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We study the mass transport dynamics of an adsorbed layer near a discontinuous incommensurate striped-
honeycomb phase transition via numerical simulations of a coarse-grained model focusing on the motion of
domain walls rather than individual atoms. Following an initial step profile created in the incommensurate striped
phase, an intermediate hexagonal incommensurate phase nucleates and grows, leading to a bifurcation into two
sharp profiles propagating in opposite directions as opposed to broad profiles induced by atomic diffusive motion.
Our results are in agreement with recent numerical simulations of a microscopic model as well as experimental
observations for the Pb/Si(111) adsorbate system.
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I. INTRODUCTION

Recently, there have been extensive studies of both the
statics and dynamics of the Pb/Si(111) system [1–3]. At equi-
librium, the system can exist in a striped incommensurate (SI)
phase with stripes of domain walls separating commensurate
domains, as well as in a hexagonal incommensurate (HI)
phase with a hexagonal pattern of domain walls [3]. In growth
processes, the system displays spontaneous self-organization
and height selection of Pb islands beyond the monolayer
regime. The most striking feature of this system is that the
observed rate of island growth implies a rate of mass transport
orders of magnitude faster than that from the usual atomic
diffusion mechanism [2–4]. Theoretical models [5–7] indicate
that domain-wall motion in an incommensurate phase can
provide the basic mechanism for such fast dynamics. This
anomalous fast mass transport dynamics was subsequently
confirmed in another experimental study following the refilling
of a hole region in the adsorbate layer in real time [8]. The
results also showed an unexpected bifurcation of the initial
step profile into two sharp fronts, with a hexagonal phase in
between, propagating in opposite directions at a speed much
faster than that due to simple atomic diffusion.

Previously, we performed a molecular dynamics (MD)
simulation [7] study of an atomistic model that admits both
the SI and HI phases. We found that for an initial step profile
separating a bare substrate region (or a hole) from the rest of
the SI phase, the domain-wall dynamics leads to a bifurcation
of the initial step profile into two interfaces propagating in
opposite directions at a superfast speed with a HI phase in
between, in agreement with the experimental observation on
the Pb/Si(111) system [8]. This theoretical study indicates that
there are two central ingredients for the observed anomalous
superfast mass transport mechanism with profile bifurcation.
The first is the existence of a discontinuous transition between
two incommensurate phases such as the SI and the HI phases
corresponding to different coverages. The second is the ability
of the SI phase to transform itself rapidly into the HI phase near
the boundary of the two phases, and the ultrafast domain-wall
dynamics in the HI phase with a negligible Peierls pinning

barrier. However, the simulation study was limited to relatively
small system sizes and short time scales when compared to the
experimental systems, and the propagating fronts observed in
the simulation studies was not as sharp as the experimentally
observed. To overcome the system size and time scale limits
and clarify the basic physics behind the observed anomalous
mass transport mechanism like the one observed for Pb/Si(111)
system, we consider in this work a simple continuous density
field description of a strained overlayer by the phase field
crystal (PFC) model [9]. Unlike the conventional PFC model,
which retains density variation at microscopic atomic length
scales, here we employ a coarse-grained PFC model where
the fundamental length scale corresponds to the separation
between the domain walls. Thus the origin of the formation
of domains and domain walls due to the competition of lattice
mismatch strain energy and the adsorbate-substrate binding
energy do not appear explicitly in the model. Instead, a periodic
array of domains in the incommensurate phase is built into the
model via a preferred length scale that corresponds to the
separation between the domain walls. This model allows for
both an SI and a honeycomb incommensurate (HoI) phases.
There is a discontinuous transition between the SI and the HoI
phases. This will lead to the bifurcation of the propagating
fronts just as that observed in the Pb/Si(111) system [8]
resulting from the discontinuous SI-HI transition. The PFC
model also has negligible conversion barriers between the SI
and HoI phases as well as that for the Peierls barrier for the
HoI model, which are the other ingredients for the anomalous
mass transport mechanism. The main advantage of this simple
coarse-grained model is that it allows us to study much larger
system sizes and get a clear qualitative physical picture of the
mass transport mechanism in these systems.

II. COARSE-GRAINED PHASE-FIELD CRYSTAL MODEL

The long-time dynamics of the adsorbed overlayer in the
incommensurate phase is essentially controlled by the nature
and interaction of the topological defects that characterize
such a phase, which consist of an array of interacting domain
walls forming the SI, HI, or HoI phases. To model such
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topological defects in the simplest way, we use a phase-field
description, where the physically relevant continuous density
field is the adsorbed layer coverage. Phase-field models are
based on free-energy functionals, which are constructed by
considering symmetries and conservation laws [10]. In order
to take into account the structural changes of the domain-wall
structure of the adsorbed layer, we follow the approach of the
two-dimensional phase-field crystal model [9], described by
the free-energy functional

F =
∫

dxdy

{
1

2
r(ρ − ρo)2 + 1

2
(ρ − ρo)

(∇2 + q2
0

)2
(ρ − ρo)

+ 1

4
(ρ − ρo)4 − ρ V (x,y)

}
, (1)

where ρ(x,y) is the density field, r < 0 and qo are effective
dimensionless parameters, and ρo is a dimensionless reference
density. For convenience, we set ρo = 1 and qo = 1. The
fundamental length scale is set by 2π/q0 which corresponds to
the spacing between domain walls. The last term represents a
pinning potential V (x,y). Unlike the conventional PFC model
[9], where the density field corresponds to the atomic density
coarse grained over vibrational time scales, we consider the
present model as described in Eq. (1) as a coarse-grained de-
scription of the overlayer, which averages out spatial variations
at the microscopic scales, but incorporates the domain-wall
patterns. The domain walls are light (heavy) for a compres-
sively (tensile) strained adsorbate layer. Correspondingly, for
a compressively strained system the regions near maxima in
the phase field ρ(x,y) correspond to a commensurate domain,
whereas the region around the minima of the density constitute
the domain walls. For a tensile strained overlayer, we just
need to reverse the interpretation of the maxima and minima
of the density as domain walls and commensurate domains,
respectively. Note that in this interpretation of the model, there
is no atomic spatial resolution, but only the spatial resolution
of the domain-wall structure. It does incorporate the essential
ingredient for fast mass transport with profile bifurcation,
which is the existence of a structural phase transition with
discontinuity in the density. Just as in the standard PFC model
[9], the model of Eq. (1) displays a first-order transition
between the SI and HoI phases with light (heavy) domain
walls for decreasing (increasing) density.

The main assumption for the dynamics is that the density
field ρ(x,y,t) should evolve in time in a way that reduces the
total free energy F . Since density field is conserved, it satisfies
the continuity equation

δρ

∂t
= −∇ · �J , (2)

where the current density is given phenomenologically by

�J = −�∇ ∂F

∂ρ
, (3)

where � is a kinetic coefficient setting the fundamental time
scale for the domain-wall motion. This should be orders of
magnitude smaller than the atomic diffusion time scale at
low temperatures since it is controlled by the relatively small
Peierls energy barrier [11] pinning the domain walls and
governing the conversion of the SI phase to the HoI phase,
rather than the corrugation of the adsorption potential which

FIG. 1. Phase diagram showing the striped incommensurate
phase (SI), honeycomb incommensurate phase (HoI), and the co-
existence region (dark area) in the range ρh < ρ̄ < ρs . L corresponds
to a uniform phase without domain-wall patterns.

controls atomic diffusion. Due to the discontinuous transition
described by Eq. (1), the dependence of the current density �J
on the density field ρ does not follow, in general, the usual Fick’
s law �J = −D∇ρ. This is consistent with the behavior found
in the experiments for Pb/Si(111), which has been argued [8] to
imply an apparent anomalous diffusion. From Eqs. (2) and (3),
the time evolution of ρ is then described by the Cahn-Hilliard
dynamic equation [12]

∂ρ

∂t
= �∇2 ∂F

∂ρ
. (4)

III. NUMERICAL RESULTS

The time evolution was determined by numerical integra-
tion of the dynamical equation, Eq. (4), on a uniform square
grid of size Lxdx × Lydy with dx = dy = π/4 and Lx =
Ly = 256 − 512, and time steps dt = 0.05 − 0.1. Figure 1
shows a portion of the phase diagram near the SI to HoI
phase transition as a function of the average density ρ̄ [for
V (x,y) = 0] for the light domain-wall case. In the range
ρh < ρ̄ < ρs , the honeycomb and striped phases coexist while
for ρ̄ < ρh and ρ̄ > ρs , the equilibrium phases correspond to
the HoI and SI phases, respectively, as shown in Fig. 2. For
small |r| or small ρ̄, there is also a uniform phase without
domain-wall patterns, which is of no interest here. The time
evolution of an initial state with a density profile containing
a hole with a lower density (ρ < ρh) will be different for an
initial SI or a HoI phase. For an initial SI phase, the decrease in
the average density after creating the hole can bring the system
near or into the coexistence region. If the average density ρ̄

after the creation of the hole is in the range ρh < ρ̄ < ρs ,
then an HoI region centered at the hole can coexist with the
remaining SI phase at long times. For an initial HoI phase,
however, the decrease in the density moves the system further
away from the coexistence region and there is just a spreading
of the density without an expanding interface, following the
creation of a hole, eventually tending to a uniform profile.

We will consider in detail an initial state in the SI phase
when the density is higher but close to the coexistence phases
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FIG. 2. Domain-wall patterns corresponding to the (a) honey-
comb incommensurate phase and (b) striped incommensurate phase.
The dark areas correspond to domain-wall regions where the phase
field ρ(x,y) is closest to its minimum value.

boundary ρs . From now on we set the parameter r = −0.1. In
Fig. 3 we show snapshots of the density field for increasing
times when a hole with local density ρ < ρh is created in an
initial striped phase such that the average density ρ̄ after the
creation of the hole is still higher than ρs . An intermediate HoI
phase starts to nucleate around the edge of the hole and grows
with time, leading to a bifurcation of the initial step profile at
edge into two profiles propagating in opposite directions. The
outward front corresponds to a SI-HoI interface, where the
local stripe pattern is converted into a honeycomb pattern,
while the inwards front is a step edge refilling the hole.
However, the resulting HoI region decays back into a SI phase
for sufficiently long times [Figs. 3(e) and 3(f)]. As shown in
Fig. 4, the time evolution of the radius of the expanding circular
interface depends on the density of the initial striped phase,
being faster for an initial density closer to the SI-HoI phase
boundary, ρs , of the coexistence region in the phase diagram
of Fig. 1.

For comparison, in Fig. 5 we show the time evolution, in
the same time interval, when the average density after the
introduction of the hole is within the coexistence range, ρh <

ρ̄ < ρs . Here the HoI region centered at the hole remains at
long times.

The nucleation and growth of the intermediate HoI phase
in Fig. 3 and the time evolution of the radius of the expanding
HoI-SI interface in Fig. 4 are qualitatively consistent with MD
simulations of an atomistic model [7] and with experimental
observations for the Pb/Si(111) system [8]. A sign of the
decay of the HoI region at long times could be the partial
recovery of density in the hexagonal phase found in the
experiment. For this system, the boundary of the coexistence
region between HoI phase and SI phase, at coverage values
ρh and ρs in Fig. 1, should correspond to the experimentally
observed discontinuous jump at the hexagonal-stripe phase
boundary between coverage θ ≈ 1.26 monolayers (MLs) and
θ ≈ 1.28 MLs. In this system, fast dynamics are observed
experimentally at lower coverages, as long as it exceeds some
critical value, θc ≈ 1.24 MLs. The existence of this lower
critical coverage for this system is most likely due to the
existence of other commensurate phases at or slightly above
coverage [1] 1.2 MLs. This is beyond the scope of our simple
model, which focuses only on the SI and HoI phases near a

FIG. 3. Snapshots of the density field when a “hole,” namely,
a circular region of radius R = 40dx (white circle) with an average
density ρ̄ = 0.6 < ρh, is introduced in the stripe phase, for increasing
times: (a) t = 0, (b) t = 6, (c) t = 9, (d) t = 21, (e) t = 78, and (f)
t = 126 in units of 4.8 × 105dt . The initial striped phase has an
average density of ρ̄ = 0.98 and ρ̄ = 0.951 after introduction of the
hole.

FIG. 4. Radius of the expanding SI-HoI interface as a function of
time (in units of 4.8 × 105dt) for initial stripe phases with different
average densities ρ̄, for a hole of radius R = 20dx.
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FIG. 5. Snapshots of the density field for increasing times when
the average density after introducing a hole with density ρ̄ = 0.8 is
inside the coexistence region. The average density of the initial striped
phase is ρ̄ = 0.945, and ρ̄ = 0.934 after the introduction of the hole.
(a) t = 4, (b) t = 21, and (c) t = 126 in units of 4.8 × 105dt .

single commensurate phase at a slightly higher coverage than
the SI/HoI boundary. Other more microscopic models [5,6]
can account for this critical coverage as a competition between
the lattice mismatch strain energy and the adsorbate-substrate
binding energy for increasing coverage.

In the refilling experiment for Pb/Si(111) [8], the hole is
not empty. There is an initial density corresponding to a tightly
bound layer of low coverage (1/3 monolayer β phase) in the
hole, which is only partially equilibrated. To mimic the effect
of this partially equilibrated layer, we allow for a random,
quenched pinning potential V (x,y) in Eq. (1) localized only
inside the hole. We take the simplest model for the random
potential, defined by the correlations

〈V (x,y)V (x ′,y ′)〉 = 	2δ(x − x ′)δ(y − y ′), (5)

where 	 is a measure of the strength of the disorder. As
shown in Fig. 6, disorder inside the hole leads to a distorted
honeycomb phase inside the hole with structural defects. For
holes of sufficiently larger sizes, this should correspond to
an amorphous glassy phase even for weak disorder strength
[13]. Such a phase corresponds to the disordered phase around
the inner refilling edge observed experimentally [8]. This

FIG. 6. Snapshots of the density field with quenched disorder
inside the hole for increasing times: (a) t = 5, (b) t = 8, (c) t = 21, (d)
t = 42, (e) t = 72, and (c) t = 126 in units of 4.8 × 105dt . Average
density of the initial striped phase is ρ̄ = 0.98, and ρ̄ = 0.943 after the
introduction of the hole with density ρ̄ = 0.5. The disorder strength
here is 	 = 0.08.

leads to a static hexagonal-amorphous interface between the
two profiles propagating in opposite directions. However, the
hexagonal intermediate phase decays back into the SI phase for
sufficiently long times [Fig. 6(f)]. Interesting enough, the
amorphous phase inside the hole still remains at such long
times.

IV. SUMMARY AND CONCLUSIONS

In this work, we have presented numerical results based
on an appropriately coarse-grained PFC model to illustrate
the basic physics behind bifurcation of the initial coverage
profile in the fast mass transport mechanism observed ex-
perimentally [1–3,8] for the Pb/Si(111) adsorption system.
The new model is similar to the traditional PFC model [9],
but the interpretation of the phase field and the fundamental
length scale are different. It focuses on the domain-wall
pattern and not the density variation inside the commensurate
domains at a microscopic scale. It shares with the conven-
tional PFC model the advantage that numerical work can be
performed for system sizes orders of magnitude larger than
in microscopic MD simulation studies [7]. Our results for
the mass transport mechanism are qualitatively similar to the
previous MD work of an atomistic model [7]. Taken together,
they clearly demonstrate that the essential ingredient for the
mass transport with a bifurcation of the initial profile is the
presence of two incommensurate phases with a first-order
transition between the two incommensurate phases involving
a discontinuity in the coverage. In the work presented here,
the two incommensurate phases involved are the SI phase
and the HoI phase, but qualitatively it has the same feature
as the SI-HI phase transition in the Pb/Si(111) adsorption
system. This mass transport mechanism is fast because the
HI and the HoI phases have negligible Peierls pinning barriers
while the conversion of the SI phase to the HI or HoI phase
near the phase transition boundary also involves barriers much
lower than those for atomic diffusion. The SI-HI transition
corresponds to the Pb/Si(111) adsorption system [3] and many
heteroepitaxial metallic overlayers [14], while the SI-HoI
transition occurs for a system such as Xe/Pt(111), Xe/graphite,
and Kr/graphite [15]. In these cases, the commensurate state is
a (

√
3 × √

3)R30◦ phase, which can undergo a transition into
the SI phase and then to the HoI phase [16,17]. Our results
here demonstrate that the phenomena of fast mass transport
should not be just confined to the Pb/Si(111) system alone, but
is expected to be a general feature for a wide class of surface
adsorption systems under appropriate conditions.
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