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Abstract

Constrained density functional theory (CDFT) is a versatile tool for probing the

kinetics of electron transfer (ET) reactions. In this work, we present a well-scaling

parallel CDFT implementation relying on a mixed basis set of Gaussian functions and

planewaves, which has been specifically tailored to investigate condensed phase ET reac-

tions using an explicit, quantum chemical representation of the solvent. The accuracy

of our implementation is validated against previous theoretical results for predicting

electronic couplings and charge transfer energies. Subsequently, we demonstrate the ef-

ficiency of our method by studying the intramolecular ET reaction of an organic mixed

valence compound in water using a CDFT based molecular dynamics simulation.

Keywords

Marcus theory, solvent reorganization energy, electronic coupling, molecular dynamics, charge

constraint, electron transfer kinetics
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1 Introduction

Electron transfer (ET) reactions are ubiquitous in nature, serving a vital function in mito-

chondrial aerobic respiration1–3 and a myriad of other redox processes in proteins.4,5 Atom-

istic modeling of electron transfer kinetics is frequently founded on the linear response the-

ory pioneered by Marcus,6 which has been extended to cover a wide range of phenomena7,8

including ET processes at electrodes,9,10 proton-coupled ET,11 and reactions with large sol-

vation changes.12 By assuming that the underlying probability distributions describing the

electron transfer initial (a) and final (b) diabatic states are Gaussians with equal curvature,

the Marcus rate constant for a homogeneous diabatic ET reaction is given by13

kET =
2π

~

〈
|Hab|2

〉
T√

4πkBTλ
exp

[
−(λ+∆A)2

4kBTλ

]
(1)

where |Hab| is the electronic coupling between ET states, defined rigorously in terms of the

N-electron wavefunctions Ψi and the electronic Hamiltonian H as |Hab| = |〈Ψa |H |Ψb〉|, λ is

the reorganization free energy, ∆A the reaction Helmholtz free energy, and thermal averaging

over nuclear configurations is indicated by the canonical average 〈·〉T . The equation further

allows the activation free energy to be identified as ∆A‡ = (λ + ∆A)2/(4λ). Explicitly, λ

describes the free energy required to change the equilibrium configuration of diabatic state

a into the equilibrium configuration of diabatic state b while remaining on the parabolic

free energy curve of a, and is equivalent to the reverse relation with states permuted within

the linear response regime. Blumberger5 has recently reviewed the derivation and inherent

assumptions of the Marcus rate equation (1) and they will consequently not be covered in

this presentation.

A variety of theoretical methods are available for modeling the ET parameters in Equa-

tion (1). For |Hab|, these include the generalized Mulliken Hush (GMH) method,14,15 local-

ization and block diagonalization methods,15–21 and constrained density functional theory

(CDFT).22–24 A more exhaustive list of methods can be found in literature5,25–33 and we
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refer the interested readers to these and references therein for a comparison of the different

approaches. In this context, however, we wish to highlight that CDFT is a particularly

appealing alternative to compute |Hab| since it combines the computational efficiency of tra-

ditional DFT with often great accuracy,22,23,30 except in pathological cases where fractional

charge is transferred.34 The modest cost of CDFT also facilitates studying ET processes

under dynamical conditions using molecular dynamics (MD) coupled with an all atom de-

scription of the solvent. Therefore, a single set of simulations performed at a consistent

level of theory can be used to quantify all the parameters (|Hab|, λ, ∆A) appearing in the

Marcus rate equation (1), which is clearly impossible, for instance, with wavefunction based

methods. This capability is particularly important to investigate the validity of the Condon

approximation and solvation effects. Although CDFT has occasionally been criticized for a

lack of predictive power since the diabatic states must be predefined, it should be noted that

unconstrained DFT in itself usually struggles with generating the necessary charge localized

diabatic states due to self-interaction error,35 although the usage of hybrid or other high

level exchange-correlation functionals might alleviate the issue in some cases.36

While previous applications of CDFT include examples where condensed phase ET re-

actions were studied with MD – e.g. self-exchange between ruthenium cations37,38 or in-

tramolecular ET within a donor-acceptor dyad,39 to name just a couple of examples – in

most of these studies only one of the participating ET states (a or b) has been explicitly in-

cluded in the CDFT MD simulation, whereas the necessary quantities involving both states

have been computed as a series of postproduction single point calculations. A notable ex-

ception to this is the seminal CDFT implementation due to de la Lande and coworkers,24,40

where both ET states are solved in serial during MD. This has facilitated for example the

quantification of dynamical quantum effects in the ET within cryptochromes via hybrid

CDFT/molecular mechanics (MM) simulations.41 A similar strategy has, to our knowledge,

thus far not been applied to MD simulations at the full CDFT level. We speculate that such

calculations have not been attempted with current CDFT capable software22–24,37,40,42–47
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mainly due to the high associated computational cost, which is ultimately governed by the

underlying DFT implementation, in particular the choice of basis set and electronic structure

solver. A computational framework that is, in this respect, ideally suited for such large scale

condensed phase MD simulations is the mixture of the orbital transformation48 solver with a

dual basis set of Gaussians and planewaves,49 as implemented in the CP2K50,51 code, which

has routinely been applied to systems containing hundreds of atoms, see for example Refs.

52–54.

In this work, we will present a CDFT algorithm that exploits this framework and enables

the concurrent simulation of both ET states using constrained molecular dynamics. To

this end, we will first summarize the connection between CDFT and Marcus theory, and

subsequently describe the necessary ingredients of our algorithm in Section 2. It will also be

discussed when and why it is advantageous to treat both ET states in parallel. After a brief

description of the computational methods in Section 3, we will validate our implementation

against ab initio wavefunction calculations for predicting electronic couplings for various

gas phase systems, as well as against another CDFT implementation for evaluating charge

transfer energies of noncovalent complexes in Sections 4.1-4.2. Thereafter, the main results

of this work will be presented in Section 4.3 where the intramolecular ET reaction of an

organic mixed valence anion is investigated using a condensed phase CDFT MD simulation.

These results are discussed in view of experimental measurements and previous theoretical

work. Finally, a brief analysis regarding the influence of computational parameters on the

quality of CDFT results is given in Section 4.4. Additional technical details behind the

current CDFT implementation are presented in Appendices A-B.
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2 Theory

2.1 Constrained Density Functional Theory Applied to Electron

Transfer Reactions

Building upon the earlier work of Dederichs and coworkers,55 Wu and Van Voorhis22,42,56

introduced a fully general CDFT energy functional which supports arbitrary constraints and

is the current basis of all CDFT implementations. Here, only a minimal summary of the

theory behind CDFT will be given as it pertains to this work. More extensive discussions can

be found in the original research papers22,42,56 or e.g. in the comprehensive review article of

Ref. 30. Assuming a single, spin independent constraint, the constrained electronic state of

a system is sought through Lagrangian optimization of an energy functional, ECDFT, where

the standard Kohn-Sham energy functional, EKS, is augmented with an additional constraint

potential

ECDFT [ρ, ξ] = max
ξ

min
ρ

{
EKS[ρ] + ξ

(∫
w(r)ρ(r)dr−Nc

)}
(2)

In this expression, w(r) is a weight function that imposes the wanted constraint con-

ditions, ξ is the Lagrange multiplier associated with the constraint, and Nc is the target

value of the constraint. Depending on the functional form of the constraint, it is possible to

constraint either absolute charges on atoms or charge differences between an acceptor and a

donor. In both cases, the constraint can also be defined relative to a noninteracting reference

state57,58

Ñc =

∫
w(r)[ρ̃A(r) + ρ̃B(r)]dr (3)

where ρ̃i is the unconstrained electron density of the isolated fragment i, and to avoid

confusion Ñc is used to denote the fragment based constraint target value. The stationary

point of ECDFT is in practice located using a two tiered self-consistent field (SCF) approach
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with alternating minimizations along ρ and maximizations along ξ.56 For molecular dynamics

simulations, the force on atom i, Fi, at position Ri must naturally be supplemented with a

term Fc,i arising from the constraint

Fc,i = −ξ

∫
∂w(r)

∂Ri

ρ(r)dr (4)

Any population analysis method can in principle be used to define w(r), although as a

general rule of thumb real space based partition schemes, such as the Hirshfeld59 and Becke60

methods, have been shown to perform better than, for instance, orbital based schemes.30

We have based our CDFT implementation on the Becke weight function and a detailed

description on the efficient construction of the constraint will be given in Sections 2.2-2.3.

A connection between CDFT and Marcus theory can be established by first recalling that

two states, the initial a and final b states, are sufficient to characterize the kinetics of an ET

reaction. CDFT treatment of these states is straightforward as they only differ in the way

the constraint is defined (different values of Nc). These calculations produce localized dia-

batic states with characteristic Kohn-Sham wavefunctions, ΦI, that are in general mutually

nonorthogonal but can nonetheless be employed to define a diabatic coupling |HAB|30

|HAB| ≈ 〈ΦA |HKS |ΦB〉 =
EA + EB

2
SAB − ξA + ξB

2
〈ΦA |w(r) |ΦB〉 (5)

where EI is the CDFT energy of diabatic state I, SAB is the overlap between states, and

capital subscripts have been used to distinguish the states from their orthogonal counterparts.

An orthogonalization procedure is then followed to arrive at a CDFT approximation of the

coupling |Hab| which appears in the Marcus rate equation (1).22,23 In order to estimate the

required free energy quantities λ and ∆A, Warshel’s61 microscopic interpretation of Marcus

theory is adopted. Within this formalism, the quantity describing the ET process is the

vertical energy gap, ∆E, which is evaluated as the energy difference of the two constrained

ET states at fixed atomic configuration R
N
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∆E
(
R

N
)
= EB

(
R

N
)
− EA

(
R

N
)

(6)

The reorganization free energy, λ, and the reaction free energy, ∆A, can be obtained

by sampling ∆E during constrained molecular dynamics simulations. Assuming that the

system is in the linear response limit and the fluctuations of ∆E obey Gaussian statistics,

the key assumptions of Marcus theory (see e.g. Ref. 12), the relevant identities are

λ =
〈∆EA〉T − 〈∆EB〉T

2
(7)

∆A =
〈∆EA〉T + 〈∆EB〉T

2
(8)

where 〈∆EI〉T denotes the canonical average of ∆E obtained from a CDFT MD simulation

where the nuclei have been propagated on the potential energy surface of state I.

2.2 Efficient Construction of the Becke Constraint

Construction of the Becke weight function essentially involves dividing the system into

Voronoi polyhedra that are smoothed to avoid discontinuities.60 The construction of these

Becke cells, however, scales unfavorably with system size, which is a major drawback for

condensed phase simulations. To elaborate this matter further, let W = A ∪ D denote the

set of constraint atoms, where acceptor and donor atoms are collected in the disjoint sets

A and D, respectively. Defining N further as the set of all atoms within the system, the

Becke60 real space weight function (BW) can then be expressed as

w(r) =
∑

i∈W

ciwi(r) =

∑
i∈W

ciPi(r)

∑
n∈N

Pn(r)
, ci =





+1, if i ∈ A

−1, if i ∈ D
(9)

where Pi(r) =
∏
j∈N
j 6=i

s(µij) is the so-called cell function, constructed from the products of
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smoothed step functions (high order polynomials), s, and where the coefficient ci changes

sign based on whether the atom is an electron acceptor or donor. Here, the argument of the

step function, µij, is the hyperboloidal coordinate function defined for each atom pair i, j

positioned at Ri,Rj as

µij(r) =
|Ri − r| − |Rj − r|

|Ri −Rj|
=

ri − rj
Rij

(10)

The density partitioning defined thus far treats every element equally, which leads to

unphysical atomic charges even in the simplest molecules such as water, predicting a negative

charge on hydrogen atoms and a positive charge on oxygen. In his original work, Becke60

already acknowledged this issue and suggested shifting the cell boundaries off center with the

transformation νij = µij+aij(1−µ2
ij) , where aij is an atom pair specific parameter depending

on the radii of the atoms. There is naturally no unique way to define atomic radii and in our

implementation the choice is left to the user. Regardless, this transformation is at the core

of our method as it facilitates introducing a heteronuclear density partitioning (BW+A) by

simply substituting µij for νij in Equation (9), leading to an improved description of partial

charges and e.g. |Hab| values (see Section 4). Now, the necessary gradient to compute atomic

forces arising from the constraint (Equation (4)) is given by

∂w(r)

∂Ri

=
1∑

n∈N

Pn(r)


ci

∂Pi(r)

∂Ri

+
∑

j∈W
j 6=i

cj
∂Pj(r)

∂Ri


−

∑
i∈W

ciPi(r)

( ∑
n∈N

Pn(r)

)2

∑

n∈N

∂Pn(r)

∂Ri

(11)

where the first term on the r.h.s. vanishes if atom i is not a constraint atom. All the

necessary identities required to implement the heteronuclear Becke method with forces have

been derived in Appendix A.

Examination of Equations (9)-(11) reveals the origin of poor scaling of the Becke method

with system size. Specifically, as the method requires iterating through every atom pair
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ij permutation at every real space point r, a large fraction of computational time during

electronic structure optimization will actually be spent in building the constraint. This

problem becomes more pronounced in condensed phase simulations, and a direct CDFT

implementation based on the above equations is prohibitively costly for MD simulations.

Fortunately, the computational cost of the Becke method can be considerably decreased by

meticulously analyzing the properties of the weight function. First, observe that the weight

function and its gradients are only functions of atomic positions Ri, and in particular do

not depend on ρ(r). Accordingly, both terms can be calculated simultaneously and stored

in memory prior to starting the SCF optimization of the electronic structure. On each SCF

iteration, it is then straightforward to enforce the constraint by evaluating the integrals of

Equations (2) and (4).

Another key strategy for improving the performance of the Becke algorithm is to confine

the density partitioning to a smaller subspace, which in fact can be implemented without

any loss of accuracy. In order to establish this property, consider an arbitrary grid point r

within the periodic supercell. Only a handful of atoms are located close to this grid point,

say within a few Å, even in the condensed phase. The contribution of any other atom to

the weight function w(r) will quickly tend to zero the farther the atom resides from the grid

point, because the closest atoms dominate the expression by virtue of using smoothed step

functions to define w(r) (for further elaboration, see also Appendix A). To take advantage

of this observation, an element specific cutoff radius is introduced to automatically discard

those atoms i that reside beyond a cutoff radius away from the current grid point and nothing

is calculated for the atom pairs ij. However, the reverse pairs ji still need to be calculated,

assuming atom j is within the cutoff radius.

Building upon the previous idea, a significantly higher reduction in computational cost

can be achieved by realizing that, at each grid point, both the weight function w(r) and its

gradient vanish in case all constraint atoms are beyond the cutoff radius. This follows from

the fact that the corresponding cell functions and, by extension, their gradients are in this
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instance identically zero (compare with Equations (9) and (11)). Therefore, the constraint is

nonzero only inside a space defined by the superposition of spheres with a radius equal to the

cutoff radius centered on the constraint atoms. A number of algorithms can in principle be

employed to construct such a confinement cavity. Inspired by various continuum solvation

models, an implementation relying on a spherical Gaussians gi(Ri, r
gauss
i ) has been developed.

Specifically, the cavity is constructed by first summing the Gaussians
∑
i∈W

gi(Ri, r
gauss
i ), and

then by discarding any grid points where the Gaussian density falls below a predetermined

screening cutoff, as illustrated in Figure S7. The width of these Gaussians is controlled by a

radius parameter rgaussi , and we have found that using van der Waals radii results in the most

efficient confinement. Finally, it should be noted that the functions defining the constraint

satisfy particular pairwise symmetry relations. Thus, once the atom pair ij, i < j, has been

calculated, there is actually no need to compute the reverse pair ji. The required symmetry

relations to adopt this scheme are derived in Appendix B.

2.3 CDFT Algorithm for Simultaneous Treatment of Two ET States

It is worth reiterating that evaluating the ET parameters in the Marcus rate equation (1)

with CDFT boils down to sampling ∆E (Equation (6)) and |Hab| during molecular dynamics

simulations. Specifically, at every MD time step, it is necessary to solve the constrained

electronic structures of both the initial and final states of the reaction. These MD simulations

must be performed twice, propagating the system with forces derived alternatively from the

initial or final state, in order to evaluate the free energy quantities of Equations (7)-(8).

Having introduced a number of improvements to the Becke density partitioning method

in Section 2.2, we are now in a position to present our algorithm for efficient CDFT MD

simulations. The key fact to observe here is that atomic positions in the two ET states are

always identical since the vertical energy gap ∆E is sampled. This allows us once again to

utilize the ρ(r) insensitivity of the Becke weight function, and to construct a shared weight

function and gradients for both ET states, thus avoiding wasting computational resources
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on building the constraint twice.

Now, we have the option of either treating the ET states sequentially or in parallel. The

latter choice is obviously superior in terms of wall clock time expended for the simulation,

although it requires introducing an additional communication step to copy the constraint

onto the processor subgroups handling the individual ET states. The resulting parallel al-

gorithm has been schematically depicted in Figure 1. Another advantage of this scheme

is that it enables doubling the processor count used for the calculation, further mitigating

the cost of the Becke method. To improve scalability, dynamic load balancing has been

incorporated into the algorithm, where the computational load is approximated using the

Gaussian confinement cavity and the load prediction error from the previous MD step. Some

code specific modifications to the SCF procedure were also necessary, because CP2K em-

ploys the orbital transformation (OT) method48 to recast diagonalization of the Kohn-Sham

eigenequation into solving a minimization problem by using a two tiered SCF approach. In

brief, a third SCF layer has been added for constraint Lagrangian optimization to avoid

interference with OT. Furthermore, the rebuild of the OT minimization preconditioner is

prevented when near convergence, saving computational resources especially using the most

effective, diagonalization based preconditioner.62

Obviously, the superior performance of the introduced parallel algorithm hinges on the

assumption that the electronic structures of both ET states converge at a roughly equal rate,

since otherwise computer time is wasted while half of the processors remain idle and wait

for the rest to finish. An extensive analysis on the convergence properties of the algorithm

is presented in the Supporting Information based on CDFT MD simulations of various sol-

vated systems, see in particular Figures S1-S6. To summarize, these tests show that the

convergence generally depends on system, e.g. the nature of the donor and acceptor as well

as the solvent environment, but within reasonable performance imbalance limits the conver-

gence is smooth enough to justify parallelization over ET states when the system is treated

entirely at the DFT level. Convergence for hybrid CDFT/MM simulations is not as good
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Calculate |Hab| 

Build constraint 

(eqs. 9 & 11)  

Solve electronic 

structure of IS

Solve electronic 

structure of FS

Replicate 

constraint

Gather matrices

to evaluate eq. 5

Output

Input

Figure 1. Parallel CDFT algorithm for the concurrent simulation of two ET states. The
constraint is first built using 2N processors and then copied onto two processor groups of
size N , which solve the constrained electronic structures of the ET initial (IS) and final
(FS) states in parallel, returning the necessary matrices to calculate |Hab|. In the constraint
replication step, global MPI communication is employed to map the constraint real space
grids distributed on 2N processors to two sets of grids on N processors. The inset shows how
the CDFT constraint optimization has been incorporated into an orbital transformation48

(OT) based electronic structure solver.

and would benefit from a serial treatment of the ET states, however; this alternative has not

been considered in this work since the algorithm has mainly been designed with full DFT

simulations in mind. Nonetheless, we will reevaluate our position on this matter in future

applications of the presented method.

In any case, the convergence of the individual ET states is noticeably faster during

MD than it would be in a series of single point calculations using the same MD snapshots,

because high order extrapolation63 of the state specific wavefunctions significantly accelerates

convergence during MD. A multilinear extrapolation is analogously employed to improve
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the initial guess accuracy of the constraint Lagrangian ξ, reducing the number of needed

iterations to optimize ξ. For improved MD stability, it also helps to purge the wavefunction

and ξ histories in case convergence issues are encountered. In light of these observations,

it is not surprising that the performance of the CDFT algorithm in Figure 1 is superior

to modeling the ET states separately while keeping the sampling frequency constant, i.e.,

running the CDFT MD simulation in just one ET state and subsequently calculating the

other state as a series of single point computations, especially as both states are regardless

required to compute |Hab|. The latter strategy will naturally be cheaper if fewer than every

MD snapshot are selected for analysis, but owing to the loss of constraint and wavefunction

history, we expect that separation between subsequent configurations needs to exceed at

least 20 time steps for a noticeable improvement.

We have benchmarked the performance of our CDFT method by studying intramolecu-

lar ET in the tetrathiafulvalene-diquinone radial anion (Q-TTF-Q•−) solvated in 258 water

molecules, as shown in Figure 2. Specifically, we have compared the computational cost of

building the constraint (weight function and its gradient) using the original Becke method

with modified versions where the improvements of Section 2.2 are introduced in stages, as

well as the parallel algorithm that simultaneously operates on two ET states. A considerable

97 % decrease in computational cost is achieved when all modifications are incorporated into

the method, bringing the cost down to 4.7 s from 134.7 s with Gaussian confinement account-

ing for the majority of the observed improvement. To put these values into perspective, the

average cost of an SCF iteration is around 1.3 seconds (without OT preconditioner rebuild),

which underlines the reason why the original method is ill-suited for dynamic simulations.

We again wish to emphasize that these modifications have no influence on the accuracy of

the results. Switching over to the parallel algorithm incurs a marginal two second communi-

cation overhead that is partly negated by the introduction of load balancing which has not

been implemented in the other methods. More importantly, the algorithm achieves an MD

performance of 48 seconds/timestep when averaged over a 12 ps (24000 steps) long trajectory

13



1

10

100

Parallel Comb. Conf. Orig.

7.5 s
4.7 s

22.6 s

134.7 s
T

im
e 

(s
)

Constraint
Communication

O

O

O

O

S

S

S

S

Figure 2. Benchmark calculation comparing the performance of the original Becke method
(Orig.) with modified versions (Conf., Comb.) of the method as well as the parallel algorithm
from Figure 1 (left). Here, ‘Conf.’ denotes the Becke method using Gaussian confinement
and symmetry relations, and in ‘Comb.’ the weight function and gradient are additionally
computed in one shot, see main text for additional details. Note that the constraint building
kernel in the parallel algorithm is equivalent to ‘Comb.’ with the exception that dynamic load
balancing is incorporated only into the former. Reported timings are for the construction
of the Becke weight function and its gradient in a system composed of a tetrathiafulvalene-
diquinone radial anion (Q-TTF-Q•−) solvated in 258 water molecules (right) using 384 cores
of a Cray XC40. The anion is in ball-and-stick representation, with carbon depicted in gray,
oxygen in red, sulfur in yellow, and hydrogen in white.

(see Section 4.3 for additional details), demonstrating that the method is indeed fully viable

for carrying out two ET state condensed phase CDFT MD simulations.

3 Computational Methods

We have implemented the proposed CDFT method into a local development version of the

CP2K50,51 code, which is available upon request from the authors until the modifications are

merged into the main development version of the code. All calculations have been performed

using the spin dependent formalism of the hybrid Gaussian and (augmented) planewaves

method.49,64 Valence electrons were represented with molecularly optimized Gaussian basis

sets of double ζ plus polarization quality (MOLOPT-DZVP-SR),65 while ionic cores were
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treated with norm conserving GTH-pseudopotentials,66–68 unless otherwise stated. The

planewave basis was truncated with a 500 Ry energy cutoff. The Kohn-Sham equations

were solved using the orbital transformation48 method combined with a diagonalization

based preconditioner,62 and matrix diagonalizations were accelerated with the ELPA69 li-

brary. DFT-D370 van der Waals corrections with Becke-Johnson damping71 have been used

throughout. The majority of the calculations were carried out with the PBE72 and PBE073

exchange-correlation functionals, but some tests with the BLYP74,75 and B3LYP76 function-

als were also performed. For condensed phase PBE0 calculations, a truncated version77 of

the functional (PBE0-TC-LRC) was employed together with the auxiliary density matrix

method.78

Vacuum phase calculations of |Hab| and charge transfer energies in small molecular com-

plexes were used to validate the CDFT implementation (see Section 4 for details on the

studied systems). The complexes were centered in cubic boxes with at least 10 Å vacuum

surrounding the molecules in each direction, and interactions between periodic copies of the

system were decoupled with the Martyna-Tuckerman79 method. For CDFT MD simulations

of Q-TTF-Q•−, a fully periodic solvated system with 258 water molecules was prepared by

equilibrating the solution for 1 ns in the NPT ensemble at 300 K and 1 bar using a classical

forcefield, with additional details reported in the Supporting Information. The final edge

length of the cubic box was 19.5510 Å. A 2+10 ps long CDFT MD trajectory was acquired in

the NVT ensemble by propagating the ionic cores with the Velocity Verlet algoritm using a

time step of 0.5 fs and the Bussi et al.80 thermostat with a target temperature of 330 K. For

comparison, the system was also modeled with a combined CDFT/MM MD approach using

a Gaussian expansion of the electrostatic potential81,82 to describe the QM/MM coupling,

see Supporting Information for a more comprehensive account.

In every system, the constraint has been defined as the charge difference between accep-

tor and donor fragments, and the appropriate target value Nc for the constraint is calculated

from the number of valence electrons on the fragments, except for simulations using a non-
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interacting reference state (see Equation (3)). The validation simulations were conducted

with different functional forms of the Becke weight function to quantify the effects of atomic

size adjustments and using isolated fragments in defining the constraint. As most of the

studied systems are composed of covalent molecules, the additive atomic radii of Pyykkö

and Atsumi83,84 have been adopted to adjust the Becke cell boundaries, using single bond

radii for all elements except carbon for which the double bond value was used. For the

system with a Cl− anion, the impact of using Shannon’s85 effective ionic radius for Cl was

also investigated. A screening threshold of 10−6 was employed to construct the Gaussian

confinement cavity. The constraint convergence criterion was set to 10−4e. To accelerate

the CDFT MD simulations, the convergence criterion was loosened to 10−2e as we did not

observe any degradation of results in short test simulations, and the average drift of the

MD conserved quantity remained reasonable (-0.7 µHa ps−1 atom−1 over a 10 ps trajectory).

Element specific cutoff radii were set to 2.65 Å for elements heavier than H, while 2.28 Å was

used for H.

4 Results and Discussion

The CDFT implementation has been validated using a twofold approach, testing in both

instances how sensitive the results are to the choice of weight function, DFT functional,

and basis set. We have first evaluated the method’s accuracy for calculating |Hab| values by

comparison to high level ab initio reference values for hole transfer in helium, zinc, and small

organic molecule dimers, and for electron transfer between benzene and a neutral chlorine

atom. Subsequently, charge transfer energies are computed for a set of twelve molecular

complexes which are benchmarked against reference CDFT values obtained with a different

weight function. We then present our results on the condensed phase CDFT MD simulations

of Q-TTF-Q•− and conclude with a brief analysis regarding the influence of computational

parameters on the quality of CDFT results.
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4.1 Validation of Electronic Couplings

As the first test of our method, we have calculated |Hab| for the electron transfer reaction

between benzene and a neutral chlorine atom, C6H6 + Cl ⇋ C6H
+
6 + Cl−, using various

weight functions and two exchange-correlation functionals. This system presents a stringent

test for CDFT due to nonneglible overlap between the donor and acceptor, which combined

with the availability of high level ab initio GMH data15 has made it a prime benchmark

case for CDFT implementations.22,23 Following Cave and Newton,15 the Cl atom is placed 3

Å above the benzene molecular plane at distances, d, 0.604 Å and 1.208 Å away from the six-

fold symmetry axis of benzene in the direction of a C-C bond bisector. The calculated |Hab|

values are summarized in Table 1. Focusing first on the PBE results, an excellent agreement

is found between reference GMH15 values and our CDFT calculations with the Becke weight

where cell boundaries are shifted using covalent radii for C and H and the ionic radius of

Cl (BW+A* weight). The values are also consistent with prior CDFT results reported by

Wu and Van Voorhis22 using an all-electron local basis set approach and the Becke weight

as well as by Oberhofer and Blumberger23 employing planewaves and the Hirshfeld weight.

The agreement with GMH values worsens when atomic radii are employed for all elements

(BW+A weight), whereas neglecting the atomic size correction (BW weight) causes |Hab|

to erroneously vanish for d = 1.208 Å due to the two ET states becoming numerically

orthogonal. Moreover, the BW weight function is unable to reproduce chemically reasonable

partial atomic charges for benzene-Cl in the unconstrained DFT ground state unlike the

other weight functions, see Table S1.

Above, the ET states have been constructed by constraining the charge difference between

benzene and Cl to satisfy the expected formal difference obtained by counting electrons on

both fragments. Alternatively, isolated neutral and charged molecular fragments could be

employed to define the ET states in such a way that the number of electrons on both

fragments matches the calculated value in the superimposition of noninteracting reference

densities, see Equation (3). Repeating the |Hab| calculations with fragment based Becke
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Table 1. CDFT Electronic Couplings |Hab| for Benzene-Cl Calculated with Different Weight
Functions Compared to CDFT and GMH Results from the Literature. The Tested Weight
Functions Include: Becke Weight (BW), Becke Weight Adjusted with Covalent Atomic Radii
(BW+A), Becke Weight Adjusted with Covalent Atomic (for C, H) and Ionic (for Cl) Radii
(BW+A*), as well as the Corresponding Fragment Based Becke Weights (FBB) with Values
Given in Parentheses. All Values Are in MilliHartree (mHa).

Method Weight d = 0.604 Å d = 1.208 Å

CDFT PBEa BW 61.2 (36.0) 0.0 (38.3)
BW+A 28.6 (29.4) 34.6 (39.2)
BW+A* 48.9 (47.7) 47.1 (56.8)

CDFT PBE0a BW 68.0 (28.8) 79.3 (28.9)
BW+A 14.2 (23.8) 21.3 (31.2)
BW+A* 52.8 (34.4) 75.2 (42.7)

GMHb – 51.0 51.9
CDFT BLYPc Hirshfeld 55.9 52.3
CDFT B3LYPd BW 48.8 56.1
a This work.
b Reference 15.
c Reference 22.
d Reference 23.

weights preserves the quality of the results with atomic size adjustments (FBB+A/FBB+A*

weights), and notably corrects the zero |Hab| value without size adjustments (FBB weight).

Switching over to the PBE0 functional, the BW+A* weight again yields the best agreement

with reference values, although |Hab| at d = 1.208 Å is now overestimated, while the

ordering of BW and BW+A is reversed with the former over- and the latter underestimating

the electronic coupling. Using fragment densities with PBE0 lowers the FBB and FBB+A*

values too much when compared to GMH values, only improving the accuracy of FBB+A

values.

Based on the above analysis, it is evident that the |Hab| values in Table 1 vary quite

considerably depending on the choice of the weight function, which stems from the difficulty

of reliably partitioning the total electron density of benzene-Cl into fragment contributions

due to significant overlap between fragments. This effect is by no means unique to the present

CDFT implementation, c.f. Refs. 22 and 23, and highlights the importance of benchmarking

18



when modeling strongly interacting charge transfer systems. In fact, wavefunction based

methods are prone to similar difficulties as well, exhibiting a sensitivity to the choice of basis

set, electronic structure method, and the formalism employed to compute |Hab|.86 We shall

discuss this matter further in Sections 4.2 and 4.4.

As stated earlier, we have implemented our CDFT method within the GPW49 (GAPW64)

framework of the CP2K50,51 code which employs a dual basis of Gaussian functions and (aug-

mented) planewaves. The quality of the Gaussian basis set is likely to affect the quality of cal-

culated CDFT electronic couplings, especially when the donor-acceptor distance is increased,

given the finite spatial extent of Gaussians. We have investigated the basis set sensitivity of

|Hab| by studying hole transfer in He+2 and Zn+
2 as a function of the internuclear separation

with basis sets of different quality and hence vastly different computational cost: molecularly

optimized double ζ plus polarisation basis sets (MOLOPT-DZVP-SR),65 traditional split va-

lence quadruple ζ basis set with uncontracted polarization functions (GTH-QZV3P),50 and

Ahlrichs’ def2-QZVP87 all-electron basis set. The results have been collected into Tables

S2-S3 where they have been compared to high level ab initio GMH data.15,88,89

At small internuclear separations, virtually no difference between basis sets is observed,

and the accuracy of |Hab| values is primarily determined by the exchange-correlation func-

tional and we find a very satisfactory agreement with reference values. Quite expectedly, the

|Hab| values start deviating when the separation is increased, with each basis set nonetheless

reproducing the characteristic exponential decay of electron tunneling, |Hab| ∝ exp(−βr/2)

where β is the so-called decay constant. The MOLOPT-DZVP-SR basis underestimates the

coupling at largest distances leading to decay constants that are too large. Overall, the

all-electron basis set most faithfully reproduces the reference GMH decay constants, at an

accuracy comparable to other CDFT implementations.22,23 We wish to note in passing that

the cutoff of the auxiliary planewave basis has a significantly smaller impact on the quality

of |Hab|; by varying the cutoff in the range 380-800 Ry, the maximum observed change in

|Hab| relative to results with 500 Ry is 40 µHa in tested configurations.
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It is not uncommon, however, for CDFT to systematically over- or underestimate |Hab|,

particularly when using GGA functionals. In comprehensive studies of charge transfer in

anionic and cationic organic dimers, Blumberger and coworkers89,90 demonstrated that the

accuracy of CDFT couplings can be improved by simply scaling the values with a functional

dependent constant, obtained by fitting a linear dependence between CDFT and reference

|Hab| values. In order to further validate our method, we have evaluated |Hab| values for

the HAB1189 database of stacked cationic homodimers using different weight functions and

functionals. The results obtained with the MOLOPT-DZVP-SR basis set are compared to

reference ab initio data89,91 in Table 2.

Table 2. Signed Errors of CDFT Electronic Couplings |Hab| (in mHa) and Decay Constants
β (in 1/Å) for the HAB1189 Set of Homodimer Cations Relative to High Level Ab Initio Cal-
culations. Statistical Evaluation of Both Quantities over the Entire Dataset Is Presented for
Each Weight Function-Functional Combination. Statistical Parameters after Linear Scaling
of |Hab| Are Given in Parentheses.

PBE PBE0

Dimer Distance BW BW+A FBB+A BW+A Ref.
Acetylenea 3.5 4.0 3.8 6.6 1.6 16.9

4.0 1.5 1.5 2.7 0.4 8.5
4.5 0.6 0.6 0.7 0.1 4.2
5.0 0.2 0.2 0.1 0.0 2.1
β 0.17 0.15 0.37 0.10 2.80

Benzeneb 3.5 4.5 4.5 7.6 2.4 16.3
4.0 1.5 1.5 3.9 0.6 8.1
4.5 0.5 0.5 1.9 0.0 4.0
5.0 0.2 0.2 0.7 −0.1 1.9
β 0.19 0.22 0.11 0.26 2.84

Cyclobutadienea 3.5 8.9 9.2 8.2 −0.6 17.0
4.0 4.3 4.3 4.6 −1.6 8.8
4.5 2.0 2.0 1.7 −1.1 4.5
5.0 0.8 0.8 0.6 −0.7 2.3
β 0.15 0.16 0.22 0.42 2.68

Cyclopentadienea 3.5 6.9 6.7 10.3 3.1 17.1
4.0 2.6 2.4 5.6 0.8 8.6
4.5 0.9 0.8 2.8 0.1 4.2
5.0 0.4 0.4 1.4 0.0 2.0
β 0.22 0.20 −0.08 0.21 2.89

Cyclopropenea 3.5 8.7 8.6 13.4 4.4 19.7
4.0 3.0 2.9 6.9 1.1 9.3
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Table 2. Continued.

PBE PBE0

Dimer Distance BW BW+A FBB+A BW+A Ref.
4.5 1.0 1.0 3.3 0.2 4.4
5.0 0.5 0.5 1.4 0.1 2.0
β 0.21 0.21 −0.01 0.23 3.06

Ethylenea 3.5 2.9 3.0 6.7 1.0 19.1
4.0 1.2 1.2 3.3 0.0 10.0
4.5 0.5 0.5 1.3 −0.2 5.1
5.0 0.2 0.2 0.4 −0.1 2.5
β 0.09 0.10 0.21 0.14 2.70

Furanea 3.5 3.8 3.7 6.9 1.4 16.2
4.0 1.3 1.2 3.6 0.2 7.9
4.5 0.5 0.5 1.7 0.0 3.7
5.0 0.3 0.3 0.8 0.0 1.7
β 0.08 0.08 −0.06 0.11 3.01

Imidazoleb 3.5 4.6 4.6 8.1 2.1 15.3
4.0 1.5 1.5 4.1 0.3 7.6
4.5 0.5 0.5 1.8 −0.1 3.8
5.0 0.1 0.1 0.6 −0.2 1.9
β 0.28 0.27 0.19 0.33 2.81

Phenolb 3.5 4.4 4.4 7.3 2.3 13.5
4.0 1.5 1.4 3.8 0.6 6.5
4.5 0.4 0.4 1.7 0.0 3.1
5.0 0.1 0.1 0.7 −0.1 1.5
β 0.30 0.30 0.09 0.29 2.94

Pyrrolea 3.5 4.3 4.3 7.6 1.7 16.8
4.0 1.6 1.5 4.1 0.3 8.4
4.5 0.5 0.5 2.0 −0.1 4.1
5.0 0.2 0.2 0.9 −0.1 1.9
β 0.15 0.15 0.00 0.18 2.89

Thiopheneb 3.5 6.2 6.3 9.5 3.1 16.2
4.0 2.2 2.1 4.9 0.7 8.1
4.5 0.7 0.7 2.1 0.0 4.0
5.0 0.2 0.2 0.7 −0.1 2.0
β 0.28 0.28 0.20 0.32 2.81

|Hab| MUE (mHa) 2.1 2.1 3.8 0.8
(0.6) (0.6) (0.5) (0.5)

MRSE (%) 22.1 21.7 47.1 2.1
(−6.0) (−6.1) (−2.0) (−6.9)

MRUE (%) 22.1 21.7 47.1 7.8
(9.5) (9.7) (7.9) (8.9)
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Table 2. Continued.

PBE PBE0

Dimer Distance BW BW+A FBB+A BW+A Ref.
MAX (mHa) 8.9 9.2 13.4 4.4

(2.9) (3.2) (2.4) (2.2)
β MUE (1/Å) 0.19 0.19 0.14 0.23

MRSE (%) 6.7 6.7 4.1 8.3
MRUE (%) 6.7 6.7 5.0 8.3
MAX (1/Å) 0.30 0.30 0.37 0.42

a MRCI+Q reference89

b MBPT(2) reference91

According to Table 2, PBE in conjunction with the BW or BW+A weight function

overestimates the reference electronic couplings, giving mean relative signed and unsigned

errors (MRSE/MRUE) of 22 % when averaged over the entire HAB11 dataset. Because

here the charge acceptor and donor are identical, perfectly stacked molecules, using atomic

size adjustments in the construction of the Becke weight function has a negligible effect

on calculated values even at short distances. By contrast, the couplings become further

overestimated with the fragment based Becke weight resulting in a MRSE and MRUE of

47.1 %. Switching to the PBE0 functional (BW+A weight) systematically improves the

couplings, decreasing MRSE to 2.1 % and MRUE to 7.8 % For this particular dataset,

increasing the fraction of exact exchange would likely lead to an even better agreement with

reference values,89 but this is not required to validate our method and has thus not been

explored. Interestingly, the relative ordering of these methods is reversed when the accuracy

of the exponential decay constants is examined, with PBE/FBB+A yielding the smallest

MRUE, 5.0 %, and PBE0/BW+A the largest, 8.3 %.

A scatter plot of CDFT and reference |Hab| values reveals that their correlation is indeed

linear (R2 ≈ 0.99), as illustrated in Figure S8 for the PBE/BW+A data. A notable im-

provement in the statistical parameters of PBE/BW+A is observed after uniformly scaling

the couplings with the inverse slope of the linear dependence (see Figure S8 for numerical
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values), decreasing MRSE to -6.0 % and MRUE to 9.5 %. Equal improvements are obtained

with other weight functions and the PBE functional. On the other hand, no statistical im-

provement is gained by scaling the PBE0 values, which was to be expected as the scaling

factor (0.9114) is close to unity.

4.2 Validation of Charge Transfer Energies

CDFT has recently been applied to probe charge transfer (CT) energies in noncovalent

complexes.92–94 Extracting the CT energy, −∆ECT, from the total interaction energy is

often challenging theoretically (see e.g. Ref. 95 for a recent review), but in the CDFT

framework, it is conveniently defined as the energy difference of the complex with a fully

relaxed electron density, EDFT, and with a relaxed density where CDFT is employed to

prevent charge transfer between the complex fragments, ECDFT,92

−∆ECT = ECDFT − EDFT (12)

The set of 11 CT complexes originally proposed by Hobza and coworkers96 and later

adapted to CDFT CT calculations by Řezáč and de la Lande92 is particularly interesting

for method validation purposes because it includes complexes with strongly overlapping

fragments, spanning a wide range of CT energies. CDFT is known to struggle for complexes

where the fragment electron densities overlap, since in this limit it is no longer possible to

uniquely partition the total density into fragment contributions,56 which we have already

discussed in relation to benzene-Cl system in Section 4.1. Indeed, the authors92 demonstrated

that all commonly used weight functions, including BW, Hirshfeld, and orbital dependent

weights, predicted inconsistent CT energies over the set of complexes. A reliable estimate

of −∆ECT was made possible only by using a weight that reflected the actual electronic

structure of the isolated molecular fragments, ρ̃i. This weight, dubbed ‘fragment based

Hirshfeld’ (FBH), is defined through
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wFBH(r) =
ρ̃A(r)

ρ̃A(r) + ρ̃B(r)
(13)

and should be contrasted to the original Hirshfeld59 weight where isolated atomic densities

are used instead of ρ̃i. In a subsequent study,93 fragment based Voronoi and Becke weights

were shown to perform comparably to the FBH weight, although the authors eventually

advocated the usage of FBH due to overall smaller CT energies. We have validated our

CDFT implementation against this data set with the addition of a water dimer system,

taken from the S6697 data set. The computed PBE/MOLOPT-DZVP-SR charge transfer

energies are collected into Table 3 where they are compared to PBE0/def2-QZVP results93

obtained with the FBH weight.

Table 3. Comparison between PBE/MOLOPT-DZVP-SR Charge Transfer Energies (in
mHa), −∆ECT, Computed Using Different Weight Functions and Reference Values Obtained
with the Fragment Based Hirshfeld Weight Function at the PBE0/def2-QZVP93 Level of The-
ory. The Magnitude of Charge Transferred between Fragments, |∆q|, in the Unconstrained
Ground State Is Also Shown. For the FBB+A Weight, |∆q| Is Relative to the Superposi-
tion of the Isolated Fragments. The Difference between Constraint Target Values with the
BW+A and FBB+A Weights, ∆Nc = Nc − Ñc, Are Reported.

−∆ECT |∆q| |∆Nc|
System Ref. BW BW+A FBB+A BW BW+A FBB+A

H2O− H2O 1.7 45.9 1.1 2.1 0.29 0.03 0.04 0.01
C2H2 − ClF 2.0 0.0 41.1 3.9 0.01 0.48 0.15 0.33
C2H4 − F2 0.6 5.1 12.0 2.1 0.13 0.18 0.10 0.09
H2O− ClF 2.9 2.4 73.8 4.0 0.10 0.47 0.12 0.36
HCN− ClF 1.3 0.3 21.9 1.8 0.03 0.31 0.08 0.23
NH3 − BH3 18.5 81.1 175.8 25.5 0.73 1.14 0.40 0.74
NH3 − Cl2 4.2 0.1 67.4 5.6 0.02 0.53 0.18 0.35
NH3 − ClF 11.6 0.1 104.5 13.2 0.03 0.76 0.29 0.47
NH3 − F2 1.1 10.7 20.6 3.5 0.18 0.23 0.13 0.10
NH3 − SO2 3.0 0.2 55.9 2.8 0.03 0.42 0.11 0.31
NMe3 − BH3 20.0 63.0 153.3 27.0 0.74 1.20 0.47 0.73
NMe3 − SO2 20.8 0.0 132.6 18.9 0.00 1.07 0.43 0.64

MUE (mHa) 17.2 64.4 2.3
MSE (mHa) 10.1 64.4 1.9
MAX (mHa) 62.6 157.2 7.0
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It is immediately obvious that both the BW and BW+A weights are unable to precisely

describe CT energies in the investigated systems. On average, BW+A overestimates the CT

energies by 64.4 mHa (MSE/MUE), while BW performs marginally better with a MUE of

17.2 mHa. The statistical accuracy of these methods show no improvement upon changing to

a larger GTH-aug-QZV3P basis set (Table S4) or by switching over to the PBE0 functional

(Table S5). By contrast, the fragment based Becke weight is in satisfactory agreement with

the PBE0/FBH reference values already with the MOLOPT-DZVP-SR basis, as verified by

the 2.3 mHa MUE and -1.9 mHa MSE, and further improves with the larger basis and the

PBE0 functional (Tables S4-S5).

To understand why the BW and BW+A weights perform poorly, it is instructive to

examine the magnitude of charge transferred, |∆q|, between the molecular fragments in the

unconstrained DFT ground state. Table 3 shows BW+A predicts that a notable amount of

charge is transferred in the majority of the systems, exceeding one electron in the datively

bonded BH3 complexes and NMe3−SO2. Correlating these values to the CT energies reveals

a dependence that grows quite linearly with increasing |∆q|, see Figure S9. The degree

that BW+A overestimates |∆q| values is simple to gauge by comparison to the respective

FBB+A values, which is analogously described by the difference in constraint target values

∆Nc = Nc − Ñc also shown in Table 3. This metric demonstrates severe, on average 60

%, overestimation of |∆q| values, ultimately causing the erroneous CT energies, and thus

highlights the importance of accounting for isolated fragment densities in this particular

application where the overlap between fragments is considerable. Here, BW happens to

outperform BW+A by virtue of smaller |∆q| prediction errors (see Tables S4-S5), but once

again the BW atomic partial charges are chemically unrealistic (see Table S6).

4.3 Condensed Phase CDFT MD Simulation of Q-TTF-Q•−

Q-TTF-Q•− is a prototypical example of a mixed valence compound (see also Figure 1) that

has been difficult to classify either as class II or III in the Robin-Day98 classification scheme,
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where molecules are categorized according to the strength of the electronic coupling 2|Hab|.

Experimentally, Q-TTF-Q•− exhibits class II behavior in a 10:1 mixture of ethyl acetate and

tert-butanol,99 i.e., the excess electron is partly localized onto one of the quinone rings but

can transfer back and forth between the two rings, as the electronic coupling is nonzero but

smaller than the solvent reorganization energy (2|Hab| < λ). The accurate description of this

anion has posed a considerable challenge for theoretical studies.22,23,40,43,100–103 In vacuum,

common GGA and hybrid functionals predict that the excess electron is fully delocalized,

which is characteristic of class III compounds (2|Hab| > λ). In light of the contradicting

experimental observation, this result has often been (mis)interpreted as a manifestation self-

interaction error, and class II behavior has been enforced by e.g. using long-range corrected

hybrid functionals100,101 or through CDFT approaches.22,23,40,43 More recently, Renz and

Kaupp102 questioned this interpretation and demonstrated delocalized character with the

BLYP35 functional (35% exact exchange), which has been validated against a variety of other

mixed valence compounds.36,104–106 The authors were also able to show that correct class III

behavior is recovered only in polar solvents using continuum solvation and D-COSMO-RS

models.

With the vast amount of CDFT and other theoretical data available, we have selected Q-

TTF-Q•− as a model system to test the implementation of our parallel CDFT algorithm for

condensed phase MD simulations. Previous vacuum calculations have also been reproduced

for comparison. As expected, unconstrained vacuum optimization of Q-TTF-Q•− at the PBE

level results in a perfectly symmetrical structure with the excess electron delocalized over

the whole molecule. By enforcing charge localization, a small energy gap of ∆E = 20.8 µHa

(∆E = 20.5 µHa for PBE0) is observed between the two diabatic states, consistent with the

31 µHa B3LYP energy gap reported by Oberhofer and Blumberger.23 A similar agreement

is found between calculated CDFT couplings |Hab| at this configuration: we obtained values

of 16.9 mHa for PBE and 3.6 mHa for PBE0, respectively, while previously reported values

include 4.9 mHa (B3LYP),22 11.2 mHa (BLYP), 3.8 mHa (B3LYP),23 4.4 mHa (BLYP35),102
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as well as the experimental estimate of 0.7 mHa.99 The experimental value was calculated

from the Marcus rate equation (1) using the measured ET rate constant (1.3 ×108 s−1) and

activation free energy (6.4 kcal mol−1) in a 10:1 mixture of ethyl acetate and tert-butanol;99

precipitation of Q-TTF-Q•− has made it impossible to quantify the reaction in other solvents.

To investigate how the inclusion of solvent affects intramolecular ET in Q-TTF-Q•−, a

CDFT MD simulation of the molecule was carried out in a system with 258 explicit water

molecules using the PBE functional, sampling ∆E every step (0.5 fs) and |Hab| every 10 fs.

Data was collected for a total of 10 ps, following initial classical and CDFT equilibrations.

Comparison calculations with the PBE0 functional were performed by extracting snapshots

from the PBE trajectory every 0.125 ps and performing single point calculations on these

configurations. In another series of calculations, all water molecules were stripped from these

snapshots and the ET parameters were reevaluated in vacuum with both functionals. Fi-

nally, a mixed CDFT/MM MD simulation of the system was also conducted, see Supporting

Information for further details.

The time evolution of ∆E and |Hab| are depicted in Figure 3 for the CDFT MD simulation

with explicit water molecules, while the corresponding results are shown in Figures S10-S11

for the vacuum configurations and CDFT/MM simulations. Unsurprisingly, a considerable

increase in the vertical energy gap is observed when compared to the vacuum calculation

in the symmetric minimum energy configuration, because the excess electron localized on

one of the quinone rings becomes stabilized by surrounding water molecules, be it explicit

quantum mechanical or mixed QM/MM representation. The same effect is apparent in the

data where Q-TTF-Q•− configurations are extracted from the MD trajectory and placed in

vacuum (Figure S10). For ∆E, there is no perceivable difference between functionals and

overall the PBE0 values follow the trend of the PBE data. On the contrary, the hybrid

functional predicts noticeably smaller |Hab| values than PBE in all considered approaches.

Here, the sharp drops in |Hab| can be attributed to the two charge localized states becoming

momentarily orthogonal, see Figure S12.
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Figure 3. Time evolution of ∆E (top) and |Hab| (bottom) during a CDFT MD simulation
of Q-TTF-Q•− in water. The PBE functional was used for generating the MD trajectory,
while PBE0 values are single-point calculations on equidistantly spaced snapshots.

As the Marcus rate equation (1) suggests, the key parameters describing the intramolec-

ular ET process of Q-TTF-Q•− are the quadratic mean
〈
|Hab|2

〉1/2
T

and the solvent reor-

ganization free energy λ. Because Q-TTF-Q•− is a symmetric molecule, it is sufficient to

compute a single MD trajectory to characterize these parameters. In particular, substitution

of 〈∆EA〉T = −〈∆EB〉T = 〈∆E〉T into Equations (7)-(8) yields ∆A = 0 and λ is simply

given by the average vertical energy gap, 〈∆E〉T . These parameters have been assessed for

all computational approaches and are collected into Table 4.

For both functionals, the thermal averages of |Hab| are slightly lower than the values

obtained at the unconstrained PBE minimum energy configuration, consistent with obser-

vations of Renz and Kaupp102 using implicit solvent models. Although the PBE0 computed

mean, 3.0 mHa, is larger than the 0.7 mHa estimate derived from experiments, the agreement

can nonetheless be considered satisfactory given the difference in solvents (see also additional
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Table 4. Electron Transfer Parameters for Intramolecular ET in Q-TTF-Q•− Solvated in
Water Obtained with CDFT and CDFT/MM Approaches Using the PBE and PBE0 Func-
tionals. Parameters from Vacuum Simulations Are Given in Parentheses. Error Estimate Is
the Difference between Parameter Values in Two Halves of the Trajectories. Values in mHa.

CDFT CDFT/MM

Property PBE PBE0 PBE PBE0
〈
|Hab|2

〉1/2
15.4± 3.3 3.0± 0.6 11.1± 4.5 3.2± 0.1
(9.9± 1.0) (3.2± 0.7)

λ 126.9± 14.3 129.8± 16.9 134.2± 2.9 143.0± 3.8
(22.3± 2.8) (26.7± 3.5)

discussion below). We find PBE overestimates the PBE0 electronic coupling by a factor of

5, which is partly explained by the greater overlap between diabatic states with PBE (Fig-

ure S12). Stripping the solvent molecules from the system or using a CDFT/MM approach

both decrease the electronic coupling with PBE, whereas the PBE0 value remains unaltered.

The interaction of Q-TTF-Q•− and water has previously been investigated by Blumberger

and Oberhofer,23 who performed an unconstrained MD simulation of the system and subse-

quently sampled 〈∆E〉T and |Hab| from snapshots of the trajectory. The latter quantity was

evaluated by removing all water molecules from the snapshots, yielding a thermal average

of 6.7 mHa with the B3LYP functional, or roughly double the present PBE0 value.

Focusing our attention next on the solvent reorganization energy, λ, it is evident that

all approaches predict a consistent value of approximately 130 mHa in water. This value

decreases considerably to 25 mHa once the water molecules are removed, which again illus-

trates the ability of water to stabilize the charge localized state. By contrast, Blumberger

and Oberhofer23 obtained a value of 8.9 mHa with B3LYP in water, which is understand-

ably smaller than our estimate because, contrary to simulations herein, the authors did not

enforce charge localization during MD. Unfortunately, it is possible to compare λ to ex-

periments only on a qualitative level, since the aforementioned solubility issues prevent an

estimation of λ in water. Regardless, measured NIR spectra for Q-TTF-Q•− in a 10:1 mix-

ture of ethyl acetate and tert-butanol reveal a broad charge transfer band associated with
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the intramolecular ET process at 1300 nm,99 which after a change of units results in λ = 35

mHa. An alternative and slightly larger estimate of 41 mHa is obtained directly from the

fitted activation free energy, as determined by temperature-dependent ESR spectroscopy.99

Both of these values are roughly a third smaller than our water estimate; however, the hy-

dration properties of water and ethyl acetate/tert-butanol are radically different, resulting in

a solvent–QTTF-Q•− interaction that is notably stronger in water owing to the high polarity

and small size of water. In this respect, the difference in λ to experimental values does not

seem as significant, but the present data permits no further speculation on the matter.

4.4 Influence of Computational Parameters on the Accuracy of

CDFT Results

The numerical examples considered in Sections 4.1-4.3 have demonstrated that the imple-

mented CDFT algorithm can efficiently and accurately be applied to investigate a variety of

charge transfer related phenomena. However, the quality of the results may exhibit sensi-

tivity to choice of weight function (atomic size adjustments, constraint reference state) and

computational parameters (functional, basis set) depending on the studied system, which has

been reported in earlier CDFT literature30 but is a matter we believe nonetheless warrants

further discussion.

In this context, it is important to distinguish between two classes of CT systems where

CDFT is applied to model either both (Sections 4.1 and 4.3) or only of one (Section 4.2) of

the states involved in the CT process. The former case is generally less prone to methodical

errors, and a natural parameter choice for overall best quantitative precision is to select

a hybrid functional and use it together with the atomic size adjusted Becke weight. The

choice of basis set is not as crucial, becoming vital only in the limit of widely separated,

weakly interacting fragments. Typically, GGA functionals are also perfectly adequate for

examining such systems, at least on a semiquantitative level, and their accuracy may be

improved through scaling strategies.
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On the other hand, systems with strongly overlapping fragments should always be treated

with extra scrutiny and require a careful benchmarking of the computational parameters.

The same conclusion applies to CT phenomena where the absolute energy of a CDFT state

is compared to a reference state modeled with a different approach. In these instances, using

isolated reference states to define the constraint instead of a formal charge based prescription

is beneficial in case a priori determination of fragment charges is unreliable due to significant

overlap between fragments, see Section 4.2 and Refs. 57,58,92,93 for additional examples.

We recommend using atomic size adjustments even for the fragment based Becke weight

function because obtaining chemically realistic partial atomic charges is impossible without

it.

5 Conclusion

In this work, we have presented a well-scaling constrained DFT implementation within the

computational framework of the hybrid Gaussian and planewaves method and the orbital

transformation electronic structure solver. The accuracy of our method was validated against

ab initio wavefunction and other theoretical results for predicting electronic couplings and

charge transfer energies of gas phase complexes. Unlike the majority of prior CDFT imple-

mentations, the current method can simultaneously operate on both diabatic states involved

in an electron transfer reaction and to propagate these states during a constrained molecu-

lar dynamics simulation, making the method ideally suited to investigate dynamical charge

transfer phenomena such as solvation effects. We have specifically opted to solve the two

states in parallel to maximize throughput, although a serial mode modification of the algo-

rithm is possible in future applications of the method in case parallel converge issues arise,

which is a strategy that has enjoyed success in hybrid CDFT/MM simulations.40,41 By adopt-

ing these design criteria, the implementation allows the characterization of all ET parameters

directly from CDFT MD simulations, and at the same time remains sufficiently efficient in
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terms of computational cost to enable the usage of an accurate, electronic structure based

description of the solvent. To demonstrate this capability, we studied the intramolecular ET

reaction of Q-TTF-Q•− in ca. 260 explicit water molecules, which yielded ET parameters

that were in agreement with experimental values in another solvent.

To summarize, the reported implementation thus successfully extends the applicability

of CDFT to larger systems. This is appealing in a number of applications, chief among

them biologically motivated ET processes where interesting system sizes often contain hun-

dreds of atoms, and the prospect of dynamically modeling these reactions entirely at the

electronic structure level has in previous implementations been effectively prevented by the

insurmountable computational cost of treating such large systems.
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Appendix A: Constraint Forces and Atomic Size Adjust-

ments

In this Appendix, we will derive all the necessary relations needed in an MD capable CDFT

implementation using the Becke weight, including the necessary modifications to accommo-

date a heteronuclear charge partitioning. For clarity, we will attempt to keep the notation

as close as possible to the original notation of Becke.60 To construct the Becke weight func-

tion in Equation (9), we define the smoothed step function s as 3rd order iteration of the

polynomial p

p(µij) =
3

2
µij −

1

2
µ3
ij (A1)

resulting in

s(µij) =
1

2
(1− f(µij)) , f(µij) = p{p[p(µij)]} (A2)

With these equations, it is straightforward to incorporate atomic size adjustments into

the Becke scheme. In particular, the relevant coordination transformation is defined in terms

of µij as νij = µij + aij(1− µ2
ij) , where the explicit form of aij is given by

aij =
uij

u2
ij − 1

, uij =
χ− 1

χ+ 1
, χ =

Ri

Rj

(A3)

and Ri denotes the radius of atom i. Here, aij is additionally constrained to have values in

the range |aij| < 1
2

to ensure monotonicity of the coordinate transformation. A heteronuclear

charge partitioning is generated by simply substituting µij for in νij Equation (A1) without

the need to modify any of the other expressions.

Next, we proceed onto the calculation of the gradient of the weight function, Equation

(11), needed to evaluate the constraint’s contribution to the atomic forces. The gradients of

the cell functions Pi can be calculated from
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∂Pi(r)

∂Ri

=
∑

j∈N
j 6=i

Pi(r)

s(µij)

∂s(µij)

∂Ri

∂Pj(r)

∂Ri

=
Pj(r)

s(µji)

∂s(µji)

∂Ri

(A4)

In order to evaluate these equations, we first introduce the auxiliary function g and let

it denote the gradient of the iterated polynomial p (equation (A1))

g(µij) =
∂p(µij)

∂µij

=
3

2
− 3

2
µ2
ij (A5)

The cell function gradients can now be evaluated using

∂s(µij)

∂Ri

= −1

2

∂f(µij)

∂µij

∂µij

∂Ri

(A6)

where

∂f(µij)

∂µij

=

(
3

2

)2

g
(
1− p2

)
[
1−

(
3

2
p− 1

2
p3
)2

]
(A7)

Finally, the required gradients of µij are given by

∂µij

∂Ri

=
ri − r

|ri − r|
1

Rij

− (ri − rj)
Ri −Rj

R3
ij

∂µij

∂Rj

= −
(

rj − r

|rj − r|
1

Rij

− (ri − rj)
Ri −Rj

R3
ij

) (A8)

In case a heteronuclear partitioning is employed, the gradients of the cell functions need

to be modified to account for the change of variables µij → νij. As explained above, a simple

insertion of νij in equation (A1) is sufficient to construct the smoothed step function s(νij).

Hence, the only term that needs more careful attention is the gradient ∂s(νij)/∂Ri. By

repeated application of the chain rule, this term can be computed from

34



∂s(νij)

∂Ri

= −1

2

∂f(νij)

∂νij

∂νij
∂µij

∂µij

∂Ri

= (1− 2aijµij)
∂s(µij)

∂Ri

∣∣∣∣∣
µij=νij

(A9)

Thus, only a simple multiplication is required to account for heteronuclear partitioning

in the constraint force.

Appendix B: Derivation of Symmetry Relations

In the main text, we have shown how using the appropriate symmetry relations can be

employed to decrease the computational cost the Becke method. We will now derive these

relations. Specifically, the goal is to derive a relationship between s(µij) and s(µji) (needed

to compute the cell function Pj), as well as between their gradients with respect to µ with

the same ordering of indices (needed to compute the gradients of Pj with respect to atomic

positions Ri and Rj). From equation (10), it is clear that µij = −µji since the internuclear

separation Rij in the denominator is insensitive to a permutation of the indices. Because

the iterated polynomial p, which is used for defining the smoothed step function s, is an odd

function, we obtain the following result f(µij) = −f(µji). This allows us to determine a

relation between the smoothed step functions of atom pairs ij and ji

s(µji) =
1

2
(1− f(µji)) =

1

2
(1 + f(µij)) = s(µij) + f(µij) (B1)

This equation facilitates computing the contribution of the atom pair ji to the cell func-

tion Pj of atom j while actually iterating over the reverse atom pair ij. To compute the

corresponding contribution to the gradients ∂Pj/∂Ri and ∂Pj/∂Rj, we first note that as the

gradient of f (equation (A7)) involves only even powers of µij, the gradient is symmetric

with respect to permuting the indices ij and ji
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∂f(µij)

∂µij

=
∂f(µji)

∂µji

(B2)

The above symmetry relations allow us to conclude that

∂s(µij)

∂µij

= −∂s(µji)

∂µji

(B3)

and so all cell function Pj independent components of the gradient ∂Pj/∂Ri can be

calculated simultaneously with the construction of the reverse atom pair ij. Since the final

value of the cell function Pj is available only after each atom pair has been looped over,

any terms involving the gradient ∂Pj/∂Ri must be finalized after this value is available.

The same considerations apply for the gradient ∂Pj/∂Rj. For the heteronuclear case, again

since µij = −µji and by definition aij = −aji, the heteronuclear quantity νij also satisfies

the equation νij = −νji. As a result, all of the symmetry relations derived above for the

homonuclear case apply directly to heteronuclear partitioning.
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