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Abstract 

Background: DNA methylation plays an important role in studying the epigenetics of 
various biological processes including many diseases. Although differential methyla-
tion of individual cytosines can be informative, given that methylation of neighboring 
CpGs are typically correlated, analysis of differentially methylated regions is often of 
more interest.

Results: We have developed a probabilistic method and software, LuxHMM, that uses 
hidden Markov model (HMM) to segment the genome into regions and a Bayesian 
regression model, which allows handling of multiple covariates, to infer differential 
methylation of regions. Moreover, our model includes experimental parameters that 
describe the underlying biochemistry in bisulfite sequencing and model inference is 
done using either variational inference for efficient genome-scale analysis or Hamilto-
nian Monte Carlo (HMC).

Conclusions: Analyses of real and simulated bisulfite sequencing data demonstrate 
the competitive performance of LuxHMM compared with other published differential 
methylation analysis methods.

Keywords: Methylation, Bisulfite sequencing, Probabilistic, HMM

Background
DNA methylation is an important epigenetic modification associated with many bio-
logical processes including various diseases. In promoters, DNA methylation tends to 
repress gene expression whereas in intragenic locations they tend to upregulate expres-
sion [1]. Bisulfite sequencing, whether whole genome (WGBS) or reduced representa-
tion (RRBS) bisulfite sequencing, allows for interrogation of DNA methylation at the 
level of individual CpGs. Moreover, decreasing costs of sequencing have increased the 
use of these methods. DNA methylation are often studied by analyzing differentially 
methylated loci (DML) or regions (DMR). Although single differentially methylated 
CpGs are informative, often DMRs are of more interest [2]. Further, analyzing the com-
bined methylation differences of CpGs within regions increase the statistical power of 
differential methylation detection.
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Given such interest in DMRs, several methods have been developed for identifying 
them (Table  1). RADMeth uses the beta-binomial regression method in handling com-
plex experimental designs [3]. Beta-binomial regression is used to individually fit sin-
gle cytosines and then measures the significance of differential methylation using the 
log-likelihood ratio test between the full and reduced models which generates p-values. 
To combine information from neighboring cytosines into regions it transforms p-values 
using the weighted Z-test which then determines which cytosines are combined into 
regions using an FDR threshold. A method called metilene first recursively segments 
the genome into regions using the circular binary segmentation algorithm which gen-
erates regions that maximizes the difference of CpG-wise mean methylation levels [4]. 
Then, it calculates p-values using a version of the Kolmogorov–Smirnov test which tests 
the significance of potential DMRs. HMM-DM uses hidden Markov model (HMM) to 
segment the genome into regions and Bayesian methods to infer model parameters. 
It then uses MCMC to compute the posterior probability of each state: hypermethyl-
ated, equally methylated or hypomethylated. To identify DMRs, it joins hypermethyl-
ated or hypomethylated CpGs into regions. In DMRcate, standard linear modelling is 
performed using limma which generates a signed statistic for measuring the difference 
between treatment effects per CpG site [5]. The square of this value is then applied to 
a Gaussian smoother. It then uses an approximation that generates a value for which a 
p-value is computed by comparison to a chi-square distribution. Individual sites below 
a given p-value threshold are selected and grouped into regions that are separated by, at 
most, a threshold number of nucleotides. DSS models the methylation counts by a beta-
binomial distribution with an arcsine link function and fits the transformed methylation 
levels with a generalized least squares procedure from which it obtains estimates of the 
model coefficients at each CpG site [6]. Hypothesis testing is performed using Wald test 
on the coefficient estimates. After detection of statistically significant CpG sites, DSS 
merges nearby loci into regions.

LuxGLM [7] and LuxUS [8] use extended versions of generalized linear model (GLM) 
to analyze methylation data with complex experimental designs and incorporate esti-
mation of experimental parameters that describe the underlying biochemistry in meth-
ylation sequencing data. LuxGLM uses matrix normal distribution to handle multiple 
methylation modifications. LuxUS uses a generalized linear mixed model (GLMM) to 
analyze cytosines within a genomic window simultaneously. To analyze the spatial cor-
relation of cytosines it uses a random effect correlation structure. It also analyzes the 

Table 1 Methods comparison

Method Methylation model Algorithm for CpG correlation

RADMeth Beta-binomial Weighted Z-test

Metilene Kolmogorov–Smirnov Circular binary segmentation

HMM-DM Bayesian HMM HMM

DMRcate Linear Gaussian (limma) Kernel smoothing

DSS Beta-binomial Smoothing via moving average

LuxUS Bayesian GLMM Random effect correlation structure

LuxHMM Bayesian GLM HMM
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variation of individual replicates using a replicate random effect. Features of previous 
methods as well as the proposed method, LuxHMM, are contrasted in Table 1.

Implementation
Bisulfite sequencing data consists of DNA where unmethylated cytosines are converted 
into uracil by bisulfite treatment and sequenced as thymine to differentiate it from meth-
ylated cytosine which are not converted and sequenced as cytosine.

A commonly used methylation level estimate is obtained by taking the ratio of meth-
ylated cytosine to the sum of methylated and unmethylated cytosine, µ = NBS,C/NBS . 
To infer differential methylation, the methylation levels between groups are compared. 
Hypermethylation occurs when the methylation level for a comparison (or treatment) 
group is generally higher compared to a reference (or control) group, and hypometh-
ylation when it is lower. We are interested in modeling methylation levels and differ-
ential methylation across T cytosines c1, c2, . . . , cT . Differentially methylated regions are 
often of more interest than single cytosines due to their combined effect compared to 
the individual effect of a single cytosine. A methylated region C consists of consecutive 
CpGs ct s that are hypermethylated, hypomethylated or have equal methylation ( Mj ), 
C = {ct | ct ∈ Mj} . A region is differentially methylated when it is either hypermethyl-
ated or hypomethylated.

Our method consists of two modules: (1) genome segmentation via HMM, and (2) 
estimation of methylation levels and inference of differential methylation using Bayes-
ian GLM. In inference of differential methylation, significance of explanatory variable is 
measured by Bayes factors.

Genome segmentation via HMM

To extract regions from a sequence of cytosines, we use hidden Markov model (HMM). 
HMM is a statistical model that infers a sequence of hidden states from a sequence of 
observations. In this work, the hidden states x are the methylation states, specifically: (1) 
hypermethylation, (2) hypomethylation, and (3) equal methylation between two groups. 
For each cytosine, the observations y are the differences in the mean methylation levels 
between groups, y = µ1 − µ2 , where µ1 is the mean methylation level for one group and 
µ2 for another.

HMM is parameterized by two distributions: the observation emission probabilities 
and the state transition probabilities (Fig.  1). The observation emission probabilities, 
P(yt |xt) , give the probability of observing y at cytosine position t given the underly-
ing hidden state xt , i.e. the probability of observing the differences in methylation lev-
els between two groups given the underlying methylation states Mj (hypermethylation, 
hypomethylation or equal methylation). The state transition probabilities, P(xt |xt−1) , 
give the probability of hidden state xt−1 moving to xt in a sequence, i.e. the probability 
of moving from one methylation state to another (or remaining the same) between two 
consecutive CpGs.

For a given hidden state sequence X = x1, x2, . . . , xT and observation sequence 
Y = y1, y2, . . . , yT , the observation sequence likelihood is
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It is straightforward to compute the joint probability of a given sequence of methylation 
states and a sequence of observed methylation differences

The total probability of the observed methylation differences can then be obtained by 
summing over the hidden states

With these definitions we can select the hidden state sequence that maximizes the 
observation likelihood. However, this is infeasible due to the high number of possible 
state sequences. Instead a dynamic programming algorithm like the Viterbi algorithm 
recursively computes vt(j) which denotes the probability of being in state j given the 
observations for the first t cytosines. For a given state xj at cytosine position t, vt(j) is 
computed by

where vt−1(i) is the previous Viterbi path probability from the previous time step, aij is 
the transition probability from previous state xi to current state xj and bj(yt) is the emis-
sion probability of the observation yt given state j [9].

To learn the most likely transition, A = {aij} , and emission, B = {bj(yt)} , probabili-
ties and initial state distribution πi = P(X1 = i) , the Baum-Welch algorithm, another 
dynamic programming algorithm, finds a (local) maximum of η∗ = argmaxηP(Y | η) , 
where η = (A,B,π) , using the expectation-maximization (EM) algorithm [10].

P(Y |X) =

T

t=1

P(yt |xt).

P(Y ,X) = P(Y |X)P(X) =

T∏

t=1

P(yt |xt)

T∏

t=1

P(xt |xt−1).

P(Y ) =
∑

X

P(Y ,X) =
∑

X

P(Y |X)P(X).

vt(j) = maxivt−1(i)aijbj(xt)

Fig. 1 Diagram of emission and transition probabilities. The top-most row (C) indicates the cytosine position, 
the second row (X) denotes the hidden methylation states and the bottom row (Y) represents the observed 
differences in methylation levels between groups. A denotes the state transition probabilities and B the 
observation emission probabilities
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In this work we use pomegranate, a Python package that implements probabilistic 
models, including HMMs [11]. The model is initialized with state and transition prob-
abilities. We assume the emission distributions follow a Gaussian distribution N (ψ , σ) , 
where ψ and σ are set to 0 and 0.08 (equal methylation), 0.3 and 0.06 (hypermethylation) 
and −0.3 and 0.06 (hypomethylation). The transition probabilities were optimized using 
the Baum-Welch algorithm using the initial values shown in Additional file 1: Section 1

To determine the most likely sequence of hidden states, i.e. the sequence of methyla-
tion states, we use the Viterbi algorithm implemented in the package. To learn the most 
likely emission and transition probabilities given the sequence of observations we use 
the Baum-Welch algorithm, also supported by pomegranate. After learning the hid-
den methylation states, adjacent cytosines with the same methylation state are com-
bined into regions, as well as the total read counts NBS

ir =
∑Wir

k=1N
BS
irk , where k is the kth 

CpG in Cir and Wir = |Cir | is the number of consecutive CpGs with the same methyla-
tion state in the ith sample and the rth region and, similarly for methylated read counts, 
NBS,C
ir =

∑Wir

k=1N
BS,C
irk .

Estimation of methylation levels and differential methylation

We briefly review the underlying statistical model for the experimental parameters [7]. 
Experimental parameters that define the underlying biochemistry in bisulfite sequenc-
ing should be considered in estimation of methylation levels. Bisulfite conversion rate 
( BSeff ), sequencing error ( seqerr ) and incorrect bisulfite conversion rate ( BS∗eff ) can sig-
nificantly affect methylation estimates. Low BSeff causes overestimation of methylation 
levels whereas high BS∗eff results in underestimation. On the other hand, high seqerr can 
lead to either overestimation or underestimation.
BSeff can be estimated by using the lambda phage genome. Since the lambda phage 

genome is unmethylated, BSeff can be estimated by taking the ratio of all cytosine reads 
converted into thymine over the total number of reads. Similarly, BS∗eff can be estimated 
with spike-ins of oligonucleotides where all the cytosines are methylated. On the other 
hand, seqerr can be estimated using Phred scores Q by converting them to base-calling 
error probabilities P = 10

−Q
10 .

Given the above definitions, BSeff  , BS∗eff  and seqerr determine the conditional prob-
ability of a sequencing readout being “C”, given that the cytosine is methylated or 
unmethylated (Fig.  2). Specifically, since BSeff  is the probability of an unmethylated 
cytosine being converted into uracil, 1− BSeff  is the probability of an unmethylated 

Fig. 2 Probability tree of observing “C” readout when the true methylation state is methylated or 
unmethylated
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cytosine incorrectly not converted into uracil. If an unmethylated cytosine is correctly 
converted into uracil it still has seqerr probability of being incorrectly sequenced as 
“C”. Whereas, if it is incorrectly not converted to uracil and remains a cytosine, it 
has 1− seqerr probability of being correctly sequenced as “C”. Put together, the condi-
tional probability of sequencing “C” given the cytosine is unmethylated is

On the other hand, if a cytosine is methylated, the probability that it is correctly not 
converted to uracil is 1− BS∗eff and the probability that it is correctly sequenced as “C” 
is 1− seqerr . The probability that the unmethylated cytosine is incorrectly converted to 
uracil and incorrectly sequenced as “C” are, respectively, BS∗eff and seqerr . Thus, the con-
ditional probability of sequencing “C” given the cytosine is methylated is

Thus far we have described individual cytosines. However, this description can be gener-
alized to DNA regions. Let θ ∈ [0, 1] represent the unknown fraction (or probability) of 
methylated DNA. Following Eqs. 1 and 2, the probability of observing “C” readouts for a 
given region is pBS(“C′′) = pBS(“C

′′|5mC)θ + pBS(“C
′′|C)(1− θ) . Finally, the total num-

ber of “C” readouts is binomially distributed,

where NBS is the total number of reads. See Fig. 3 for the plate diagram of the model.
To incorporate complex experimental designs to the model, we simplify the method 

proposed in [8] by doing away with the spatial correlation component and use gener-
alized linear regression,

(1)pBS(“C
′′|C) = (1− BSeff )(1− seqerr)+ BSeff seqerr.

(2)pBS(“C
′′|5mC) = (1− BS∗eff )(1− seqerr)+ BS∗eff seqerr.

(3)NBS,C ∼ Bin(NBS, pBS(“C
′′)),

Fig. 3 Plate diagram of the LuxHMM model for analyzing experimental parameters and methylation levels. 
The circles represent latent (white) and observed (gray) variables and the unbordered nodes represent 
hyperparameters and constant values
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where b ∈ R
Np (where Np is the number of covariates, possibly including the intercept) is 

the vector of regression coefficients, D ∈ R
N×Np is the design matrix, and Y ∈ R

N . The 
values of the hyperparameters are σ 2

B = 15 , αE = 5 , and βE = 5 , and were taken from 
[8]. We apply this model to regions instead of single CpGs to speed up computation. 
Finally, we use the sigmoid link function

The model is implemented using the probabilistic programming language Stan [12], and 
model inference is done using either Hamiltonian Monte Carlo (HMC) or automatic dif-
ferentiation variational inference (ADVI) for faster estimation of the model parameters 
[13], both built-in features of Stan. Stan uses a locally adaptive version of dynamic HMC 
sampling. In variational inference (VI) the posterior p(φ|D) of all unknowns φ given 
observed data D is approximated with a simpler distribution q(φ; ρ) , which is selected 
from a chosen family of distributions by minimizing divergence between p(φ|D) and 
q(φ; ρ).

To detect differential methylation w.r.t. any of the Np covariates in D , hypothesis test-
ing was done using Bayes factors via the Savage-Dickey density ratio method as imple-
mented in [7].

Results
To demonstrate the performance of LuxHMM and how well it performs compared to 
other methods, we analyze real and simulated BS-seq datasets. The first dataset is a 
simulated dataset based on real BS-seq data. The second is a simulated BS-seq dataset 
generated using a general experimental design. Lastly, we use a real BS-seq dataset with 
confounding covariates. We compare the performance of LuxHMM with RADMeth, 
metilene, HMM-DM, DMRcate and DSS.

Comparison of performance on simulated dataset based on real BS‑seq data

To assess the accuracy of our method compared to other published methods we used a 
simulated dataset by [14]. Bisulfite sequencing data was obtained from real CpG islands 
which allowed variance and correlation to be incorporated into the simulated dataset. 
The dataset was derived from 12 individuals which were divided into 6 controls and 6 
cases. The dataset was divided into two sets wherein 10,000 DMRs were incorporated 
into one set. Methylation counts were added to or substracted from the case samples so 
that the methylation differences were 0.1, 0.2, 0.3 or 0.4.

In LuxHMM, either all regions or only candidate hypo- and hypermethylated regions, 
as classified by HMM, were used as input in determining DMRs. Parameter settings for 
competing methods are described in Additional file 1: Section 2.

The area under the receiver operating curve (AUROC) and the average precision (AP), 
to handle the imbalance in the dataset given that there are much more negative than 
positive samples, were computed (Table  2). For AP, the baseline is 0.11 which is the 

b ∼ N (0, σ 2
b
I)

σ 2
E ∼ Gamma(αE ,βE)

Y ∼ N (Db, σ 2
E ),

θ = σ(Y).
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fraction of the number of true positives over the total number tests. True positives are 
differentially methylated cytosines whereas negatives are non-differentially methylated 
cytosines. In all methods, cytosines which are not covered by the returned regions are 
given a score of zero. The highest AUROC and AP were generated by LuxHMM used 
with all regions. The higher recall suggests that the state assignment of HMM misses 
differentially methylated regions which are inaccurately classified as regions with equal 
methylation between two groups. This also demonstrates that LuxHMM more accu-
rately detects DMRs compared to the other methods used. Another notable result is that 
DMRcate has a relatively high AUROC and a low AP. This could be caused by a high 
false positive rate which is masked in AUROC due to a high number of true negative 
samples. As true negative samples are excluded in the computation of AP, the high false 
positive rate results in a low AP.

Alternative emission probabilities

To test the sensitivity of the proposed model to different emission distribution param-
eters, we tested various parameter values on the [14] dataset using all regions. Table 3 
shows that the model is not sensitive to different values of standard deviation but is sen-
sitive to the means, with the highest AP when using means −0.3 and 0.3.

We also tested using five hidden states with two hidden states each for the hypo- and 
hypermethylated regions (Table   4). The AUROC and AP are, respectively, 0.946 and 
0.844, indicating that increasing the number of hidden states from three to five does not 
increase accuracy.

When not specifying the emission distributions and letting pomegranate instead esti-
mate the emission distributions we obtain a higher AUROC and a lower AP (Table  5). 
We prioritize AP as it takes into account the imbalanced dataset. Genome segmentation 
was based on Fig. 4. For three hidden states, we used s1 as candidate hypo- and hyper-
methylated states (with s0 and s2 as states with no difference between groups), whereas 
with four hidden states we used s1 and s2 as candidate hypo- and hypermethylated states 
(with s0 and s3 as states with no difference between groups). In computing AUROC and 
AP we used either all hidden states (including state with no difference between groups) 
or just candidate hypo- and hypermethylated states.

Comparing beta‑values and M‑values

We used the beta-value representation for methylation levels as they allow a more 
intuitive interpretation. However, the emission distributions used for the beta-values 
are normal distributions which are better suited with the support of M-values which 
is the set of real numbers. As such, we tested the method using M-values instead of 
beta-values for analyzing the dataset from [14] using as input candidate hypo- and 
hypermethylated regions. For the mean values of the emission distribution we used 
values that are roughly equivalent to a methylation difference of −0.3 and 0.3 to be 
comparable with the analysis using beta-values (Table  6). The highest AUROC and 
AP generated were obtained using means −1.2 (hypomethylated) and 1.2 (hypermeth-
ylated) and −1.7 and 1.7, respectively. The AUROC was higher using M-values (0.942 
vs. 0.935) but the AP was higher using beta-values (0.820 vs. 0.830). We prioritize 
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Fig. 4 Distribution of methylation differences with three and four hidden states when the emission 
distributions are not specified

Table 2 AUROC and AP for simulated dataset from [14]

Bold represent the highest values in each column

1 All regions

2 Hypo- and hypermethylated regions

Method AUROC AP

LuxHMM 1 0.945 0.852

LuxHMM 2 0.935 0.830

LuxUS 0.900 0.601

RADMeth 0.831 0.644

Metilene 0.834 0.674

HMM-DM 0.626 0.315

DMRcate 0.621 0.182

DSS 0.857 0.712
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the higher AP over AUROC as it controls for the imbalance in the dataset. This indi-
cates that although the range of values of methylation difference using beta-values is 
[−1, 1] , the normal distributions we used for the emission probabilities is able to suf-
ficiently approximate the distribution of methylation differences.

Table 3 AUROC and AP for different emission distributions

Equal mean Std. dev. Hypo mean Std. dev. Hyper mean Std. dev. AUROC AP

0 0.08 − 0.1 0.06 0.1 0.06 0.930 0.730

0 0.06 − 0.3 0.04 0.3 0.04 0.945 0.852

0 0.06 − 0.3 0.05 0.3 0.05 0.945 0.852

0 0.08 − 0.3 0.06 0.3 0.06 0.945 0.852

0 0.1 − 0.3 0.07 0.3 0.07 0.945 0.852

0 0.1 − 0.3 0.08 0.3 0.08 0.945 0.852

0 0.1 − 0.3 0.1 0.3 0.1 0.945 0.852

0 0.08 − 0.5 0.06 0.5 0.06 0.893 0.775

0 0.1 − 0.5 0.07 0.5 0.07 0.892 0.774

Table 4 Emission parameters for a HMM model with five hidden states

State Mean Std. dev.

Equal 0 0.08

Hypo1 − 0.25 0.06

Hypo2 − 0.5 0.06

Hyper1 0.25 0.06

Hyper2 0.5 0.06

Table 5 AUROC and AP when not specifying state distributions

1 All regions

2 Hypo- and hypermethylated regions

Number of states AUROC AP

31 0.939 0.784

41 0.930 0.761

32 0.959 0.764

42 0.947 0.772

Table 6 AUROC and AP for different emission distributions using M-values

Bold represent the highest values in each column

Equal mean Std. dev. Hypo mean Std. dev. Hyper mean Std. dev. AUROC AP

0 0.5 − 1.2 0.5 1.2 0.5 0.942 0.810

0 0.5 − 1.7 0.5 1.7 0.5 0.936 0.820
0 0.5 − 2.2 0.5 2.2 0.5 0.927 0.816
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Running time

We measured the time it takes to run the analysis using as input chromosome 1 from the 
dataset by [14] using a single CPU. For comparison we also used as input only the first 
half of chromosome 1. The running time for the HMM step was negligible hence we only 
show here the computational times for the Bayesian analysis. We also compared the run-
ning times when using all regions and when only using candidate hypo- and hypermeth-
ylated regions. As shown in Table  7, using ADVI for posterior inference significantly 
reduces running time compared to HMC. Also, when using all regions the running time 
is significantly increased in comparison to just using candidate hypo- and hypermethyl-
ated regions. As expected, the running times are proportional to the number of CpGs 
analyzed such that halving the number of CpG sites (and DMRs) approximately halves 
running time. The number of DMRs also affects running time by increasing it.

Comparison of performance on simulated dataset with confounding covariates

To test the performance of LuxHMM in datasets with general experimental design we 
simulated a dataset with multiple covariates: (1) binary case/control, (2) arbitrary binary, 
(3) arbitrary continuous. The design matrix D is shown in Table  8. This simulation was 
modified from [5].

To model the varying lengths of methylated regions, the length L of the regions in 
terms of number of CpGs was sampled from L ∼ ceiling(gamma(shape = 4, rate = 0.2)) . 
The genomic coordinates were taken from the hg19 build. To model the vary-
ing differences in methylation levels, the covariate coefficients b were sampled from 
b ∼ N (µ = 0, σ 2 = 5) . For non-differentially methylated regions, the coefficient corre-
sponding to the covariate of interest was set to zero. Conversely, for differentially meth-
ylated regions, the coefficient corresponding to the covariate of interest b was set so that 
b < −3 or b > 3 to ensure significant differential methylation. Finally, θ = σ(Y) where 

Table 7 Running times

No. of CpGs No. of DMRs Method Input Time 
(minutes)

214,878 910 HMC All regions 89

214,878 910 ADVI All regions 34

214,878 910 ADVI Hypo/hyper 4

107,439 450 ADVI Hypo/Hyper 2

107,439 910 ADVI Hypo/hyper 3

Table 8 Design matrix for simulated data

Intercept Case/control Binary Continuous

1 0 0 0.3

1 0 1 0.5

1 0 0 0.7

1 1 1 0.3

1 1 0 0.5

1 1 1 0.7
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Y ∼ N (Db, σ 2
E ) where σ 2

E ∼ gamma(shape = 0.5, scale = 1) . Around 1700 DMRs were 
added to the genome.

In LuxHMM, either all regions or only candidate hypo- and hypermethylated regions, 
as classified by HMM, were used as input in determining DMRs. Parameter settings for 
competing methods are described in Additional file 1: Section 3.

AUROC and AP, to handle the imbalance in the dataset given that there are much 
more negative than positive samples, were computed (Table  9). For AP, the baseline 
is 0.0014. LuxHMM using all regions generated the highest AUROC and LuxHMM 
using just candidate hypo- and hypermethylated regions generated the highest AP. This 
indicates that, like in Section  3.1, using LuxHMM with all regions has a higher recall 
whereas using LuxHMM with just candidate hypo- and hypermethylated regions has a 
higher precision. This also shows that LuxHMM is able to more accurately detect DMRs 
from a dataset with confounding covariates.

Comparison of performance on real BS‑seq data with confounding covariates

To test the performance of LuxHMM on real BS-seq data with multiple covariates we 
evaluated the different statistical methods in terms of gene set enrichment using the 
webtool GREAT [15] on the dataset with GEO accession number GSE47966 as origi-
nally performed by [16]. The dataset consists of samples taken from mice brain tissue 
(WGBS). Three samples consisted of neuron cells and three consisted of non-neuron 
cells. In addition, the samples were divided into male and female mice and different 
ages (6 week and 12 month old females, and 7 week old males). DMRs between neurons 
and non-neurons were identified using the different methods and then gene ontology 
(GO) enrichment were performed to test the ability of the various methods to identify 
biologically relevant regions. The top 25 and 60 enriched GO terms based on binomial 
ranking were taken and the percentage of GO terms related to the neural system were 
determined. Gene set enrichment analysis were performed with mouse phenotype 
annotations.

In LuxHMM, candidate hypo- and hypermethylated regions, as determined by HMM, 
were used as input in determining differentially methylated regions. HMC was used to 
sample from the posterior distribution with four chains, 1000 iterations for warmup for 
each chain and a total of 1000 iterations for sampling. In addition, as in [16], for the 

Table 9 AUROC and AP for simulated dataset with confounding covariates

Bold represent the highest values in each column

1 All regions

2 Hypo- and hypermethylated regions

Method AUROC AP

LuxHMM 1 0.823 0.536

LuxHMM 2 0.756 0.549

LuxUS 0.679 0.321

RADMeth 0.644 0.246

metilene 0.714 0.348

HMM-DM 0.616 0.180

DMRcate 0.658 0.065

DSS 0.672 0.339
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regions, a threshold of > 25 CpGs was used. To make a comparable assessment, the top 
10,000 to 15,000 DMRs from all methods were used as input to GREAT. Parameter set-
tings for competing methods are described in Additional file 1: Section 4.

As shown in Table  10, HMM-DM generated the highest percentages of enriched GO 
terms related to the neural system in both the top 25 and top 60 enriched GO terms. In the 
top 25 enriched GO terms, LuxHMM generated the second highest number of enriched 
GO terms related to the neural system and in the top 60 LuxHMM was fourth highest 
after DSS and LuxUS (Additional file 2). This shows that LuxHMM performs compara-
tively well in finding biologically relevant regions relative to other methods tested.

Conclusions
We propose the tool LuxHMM for detecting differentially methylated regions. This tool 
uses HMM to segment the genome into regions with hypomethylation, hypermethyla-
tion and equal methylation between two groups and Bayesian regression for evaluating 
differential methylation. Further, model inference is done using either variational infer-
ence for efficient genome-scale analysis or HMC.

We show using simulated and real BS-seq data with general experimental designs that 
LuxHMM outperforms other published methods in detecting differentially methylated 
regions from simulated datasets and performs comparatively well in a real dataset.
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Table 10 Enriched GO terms related to the neural system

Bold represent the highest values in each column

1 Hypo- and hypermethylated regions

Method Top 25 (%) Top 60 (%)

LuxHMM 1 92 83

LuxUS 88 85

RADMeth 88 80

Metilene 20 32

HMM-DM 96 93
DMRcate 84 68

DSS 88 87
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