Hinkkanen, Marko; Pescetto, Paolo; Mölsä, Eemeli; Saarakkala, Seppo E.; Pellegrino, Gianmario; Bojoi, Radu

Sensorless Self-Commissioning of Synchronous Reluctance Motors at Standstill Without Rotor Locking

Published in: IEEE Transactions on Industry Applications

DOI: 10.1109/TIA.2016.2644624

Published: 18/05/2017

Document Version
Peer reviewed version

Please cite the original version:
Sensorless Self-Commissioning of Synchronous Reluctance Motors at Standstill Without Rotor Locking

Marko Hinkkanen, Senior Member, IEEE, Paolo Pescetto, Emeli Mölsä, Seppo E. Saarakkala, Gianmario Pellegrino, Senior Member, IEEE, and Radu Bojoi, Senior Member, IEEE

Abstract—This paper proposes a standstill method for identification of the magnetic model of synchronous reluctance motors (SyRMs). The saturation and cross-saturation effects are properly taken into account. The motor is fed by an inverter with a short sequence of bipolar voltage pulses that are first applied on the rotor d- and q-axes separately and then simultaneously on both the axes. The stator flux linkages are computed by integrating the induced voltages. Using the current and flux samples, the parameters of an algebraic magnetic model are estimated by means of linear least squares. The proposed method is robust against errors in the stator resistance and inverter voltage, due to the high test voltages (of the order of the rated voltage). The fitted model matches very well with the reference saturation characteristics, measured using a constant-speed method, and enables extrapolation outside the sample range. The method was tested with a 2.2-kW SyRM, whose shaft was uncoupled from any mechanical load, which is the most demanding condition for this method. The proposed method can be used for automatic self-commissioning of sensorless SyRM drives at standstill.

Index Terms—Flux maps, identification, linear least squares (LLS), saturation characteristics.

I. INTRODUCTION

Synchronous reluctance motors (SyRMs) are simple to manufacture, mechanically robust, and comparatively cheap. If properly controlled using the maximum-torque-per-ampere (MTPA) principle, their efficiency is better (or their frame size is smaller) than that of the corresponding induction motor. In order to be able to replace general-purpose induction motor drives in simple applications (pumps, fans, conveyors, etc.), the SyRM drives should be sensorless. The MTPA principle and sensorless control require a magnetic model, where the cross-saturation must be properly taken into account. For general-purpose applications, the magnetic model of any unknown SyRM should be automatically identified at standstill during the drive start-up, using its power converter and embedded controller. This is a common practice in the case of induction motor drives, where various standstill self-commissioning algorithms have been available for the last 20 or more years, cf. e.g., [1], [2].

An accurate way to identify the magnetic model of a SyRM is to rotate it at a constant speed in a test rig by another speed-controlled motor drive. The machine under test is current-controlled, and the flux linkages are calculated by means of the steady-state voltage equation. Such a constant-speed identification method can be considered as a reference method [3], [4], requiring a suitable test rig and off-line data processing. Based on similar principles as the constant-speed test, a self-commissioning procedure in [5] uses accelerations and decelerations to emulate loading conditions.

Dealing with standstill test conditions, several identification and self-commissioning methods for SyRMs and interior-permanent-magnet motors have been proposed recently [6]–[13]. The methods in [6]–[8] apply voltage (or current) steps to the machine under test and compute the stator flux linkage by integrating the induced stator voltage. Considering the d-axis as an example, the flux linkage \(\psi_d \) at standstill is

\[
\psi_d(t) = \int [u_d(t) - R_s i_d(t)] dt
\]

where \(u_d \) is the voltage, \(i_d \) is the current, and \(R_s \) is the stator resistance. In [6]–[8], the applied voltage steps are selected so low that the steady state \(u_d = R_s i_d \) is reached, making the flux computation based on (1) highly sensitive to the stator resistance and inverter voltage.

In [12], the operating-point incremental inductances are explored using an AC current signal, superimposed to a DC bias emulating different operating points. The saturation curves are constructed from the estimated incremental inductances and the polarity of the DC bias is switched to achieve zero mean torque and no motion.

The method proposed in [13] is very simple and fast. It resembles the ones in [6]–[8], but uses bipolar voltage steps of much larger magnitude (up to the rated voltage), thus making the flux estimate practically insensitive to the stator resistance and offset errors. During a single voltage step, the whole range of currents is scanned and, unlike in [6]–[8], the steady state is not reached. In [13], the linear least squares (LLS) method was used to fit a piecewise-defined mathematical model to the measured samples. The cross-saturation effect is taken into account by dividing the cross-axis into segments, each of which has its own saturation curve and a set of fitted parameters. Overall, the method in [13] works well with self-axis identification, but the cross-saturation model is impractical for its high number of parameters and its moderate accuracy.

This work was supported in part by ABB Oy and in part by the Academy of Finland.

M. Hinkkanen, E. Mölsä, and S. E. Saarakkala are with the Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland (e-mail: marko.hinkkanen@aalto.fi; emeli.molsa@aalto.fi; seppo.saarakkala@aalto.fi).

P. Pescetto, G. Pellegrino, and R. Bojoi are with the Department of Energy, Politecnico di Torino, Turin, Italy (e-mail: paolo.pescetto@polito.it; gianmario.pellegrino@polito.it; radu.bojoi@polito.it).
In this paper [14], we propose a standstill identification method, which uses a similar excitation signal as the method in [13], with emphasis on improving the magnetic model. The algebraic magnetic model from [15] is adopted here, having a good trade-off between the number of parameters and accuracy. The modeling approach was validated using the experimental data of six different SyRMs. The standard LLS method is used for estimating the model parameters from the scattered current and flux data coming from the self-commissioning tests. Detailed simulation and experimental results are provided for the 2.2-kW SyRM drive to demonstrate the effectiveness of the proposed method. The saturation curves and MTPA trajectory obtained with the proposed self-commissioning method are compared with the reference data from constant-speed identification.

II. MOTOR MODEL

A. Fundamental Equations

The SyRM model in rotor coordinates is considered. The stator voltage equations are

\[
\begin{align*}
\frac{d\psi_d}{dt} &= u_d - R_a i_d + \omega_m \psi_q \\
\frac{d\psi_q}{dt} &= u_q - R_a i_q - \omega_m \psi_d
\end{align*}
\]

(2a)

(2b)

where \(\psi_d\) and \(\psi_q\) are the flux-linkage components, \(u_d\) and \(u_q\) are the voltage components, \(\omega_m\) is the electrical angular speed of the rotor, and \(R_a\) is the stator resistance. The current components

\[i_d = i_d(\psi_d, \psi_q) \quad i_q = i_q(\psi_d, \psi_q)
\]

(3)

are generally nonlinear functions of the flux components. They are the inverse of the flux maps extensively used in the literature [4]–[8], [12], [13], often represented by two-dimensional look-up tables. Here, the modeling approach (3) is chosen, because it is more favourable towards representation in the algebraic form. Since the nonlinear inductor should not generate or dissipate electrical energy, the reciprocity condition

\[
\frac{\partial i_d(\psi_d, \psi_q)}{\partial \psi_q} = \frac{\partial i_q(\psi_d, \psi_q)}{\partial \psi_d}
\]

(4)

should hold. Typically, the core losses are either omitted or modeled separately using a core-loss resistor in the model. The produced torque is

\[
T_e = \frac{3p}{2} (\psi_di_q - \psi_qi_d)
\]

(5)

where \(p\) is the number of pole pairs. If the functions (3) and the stator resistance are known, the machine is fully characterized both in the steady and transient states. For example, the MTPA trajectory can be resolved from (3) and (5).

B. Algebraic Magnetic Model

The use of a suitable algebraic magnetic model for (3) instead of look-up tables makes the self-commissioning problem easier. The number of parameters to be identified is reduced. The parameters are extracted by fitting the model to the data from a reduced number of tests, which reduces the duration of the commissioning and simplifies data processing. In the following, algebraic magnetic models will be introduced using the d-axis as an example. Then, the cross-saturation effect is included in the model.

1) Self-Axis Model: Fig. 1 shows typical d-axis saturation characteristics at \(i_q = 0\): (a) flux linkage \(\psi_d = \psi_d(i_d)\); (b) current \(i_d = i_d(\psi_d)\). In (a, b), the measured data points and the fitted model (7) for \(S = 5\) are the same. In (a), the unsaturated inductance as well as the chord-slope inductance (8) and incremental inductance (9) at \(\psi_d = 1.3\) Vs are shown. In (b), the rms residuals of the fitted models are 0.33 A (\(S = 4\)), 0.14 A (\(S = 5\)), and 0.36 A (\(S = 6\)).

\[
\begin{align*}
\psi_d &= i_d(\psi_d, \psi_q) \\
i_d &= (a_0 + a_1\psi_d + a_2\psi_d^2) \psi_d
\end{align*}
\]

from a reduced number of tests, which reduces the duration of the commissioning and simplifies data processing. In the following, algebraic magnetic models will be introduced using the d-axis as an example. Then, the cross-saturation effect is included in the model.
Table I

<table>
<thead>
<tr>
<th>Motor</th>
<th>Power (kW)</th>
<th>Speed (r/min)</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP</td>
<td>0.9</td>
<td>3 600</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EA3</td>
<td>2.2</td>
<td>1 500</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EA4</td>
<td>4.0</td>
<td>1 500</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ABB</td>
<td>6.7</td>
<td>1 500</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PMP</td>
<td>7.5</td>
<td>1 500</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Sicme</td>
<td>250</td>
<td>1 000</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1(b), a simple polynomial function could be used

\[i_d(\psi_d) = (a_{d0} + a_{d1}|\psi_d|^n + \ldots + a_{dn}|\psi_d|^n^n)\psi_d \quad (6) \]

where \(a_{d0}, \ldots a_{dn} \) are the coefficients and \(n \) is the highest exponent. The model is linear with respect to its coefficients, which makes it easy to use the LLS method. If \(n \) is high enough (typically \(n = 4, \ldots 7 \) suffices), the polynomial function fits well to measured saturation data. Typically, some of the coefficients of the fitted polynomial tend to be negative, which may result in a nonmonotonic function outside the measured data range. To prevent this problem, more complicated constrained-fitting methods could be used.

The polynomial function (6) can be simplified as [15], [17]

\[i_d(\psi_d) = (a_{d0} + a_{dd}|\psi_d|^S)\psi_d \quad (7) \]

where \(a_{d0} \) is the inverse of the unsaturated inductance, \(S \) is a positive exponent determining the shape of the saturation characteristics, and \(a_{dd} \) is a nonnegative coefficient. This function is monotonic and (numerically) invertible. The exponent \(S \) can be fixed and the LLS method can then be directly used. Rational numbers for \(S \) could be used, but integers were found out to give sufficient fit. Fig. 1(b) illustrates the effect of \(S \) on the LLS fit of (7) to the measured data. It can be seen (and calculated from the residuals) that \(S = 5 \) gives the best fit in this example. However, also \(S = 4 \) and \(S = 6 \) provide sufficient fit for practical purposes.

If needed, the model (7) can be expressed as an inductance function

\[L_d(\psi_d) = \frac{\psi_d}{i_d(\psi_d)} = \frac{1}{a_{d0} + a_{dd}|\psi_d|^S} \quad (8) \]

which yields the chord-slope inductance as a function of \(\psi_d \). The model (7) also inherently includes information of the incremental inductance

\[L_{dd}(\psi_d) = [\partial i_d(\psi_d)/\partial \psi_d]^{-1} = \frac{1}{a_{d0} + (S + 1)a_{dd}|\psi_d|^S} \quad (9) \]

Examples of the chord-slope inductance (8) and incremental inductance (9) are shown in Fig. 1(a). To avoid confusions relating to various definitions of the inductances, the saturation characteristics are modeled using the form (3) in this paper.

The self-axis saturation characteristics of the q-axis can be modeled using the same function (with different parameters),

\[i_q(\psi_q) = (a_{q0} + a_{qq}|\psi_q|^T)\psi_q \quad (10) \]

Since the effective airgap is large along the q-axis, the exponent \(T = 1 \) typically suffices.

2) Inclusion of the Cross-Saturation: A form analogous to (7) is applied for modeling also the cross-saturation effect,

\[i_d(\psi_d, \psi_q) = i_d(\psi_d, 0) + a'_{dq}|\psi_d|^U|\psi_q|^{V'}\psi_d \quad (11a) \]

\[i_q(\psi_d, \psi_q) = i_q(0, \psi_q) + a'_{qd}|\psi_d|^U'|\psi_q|^{V'}\psi_q \quad (11b) \]

where \(a'_{dq} \) and \(a'_q \) are nonnegative coefficients and \(U, U', V, \) and \(V' \) are nonnegative exponents. The functions \(i_d(\psi_d, 0) \) and \(i_q(0, \psi_q) \) describe the self-axis saturation characteristics, here modeled by (7) and (10), respectively. When taking the reciprocity condition (4) into account, the algebraic model (11) reduces to [15]

\[i_d(\psi_d, \psi_q) = \left(a_{d0} + a_{dd}|\psi_d|^S + \frac{a_{dq}}{V+2}|\psi_d|^U|\psi_q|^{V+2}\right)\psi_d \quad (12a) \]

\[i_q(\psi_d, \psi_q) = \left(a_{q0} + a_{qq}|\psi_q|^T + \frac{a_{qd}}{U+2}|\psi_d|^U'+|\psi_q|^V\right)\psi_q \quad (12b) \]

where \(a_{d0}, a_{dd}, a_{d0}, a_{qq}, \) and \(a_{dq} \) are nonnegative coefficients and \(S, T, U, \) and \(V \) are nonnegative exponents. There are three parameters for the d-axis, three for the q-axis, and three for the cross-saturation. The model is numerically invertible, which makes it convenient to use. If desired, it could be expressed as inductance functions in a manner similar to (8) and (9).

The algebraic model (12) was further simplified by using only selected integers as exponents. In order to study the typical range of the exponents, the model was fitted to the saturation data of six different SyRMs, measured using the constant-speed method. The best fit exponents are given in Table 1. It can be noticed that \(T = 1 \) and \(V = 0 \) hold for all the motors and \(U = 1 \) holds for five motors out of six. Optimal values of \(S \) vary between 5 and 8. Furthermore, a choice of \(S \) is not critical: the deviation of \(\pm 1 \) from the optimal value still gives a good fit, as already illustrated in Fig. 1(b).

III. Identification Method and Measured Waveforms

A. Test Sequences

The test procedure proposed in [13] is briefly reviewed and illustrated with measured waveforms of a 2.2-kW SyRM drive. The rated line-line rms voltage of the motor is 400 V and the rated rms current is 5.1 A. Fig. 2 shows the sensorless controller used in the tests. The control scheme has been implemented on a dSPACE DS1103 board. The sampling of the currents is synchronized with the PWM operation. The sampling and switching period is \(T_s = 100 \mu s \). In all the tests, the shaft of the motor was free (without any additional inertia connected to it) and no motion sensor was used. This condition is considered as the worst case for sensorless identification at standstill, since it is challenging to avoid that the current excitation makes the rotor move.

Only the initial position of the d-axis should be known, since it is assumed that the rotor does not considerably move during the test. If moving the rotor is possible, the DC-current vector can be fed to the desired direction (e.g. the a-phase magnetic axis) before the test, which causes the rotor to rotate into this direction. Alternatively, the initial rotor position can
be found using a signal-injection method, without causing the rotor movement. The results shown in the following were measured after parking the rotor using the DC current. The signal-injection method was also tested, as commented in the following.

1) d-Axis Test: A simple hysteresis controller is used. In the d-axis test, the control law is

\[
\begin{align*}
 u_{d,\text{ref}}(k) &= \begin{cases}
 u_{d,\text{out}} & \text{if } i_d(k) < -i_{d,\text{max}} \\
 -u_{d,\text{out}} & \text{if } i_d(k) > i_{d,\text{max}} \\
 u_{d,\text{ref}}(k-1) & \text{otherwise}
 \end{cases} \\
 u_{q,\text{ref}}(k) &= 0
\end{align*}
\]

(13a)

(13b)

where \(u_{d,\text{out}}\) is the test-voltage magnitude, \(i_{d,\text{max}}\) is the current limit, and \(k\) is the discrete-time index. The current limit defines the current span, i.e., the range of identification. It can be selected to be, e.g., twice the rated current. In the d-axis test, the torque is ideally zero and the operating point is stable even at free shaft.

Fig. 3(a) shows the measured waveforms of the d-axis test. The samples of two complete cycles, shown in the figure, are used in the identification. The zero-crossings are detected from the reference voltage \(u_{d,\text{ref}}(k)\). The data of one complete cycle would suffice for identification, but two cycles are used here for better illustration. The test voltage is \(u_{d,\text{out}} = 200\) V and the current limit is \(i_{d,\text{max}} = 20\) A (which is almost three times the rated current).

2) q-Axis Test: The control law in the q-axis test is analogous to (13). The torque is ideally zero also in the q-axis test, but the operating point is only marginally stable. If the rotor is free to rotate, the current limit \(i_{q,\text{max}}\) should be selected low enough to avoid the rotor movement. Fig. 3(b) shows the measured waveforms of the q-axis test. As in the case of the d-axis test, the samples of two complete cycles are shown and used in the identification. The test voltage is \(u_{q,\text{out}} = 200\) V and the current limit is \(i_{q,\text{max}} = 14\) A.

As the rotor was positioned with the DC current before the test, this test condition could be used for several seconds without the rotor movement. Instead, when the initial rotor position was estimated using signal injection and \(i_{q,\text{max}} = 14\) A was used, the rotor moved less than five electrical degrees during the first two complete cycles, due to inaccuracies in the initial position estimate and the voltage production. The rotor movement can be decreased or avoided by decreasing the limit \(i_{q,\text{max}}\).

Alternatively, if the rotor moves during the q-axis test, it means that the rotor can be parked into a more stable initial position, and the test can be repeated using the full current range (14 A in this case).

3) Cross-Saturation Test: The hysteresis controllers corresponding to (13a) are simultaneously used in the d- and q-axes. The torque varies during the test, but the average torque is approximately zero. Fig. 4 shows the measured waveforms of the cross-saturation test. The samples of two complete d-axis cycles are used in the identification. The test voltages are 200 V and the current limits are \(i_{d,\text{max}} = 20\) A and \(i_{q,\text{max}} = 8\) A. During the sequence shown in Fig. 4, the rotor angle varied less than 10 electrical degrees. When the initial rotor position was detected using signal injection, the same current limits could be used.

The test-voltage magnitude is limited by the DC-bus voltage \(U_{dc}\) of the inverter, i.e., \(u_{d,\text{out}}^2 + u_{q,\text{out}}^2 < U_{dc}^2/3\). The higher is the test voltage, the less variation there will be in the rotor speed and angle during the cross-saturation test (for the same current limits). This effect of the test-voltage magnitude on the rotor movement is also verified by means of simulations in Section V. It is worth noticing that bigger machines have higher per-unit rotor inertia, which helps reducing the variation.
Fig. 4. Measured waveforms of the cross-saturation test, where both the axes are simultaneously excited. The first two subplots show the data for the d-axis and the last two subplots show the data for the q-axis. The parameters are \(u_{d, \text{out}} = u_{q, \text{out}} = 200 \text{ V} \), \(i_{d, \text{max}} = 20 \text{ A} \), and \(i_{q, \text{max}} = 8 \text{ A} \). The number of samples is \(N_{dq} = 621 \). The average value of the q-axis flux was calculated from the complete cycles (the interval \(t = 20. \ldots 61.8 \text{ ms marked in the figure} \)).

of the rotor during the test.

B. Flux Calculation

The flux linkages are calculated using the forward Euler approximation

\[
\psi_d(k + 1) = \psi_d(k) + T_s[u_d(k) - \hat{R}_s i_d(k)]
\]

In order to compensate for the computational time delay of one sampling period, the voltage \(u_d(k) = u_{d, \text{ref}}(k - 1) \) is used in the flux calculation. The analogous equation is used for the q-axis. The estimate \(\hat{R}_s \) for the stator resistance is obtained simply by feeding the DC current into the stator before the test sequences. Unless otherwise noted, the measured value \(\hat{R}_s = 3.6 \Omega \) is used. Inverter nonlinearities could be identified and compensated for, but they are omitted in this paper because the proposed method works fine also without the compensation.

In the self-axis tests, the samples consist of complete cycles. The average of the flux samples is calculated and removed from the samples. Fig. 3 shows the waveforms of the calculated flux samples after the average value has been removed. Using the same data, the currents are plotted as functions of the fluxes in Fig. 5. It can be seen that the two cycles almost perfectly overlap. The dashed lines in the figure show the reference saturation curves, which have been measured using the constant-speed method [4]. For \(\hat{R}_s = 3.6 \Omega \), the hysteretic behavior mainly originates from the core losses of the motor and from the uncompensated inverter nonlinearities.

If \(\hat{R}_s = 0 \) is used in (14), the hysteresis loops become slightly thicker, but their shape remains similar, as also shown in Fig. 5. The hysteretic behavior, however, has a minor effect on the accuracy of the identified magnetic model, as will be shown later in the paper.

In the cross-saturation test, the d-axis samples have complete cycles, but the q-axis samples generally include an incomplete cycle (in addition to several complete cycles), which may distort the average. Hence, to minimize this distortion, the average value of the q-axis flux is calculated using only the complete cycles (cf. the interval marked with the vertical dashed lines in Fig. 4) and removed from all the samples.

C. LLS Method

If the exponents of the magnetic model (12) are fixed, the remaining five parameters can be conveniently estimated using the standard LLS method. The estimation problem reduces to solving a set of linear equations: there is a unique solution and neither initial values nor cost functions are needed. A recursive variant [18] of LLS can be easily implemented in embedded processors used in converters. Since the amount of feasible integer exponents is limited, as discussed in Section II-B, the parameters can be solved for different sets of exponents, which have been chosen in advance. Then, the set of exponents (and the corresponding fitted parameters) leading to the smallest sum of the squared residuals can be chosen. The data collected during the three tests (d-axis, q-axis, and cross-saturation tests) are used in three consecutive fits, as explained below.

1) d-Axis Fit: Assuming positive current and flux samples, the model (12) for the d-axis reduces to

\[
i_d = a_{d0} \psi_d + a_{d1} \psi_d^{S+1}
\]

when only the d-axis is excited. If the exponent \(S \) is fixed, this model is linear with respect to the unknown parameters.
TABLE II

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>a_{d0}</th>
<th>a_{dd}</th>
<th>a_{q0}</th>
<th>a_{qq}</th>
<th>a_{dq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2.41</td>
<td>1.47</td>
<td>12.8</td>
<td>17.0</td>
<td>13.2</td>
</tr>
</tbody>
</table>

a_{d0} and a_{dd}. The LLS problem in a vector form is

\[
\begin{bmatrix}
i_d(1) \\
i_d(2) \\
\vdots \\
i_d(N_d)
\end{bmatrix} =
\begin{bmatrix}
\psi_d(1) & \psi_d(1)S^1 \\
\psi_d(2) & \psi_d(2)S^1 \\
\vdots & \vdots \\
\psi_d(N_d) & \psi_d(N_d)S^1
\end{bmatrix}
\begin{bmatrix}
a_{d0} \\
a_{dq} \\
\vdots \\
a_{dq}
\end{bmatrix} +
\begin{bmatrix}
\varepsilon_d(1) \\
\varepsilon_d(2) \\
\vdots \\
\varepsilon_d(N_d)
\end{bmatrix}
\]

where y_d is the vector of the current samples, X_d is regressor matrix, β_d is the parameter vector, ε_d is the residual vector, and N_d is the number of samples. The sum of the squared residuals is

\[
J_d(\beta_d) = \varepsilon_d^T\varepsilon_d
\]

The parameter vector minimizing J_d is

\[
\beta_d = (X_d^T X_d)^{-1} X_d^T y_d
\]

The fitting can be carried out using pre-selected values for the exponent S, and the best value can be chosen based on (17).

2) q-Axis Fit: The parameters estimation procedure for the q-axis is fully analogous to the that of the d-axis. The parameter vector is $\beta_q = [a_{q0}, a_{qq}]^T$ and the number of samples is N_q.

3) Cross-Saturation Fit: The model (12) can be rewritten as

\[
i_d - a_{d0}\psi_d - a_{dd}\psi_d^{S+1} = \frac{a_{dq}}{V+2}\psi_d^{U+1}\psi_q^{V+2}
\]

\[
i_q - a_{q0}\psi_q - a_{qq}\psi_q^{T+1} = \frac{a_{dq}}{U+2}\psi_d^{U+2}\psi_q^{V+1}
\]

(19a)

(19b)

Since the parameters a_{d0}, a_{dd}, a_{q0}, and a_{qq} are known, the output vector

\[
y_{dq} =
\begin{bmatrix}
i_d(1) - a_{d0}\psi_d(1) - a_{dd}\psi_d(1)^{S+1} \\
i_q(1) - a_{q0}\psi_q(1) - a_{qq}\psi_q(1)^{T+1} \\
i_d(N_d) - a_{d0}\psi_d(N_d) - a_{dd}\psi_d(N_d)^{S+1} \\
i_q(N_d) - a_{q0}\psi_q(N_d) - a_{qq}\psi_q(N_d)^{T+1}
\end{bmatrix}
\]

(20)

is chosen, where N_{dq} is the number of samples. The regressor matrix is

\[
X_{dq} =
\begin{bmatrix}
\frac{1}{V+2}\psi_d(1)^{U+1}\psi_q(1)^{V+2} \\
\frac{1}{U+2}\psi_d(1)^{U+2}\psi_q(1)^{V+1} \\
\vdots \\
\frac{1}{V+2}\psi_d(N_d)^{U+1}\psi_q(N_d)^{V+2} \\
\frac{1}{U+2}\psi_d(N_d)^{U+2}\psi_q(N_d)^{V+1}
\end{bmatrix}
\]

(21)

The cross-saturation parameter is estimated as

\[
a_{dq} = (X_{dq}^T X_{dq})^{-1} X_{dq}^T y_{dq}
\]

(22)

IV. EXPERIMENTAL RESULTS

A. Fitting

Using the proposed method, the magnetic model (12) was fitted to the measured current and flux samples, shown in Figs. 3 and 4 in the time domain. The fitted parameters for $R_s = 3.6 \ \Omega$ are given in Table II. Fig. 6 shows the mesh surfaces, which have been plotted using the fitted parameters in the model (12). Also the measured samples are shown in Fig. 6.

Fig. 7 compares the fitted model with the reference data from the constant-speed method [4]. It can be seen that the fitted model for $R_s = 3.6 \ \Omega$ matches very well with real saturation characteristics also in the cross-saturation region. The results for $R_s = 0$ are also shown; it can be seen that the method is comparatively robust against the stator resistance error.

As a comparison, the method [13] would need tens of parameters to model the cross-saturation and separate post-processing and interpolation algorithms should be implemented. On the contrary, only one parameter, a_{dq}, is needed in the proposed method to model the effect of the cross-saturation (since the exponents $U = 1$ and $V = 0$ can be typically used). The application of the proposed model and identification method is also more straightforward.
Fig. 7. Currents as functions of the fluxes: (a) \(i_d\) as a function of \(\psi_d\) for \(\psi_q = 0\) and \(\psi_q = 0.6\) Vs; (b) \(i_q\) as a function of \(\psi_q\) for \(\psi_d = 0\) and \(\psi_d = 1.2\) Vs. The dashed lines show the reference data, which has been measured using constant-speed identification. The solid lines show the results from the proposed standstill method.

B. MTPA as an Application Example

Fig. 8(a) shows three MTPA trajectories for the motor under test. The stars represent the reference MTPA trajectory, measured using the constant-speed method. The red line shows the MTPA trajectory calculated using the magnetic model (12) and the fitted parameters in Table II. The blue dashed line represents the trajectory, which is also calculated using the model (12), but the cross-saturation is omitted by setting \(\alpha_{\text{dq}} = 0\). It can be seen that the proposed method gives a trajectory, which is very close to the reference one. Fig. 8(b) compares the torque factors related to these three trajectories. The torque factor corresponding to the proposed method agrees very well with the the reference trajectory, also in overload conditions.

It is also worth noticing that the magnetic model (12) has been used in sensorless control, e.g., in [15], [19], [20]. Hence, the proposed self-commissioning method can be directly used in connection with these methods.

V. DISCUSSION

Only experimental results were shown in the previous sections. Here, we elaborate on some robustness aspects of the proposed identification method by means of simulations. The saturation of the 2.2-kW SyRM is modeled using (12) with the parameters in Table II. The core losses are omitted. The actual stator resistance is \(R_s = 3.6\) \(\Omega\). The inertia of the rotor is 0.007 kgm\(^2\) and the mechanical friction is omitted. The sensorless controller and the computational delay are modeled according to Fig. 2.

A. Self-Axis Characteristics

Fig. 9 shows the simulation results from the self-axis standstill tests, corresponding to the experimental results in Fig. 5. It can be seen that using \(R_s = 0\) widens the hysteresis loop, similarly to the experiment. The hysteresis loop disappears in the ideal case \(R_s = R_r\), since the core losses and inverter nonlinearities are not included in the simulation model.
The magnetic model (12) was fitted using the simulated data from the standstill tests. The test conditions and the LLS method equal those used in the experiments. The resulting data from the standstill tests. The test conditions and the LLS method to determine the saturation characteristics of SyRMs at standstill. The cross-saturation effect is included. The method is robust against errors in the stator resistance and inverter voltage, due to the high test voltages. The algebraic magnetic model is physically feasible, it has few parameters, and it enables extrapolation outside the measured data range. The identification method proposed in this paper combines the test sequence of [13], the algebraic magnetic model of [15], and the LLS method to determine the saturation characteristics of SyRMs at standstill. The cross-saturation effect is included. The small, hardly visible, error originates mainly from the rotor angle variation during the cross-axes test, cf. Fig. 10(b). The case $\hat{R}_s = 0$ agrees well with the experimental results and confirms the robustness against the stator resistance error.

VI. Conclusion

The identification method proposed in this paper combines the test sequence of [13], the algebraic magnetic model of [15], and the LLS method to determine the saturation characteristics of SyRMs at standstill. The cross-saturation effect is included. The method is robust against errors in the stator resistance and inverter voltage, due to the high test voltages. The algebraic magnetic model is physically feasible, it has few parameters, and it takes the cross-saturation inherently into account, and it enables extrapolation outside the measured data range. The accuracy of the method has been compared with the reference data from constant-speed identification. The fitted model matches very well with real saturation characteristics also in the cross-saturation region. The proposed method can be used for automatic self-commissioning of sensorless SyRM drives.
REFERENCES

Marko Hinkkanen (M’06–SM’13) received the M.Sc.(Eng.) and D.Sc.(Tech.) degrees from the Helsinki University of Technology, Espoo, Finland, in 2000 and 2004, respectively. He is currently an Associate Professor with the School of Electrical Engineering, Aalto University, Espoo. He has authored or coauthored more than 100 technical papers of which more than 30 are in IEEE journals. His research interests include control systems, electric drives, and power converters. Dr. Hinkkanen was the corecipient of the 2016 ICEM Brian J. Chalmers Best Paper Award and the 2016 IEEE Industry Applications Society Industrial Drives Committee Best Paper Award. He is an Editorial Board Member of IET Electric Power Applications.

Paolo Pescetto is a PhD student at the Politecnico di Torino, Turin, Italy. He received the B.Sc. and M.Sc. degrees from the same university in 2013 and 2015, respectively, with full grade and honours in both cases. In 2015, he was an Erasmus+ student at the Norwegian University of Science and Technology, Trondheim, Norway. His research interests include synchronous motor drives, sensorless control, and self-commissioning techniques. Mr. Pescetto has three conference papers. He received the Best Paper Award in Renewable Energies at the EVER15 conference and the Best Paper Award at the ICEM2016 conference.

Eemeli Mõlsä received the B.Eng. degree in electrical engineering from the Metropolia University of Applied Sciences, Helsinki, Finland, in 2012, and M.Sc.(Tech.) degree in electrical engineering from Aalto University, Espoo, Finland, in 2015. He is currently working toward the D.Sc.(Tech.) degree at the Aalto University. His main research interest is the control of electrical drives.

Seppo E. Saarakkala received the M.Sc.(Eng.) degree from the Lappeenranta University of Technology, Lappeenranta, Finland, in 2008, and the D.Sc.(Tech.) degree in electrical engineering from the Aalto University, Espoo, Finland, in 2014. He has been with the School of Electrical Engineering, Aalto University, since 2010, where he is currently a Post-Doctoral Research Scientist. His main research interests include control systems and electric drives.

Gianmario Pellegrino (M’06–SM’13), PhD, is an Associate Professor of electrical machines and drives at the Politecnico di Torino. He is engaged in several research projects with the industry, and has 30 journal papers, one patent, and six best paper awards received from IEEE. He was a visiting fellow at the Aalborg University, Aalborg, Denmark, in 2002, at the University of Nottingham, Nottingham, UK, in 2010, and at the University of Wisconsin-Madison, WI, USA, in 2013. Dr. Pellegrino is an Associate Editor of the IEEE Transactions on Industry Applications.
Radu Bojoi (SM’10) is an Associate Professor of power electronics and electrical drives at the Politecnico di Torino. He has published 28 papers in international journals covering power electronics and electrical drives for transportation electrification, power quality, industrial applications, and home appliances. He has been involved in many research projects with industry for direct technology transfer aiming at obtaining new products.

Dr. Bojoi was the coreipient of five prize paper awards, the last one in 2016 from the IEEE Industry Applications Society. He is an Associate Editor of the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.