they classified paths and trees into a 
finite number of classes satisfying certain properties using the pumping lemma for regular languages.

To the best of our knowledge, this work gives the first systematic study of the solvability of LCL problems in the LOCAL
model. Some other papers [2,3] also took solvability into consideration in their classification of LCL problems, but solvability 
is not a main subject in these papers. The solvability of LCL problems is sometimes implicitly ignored [16] in the study of 
the classification of LCL problems by either only considering LCL problems that are solvable in all instances or by putting 
all the unsolvable LCL problems into the highest complexity class.

1.3. LCLs as nondeterministic automata over a unary alphabet

In this work we study the solvability and the round complexity of LCL problems from an automata-theoretic perspective. 
Specifically, we generalize the graph-theoretic characterization for LCL problems on unlabeled directed cycles in [12] to all 
paths and cycles, directed and undirected, and identify a connection between such a characterization and automata theory.

This connection allows us to leverage prior work on automata theory. For example, as we will later see in this work, 
the co-NP-completeness of the universality problem for nondeterministic finite automata [39] allows us to deduce the NP-
hardness for distinguishing between zero and infinitely many unsolvable instances for LCL problems on paths.

We would like to emphasize that there are many ways to interpret LCLs as automata—and the approach that might 
seem most natural does not make it possible to directly leverage prior work on automata theory. We will later see that the 
approach we take enables us to identify direct connections between distributed computational complexity and automata 
theory.

Let us first briefly describe the “obvious” encoding and show why it does not achieve what we want: A labeling of a 
directed path with symbols from some alphabet � can be interpreted as a string. Then a locally checkable problem can be 

4



Y.-J. Chang, J. Studený and J. Suomela Theoretical Computer Science 951 (2023) 113710

interpreted as a regular language over alphabet �. We can then represent an LCL problem � as a finite automaton M such 
that M accepts a string x ∈ �∗ if and only if a directed path labeled with x is a feasible solution to �.

However, such an interpretation does not seem to lead to a useful theory of LCL problems. To see one challenge, consider 
these problems on paths:

• �2col: finding a proper 2-coloring,
• �3col: finding a proper 3-coloring.

These are fundamentally different problems from the perspective of LCLs in the LOCAL model: problem �2col requires �(n)

rounds while problem �3col is solvable in �(log∗ n) rounds [19,31]. However, if we consider analogous automata M2col and 
M3col that recognize these solutions, it is not easy to identify a classical automata-theoretic concept that would separate 
these cases.

Instead of identifying the alphabet of the automaton with the set of labels in the LCL, it turns out to be a better idea to 
have a unary alphabet and identify the set of states of the automaton with the set of labels. In brief, the perspective that we 
take throughout this work is as follows (this is a simplified version of the idea):

Assume � is an LCL problem in which the set of output labels is �. We interpret � as a nondeterministic finite automaton
M� over the unary alphabet � = {o} such that the set of states of M� is �.

At first this approach may seem counter-intuitive. But as we will see in this work, it enables us to connect classical 
automata-theoretic concepts to properties of LCLs this way.

To give one nontrivial example, consider the question of whether a given LCL problem � can be solved in O (log∗ n)

rounds. With the above interpretation, this turns out to be directly connected to the existence of synchronizing words [13,21], 
in the following nondeterministic sense: we say that w is a synchronizing word for an NFA M that takes M into state t
if, given any starting state s ∈ Q there is a sequence of state transitions that takes M to state t when it processes w . Such 
a sequence w is known as the D3-directing word introduced in [30] and further studied in [20,24,29,32]. We will show that 
the following holds (up to some minor technicalities):

An LCL on directed paths and cycles has a round complexity of O (log∗ n) if and only if a strongly connected component 
of the corresponding NFA M over the unary alphabet has a D3-directing word.

Moreover, we will show that for the unary alphabet, the existence of such a word can be decided in polynomial time in the 
size of the NFA M, or equivalently, in the size of the description of the LCL �. In contrast, when the size of the alphabet 
is at least two, the problem of deciding the existence of a D3-directing word is known to be PSPACE-hard [32].

We would like to emphasize that this connection between LCL problems and automata theory is not inherent to unla-
beled paths and cycles. For example, tree automata can be used to encode LCL problems on bounded-degree trees, and to 
encode LCL problems with input labels �, it suffices to consider automata over the alphabet �. Whether such a connection 
beyond unlabeled paths and cycles can lead to new results is an interesting future work direction.

1.4. Organization

In Section 2, we formally define LCL problems and their representation as automata. In Sections 3 and 4, we present 
our classification of LCL problems on cycles and paths. In Section 5, we show that the classification is polynomial-time 
computable. In Section 6, we prove the correctness of our classification. In Section 7, we extend our classification to rooted 
trees. In Section 8, we give some concluding remark and point to some open problems.

2. Representation of LCLs as automata

To reiterate, LCL problems [33], broadly speaking, are problems in which the task is to label nodes and/or edges with 
labels from a constant-size alphabet (denoted by �), subject to local constraints. That is, a solution is globally feasible if it 
looks good in all radius-r neighborhoods for some constant r. In this section we will develop a way to represent all LCL
problems on paths and cycles as nondeterministic automata.

In this paper, we consider as input graphs only paths and cycles in which the edges are either undirected (undirected 
case) or consistently oriented (directed case). We say that a cycle or a path has consistently oriented edges if it does not 
contain a node with two incoming or two outgoing edges.

2.1. Formalizing LCLs as node-edge-checkable problems

LCL problems can be specified in many different forms, and we have to be able to capture, among others, problems of 
the following forms:
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• The problem may ask for a labeling of nodes, a labeling of edges, a labeling of the endpoints of the edges, an orientation 
of the edges, or any combination of these.

• The input graph can be a path or a cycle.
• The input graph may be directed or undirected.

As discussed in the recent papers [3,4], a rather elegant way to capture all LCL problems is the following approach: We 
imagine that we have split every edge into two half-edges, which are also called ports. The labeling refers only to the ports.

More formally, a port or a half-edge p is a pair (e, v) consisting of an edge e and a node v ∈ e incident to e. Let P be the 
set of all ports. A labeling is a function λ : P → � from ports to labels from some alphabet �.

It is easy to see that we can represent LCL problems of different flavors in this formalism, for example:

• If the task is to label nodes, we require all ports incident to a node to be labeled by the same label, so that the label of 
a node is well-defined.

• If the task is to label edges, we require that both half-edges of each edge have the same label, so that the label of an 
edge is well-defined.

• If the task is to find an orientation, we can use e.g. symbols H (head) and T (tail) and require that for each edge exactly 
one half is labeled with H and the other half is labeled with T , so that the orientation of each edge is well-defined.

Moreover, the constraints for node-edge-checkable problems will be divided into node constraints and edge constraints. 
Node constraints consider only incident port labels of a node and edge constraints consider only incident port labels of an 
edge.

We will now formally define an LCL problem in the node-edge-checkable formalism. Let us first consider the case of 
directed cycles or paths. By assumption, a directed cycle or a directed path is consistently oriented. For each edge, one port 
is a tail port and the other port is a head port. Furthermore, for each degree-2 node, there is also exactly one head port and 
exactly one tail port incident to it.

Definition 2.1 (LCL problem). An LCL problem � in the node-edge-checkable formalism on cycles or paths is a tuple � =
(�, Cedge, Cnode, Cstart, Cend) consisting of

• a finite set � of output labels,
• an edge constraint Cedge ⊆ � × �,
• a node constraint Cnode ⊆ � × �, and
• start and end constraints Cstart ⊆ � and Cend ⊆ �.

Definition 2.2 (Solution on directed cycles or paths). Let G be a directed cycle or a directed path, and let � be an LCL problem, 
and let λ : P → � be a labeling of G . We say that λ is a solution to � if the following holds:

• For each edge e, if p is the tail port and q is the head port of e, then (λ(p), λ(q)) ∈ Cedge .
• For each degree-2 node v , if p is the head port and q is the tail port of v , then (λ(p), λ(q)) ∈ Cnode .
• For each degree-1 node v with only one tail port p, we have λ(p) ∈ Cstart .
• For each degree-1 node v with only one head port p, we have λ(p) ∈ Cend .

Informally, when we follow the labeling in the positive direction along the directed path, we will first see a label from 
Cstart , then each edge is labeled with a pair from Cedge , each internal node is labeled with a pair from Cnode , and the final 
label along the path is Cend .

Next we consider the case of undirected cycles or paths.

Definition 2.3 (Symmetric LCL problems). We say that an LCL problem � = (�, Cedge,Cnode,Cstart, Cend) is symmetric if Cedge

and Cnode are symmetric relations and Cstart = Cend . Otherwise the problem is asymmetric.

In the undirected case we cannot consistently distinguish ports, and hence we can only solve and define solution for 
symmetric LCL problems.

Definition 2.4 (Solution on undirected cycles or paths). Let G be an undirected cycle or an undirected path, and let � be a 
symmetric LCL problem, and let λ : P → � be a labeling of G . We say that λ is a solution to � if the following holds:

• For each edge e, if the ports of e are p and q, then (λ(p), λ(q)) ∈ Cedge .
• For each degree-2 node v , if the ports incident to v are p and q, then (λ(p), λ(q)) ∈ Cnode .
• For each degree-1 node v , if the port incident to v is p, then λ(p) ∈ Cstart = Cend .

6
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Fig. 1. Examples of how to encode LCL problems in the node-edge-checkable formalism, and how to represent the problem as an automaton. Here the 
problems are symmetric, so they are also well-specified on undirected cycles. For maximal matching, ports incident to matched nodes are labeled with “1” 
and “M”, ports incident to unmatched nodes are labeled with “0”, and the edge constraints ensure that there are no unmatched nodes adjacent to each 
other.

Recall that in symmetric problems Cedge and Cnode are symmetric, so the above formulation is well-defined. When we 
study the case of cycles, we can set Cstart = Cend = ∅. For brevity, in what follows, we will usually write the pair (a, b) simply 
as ab.

It is usually fairly easy to encode any given LCL problem in a natural manner in this formalism—see Fig. 1 for examples. 
In the figure, maximal matching serves as an example of a problem in which the natural encoding of indicating which edges 
are part of the matching does not work (it does not capture maximality) but with one additional label we can precisely 
define a problem that is equivalent to maximal matchings.

In general, if we have any LCL problem � (in which the problem description can refer to radius-r neighborhoods for 
some constant r), we can define an equivalent problem �′ that can be represented in the node-edge-checkable formalism, 
modulo constant-time preprocessing and postprocessing. In brief, one label in the new problem �′ corresponds to the 
labeling of a subpath of length �(r) in �. Now given a solution of �, one can construct a solution of �′ in O (r) rounds, 
and given a solution of �′ , one can construct a solution of � in zero rounds. Moreover, �′ can be specified in the node-
edge-checkable formalism. We will give the details in Section 2.2. From now on, all LCL problems considered are by default 
problems defined using the node-edge-checkable formalism.

2.2. Universality of the node-edge-checkable formalism

In this section, we show that the node-edge-checkable formalism is universal in the following sense. Let � be any LCL
given in the standard format by listing all valid local neighborhoods of some constant radius r. We can construct an LCL
problem �′ that is in the node-edge-checkable formalism satisfying the following two properties. For simplicity, we only 
consider the undirected case here.

7
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Efficiency: Both the runtime of the construction and the description length of �′ are polynomial in the description length 
of �.

Equivalence: Let the communication network G be a cycle of length at least 2r + 2 or a path. Starting from any given legal 
labeling λ for � on G , in O (1) rounds we can transform it into a legal labeling λ′ for �′ . Similarly, starting from any 
given legal labeling λ′ for �′ on G , in O (1) rounds we can transform it into a legal labeling λ for �.

In particular, � and �′ must have the same distributed complexity, since it is trivial to solve any graph problem on 
constant-size instances in O (1) rounds. Thus, if we have a black-box sequential algorithm A that decides the optimal 
distributed complexity for an LCL problem �′ given in the node-edge-checkable formalism, then the same algorithm can 
be applied to an LCL problem � given in the standard format. Furthermore, if A also outputs a description of a distributed 
algorithm solving �′ , then this distributed algorithm can also be applied to solve �, modulo an O (1)-round post-processing 
step.

The number of solvable and unsolvable instances for � and �′ are the same for the case of paths, but they might differ 
by at most an additive constant for the case of cycles. Suppose we have a black-box sequential algorithm A that given an 
LCL problem �′ in the node-edge-checkable formalism, decides

(#solvable instances,#unsolvable instances) ∈ {(0,∞), (�(1),∞), (∞,∞), (∞,�(1)), (∞,0)}.
Then obviously the same algorithm can be applied to an LCL problem � in the standard format for the case of paths.

For solvability on cycles, we can still apply A to decide the solvability of �, but things are a little more complicated as 
the behavior of �′ might be different from � for cycles of length at most 2r +1. To deal with this issue, instead of applying 
A directly on �′ , we apply A to a modified LCL problem �∗ such that �∗ is unsolvable on cycles of length at most 2r + 1, 
and its solvability on longer cycles are the same as that of �′ . When the output of A on �∗ is (�(1), ∞), (∞, ∞), or 
(∞, �(1)), then the same result applies to �. If the output is (0, ∞) or (∞, 0), we just need to further check in polynomial 
time the number of solvable and unsolvable instances for cycles of length at most 2r + 1 in order to determine the correct 
solvability of �. To construct �∗ from �′ , we simply let �∗ be an LCL that is required to solve �′ and another problem �	

simultaneously, where the �	 is an arbitrary node-edge-checkable problem that is unsolvable for cycles of length at most 
2r + 1, and is solvable for all cycles of length at least 2r + 2.

LCL in standard form Recall that an LCL problem � may come in many different forms. It may ask for a labeling of nodes, 
a labeling of edges, a labeling of half-edges, an orientation of the edges, or any combination of these. The canonical way to 
specify an LCL with locality radius r is to list all allowed labeled radius-r subgraphs in the set C . An output labeling λ for 
� on the instance G is legal if for each node v in G , its radius-r subgraph with the output labeling λ belongs to C .

Description length From now on, we write |�| to denote the description length of the LCL problem �. For example, if �
only asks for an edge orientation, then |�| = 2O (r) . If � also asks for an edge labeling from the alphabet �e and a node 
labeling from the alphabet �v , then |�| = (|�e| + |�v |)O (r) . Note that we only consider paths and cycles, and we assume 
that C is described using a truth table mapping each labeled radius-r subgraph to yes/no.

From general labels to half-edge labels We first observe that labels of all forms can be transformed into half-edge labels, and 
so from now on we can assume that � only have half-edge labels. Specifically, if � asks for an edge labeling from the 
alphabet �e , a node labeling from the alphabet �v , and also an edge orientation, then we can simply assume that � asks 
for a half-edge labeling from the alphabet �e × �v × {H, T }. That is, each half-edge label is of the form (a ∈ �e, b ∈ �v , c ∈
{H, T }). For each edge e, it is required that the �e-part of the two half-edges of e are the same, and this label represents 
the edge label of e. For each node v , it is required that the �v -part of the two half-edges surrounding v are the same, and 
this label represents the node label of v . For each edge e, it is required that the {H, T }-part of the two half-edges of e are 
different, and this label represents the edge orientation of e. This reduction from a general labeling to a half-edge labeling 
increases the description length, but only polynomially.

Reducing the locality radius We assume that � only asks for a half-edge labeling from the alphabet �. We will first show 
a construction of �′ in the node-edge-checkable formalism satisfying all the needed requirements. In what follows, we 
assume that the communication network G must not be a cycle of at most 2r + 1 nodes. In particular, this ensures that any 
radius-r subgraph of G is a path, not a cycle.

Each radius-r subpath P = (ua, . . . , u2, u1, v, w1, w2, . . . , wb) centered at v with half-edge labels from � can be repre-
sented as a string S ∈ (� ∪ {⊥})4r , as follows. The string S is of the form S = S1 ◦ S2 ◦ S3 ◦ S4, where

S1 = ⊥2(r−a),

S2 = Lua,{ua,ua−1}Lua−1,{ua,ua−1}Lua−1,{ua−1,ua−2}Lua−2,{ua−1,ua−2} · · · Lv,{u1,v},
S3 = Lv,{v,w1} · · · Lwa−2,{wa−2,wa−1}Lwa−1,{wa−2,wa−1}Lwa−1,{wa−1,wa}Lwa,{wa−1,ua},
S4 = ⊥2(r−b).
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Fig. 2. Five variants of the node 2-coloring problem. Starting states have an arrow towards them and accepting states have double border. Each variant has 
different allowed colors for the endpoints, hence also different starting and accepting states. Here (a) and (d) are the only problems that are symmetric; 
therefore problems (b), (c), and (e) are not meaningful on undirected paths.

Here Lz,e represents the half-edge label of the edge e at the node z. Note that S2 represents the half-edge labels within 
(ua, . . . , u2, u1, v), and S3 represents the half-edge labels within (v, w1, w2, . . . , wb). This string notation is sensitive to the 
direction of P . If P is reversed, then the resulting string S is also reversed.

If we do not care about cycles of length at most 2r+1, then we can simply assume that the set of allowed configurations 
C is specified by a set of strings S ∈ (� ∪ {⊥})4r in the above form. Note that S ∈ C implies that its reverse SR is also in C , 
as we only consider the undirected case here.

Now we are ready to describe the new LCL problem �′ . In this new LCL problem, each half-edge label is a string S ∈ C . 
We have the following constraints.

Node constraint: For each node v , let S and S ′ be the two half-edge labels surrounding v , then S ′ is the reverse of S . 
Furthermore, if v is of degree-1, then the length-2r prefix of S must be ⊥2r .

Edge constraint: For each edge e, let S and S ′ be the two half-edge labels of e, then the length-2(r − 1) suffix of S is the 
reverse of the length-2(r − 1) suffix of S ′ .

Intuitively, a half-edge label S on the v-side of the edge e = {u, v} is intended to represent the radius-r subgraph P
centered at v , where the direction of P is chosen as v → u. The above constraints ensure that the half-edge labels must be 
consistent.

The transformation from a legal labeling λ for � on G to a legal labeling λ′ for �′ on G is straightforward, and it 
only costs O (1) rounds. The reverse transformation is also straightforward. The description length of �′ is |�|O (r) , which is 
polynomial in |�|.

2.3. Turning node-edge-checkable problems into automata

Now consider an LCL problem � that is specified in the node-edge-checkable formalism. Construct a nondeterministic 
finite automaton M� as follows; see Figs. 1 and 2 for examples.

• The set of states is Cedge .
• There is a transition from (a, b) to (c, d) whenever (b, c) ∈ Cnode .
• (a, b) ∈ Cedge is a starting state whenever a ∈ Cstart .
• (a, b) ∈ Cedge is an accepting state whenever b ∈ Cend .

We will interpret M� as an NFA over the unary alphabet � = {o}. Note that there can be multiple starting states; the 
automaton can choose the starting state nondeterministically. We remark that in case of cycles, the sets Cstart and Cend are 
empty which transforms an NFA into a nondeterministic semiautomaton (i.e., an automation having no starting or accepting 
states). In the following part we will see how to view the constructed automata.

We define the following concepts:

Definition 2.5 (generating paths and cycles). Automaton M can generate the cycle (x1, x2, . . . , xm) if each xi is a state of M, 
there is a state transition from xi to xi+1 for each i <m, and there is a state transition from xm to x1.

Automaton M can generate the path (x1, x2, . . . , xm) if each xi is a state of M, x1 is a starting state, xm is an accepting 
state, and there is a state transition from xi to xi+1 for each i <m.

Note that M can generate cycles even if there are no starting states or accepting states. We allow m = 1 in the above 
definition.

9
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Example 2.6. Consider the state machines in Fig. 1. The state machine for consistent orientation can generate the following 
cycles:

(HT), (TH), (HT, HT), (TH, TH), (HT, HT, HT), (TH, TH, TH), . . .

The state machine for maximal matching can generate the following cycles:

(11, MM), (MM, 11), (10, 01, MM), (01, MM, 10), (MM, 10, 01),

(11, MM, 11, MM), (MM, 11, MM, 11), . . .

Remark. If we start with a symmetric problem, the automaton will be mirror-symmetric in the following sense: there is 
a state transition (a, b) → (c, d) if and only if there is a state transition (d, c) → (b, a), and the automaton can generate 
(x1 y1, . . . , xm ym) if and only if it can generate (ymxm, . . . , y1x1). All automata in Fig. 1 have this property, while in Fig. 2
only automata (a) and (d) are mirror-symmetric.

Automata capture node-edge-checkable problems These observations follow directly from the definitions:

• Let � be a symmetric or asymmetric problem. Automaton M� can generate a cycle (x1, x2, . . . , xm) if and only if the 
following is a feasible solution for problem �: Take a directed cycle with m nodes and m edges and walk along the cycle 
in the positive direction, starting at an arbitrary edge. Label the ports of the first edge with x1, the ports of the second 
edge with x2, etc.

• Let � be a symmetric problem. Automaton M� can generate a cycle (x1, x2, . . . , xm) if and only if the following is 
a feasible solution for problem �: Take an undirected cycle with m nodes and m edges and walk the cycle in some 
consistent direction, starting at an arbitrary edge. Label the ports of the first edge with x1, the ports of the second edge 
with x2, etc.

• Let � be a symmetric or asymmetric problem. Automaton M� can generate a path (x1, x2, . . . , xm) if and only if the 
following is a feasible solution for problem �: Take a directed path with m + 1 nodes and m edges and walk along the 
path in the positive direction, starting with the first edge. Label the ports of the first edge with x1, the ports of the 
second edge with x2, etc.

• Let � be a symmetric problem. Automaton M� can generate a path (x1, x2, . . . , xm) if and only if the following is a 
feasible solution for problem �: Take an undirected path with m + 1 nodes and m edges and walk along the path in 
some consistent direction, starting with the first edge. Label the ports of the first edge with x1, the ports of the second 
edge with x2, etc.

Hence, for example, the question of whether a given problem � is solvable in a path of length m is equivalent to the 
question of whether M� accepts the string om . Similarly, the question of whether � is solvable in a cycle of length m is 
equivalent to the question of whether there is a state q such that M� can return to state q after processing om .

However, the key question is what can be said about the complexity of solving � in a distributed setting. As we will 
see, this is also captured in the structural properties of M� .

3. Classification of all LCL problems on cycles

We will now discuss our classification of LCL problems on cycles. Consider a problem � and its corresponding au-
tomation M� . In what follows, if we have two states ab and cd of M� , a walk from ab to cd (denoted by ab � cd) is a 
sequence of state transitions starting at state ab and ending at state cd. We introduce the following definitions; see Fig. 3
for examples.

Definition 3.1 (repeatable state). State ab ∈ Cedge is repeatable if there is a walk ab � ab in M� .

Definition 3.2 (flexible state [12]). State ab ∈ Cedge is flexible with flexibility K if for all k ≥ K there is a walk ab � ab of 
length exactly k in M� .

Definition 3.3 (loop). State ab ∈ Cedge is a loop if there is a state transition ab → ab in M� .

Observe that each defined property of a state is a proper strengthening of the previous property (i.e. each loop is a 
flexible state and each flexible state is a repeatable state).

For a symmetric problem � we also define:

Definition 3.4 (mirror-flexible state). State ab ∈ Cedge is mirror-flexible with flexibility K if for all k ≥ K there are walks 
ab � ab, ab � ba, ba � ab, and ba � ba of length exactly k in M� .

10
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Fig. 3. Examples of LCL problems of each type (types A–K in Table 1) represented as automata, together with a classification of their states using Defi-
nitions 3.1–3.6. The states are colored only by the most restrictive property. Here is a brief description of each sample problem: A: orient the edges so 
that each consistently oriented fragment consists of at least two edges, one with the label pair 12 and at least one with the label pair 34. B: either find a 
consistent orientation (encoded with labels 1–2) or find a proper 3-coloring of the edges (encoded with labels 3–5). C: consistent orientation. D: orientation 
in the positive direction. E: edge 3-coloring. F: consistent orientation together with an edge 3-coloring. G: orientation in the positive direction together with 
an edge 3-coloring. H: edge 2-coloring. I: orientation in the positive direction together with an edge 2-coloring. J–K: problems only solvable on paths of 
length at most 2 (assuming appropriate starting and accepting states).

Example 3.5. In Fig. 3A, states 12 and 21 are mirror-flexible with flexibility K = 5. To see this, note that these are examples 
of walks of length exactly k = 5:

12 → 34 → 34 → 43 → 21 → 12,

12 → 34 → 34 → 34 → 43 → 21,

21 → 12 → 34 → 43 → 21 → 12,

21 → 12 → 34 → 34 → 43 → 21.

By using the self-loop 34 → 34 repeatedly, we can also construct walks of lengths exactly k = 6, 7, . . . .

Definition 3.6 (mirror-flexible loop). State ab ∈ Cedge is a mirror-flexible loop with flexibility K if ab is a mirror-flexible state 
with flexibility K and ab is also a loop.

Note that if ab is mirror-flexible loop, then so is ba, as the problem is symmetric.

3.1. Flexibility and synchronizing words

Flexibility is a key concept that we will use in our characterization of LCL problems. We will now connect it to the 
automata-theoretic concept of synchronizing words.

First, let us make a simple observation that allows us to study automata by their strongly connected components:

Lemma 3.7. Let M′ be a strongly connected component of automaton M� , and let q be a state in M′ . Then q is flexible in M� if 
and only if q is flexible in M′ .

Proof. A walk from q back to q in M� cannot leave M′ . �
Recall that a word w is called D3-directing word [30] for NFA M if there is a state t such that starting with any state 

s of M there is a sequence of state transitions that takes M to state t when it processes w . We show that this specific 
notion of a nondeterministic synchronizing word is, in essence, equivalent to the concept of flexibility:

Lemma 3.8. Consider a strongly connected component M′ of some automaton M� . The following statements are equivalent:

1. There is a flexible state in M′.
2. All states of M′ are flexible.

11
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3. There is a D3-directing word for M′.

Proof. (1) =⇒ (2): Assume that state q has flexibility K . Let x be another state in M′ . As it is in the same connected 
component, there is some r such that we can walk from x to q and back in r steps. Therefore for any k ≥ K we can walk 
from x back to x in k + r steps by following the route x � q � q � x. Hence x is a flexible state with flexibility at most 
K + r.

(2) =⇒ (3): Assume that state q has flexibility K , and there is a walk of length at most r from any state x to state q. 
Then we can walk from any state x to q in exactly r+ K steps: first in r′ ≤ r steps we can reach q and then in K + r− r′ ≥ K
steps we can walk from q back to itself. Hence w = oK+r is a D3-directing word for automaton M′ that takes it from any 
state to state q.

(3) =⇒ (1): Assume that there is some D3-directing word w = oK that can take one from any state of M′ to state q in 
exactly K steps. Then we can also walk from q to itself in k steps for any k ≥ K : first take k − K steps arbitrarily inside M′ , 
and then walk back to q in exactly K steps. �

Hence, in what follows, we can freely use any of the above perspectives when reasoning about the distributed complexity 
of LCL problems. Mirror-flexibility can be then seen as a mirror-symmetric extension of D3-directing words.

There is also a natural connection between flexibility and Markov chains. Automaton M� over the unary alphabet can 
be viewed as the diagram of a Markov chain for unknown probabilities of the transitions. If we assume that every edge will 
have a non-zero probability, then a strongly connected component of the automaton is an irreducible Markov chain, and in 
such a component the notion of flexibility coincides with the notion of aperiodicity.

3.2. Results

Our main result is the classification presented in Table 1; see also Fig. 3 for some examples of problems in each class. 
What was already well-known by prior work [1,16] is that there are only three possible complexities: O (1), �(log∗ n), and 
�(n). However, our work gives the first concise classification of exactly which problems belong to which complexity class. 
In Section 6 we show that our classification of locally checkable problems on cycles or paths into types A–K, defined by 
properties of the automaton, is correct and complete.

The entire classification can be computed efficiently. In particular, for all of the defined properties (repeatable states, flexible 
states, loops, mirror-flexible states and mirror-flexible loops) a polynomial-time algorithm can determine if an automaton 
contains a state with such a property. The non-trivial cases here are flexibility and mirror-flexibility; we present the proofs 
in Section 5.

3.3. Key building blocks

The role of mirror-flexibility Consider the following problem that we call distance-k anchoring; here the selected edges are 
called anchors:

Definition 3.9. A distance-k anchoring is a maximal subset of edges that splits the cycle in fragments of length at least k −1.

This problem can be solved in O (log∗ n) rounds (e.g. by applying maximal independent set algorithms in the kth power 
of the line graph of the input graph). Now consider an LCL problem � that has a flexible state q with flexibility k. It is 
known by prior work [12] that we can now solve � on directed cycles in O (log∗ n) rounds, as follows: Solve distance-k
anchoring and label the anchor edges with the label pair of state q. As state q is flexible, we can walk along the cycle from 
one anchor to another, and find a way to fill in the fragment between two anchors with a feasible label sequence.

Mirror-flexibility plays a similar role for undirected cycles: the key difference is that the anchor edges cannot be consis-
tently oriented, and hence we need to be able to also fill a gap between state q = ab and its mirror q′ = ba, in any order. It 
is easy to see that mirror-flexibility then implies O (log∗ n)-round solvability—what is more surprising is that the converse 
also holds: O (log∗ n)-round solvability necessarily implies the existence of a mirror-flexible state.

A new canonical problem for constant-time solvability One of the new conceptual contributions of this work is related to the 
following problem, which we call distance-k orientation:

Definition 3.10. A distance-k orientation is an orientation in which each consistently oriented fragment has a length at least 
k.

The problem is trivial to solve in directed cycles in 0 rounds, but the case of undirected cycles is not equally simple. 
However, with some thought, one can see that the problem can be solved in O (1) rounds also on undirected cycles [16]. 
This shows that there are infinite families of nontrivial O (1)-time solvable problems, and hence it seems at first challenging 
to concisely and efficiently characterize all such problems. However, as we will see in Section 6, distance-k orientation can 
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be seen as the canonical O (1)-time solvable problem on undirected cycles. We show that any problem � that is O (1)-time 
solvable on undirected cycles has to be of type A (see Table 1), and any such problem can be solved in two steps: first 
find a distance-k orientation for some constant k that only depends on the structure of M� , and then map the distance-k
orientation to a feasible solution of �.

We summarize the key new observations related to undirected cycles as follows:

�(1) rounds ⇐⇒ mirror-flexible loop ⇐⇒ solvable with distance-k orientation
�(log∗ n) rounds ⇐⇒ mirror-flexible state ⇐⇒ solvable with distance-k anchoring

4. Classification of all LCL problems on paths

So far we have discussed LCL problems on cycles; let us now have a look at the case of paths. We have already presented 
the classification for both cases in Table 1. In what follows, we discuss the key new aspects that arise in paths in comparison 
with the case of cycles.

What is similar: distributed complexity Broadly speaking, efficient distributed solvability on paths is not that different from 
efficient solvability on cycles. Consider an LCL problem � and the state machine M� . As a first, preprocessing step, we 
have to remove all states that are not reachable from a starting state, and all states from which there is no path to an accepting 
state—such states can never appear in any feasible labeling of a path. The removal of irrelevant states can be done in 
polynomial time, and hence throughout this work we assume that such states have already been eliminated and, to avoid 
trivialities, the resulting automaton is nonempty.

Now consider, for example, the case of directed paths. If there is a loop q in M� , we can solve � in constant time. 
By assumption q can be reached from some starting state s and we can reach some accepting state t from q. Hence near 
the endpoints of a path, we can label according to the walks s � q and q � t , and fill in everything in between with q; 
the round complexity is simply the maximum of the lengths of the (shortest) walks s � q and q � t . Similarly, if q is not 
a loop but a flexible state with flexibility k, we can find a distance-k anchoring for the internal part of the path, use q at 
the anchor points, and fill the gaps just like in the case of a cycle. The case of undirected paths and mirror-flexibility is 
analogous.

Furthermore, negative results on cycles imply negative results on paths. To see this, consider a hypothetical algorithm A
that solves � efficiently in directed paths. Then we could also apply A to each local neighborhood of a long directed cycle, 
and hence A would also solve � efficiently in directed cycles. If � cannot be solved in o(n) rounds in directed cycles, it 
cannot be solved in o(n) rounds in directed paths, either. The same holds for the undirected case. Hence the classification 
of distributed complexities in Table 1 generalizes to paths almost verbatim.

What is new: solvability In directed cycles, global problems (i.e., problems of round complexity �(n), types H and I) came 
in only one possible flavor: there are infinitely many solvable instances and infinitely many unsolvable instances. A simple 
example is the problem of finding a proper 2-coloring: even cycles are solvable and odd cycles are unsolvable. Our classifi-
cation for cycles implies that it is not possible to have an LCL problem of complexity �(n) in directed cycles that is always 
solvable.

This is clearly different in directed paths. As a simple example, 2-coloring a path is a global problem on directed paths 
that is always solvable. Fig. 2 shows both examples of LCLs that are solvable in all paths (e.g. 2-coloring), and examples 
of LCLs that are solvable in infinitely many paths and unsolvable in infinitely many paths (e.g. 2-coloring in which all 
endpoints must have color 1). It is also easy to construct problems that are solvable in all but finitely many instances and 
problems that are solvable only in finitely many instances. However, can we efficiently tell the difference between these 
cases if we are given a description of an LCL problem?

This is a question in which the automata-theoretic perspective gives direct answers. In essence, the question is rephrased 
as follows: for which values of k a nondeterministic finite automaton M accepts the unary string ok; whether M accepts 
all such strings is the classical universality problem [28] for unary languages. Prior work directly implies the following (see 
Section 4.1 for the details):

• 0 vs. �(1) unsolvable instances: Consider the following decision problem: given an automaton M, answer “yes” if M
accepts all strings, “no” if M rejects at least one but finitely many strings, and answer “yes” or “no” otherwise. This 
problem can be solved in polynomial time, as a consequence of Chrobak’s theorem [18,40].

• 0 vs. ∞ unsolvable instances: Consider the following decision problem: given an automaton M, answer “yes” if M
accepts all strings, “no” if M rejects infinitely many strings, and answer “yes” or “no” otherwise. This is a well-known 
co-NP-complete problem [39].

4.1. Complexity of deciding solvability in paths

We show in Theorem 4.1 (see below) that the unary NFA universality problem becomes polynomial-time solvable once 
we have a promise that M rejects only finitely many strings. The theorem implies that distinguishing between 0 unsolv-
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able instances and �(1) unsolvable instances is in polynomial time, for both LCLs on paths and on cycles. Although the 
automaton M used in the node-edge-checkable formalism has a different acceptance condition than that of the standard 
NFA, it is straightforward to transform M into an equivalent NFA with the standard NFA acceptance condition (i.e., there is 
one starting state q0 ∈ Q , and a set of accepting states F ).

Theorem 4.1. There is a polynomial-time algorithm A that achieves the following for any given unary NFA M. If M does not reject 
any string, then the output of A is Yes. If M rejects at least one but only finitely many strings, then the output of A is No. If M rejects 
infinitely many strings, the output of A can be either No or Yes.

Proof. This is an immediate consequence of Chrobak’s theorem [18,40], which shows that any unary NFA M is equivalent 
to some NFA M′ in the Chrobak normal form, and the number of states in M′ is at most |Q |2. An NFA M′ is in Chrobak 
normal form if it can be constructed as follows. Start with a directed path P = (q0 → q1 → ·· · → qm) and k directed cycles 
Ci = (r0,i → r1,i → ·· · → r
i ,i → r0,i), for each i ∈ {1, . . . , k}, where 
i is the length of Ci . Add a transition from qm to r0,i for 
each i ∈ {1, . . . , k}. The starting state is q0. The set of accepting states F can be arbitrary.

The algorithm A works as follows. It tests whether M accepts all strings of length at most |Q |2. If so, then the output 
is Yes; otherwise, the output is No. To see the correctness, we only need to show that whenever M rejects at least one but 
only finitely many strings, then the output of A is No. To show this, it suffices to prove that if there is a string w of length 
higher than |Q |2 that is rejected by M, then there must be infinitely many strings rejected by M.

Let L be the length of w . Now consider some NFA M′ that is in the Chrobak normal form and is equivalent to M. We 
can assume that the number of states in M′ is at most |Q |2 < L. Define S to be the set of states that is reachable from 
q0 in M′ via a walk of length exactly L. Since the number of states in M′ is smaller than the length L of w , the set S
contains exactly one state from each cycle Ci . Since w is rejected, all states in S are not accepting states. It is clear that for 
any non-negative integer k, the set of states that is reachable from q0 in M′ via a walk of length exactly L + k 

∏
1≤i≤k 
i is 

also S . Hence M′ (and also M) rejects infinitely many strings. �
Theorem 4.2 (see below) is a well-known result of co-NP-completeness of testing universality of a unary NFA. To see that 

the same hardness result applies to the analogous question of solvability of LCLs on paths, given any NFA M, we construct 
a finite state machine M∗ representing an LCL in the node-edge-checkable formalism such that M is equivalent to M∗ . 
For each transition a → b in M, add the state (a, b) to M∗ . Add a transition (a, b) → (c, d) in M∗ if b = c. Each state (a, b)
with a = q0, where q0 is the starting state of M, is designated as a starting state of M∗ . Each state (a, b) with b ∈ F , where 
F is the set of accepting states of M, is designated as an accepting state of M∗ . Now the new finite state machine M∗
represents an LCL on paths. Note that this reduction only works for LCL on paths—the same solvability problem on cycles 
can be solved in polynomial time.

Theorem 4.2 (Stockmeyer and Meyer [39]). Given a unary NFA M, the following problem is NP-hard. If M rejects zero strings, then 
the output is required to be No. If M rejects at least one but only finitely many strings, then the output can be either No or Yes. If M
rejects infinitely many strings, the output is required to be Yes.

5. Efficient computation of the classification of LCL problems

In view of Table 1, the task to classify for an LCL problem � to which class it belongs to can be reduced to testing 
certain graph properties of M� . In this section, we show that checking whether a state q is flexible or mirror-flexible can 
be done in polynomial time, and so deciding the optimal distributed complexity of an LCL problem � is also in polynomial 
time.

Definition 5.1. Let Q be the set of states of M. For each q ∈ Q we define:

• Lq is the set of values 
 such that there is a walk q � q of length 
 in M.
• L′

q = {
 ∈ Lq : 
 ≤ 2|Q | − 1} is the restriction of Lq to walks of length at most 2|Q | − 1.

Lemma 5.2. For any automaton M and for any state u, we have gcd(Lu) = gcd(L′
u).

Proof. We show that for each 
 ∈ Lu \ L′
u , we can find 
1, 
2, 
3 ∈ Lu such that 
1, 
2, 
3 < 
 and 
 = x
1 + y
2+ z
3 for some 

integers x, y, z. By applying this argument recursively to each 
i , we can eventually write any 
 ∈ Lu as a linear combination 
of sufficiently small numbers 
′ ∈ L′

u . Hence if all values in L′
q are multiples of some d, all values in Lq have to be also 

multiples of d.
Therefore it suffices to show that for each walk w of the form u � u of length 
 > 2|Q | − 1, it is possible to find shorter 

returning walks w1, w2, w3 of the form u � u of lengths 
1, 
2, 
3 < 
 such that 
 = x
1 + y
2 + z
3 for some integers 
x, y, z.
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We write w = (v1, v2, . . . , v
, v
+1), where v1 = v
+1 = u. Since this vector has 
 + 1 ≥ 2|Q | + 1 elements, by the 
pigeonhole principle, there exists a state v that appears at least three times. Therefore, w can be decomposed into four 
walks: p1 = (v1, . . . , vi), p2 = (vi, . . . , v j), p3 = (v j, . . . , vk), and p4 = (vk, . . . , v
+1), where vi = v j = vk and 1 ≤ i < j <
k ≤ 
 + 1. We write Li to denote the length of pi .

Now define w1 = p1 ◦ p4, w2 = p1 ◦ p2 ◦ p4, and w3 = p1 ◦ p3 ◦ p4; the lengths of these paths are 
1 = L1 + L4, 

2 = L1 + L2 + L4, and 
3 = L1 + L3 + L4. Now the length 
 of w can be expressed as 
 = −w1 +w2 +w3. Since L2 = j − i ≥ 1
and L3 = k − j ≥ 1, the three lengths 
1, 
2, 
3 are all smaller than 
, as required. �
Lemma 5.3. A state q is flexible if and only if gcd(Lq) = 1.

Proof. If gcd(Lq) = x > 1, then kx + 1 /∈ Lq and hence there is no walk q � q of length kx + 1 for any k, and q cannot be 
flexible.

For the other direction, given a set of positive integers S with gcd(S) = 1, the Frobenius number g(S) of the set S is the 
largest number x such that x cannot be expressed as a linear combination of S , where each coefficient is a non-negative 
integer. It is known that g(S) < max(S)2 [38].

By Lemma 5.2, gcd(Lq) = gcd(L′
q) and max(L′

q) ≤ 2|Q | − 1. Hence gcd(Lq) = 1 implies that for all k ≥ (2|Q | − 1)2, it 
is possible to find a length-k walk q � q by combining some returning walks of length at most 2|Q | − 1, and so q is 
flexible. �

We remark that the problem of calculating the Frobenius number when the input numbers can be encoded in binary is 
NP-hard [36]. However, the flexibility of a given automaton can be nevertheless found efficiently.

Lemma 5.4. Testing whether a state q ∈ Q is flexible and finding its flexibility number is solvable in polynomial time.

Proof. By Lemma 5.3, it is sufficient to test if gcd(Lu) = 1, and by Lemma 5.2, it suffices to find the set L′
u and compute its 

gcd(L′
u), which can be done in polynomial time. �

Lemma 5.5. Testing whether a state q ∈ Q is mirror-flexible and finding its mirror-flexibility number is solvable in polynomial time.

Proof. Follows from Lemma 5.4: q ∈ Q is mirror-flexible if and only if q is flexible and is reachable to its mirror q′ and q
can be reached back from q′ . Reachability between two states can be tested in polynomial time. �
Theorem 5.6. Given an LCL problem �, classifying its type can be computed in polynomial time.

Proof. The non-trivial cases are captured in Lemmas 5.4 and 5.5. �
An immediate corollary of Lemma 5.4 is that the existence of a D3-directing word in an NFA over the unary alphabet 

can be decided in polynomial time, since a unary NFA M has a D3-directing word if and only if there exists a strongly 
connected component S such that all states in M are reachable to S and the subgraph induced by S admits a flexible state. 
For comparison, when the alphabet size is at least two, the same problem is known to be PSPACE-hard [32].

Corollary 5.7. Given an NFA M over the unary alphabet, the existence of a D3-directing word can be decided in polynomial time.

6. Correctness of the classification of LCL problems

In this section, we show that the classification of LCL problems in Table 1 is correct and complete. We first prove the 
round complexity of each type and then the solvability. The connection between the proofs and the results they establish is 
depicted in Table 2.

6.1. Round complexity lower bounds

In all proofs in this section, we need a technical assumption that M� contains a repeatable state. This ensures that for 
every number N , we can find an n-node solvable instance G for some n ≥ N . This assumption is necessary: If M� does not 
contain a repeatable state, then we can find a number N such that for all n ≥ N the problem � has no solution on a cycle 
or path of n nodes, and so the round complexity of � is trivially O (1) in all solvable instances.

Theorem 6.1. Let � be an LCL problem on directed cycles or paths. Suppose that the automaton M� contains a repeatable state, but 
it does not contain a loop. Then the round complexity � is �(log∗ n).
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Table 2
Connection from problem types to proofs establishing their correctness—cf. Table 1.

Type: A B C/D E F/G H/I J/K

Number of instances:
· solvable cycles Theorem: 6.13 6.13 6.13 6.13 6.13 6.13 6.16
· solvable paths Theorem: 6.13 6.13 6.13 6.13 6.13 6.13 6.18
· unsolvable cycles Theorem: 6.15 6.15 6.15 6.14 6.14 6.17 6.18
· unsolvable paths Theorem: 6.14 6.14 6.14 6.14 6.14 — 6.18

Round complexity for directed graphs:
· lower bound Theorem: triv. triv. triv. 6.1 6.1 6.5 triv.
· upper bound Theorem: 6.9 6.9 6.9 6.11 6.11 triv. 6.8

Round complexity for undirected graphs:
· lower bound Theorem: triv. 6.6 6.7 6.2 6.7 6.5 triv.
· upper bound Theorem: 6.10 6.12 triv. 6.12 triv. triv. 6.8

Fig. 4. An illustration of the proof of Theorem 6.2. Pairs ( f (e),h(e)) form a proper edge coloring.

Proof. We show how to turn any legal labeling λ of � into an edge 3-coloring in a constant number of rounds. As 3-
coloring of edges requires �(log∗ n) rounds [31], so does �.

Let Q be the set of states of M� , and consider a valid solution λ of �. Such a labeling can be easily turned into an 
edge |Q |-coloring f : an edge that was labeled with the pair (a, b) in λ will be colored with the color (a, b) in f . As there 
are no loops in M� , adjacent edges must have different label pairs and hence different colors. Finally, we can reduce the 
number of colors from |Q | to 3 in a constant number of rounds (w.r.t. n) with the trivial algorithm [27] that eliminates 
colors one at a time. �
Theorem 6.2. Let � be an LCL problem on undirected cycles or paths. Suppose that the automaton M� contains a repeatable state, 
but it does not contain a loop. Then the round complexity � is �(log∗ n).

Proof. We use an idea similar to Theorem 6.1, with one extra ingredient. Assume that λ is a feasible solution of �. First 
construct a labeling of the edges with (at most) |Q | colors as follows: an edge that was labeled with the pair (a, b) in λ
will be colored with the color {a, b} in f (note that the colors are now unordered pairs).

Now such a labeling f is not necessarily a proper coloring. There may be an arbitrarily long sequence of edges that have 
the same label {a, b}, for some a < b; such a path is called monochromatic. However, this would arise only if λ contains a 
sequence of the form ab,ba,ab,ba, . . . . Within such a path, we can find a partial labeling of the nodes g as follows: nodes 
that have both ports labeled with a are colored with 1, and nodes that have both ports labeled with b are colored with 2; 
all other nodes are left uncolored. See Fig. 4 for an illustration.

Now we have two ingredients: a not-necessarily-proper edge coloring f with |Q | colors, and a partial node coloring 
g with 2 colors. These complement each other: all internal nodes in monochromatic paths of f are properly 2-colored in 
g . Hence we can use g to find a proper edge 3-coloring h of each monochromatic path, e.g. as follows: Nodes of color 1
are active and send proposals to adjacent nodes of color 2 (proposals are sent in the order of unique identifiers), nodes of 
color 2 accept the first proposal that they get (breaking ties with unique identifiers), and this way we can find a maximal 
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matching within each monochromatic path. Each such matching forms one color class in h; we delete the edges that are 
colored and repeat. After three such iterations all internal edges of monochromatic paths are properly colored in h; then 
h is easy to extend so that also the edges near the endpoints of monochromatic paths have colors different from their 
monochromatic neighbors (monochromatic paths of length two are also easy to 3-color). Now the pairs ( f (e), h(e)) form a 
proper edge coloring with 3|Q | colors, and we can finally reduce the number of colors down to 3. �

In both of the following lemmas to be applicable also to the case of a path, we always assume that the “witness” of any 
specific behavior happens somewhere in the middle of a cycle or a path and not next to the endpoints.

Lemma 6.3. Let � be an LCL problem that is solvable in cycles or paths of length n for infinitely many values of n. Assume that A
solves � for all solvable instances, and assume that for arbitrarily large values of n, we can find a cycle or a path of length n such that 
there are two edges e1 and e2 with the following properties:

• The distance between e1 and e2 , and the distance between each ei and the nearest degree-1 node (if any) is more than n/10.
• Algorithm A labels both e1 and e2 with the same state q that is not flexible.

Then the round complexity of A has to be �(n).

Proof. We give the proof for the case of a path; the case of a cycle is similar. To reach a contradiction, assume the com-
plexity of A is sublinear. Pick a sufficiently large n such that the algorithm runs in r � n/20 rounds and paths of length n
are solvable. Decompose the path G in fragments

G = (P0,N1, P1,N2, x, P2),

where Ni is the radius-r neighborhood of ei , each Pi is a path of nodes, and x is one node. Now we can move one node to 
construct another path

G ′ = (P0,N1, P1, x,N2, P2).

Path G ′ has the same length as G , and hence G ′ is also a solvable instance and A has to be able to find a feasible solution. 
As the radius-r neighborhoods of e1 and e2 are the same in G and G ′ , algorithm A will label them with q in both G and 
G ′ . But as q is not flexible, we can this way eventually construct an instance in which the distance between the two edges 
with label q is k such that M� does not have a walk of length k from q back to itself, and hence A cannot produce a valid 
solution. �
Lemma 6.4. Let � be a symmetric LCL problem that is solvable in undirected cycles or paths of length n for infinitely many values of 
n. Assume that A solves � for all solvable instances, and assume that for arbitrarily large values of n, we can find a cycle or a path of 
length n such that there is an edge e1 with the following properties:

• The distance between e1 and the nearest degree-1 node (if any) is more than n/10.
• Algorithm A labels e1 with a state q1 that is not mirror-flexible.

Then the round complexity of A has to be �(n).

Proof. We give the proof for the case of a path; the case of a cycle is similar. To reach a contradiction, assume the com-
plexity of A is sublinear. Pick a sufficiently large n such that the algorithm runs in r � n/20 rounds and paths of length n
are solvable. For the purposes of this proof, orient the path so that the distance between e1 and the end of the path is at 
least n/2. Let e2 be an edge between e1 and the end of the path such that the distance between e1 and e2, and the distance 
between e2 and the endpoint is at least n/10. Decompose the path G in fragments

G = (P0,N1, P1,N2, P2),

where Ni is the radius-r neighborhood of ei , and each Pi is a path of nodes. Let N̄1 be the mirror image of path X , i.e., 
the same nodes in the opposite direction; then A will label the midpoint of N̄1 with q′

1, the mirrored version of state q1. 
Construct the following paths:

G1 = (P0,N2, P1,N1, P2),

G2 = (P0, N̄1, P1,N2, P2),

G3 = (P0,N2, P1, N̄1, P2).
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Now all such paths have length n, and hence they are also solvable and A is expected to produce a feasible solution. Such a 
solution in G gives a walk q1 � q2 in M� , G1 gives a walk q2 � q1, G2 gives a walk q′

1 � q2, and G3 gives a walk q2 � q′
1. 

Putting these together, we can construct walks q1 � q1, q1 � q′
1, q

′
1 � q1, and q′

1 � q′
1.

Finally, we can move nodes one by one from P2 to P1 in each of G, G1, G2, G3 to construct such walks of any sufficiently 
large length. It follows that q1 is mirror-flexible, which is a contradiction. �
Theorem 6.5. Let � be an LCL problem. Suppose that the automaton M� contains a repeatable state, but it does not contain a flexible 
state. Then the round complexity � is �(n).

Proof. We can apply Lemma 6.3: the algorithm can only use non-flexible states, and it has to use some non-flexible state 
repeatedly. �
Theorem 6.6. Let � be a symmetric LCL problem on undirected cycles or paths. Suppose that M� contains a repeatable state, but it 
does not contain a mirror-flexible loop. Then the round complexity of � is �(log∗ n).

Proof. Consider an algorithm A that solves �, and look at the behavior of A in sufficiently large instances, far away from 
the endpoints of the paths (if any). There are two cases:

1. Algorithm A sometimes outputs a loop state (which by assumption cannot be mirror-flexible). Then by Lemma 6.4 we 
obtain a lower bound of �(n).

2. Otherwise A essentially solves the restriction of � where loop states are not allowed (except near the endpoints of the 
path), and we can use Theorem 6.2 to obtain a lower bound of �(log∗ n). �

Theorem 6.7. Let � be a symmetric LCL problem on undirected cycles or paths. Suppose that M� contains a repeatable state, but it 
does not have a mirror-flexible state. Then the round complexity of � is �(n).

Proof. Again consider an algorithm A that solves �, and look at the behavior of A in sufficiently large instances, far away 
from the endpoints of the paths (if any). There are two cases:

1. Algorithm A sometimes outputs a flexible state (which by assumption cannot be mirror-flexible). Then by Lemma 6.4
we obtain a lower bound of �(n).

2. Otherwise A essentially solves the restriction of � where flexible states are not allowed (except near the endpoints of 
the path), therefore it is using some non-flexible state repeatedly far from endpoints, and Lemma 6.3 applies. �

6.2. Round complexity upper bounds

Let us first consider the trivial case of automata without repeating states.

Theorem 6.8. Let � be an LCL problem. Suppose M� does not have repeatable state. Then � can be solved in constant time in 
solvable instances.

Proof. Let Q be a set of states of M� . As M� does not have a repeatable state, it is not solvable in any cycle, and it is 
only solvable in some paths of length at most |Q |. Hence � can be solved in constant time by brute force (and also in 
constant time all nodes can detect if the given instance is solvable. �

In the rest of this section, we design efficient algorithms for solving problems with flexible or mirror-flexible states. We 
present the algorithms first for the case of a cycle. The case of a path is then easy to solve: we can first label the path as 
if it was a cycle, remove the labels near the endpoints (up to distance k, where k is bounded by the (mirror-)flexibility of a 
chosen (mirror-)flexible state plus the number of states in M�), and fill constant-length path fragments near the endpoints 
by brute force. We refer to this process as fixing the ends.

Theorem 6.9. Let � be an LCL problem on directed cycles or paths. Suppose M� has a loop. Then the round complexity � is O (1).

Proof. All edges can be labeled by a loop state. In a path we will then fix the ends. �
Theorem 6.10. Let � be an LCL problem. Suppose M� has a mirror-flexible loop. Then the round complexity � is O (1).

Proof. Let q be a mirror-flexible loop state of mirror-flexibility k. Let K ≥ k + 2 be an even constant. The first step is to 
construct a distance-K orientation (Definition 3.10); this can be done in O (1) rounds.
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We say that an edge e is a boundary edge if there is another edge e′ with a different orientation within distance less than 
K/2 from e; otherwise e is an internal edge. Note that each consistently oriented fragment contains at least one internal 
edge.

The internal edges are labeled as follows: each edge with orientation “→” is assigned label q, and each edge with 
orientation “←” is assigned label q′ , i.e., the mirror of q.

We are left with gaps of length K − 2 ≥ k between the labeled edges. As q is mirror-flexible, we can find paths q � q′
and q′ � q of length K − 2 to fill in such gaps. Finally, in a path we will fix the ends. �
Theorem 6.11. Let � be an LCL problem on directed cycles or paths. Suppose M� has a flexible state. Round complexity of such � is 
O (log∗ n).

Proof. Let q be a flexible state of flexibility k. This time we first construct a distance-k anchoring (Definition 3.9); this can 
be done in O (log∗ n) rounds. Let the set of anchors be I . If an edge is in I , we label its ports by q. We are left with the 
gaps, which can be of size between k − 1 and 2k (anchoring is maximal). As q is flexible, for each gap of size g ≥ k − 1 we 
can find a returning walk of length exactly g + 1 ≥ k and fill it by the states along such walk. Finally, in a path we will fix 
the ends. �
Theorem 6.12. Let � be an LCL problem on undirected cycles or paths. Suppose M� has a mirror-flexible state. Round complexity of 
such � is O (log∗ n).

Proof. The proof is very similar to a previous proof, only with some minor changes as now we are in the undirected setting.
Let q be a mirror-flexible state of flexibility k. First, we construct a distance-k anchoring (Definition 3.9); this can be 

done in O (log∗ n) rounds. Let the set of anchors be I . If an edge is in I , we label its ports by either q or its mirror q′
arbitrarily (breaking symmetry with unique identifiers). We are left with the gaps, which can be of size between k − 1 and 
2k (anchoring is maximal). As q is mirror-flexible, for each gap of size g ≥ k − 1 we can find a returning walk of length 
exactly g +1 ≥ k and fill the gap no matter the combinations of anchors (q � q′ , q � q, q � q′ or q′ � q′). Finally, in a path 
we will fix the ends. �
6.3. Solvability

In this part, we consider the solvability of an LCL problem. That is, for a given graph class G (the set of all cycles of 
every length or the set of paths of every length), how many graphs G ∈ G are solvable instances (instances that admit a 
legal labeling) with respect to the given LCL problem �.

Theorem 6.13. Let � be an LCL problem. If M� has a repeatable state, then the number of solvable instances is ∞.

Proof. Let q be a repeatable state, i.e., there is a walk q � q of some length 
. Now for every k ∈N , cycles of length k
 are 
solvable, as we can generate cycles of the form q � q � · · · .

In paths, by assumption q is reachable from some starting state s and we can reach some accepting state t from q; let h
be the length of a walk s � q � t . Now for every k ∈ N , paths of length h + k
 are solvable, as we can generate paths of 
the form s � q � q � · · · � q � t . �
Theorem 6.14. Let � be an LCL problem. If M� has a flexible state, number of unsolvable instances is at most C , where C is a 
constant.

Proof. Let q be a flexible state with flexibility k. All cycles of length n ≥ k are now trivially solvable, as we have a walk 
q � q of length n.

In paths, by assumption q is reachable from some starting state s and we can reach some accepting state t from q; let 
h be the length of a walk s � q � t . Now all paths of length n ≥ h + k are solvable, as we have a walk s � q � q � t of 
length n. �
Theorem 6.15. Let � be an LCL problem on cycles. If M� has a loop the number of unsolvable instances is zero.

Proof. As M� has a loop, returning walks of all lengths exists and all cycles can be labeled. �
Theorem 6.16. Let � be an LCL problem on cycles. If M� has does not have a repeatable state the number of solvable instances is 
zero.

Proof. Any legal labeling on cycles has to contain a repeatable state. �
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Theorem 6.17. Let � be an LCL problem. Assume M� does not have any flexible state. Then there are infinitely many unsolvable 
instances on cycles.

Proof. Let Q be the set of states of M� . Since no state is flexible in M� , by Lemma 5.3 we have gcd(Lq) > 1 for all q ∈ Q . 
Pick

b =
∏

q∈Q

gcd(Lq).

Now kb + 1 /∈ Lq for any q ∈ Q and any natural number k. Therefore it is not possible to use any state q in a cycle of length 
kb + 1, as a feasible solution in such a cycle would form a walk q � q of length kb + 1. Hence there are infinitely many 
unsolvable instances. �
Theorem 6.18. Let � be an LCL problem. Suppose M� does not have repeatable state. Then there are at most constantly many 
solvable instances.

Proof. Let Q be a set of states of M� . As M� does not have a repeatable state, all walks that can form legal labeling have 
to have length at most |Q |. So all paths of lengths n > |Q | are unsolvable instances. �
7. Extension to rooted trees

In the previous sections, we have presented a complete classification of all LCL problems on paths and cycles. Now we 
will demonstrate how to leverage these results (in particular, the classification of LCLs on directed paths) to also classify a 
family of LCL problems on rooted trees.

There is one obstacle to keep in mind: if the LCL problem can refer to e.g. the degrees of the nodes, then we can use the 
structure of the tree to encode input labels; and then the setting is at least as general as LCL problems on labeled paths, 
which implies that questions on locality are at least PSPACE-hard [1]. Hence to have efficient classification algorithms 
for rooted trees we need to choose a restricted family of LCL problems. We will here use edge-checkable problems as an 
example—as we will see, it is a broad enough family of problems to capture many interesting problems but restricted 
enough that we can still classify all such problems.

Edge-checkable LCL problems An edge-checkable LCL problem � on rooted trees consists of a finite set � of output labels and 
a set of constraints Cedge ⊆ � × � specifying the set of allowed ordered pairs of labels (λ(u), λ(v)) on the two endpoints u
and v of each edge, where u is the parent of v . For example, the vertex k-coloring problem is a (symmetric) edge-checkable 
LCL problem with � = {1, 2, . . . , k} and Cedge = {(a, b) ∈ � × � | a �= b}.

Any edge-checkable LCL problem � can be alternatively described in our formalism: � = (�, Cedge, Cnode, Cstart, Cend), 
where Cnode = {(a, a) | a ∈ �} and Cstart = Cend = �. Hence � can also be seen as an LCL problem on directed paths—in 
essence, � describes what are feasible label sequences when one follows any path from a leaf to the root. We claim that 
� has the same asymptotic round complexity on both rooted trees and directed paths, and hence our classification of LCL
problems on directed paths also applies to edge-checkable LCL problems on rooted trees:

Theorem 7.1. Let � be any edge-checkable LCL problem on rooted trees. Then � has the same asymptotic round complexity on both 
rooted trees and directed paths.

Proof. A directed path is a special case of a rooted tree, and hence lower bounds on directed paths automatically apply to 
rooted trees. The non-trivial part of the proof is to transform any given algorithm A for � on directed paths to an algorithm 
A′ for � on rooted trees with the same asymptotic round complexity.

Let the node with only one tail port be the first node in a directed path. We can assume that A is one-sided in the sense 
that the output label of v only depends on v and the nodes that precedes v in the directed path. To achieve that, we just 
need to shift the output labels by T nodes, where T is the runtime of A, and then assign the output labels of the first T
nodes of the directed path locally.

Given that A is one-sided, the algorithm A′ for � on rooted trees applies A to each root-to-leaf path simultaneously. 
Because A is one-sided, the output label of each node v only depends on v and its ancestors, and hence such a simultaneous 
execution is possible. The correctness of A′ follows from the correctness of A. �
Canonical algorithms for rooted trees Recall that any O (log∗ n)-round LCL problem � on directed paths can be solved in a 
canonical way as follows. Let q be any flexible state with flexibility k. We find a distance-k anchoring for the directed path, 
use q at the anchor points, and fill the output labels in the gaps.

The proof of Theorem 7.1 implicitly implies that any O (log∗ n)-round edge-checkable LCL problem � on rooted trees can 
be solved in a canonical way analogously based on the following variant of distance-k anchoring.
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Definition 7.2. A distance-k anchoring for a rooted tree T is a maximal subset of edges that splits the rooted tree into 
subtrees T1, T2, . . . , Ts satisfying the following conditions.

• The height of Ti is at least k − 1.
• If v is a leaf in Ti and a non-leaf in T , then the distance between the root of Ti and v equals the height of Ti .

Such a distance-k anchoring for a rooted tree T can be computed in O (log∗ n) rounds for k = O (1) as follows. Apply any 
one-sided O (log∗ n)-round algorithm for computing a distance-k anchoring for directed paths on each root-to-leaf path of 
T , shift down the output labels by O (k) nodes, and finally split the large (possibly unbalanced) subtree near the root as 
appropriate.

8. Discussion

We have seen that questions about the solvability of LCLs in paths are closely related to classical automata-theoretic 
questions, as we can directly interpret a path as a string. Our work on LCLs in cycles can be then seen as an extension 
of classical questions to cyclic words. In particular, we see that an automaton “accepts” all but finitely many cyclic words if 
and only if there is a flexible state in the automaton, or equivalently if a D3-directing word exists for a strongly connected 
component of the automaton. Our work shows that all such questions on cyclic words can be decided in polynomial time, 
even if their classical non-cyclic analogs are in some cases co-NP-complete.

As we saw in Section 7, our approach can be extended to the study of LCLs beyond unlabeled paths and cycles. There 
are two main open questions after our work:

1. What is the largest family of LCL problems in rooted trees for which round complexity can be decided in polyno-
mial time? We now know that edge-checkable LCL problems can be characterized efficiently, while the general case is 
PSPACE-hard.

2. Is the round complexity of all LCL problems on rooted trees decidable? What about unrooted trees? For LCL problems 
on bounded-degree trees, we know that it is decidable to distinguish between the complexity pairs O (logn) – n�(1) and 
O (n1/(k+1)) – �(n1/k) for any constant k ≥ 1 [6,14,16], but the general question for deciding the round complexity of LCL
problems on trees is still widely open.

Recent follow-up work Subsequent to this work, the round complexity of LCL problems in the case of rooted and unrooted 
regular trees was studied in [2,5,10], and we now know that the complexity of LCL problems in regular rooted trees is 
decidable. The above two questions still remain open in general. In particular, the decidability in unrooted regular trees is 
still an open question.
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dmlcz /126647.

[14] Yi-Jun Chang, The complexity landscape of distributed locally checkable problems on trees, in: Proc. 34th International Symposium on Distributed 
Computing (DISC 2020), vol. 179, 2020, pp. 18:1–18:17.

[15] Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, An exponential separation between randomized and deterministic complexity in the local model, SIAM 
Journal on Computing 48 (1) (2019) 122–143, https://doi .org /10 .1137 /17M1117537.

[16] Yi-Jun Chang, Seth Pettie, A time hierarchy theorem for the LOCAL model, SIAM Journal on Computing 48 (1) (2019) 33–69, https://doi .org /10 .1137 /
17M1157957.
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