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Abstract. Theoretical models for the prediction of decay
rate and dispersion process of gravity waves traveling into
an integrated ice cover expanded over a long way are in-
troduced. The term “wet beam” is chosen to refer to these
models as they are developed by incorporating water-based
damping and added mass forces. Presented wet beam models
differ from each other according to the rheological behav-
ior considered for the ice cover. Two-parameter viscoelas-
tic solid models accommodating Kelvin–Voigt (KV) and
Maxwell mechanisms along with a one-parameter elastic
solid model are used to describe the rheological behavior
of the ice layer. Quantitative comparison between the land-
fast ice field data and model predictions suggests that wet
beam models, adopted with both KV and Maxwell mecha-
nisms, predict the decay rate more accurately compared to a
dry beam model. Furthermore, the wet beam models, adopted
with both KV and Maxwell mechanisms, are found to con-
struct decay rates of disintegrated ice fields, though they are
built for a continuous ice field. Finally, it is found that wet
beam models can accurately construct decay rate curves of
freshwater ice, though they cannot predict the dispersion pro-
cess of waves accurately. To overcome this limitation, three-
parameter solid models, termed standard linear solid (SLS)
mechanisms, are suggested to be used to re-formulate the dis-
persion relationship of wet beam models, which were seen
to construct decay rates and dispersion curves of freshwater
ice with an acceptable level of accuracy. Overall, the two-
parameter wet beam dispersion relationships presented in
this research are observed to predict decay rates and disper-
sion process of waves traveling into actual ice covers, though
three-parameter wet beam models were seen to reconstruct
the those of freshwater ice formed in a wave flume. The wet
beam models presented in this research can be implemented
in spectral models on a large geophysical scale.

1 Introduction

Mutual interaction between water waves and ice is a multi-
physical problem, frequently occurring in polar seas where
waves can penetrate ice covers, traveling over kilometers un-
til they die out. The phase and group speeds of the resulting
gravity-flexural waves advancing through the ice can be dif-
ferent from that of an open-water sea owing to the effects
of forces caused by solid motions. There is a pressing need
to understand the mutual effects of ice and gravity waves on
each other due to the recent retreat of the sea ice in the Arctic
(Stroeve et al., 2008; Comiso et al., 2008; Meier et al., 2013)
and the emergence of large and powerful wind-generated wa-
ter waves in the Antarctic (Young et al., 2011), which can
affect the ice extent (Kohout et al., 2014) by breaking the
ice. Specifically, the break-up of ice may potentially lead
to evolution of larger waves. Hence, it is very important to
understand the pattern of wave propagation in polar seas on
larger geophysical scales. Wave modelers aiming to numer-
ically simulate wave propagation in polar regions need to
use proper formulations to calculate the ice-induced energy
damping and the group speed of waves traveling into ice cov-
ers (Rogers and Orzech, 2013; Liu et al., 2020). These two
can be helpful in the prediction of the amount of wave energy
traveling into an ice cover, which can be calculated through
spectral modeling of waves on a large geophysical scale, and
if they are combined with sea ice break-up models, they can
also provide us with evolution of marginal ice zones (e.g., in
Kousal et al., 2022).

Mathematical modeling of the wave–ice interaction firstly
received the attentions of researchers in the 19th century. The
first model was developed by Greenhill (1886), who formu-
lated harmonic linear motions in a fluid domain covered with
an elastic beam. To build the model, he assumed that the ice
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extent was spanned over an infinite way, and the solid body
had relatively small motions. This model lacks energy damp-
ing, but, instead, it can be employed in the prediction of the
dispersion processes, the result of which is observed to be
consistent with the physics of long integrated bodies cover-
ing water.

The Greenhill study is the kernel of the next generation of
models established for the prediction of mutual effects of wa-
ter waves and ice. Researchers looking into the wave–ice in-
teraction developed models by modifying the original model
of Greenhill. Early developments of models dates back to
years between the 1950s and 1970s when scientists had be-
come able to reach polar seas, recording the wave climate.
The energy of waves traveling through the ice was observed
to be reduced by sea ice (Robin, 1963; Wadhams, 1972) and
the phase speed was observed to be affected by the ice. The
Greenhill model lacked the former since it was developed for
an elastic solid body.

Following the Greenhill’s model, various linear mathemat-
ical models of wave–ice interaction have been developed. In
some of them, interactions between water waves and finite
length ice floes have been modeled. Using such an assump-
tion, scattering and radiation problems can be addressed, and
motions of a flexible ice floe can be found (e.g., Meylan
and Squire, 1996; Smith and Meylan, 2011; Meylan et al.,
2020). Such a problem has been solved in frequency or time
domains (e.g., Meylan and Sturova, 2009; Hartmann et al.,
2022), and also shares similarities with engineering problems
within the field of marine hydroelasticity (e.g., ship hydroe-
lasticity and seakeeping of very large floating structures; e.g.,
in Hirdaris et al., 2003).

Some other models highlight mutual interaction of wa-
ter waves with an infinite length ice cover. Simply stated,
ice cover is viewed as a continuum medium. When this ap-
proach is embarked, the ice-induced energy decay is found
through finding the root of the dispersion equation. To ad-
dress the energy decay rates of continuum models, scholars
have mostly prescribed viscoelastic (e.g., Squire and Allan,
1977; Wang and Shen, 2010) or proelastic (Chen et al., 2019;
Xu and Guyenne, 2022) behavior for the ice, or presumed
that a thin layer of viscous fluid (e.g., De Carolis and Deside-
rio, 2002) can be representative of the ice behavior. In addi-
tion, in some other models, a damping term, which represents
a fluid-based dissipation mechanism, is considered, though
the ice is assumed to be elastic. Such an approach has been
introduced by Robinson and Palmer (1990), and is known
as the RP model. Researchers employing this approach have
prescribed elastic behavior for the ice cover (Squire et al.,
2009; Williams et al., 2013). This fluid damping term has
also been combined with scattering models (Williams et al.,
2017). To consider the scattering of water waves by an infi-
nite length cover, or wave reflection by cracks or variation in
the thickness, matching methods have been used (e.g., Fox
and Squire, 1991; Kohout and Meylan, 2006; Kohout et al.,
2007; Zhao and Shen, 2013).

Models developed for the prediction of decay rates and the
dispersion process of continuously integrated ice have been
mostly developed by assuming small displacement for the
cover. Thus, they solve the solid dynamic problem by us-
ing an Euler–Bernoulli beam theory. Their applications have
been seen to be limited. This can be due to the reason that
they have mostly developed by simplifying the problem, ne-
glecting some aspects of the fluid and solid motions. Stud-
ies performed in the recent decade provide a clear picture of
this fact. In some studies concerned with the dispersion pro-
cess of waves advancing in ice (or elastic) covers, formulated
dispersion relationships were reported to reconstruct the dis-
persion plot with an effective value of rigidity (or Young’s
modulus), which is much smaller than what was measured in
dry tests (Langleben, 1962; Sakai and Hanai, 2002; Cheng
et al., 2019). In some other studies, different values of ice
viscosity were seen to give the best fitting for energy damp-
ing of various frequencies, which may not agree with reality
(Marchenko et al., 2021).

To overcome the limitations of available continuum mod-
els, the role of different mechanisms in energy dissipation
and the parameters influencing the dispersion process of
waves propagating in ice should be understood well. Review-
ing the structure of all developed models (example of review
papers: Squire et al., 1995; Squire, 2007; Zhao et al., 2015;
Collins et al., 2016; Squire, 2020), one can conclude that en-
ergy dissipation is either assumed to be triggered by solid
motions (e.g., Wang and Shen, 2010) or by fluid motion, such
as fluid damping, overwash or shear stresses (e.g., Liu and
Mollo-Christensen, 1988; Mosig et al., 2015; Herman et al.,
2019; Huang et al., 2019). Furthermore, the dispersion pro-
cess is dependent on ice flexural rigidity, thickness and its
density in most of the models, though added mass can also
affect the dispersion process. New continuum models can
still be developed by assuming that the fluid-based and solid-
based energy damping mechanisms emerge at the same time.
The coexistence of solid-based and fluid-based dissipation
mechanisms in formulations may help us predict the decay
rates with fewer limitations and solve the fluid–solid prob-
lem for a more realistic condition. This means that, unlike
the previous studies which presented dispersion relationship
based on the RP model by assuming that ice is an elastic ma-
terial, viscoelastic behavior of the ice can also be considered.
This provides us with more options in building the dispersion
relationship as viscoelastic behavior of the ice cover can also
be formulated using different models (e.g., Kelvin–Voigt and
Maxwell), which may allow for incorporation of viscosity in
flexural rigidity.

The present paper aims to develop continuum wave–ice in-
teraction models by hypothesizing that fluid forces and solid
forces emerge simultaneously. Distinguishing the developed
models from the previous studies, fluid forces, including
damping and added mass, are hypothesized to emerge under
a viscoelastic ice beam covering water, vibrating due to the
wave forces. To understand the role of rheological behavior
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of ice, two different two-parameter solid mechanisms, link-
ing stress and strains arising in the solid beam, are employed
to establish these models. Accordingly, two new viscoelastic
models with incorporation of fluid damping force are intro-
duced. It is also aimed to provide a better understanding of
how different rheological patterns can be implemented in the
prediction of decay rate of the ice-covered water and seas.
This paper is structured as follows. Models are developed in
Sect. 2. In Sect. 3, results including wave height decay rates
and dispersion curves are presented. At the first step, sen-
sitivities of models to different parameters, shear modulus
and viscosity, are analyzed. At the next step, predictions of
models are compared against those of field and flume mea-
surements. Afterward, two three-parameter solid models are
also used to formulate dispersion relationships to investigate
the way consideration of more complex rheological behavior
can affect the results. Finally, a discussion on the ability of
models in the prediction of decay rates and dispersion curves
is presented. In Sect. 4, concluding remarks and suggestions
are presented. Appendix A presents an example of dimen-
sional data.

2 Models

2.1 Development of models

Consider a two-dimensional fluid domain containing water.
The domain extent is stretched over an infinite length and
has a depth ofD. An ice sheet covers the upper surface of the
domain. It implies that no air–water interaction occurs at all.
A schematic of the domain is shown in Fig. 1c. Water waves
propagate in this domain and their energy is dissipated over
time. Assuming that wave height is decayed exponentially,
wave height at a longitudinal position of x is formulated as

H(x)=H0(x)e
−α(x−x0). (1)

In Eq. (1), α is the decay rate of wave height, and H0(x)

is the wave height at x = x0. In addition, as was explained
in Sect. 1, the wavelength of ice-covered sea (the distance
between two consecutive wave crests) can be different from
that of open-water condition (see Fig. 1b). Scattering is not
considered in the problem, as the cover is assumed to have
an infinite length.

Let the fluid be ideal and irrotational. Hence, the fluid mo-
tion is represented by the potential field, which is indicated
with 8(x, t). Assuming that fluid has a linear cyclic motion
with a frequency of ω, the potential field can be re-written in
the frequency domain, as per

8(x; t)= Re
[
φ(x)e−iωt

]
. (2)

The Laplace equation holds the fluid domain:

∇
2φ(x)= 0 −∞< x <∞ −D < z < ξ. (3)

Here, ξ is the elevation of the upper layer of the fluid domain
with respect to the calm water line.

The vertical component of velocity is zero at the seabed,
which signifies that

∂zφ(x)= 0 −∞< x <∞ z=−D. (4)

The solid body covering the upper layer of the water is as-
sumed to be very thin, and its thickness is denoted with h.
Assuming linearity, vertical motion of the upper layer is ex-
pressed as Re

[
ξ(x)e−iωt

]
. In the absence of fluid forces, the

solid layer follows the Euler–Bernoulli beam theory, as per

−ω2 (ρih)ξ +
GEh

3

6(1−ν)ξxxxx = p −∞< x <∞, (5)

where GE is the dynamic shear modulus of the material,
which shall be introduced later. p is the pressure acting on the
beam, causing the vibration. Also, ρi is the ice density. The
above equation is formulated for a dry beam (see Fig. 1a).

It is assumed that fluid forces emerge per unit area when
the beam interacts with the water, which are given as

f = ω2Aξ + iωBξ. (6)

Here, A is the added mass coefficient and B is the damp-
ing coefficient. The damping term was previously used for
formulation of dispersion relationship of a pure elastic beam
by Robinson and Palmer (1990). These two coefficients are
phenomenological. Equation (5) can be extended to

(
−ω2 (ρih+A)

)
ξ − i(ωB)ξ +

GEh
3

6(1− ν)
ξxxxx = p

−∞< x <∞. (7)

When the ice cover is broken, the body–body interaction may
emerge, causing an extra dissipation mechanism, which can
be implemented through consideration of an artificial damp-
ing term (Lu et al., 2010). But, such a damping mechanism
is not considered in the present research as the ice cover is
assumed to be integrated.

Equation (7) is an extended version of the Euler–Bernoulli
beam model which is adopted for a beam interacting with
water. Hence, the term “wet beam” is used with an aim to
distinguish the model developed based on Eq. (7) from what
was presented in Eq. (5). The time derivative of surface ele-
vation is approximately ∂zφ, and the time derivative of pres-
sure under the beam is approximately −ρwg(∂zφ)+ρwω

2φ.
Thus, the boundary condition on the fluid–solid interface is
formulated as(
ρwg−ω

2 (ρih+A)
)
(∂zφ)

− i(ωB)(∂zφ)+
GEh

3

6(1− ν)
∂xxxx (∂zφ)= ρwω

2φ

−∞< x <∞. (8)
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Using the separation of variable, the solution of the Laplace
equation can be established as the sum of eikx coshkz. There-
fore, the general form of the dispersion equation can be es-
tablished as

k tan(kD)=
ρwω

2

GEh
3

6(1−ν)k
4+ ρwg−ω2 (ρih+A)− i(ωB)

. (9)

As was mentioned, GE is the dynamic shear stress modu-
lus of the material having cyclic motions, which depends on
the mechanical behavior of the substance. It can be a com-
plex number. Its real component is storage modulus and its
imaginary component is the loss modulus. As explained be-
fore, solid ice cover can either be assumed to be elastic or
viscoelastic. As such, models have been developed for both
elastic and viscoelastic ice covers. As displayed in Fig. 1d,
mechanical behavior of these materials can be represented by
using a spring element (which demonstrates the elastic nature
of the material) and a dashpot element (which demonstrates
the viscous nature of the material).

For an elastic solid body, GE (dynamic modulus) is given
by

GE =G, (10)

where G is the shear modulus of the material. Loss modulus
of an elastic material is zero (there is no imaginary compo-
nent).

For a viscoelastic material, two different two-parameter
models can be used. The first one is Kelvin–Voigt (KV) and
the second one is Maxwell. For the former, displacements of
both elements (i.e., spring and dashpot) are similar, but the
resulting forces are different. For a Maxwell material, how-
ever, forces emerging in elements are similar, and displace-
ments are different.

For a KV material, the dynamic shear modulus can be
written as

GE =G− iωη. (11)

Here, η is the dynamic viscosity of the material (Serra-Aguila
et al., 2019). The real and imaginary components of GE are
the storage and loss moduli, as explained before. The former
is responsible for harmonic response, and the latter is respon-
sible for energy dissipation.

For a Maxwell material, the dynamic shear modulus is
given by

GE =
G
(
τ 2ω2)(

1+ τ 2ω2
) − i G(τω)(

1+ τ 2ω2
) , (12)

where τ = η/G is the relaxation time (Serra-Aguila et al.,
2019). It is worth noting that dynamic viscosity can affect the
storage modulus of Maxwell materials, and shear modulus
can affect the loss modulus of Maxwell materials.

Figure 1. A pictograph of the problem and the different patterns
of rheological behavior considered for the ice layer. Panels (a) and
(b) repetitively show a dry beam and waves propagation in an open-
water sea. Panel (c) shows waves propagating in an ice-covered sea.
Panel (d) shows different rheological behavior that can be consid-
ered for the ice.

Dispersion relationships can be established for different
materials. The first dispersion relationships is developed for
water waves traveling into a pure elastic material as

ω2
=

(
Gh3

6(1− ν)ρw
k4
+ g− iω

B

ρw
−
(ρih+A)

ρw
ω2
)
k tanh(kD). (13)

Another version of this relationship has been previously doc-
umented by Mosig et al. (2015). The only difference between
Eq. (13) and the one presented in Mosig et al. (2015) is the
added mass term, which may slightly increase the wavenum-
ber, which shall be discussed later. This model is called RP.
Note that the RP model (dispersion relationship of pure elas-
tic material with zero added mass) was presented in some
other studies (e.g., Squire et al., 2009, and Williams et al.,
2013). But note that this model only considers one dissipative
mechanism (fluid damping), though in the present research it
is aimed to show that coexistence of two different dissipa-
tive mechanism (fluid-based and solid-based) help us predict
the decay rate and dispersion relationship. The rest of the
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dispersion relationship formulated in the present research in-
corporates fluid-based and solid-based mechanisms. One of
the reasons that the pure elastic model is presented in this re-
search is to show how the results of viscoelastic models may
differ from those of this model.

The second dispersion relationship describes the link be-
tween frequency and wavenumber for a KV material, which
is found to be

ω2
=

(
Gh3

6(1− ν)ρw
k4
− i

ωηh3

6(1− ν)ρw
k4

+g− iω
B

ρw
−
(ρih+A)

ρw
ω2
)
k tanh(kD). (14)

Equation (14) with B = 0 is known as FS model (Mosig
et al., 2015). The dispersion relationship of a Maxwell model
is built as

ω2
=

(
G
(
τ 2ω2)h3

6(1− ν)
(
1+ τ 2ω2

)
ρw
k4

− i
G(τω)h3

6(1− ν)
(
1+ τ 2ω2

)
ρw
k4
+ g− iω

B

ρw

−
(ρih+A)

ρw
ω2
)
k tanh(kD). (15)

Each of the above equations provides us with the roots of the
dispersion relationships. We choose the dominant root with
the positive real part, which refers to the wave advancing in
the solid body. The dominant root is

k = ki− iα, (16)

and it is found through using a numerical method with an
initial guess. All the dispersion relationships have multiple
roots. We seek the one found with an initial guess which is set
to be very close to the wavenumber of the open-water condi-
tion. In Eq. (16), ki is the wavenumber in the ice-covered sea,
and α is the wave height decay rate, which were introduced
before. If the initial guess is set to be much greater than the
open-water wavenumber, abrupt changes in the α vs. λo may
emerge. Readers who are interested in finding the root of the
dispersion relationship are referred to Zhao et al. (2017) and
Das (2022).

2.2 Non-dimensional representation

To analyze results and to use any of the models more eas-
ily, all parameters are normalized. Parameters are normal-
ized using the Buckingham Pi theorem, enabling us to per-
form scaling law. For the first dispersion relationship, eight
parameters are involved, but for the second and third re-
lationships, nine parameters are involved. Therefore, five
non-dimensional numbers are identified for the pure elastic
model, and six non-dimensional numbers are identified for
models developed for viscoelastic materials.

Non-dimensional numbers have been previously presented
by different authors, concerted with the field wave–mud
or wave–ice interaction (Jain and Mehta, 2009; Yu et al.,
2019, 2022). The first non-dimensional number represents
the non-dimensional wavelength in an open-water condition,
which is given by

λ̂o = λo/h. (17)

The second non-dimensional number is the non-dimensional
wavenumber of waves propagating in a covered sea condi-
tion, given by

k̂i = ki/ko. (18)

Here, ko is the open-water wave number. The attenuation rate
is normalized as

α̂i = α/ko. (19)

The third non-dimensional number is the elasticity per unit
of mass, which can be formulated as

Ĝ=G/ρigh. (20)

In the present research, Ĝ is called elasticity number (which
is inspired by Yu et al. (2019)). The other non-dimensional
number is

η̂ = η/ρi

√
gh3. (21)

The fourth non-dimensional number is the relative density of
the ice and is calculated by

ρ̂ = ρi/ρw. (22)

The hydrodynamic damping coefficient is normalized by

B̂ = B/ρw
√
gh. (23)

The added mass coefficient can be normalized by

Â= A/ρwh. (24)

3 Results and discussions

Results of wet beam models are presented in five separate
sub-sections. The first sub-section presents a discussion on
the effects of different parameters on the dispersion and de-
cay rate plots. The primary aim is to provide a better under-
standing of the sensitivity of models to mechanical behav-
ior of material and fluid forces. The second and third sub-
sections discuss the ability of models in reconstruction of the
decay rate and dispersion process through comparing their
results against field and flume measurements. A brief sum-
mary of these measurements is documented in Table 1. In
the fourth sub-section it is attempted to understand whether
any other solid model can be used to formulate the dispersion
relationship or not. The final sub-section of results presents
a deep discussion on models and their abilities by covering
limitations of models.
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Table 1. Cases studied in the present paper.

Reference Type of cover Type of test

Voermans et al. (2021) Landfast ice covers (Arctic and Antarctic) Field measurement
Wadhams et al. (1988) Unconsolidated ice field (Greenland Sea) Field measurement
Meylan et al. (2014) Unconsolidated ice field Field measurement
Yiew et al. (2019) Freshwater ice cover Flume measurement
Sree et al. (2018) Viscoelastic cover Flume measurement

3.1 Effects of different parameters on decay rate and
dispersion process

Figure 2 shows the normalized decay rates calculated by
setting different values for the mechanical properties of the
cover. Left and right columns respectively show the data
found for KV and Maxwell materials. The dashed and dotted
curves denote the results of the dispersion relation of pure
elastic (PE) material (i.e., RP model with added mass con-
tribution). The first and second rows show the effects of dy-
namic viscosity on the decay rate. The results presented in
the first row correspond to a material with

√
Ĝ= 340 (large

flexural rigidity) and the ones plotted in the panels of second
row correspond to a material with

√
Ĝ= 3.4 (low flexural

rigidity).
As seen, for a viscoelastic material with a larger flexural

rigidity, α̂ increases under the increase in λ̂o reaching a max-
imum value at a critical wavelength. With the increase in λ̂o,
α̂ decreases. For a KV material, the critical λ̂o is sensitive to
the dynamic viscosity, growing with the increase in the dy-
namic viscosity. For a Maxwell material, the increase in the
dynamic viscosity reduces the decay rate. Interestingly, the
pure elastic model gives negligible decay rates at small di-
mensionless wavelengths (λ̂o < 50). The dimensionless fluid
damping used to calculate the decay rates is set to be 0.0032.

To provide a clear picture of the effects of the fluid damp-
ing on the decay rates, α̂ vs. λ̂o curve that the pure elastic
model gives is also plotted. The decay rate of a pure elas-
tic material peaks at a specific λ̂o. Interestingly, the decay
rates of the viscoelastic materials converge to that of the
pure elastic model, signifying that the contribution of solid-
based energy damping vanishes at relatively long waves. In-
stead, the fluid-based energy damping is dominant over the
range of long waves. Note that the peak observed in α̂ vs. λ̂o
curves constructed using KV and Maxwell models is due to
the method used for normalizing the decay rate, and will not
emerge if dimensional data are plotted. The dimensional data
are presented later, and it will be shown that the decay rate of
the pure elastic material peaks in short-wave range, though
that of viscoelastic material does not.

Now we discuss the decay rates of covers with a lower
flexural rigidity (second row). No critical λ̂o is observed in α̂
vs. λ̂o curves the KV model gives for a low elasticity number.
Decay rate of the KV model with low rigidity reduces with

an increase in dimensionless wavelength. The increase in the
dynamic viscosity can affect the decay rate, though its effects
are noticeable at shorter waves. For longer waves; however,
different values of η̂ give similar decay rates, which match
with the those of a pure elastic material. This matches with
what was observed for the larger rigidity (upper row). For a
Maxwell material with low rigidity, a critical λ̂o emerges over
the short wavelength range. Similar to KV materials, the de-
cay rate of Maxwell materials with low rigidity are sensitive
to the dynamic viscosity over a very short range of wave-
length. The α̂ vs. λ̂o curves found by setting different values
for the dynamic viscosity converge to each other and finally
align to the decay rates of pure model. This again confirms
that fluid-based energy damping becomes dominant with the
increase in the dimensionless wavelength.

The last row of Fig. 2 compares the decay rates of materi-
als with different elasticity numbers. As apparent, when a KV
model is used, an increase in elasticity number reduces the
decay rate. The most significant effects of elasticity on de-
cay rate emerge at short wavelengths, where the solid-based
energy damping is expected to be dominant. The decay rates
of KV materials with different elasticity numbers converge
to those of the pure elastic material. The decay rate of a
Maxwell material is proportional to its elastic modulus. Sim-
ilar to decay rate plots of KV materials with different elastic-
ity numbers, decay rates of Maxwell materials with different
elasticity numbers converge to what the pure elastic model
predicts. The α̂ vs. λ̂o curves of pure elastic material with a
larger flexural rigidity, λ̂o peaks at a longer λ̂o. This means
that, in case a RP model highly under-predicts the decay rate
with setting a realistic elastic modulus, a much lower elas-
tic modulus may be used for fitting the experimental data
with the dispersion relationship. This has been observed by
Mosig et al. (2015). They demonstrated that a shear modu-
lus of ≈ 3.2× 107 Pa gives the best fitting, though the shear
modulus of ice is expected to be greater than 1 GPa.

Figure 3 shows how the consideration of fluid damping
can affect the decay rates. Three different plots are presented,
each of which shows the decay rates found by setting differ-
ent values for the fluid damping coefficient. The solid blue
curves show the data found by setting a zero fluid damping
coefficient, i.e., this plot represents the decay rates calculated
in the absence of fluid damping. The two other plots show the
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Figure 2. Effects of the dynamic viscosity (a–d) and elasticity number (e, f) on α̂ vs. the λ̂o curves different solid models give. Dashed and
dotted models denote the decay rates that a PE material (RP model with consideration of added mass force) predicates.

Figure 3. Effects of fluid damping coefficient on α̂ vs. the λ̂o curves viscoelastic models give.

decay rates predicted by setting two different values for the
damping coefficient.

The left panel of Fig. 3 shows the data related to a KV
material. As apparent when the fluid damping coefficient is
set to be zero, the decay rate decreases with a very high rate
at λ̂o > 180. By assuming a non-zero value for the damping

coefficient, one abrupt reduction in the α̂ vs. λ̂o curve occurs,
though the rate of the reduction of the decay rate as a function
of the dimensionless wavelength decreases with the increase
in the wavelength. Eventually the decay rate decreases with
a mild rate over the range of λ̂o > 400. This confirms that
the fluid-based energy damping becomes dominant over this
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Figure 4. Log–log plots of α vs. ω curves constructed using differ-
ent models. Curves are constructed by setting shear modulus to be
1 GPa.

range. For a large fluid-damping coefficient, as seen, the sud-
den reduction in the decay rate does not occur and decreases
at a low rate after reaching its peak value.

The decay rates of a Maxwell material considering differ-
ent damping coefficients are plotted in the right panel. Trends
of the presented curves are consistent with the ones observed
in the left panel of Fig. 3 (KV material). This demonstrates
that the effects of fluid-damping on decay rates are insen-
sitive to the nature considered for material, which matches
with the presented formulations for the dispersion relation-
ships.

To understand the role of fluid-based damping and the ef-
fects of viscosity on the decay rate more deeply, α vs. ω
curves are plotted on a log–log scale. Dissimilar to previ-
ous figures, the dimensional data are presented as they help
to understand the dependency of α as a function of ω. The α
vs. ω curve corresponding to pure elastic material (RP model
with added mass) peaks at a frequency of≈ 1 rad s−1, though
curves constructed using the Maxwell and KV models do not
peak. Note that the present data are dimensional, and if the
dimensionless data (i.e., α̂) were presented, all curves would
peak as was observed before (see Fig. 2).
α values predicted using the pure are proportional to ω3

in the long-wave regime. This matches with the analysis pre-
sented by Meylan et al. (2018). In the short-wave range, de-
cay rate of pure elastic material is proportional to ω−0.35. We
recall that it was discussed that one solution to match predic-
tions of RP model with experimental data over short-range
wave is to decrease the shear modulus of material, which may
significantly widen the zone over which α is proportional to
ω3.

The α vs. ω curves of viscoelastic materials are approx-
imately proportional to ω3 over a wider range of frequency
as compared to the curves constructed using the pure elastic
model. In the short-wave zone, α values predicted using the
KV model are proportional to ωn, where n is slightly lower
than 0.5. Overall, it can be concluded that consideration of
solid-based damping widens the frequency range over which
α ∝ ω3 and cancels out the decrease of decay over short-
wave range.

The dispersion relationships are also employed to cal-
culate wavenumbers of waves propagating into viscoelastic
covers. Results are depicted in Fig. 5. The density of covers
is set to be ρi/ρw = 0.9, which is very close to that of the sea
ice. The two upper panels of Fig. 5 show the dimensionless
wavenumbers found for KV materials with different elastic-
ity numbers. Zero added mass coefficients (solid curve) and
two non-zero added mass coefficients are considered.

As apparent, when the elasticity number of a KV mate-
rial is greater (left) and the added mass is nil, the dimen-
sionless wavenumber is below 1.0 at small values of λ̂o.
This means that, compared to an open-sea condition, grav-
ity waves traveling into a solid cover become longer over
the range of a short open-water wavelength. k̂i increases
with the increase in λ̂o and eventually converges into 1.0,
where plotted curves are flattened out, meeting the reference
line (the dashed blue line). Interestingly, added mass can af-
fect the wavenumber. Under the action of added mass force,
wavenumber becomes greater. The effects of added mass on
the wavenumber are more significant over 100< λ̂o < 600.
When the added mass coefficient is set to be very large, the
dimensionless wavenumber becomes greater than 1.0, reach-
ing a maximum value, and then decreases, converging into
1.0. The same conclusion can be made for a pure elastic
model as the dispersion process of pure elastic material and
KV model is similar.

For a KV material with low density and a zero added mass
coefficient, the wavenumber is below 1.0 when the dimen-
sionless open-water wavelength is small. Compared to a KV
material with a greater elasticity number (left panel), k̂i be-
comes lower than 1.0 over a narrower range of λ̂o. This im-
plies that waves propagating into a solid cover are lengthened
over a wider range of dimensionless open-water wavelength
when flexural rigidity increases. k̂i becomes greater than 1.0
and reaches a peak value over the range of short the open-
water wavelength, which is in contrast with what was ob-
served for material with a larger elasticity number and zero
added mass (left panel).

The added mass force can affect the dispersion process of
waves propagating into cover with lower elasticity number
by increasing the wavenumber, though its influences on the
waves advancing in the cover with lower elasticity number
are more noticeable compared to cover with larger elasticity
number.

The two lower panels of Fig. 4 show the calculated dimen-
sionless wavenumbers of gravity waves propagating into a
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Figure 5. Effects of the added mass force (a, b) and the dynamic viscosity (c, d) on the dispersion curves of waves propagating in an ice
cover.

solid cover hypothesized to behave in the same way Maxwell
materials do. Left and right panels respectively show the
curves corresponding to covers with relatively large and low
elasticity numbers. The trends of curves plotted in the left
panel confirm that the dynamic viscosity can slightly affect
the wavenumber of waves advancing in the cover with a
large elasticity number. The influence of dynamic viscosity
on wavenumber is not significant and emerges over a rel-
atively narrow range, (the close-up view provides the evi-
dence). Dimensionless wavenumber is seen to be insensitive
to the dynamic viscosity of Maxwell materials when Elastic-
ity number is low (right panel).

3.2 Ability of models in prediction of the decay rates

This section presents comparisons between predictions of
the models and decay rates found through field and flume
measurements. In all runs, the Â is set to be 1.0. Decay
rates of two recent field tests are presented in Fig. 6 (cir-
cle markers). Upper and lower rows respectively display the
data corresponding to field tests that took place in the Arctic
and Antarctic. The first, second and third columns of Fig. 6
respectively show the decay rates predicted by prescribing
Kelvin–Voigt, Maxwell and pure elastic materials. The de-
cay rates found by setting a zero damping coefficient are also
plotted to demonstrate how the inclusion of the fluid damp-

ing can improve the accuracy of models in the prediction of
the decay rates.

Viscoelastic models cannot follow the field data when fluid
damping is set to be zero, and tails of curves diverge from
those of the field data. This can be seen in both upper and
lower rows of Fig. 6. In this condition, the increase of the dy-
namic viscosity cannot affect the trend of α̂ vs. λ̂o, and may
only shift the curve upward or downward, depending on the
nature considered for the material. But, when the fluid damp-
ing coefficient is set to be non-zero, the α̂ vs. λ̂o follow the
field data. This confirms that fluid damping can contribute to
energy damping occurring under a landfast ice cover. Inter-
estingly, fluid damping coefficients used to predict the decay
rates of viscoelastic are similar.

For the KV material, a dynamic viscosity of ≈ 1.3×
108 Pa s gives the best fitting for both ice covers. But for a
Maxwell material, a dynamic viscosity of ≈ 4.4× 1010 Pa s
gives the best fitting. Finally, the pure elastic material as-
sumption can also be used to match curves with the field
experiments. But, compared to KV and Maxwell models, a
greater value of fluid damping coefficient gives the best fit-
ting for an elastic model.

The decay rates of two different broken ice fields are cal-
culated using the wet beam models and are compared against
measurements. Field data and calculated decay rates are plot-
ted in Fig. 7. The data presented in the upper and lower pan-
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Figure 6. Comparisons between α̂ vs. λ̂o curves predicted by different models and the data measured by Voermans et al. (2021). Upper and
lower rows respectively show data measured in the Arctic and Antarctic. In the first and second columns, decay rates predicted by setting a
zero fluid damping are also plotted. The shear modulus of ice is set to be 1 GPa.

els of this figure are respectively documented in Wadhams
et al. (1988) and Meylan et al. (2014).

Wet beam models established for viscoelastic materials
can predict decay rate curves of a broken ice field with a good
level of accuracy when fluid damping is incorporated into the
calculations. Similar to curves plotted in Fig. 6, increase or
decrease in the dynamic viscosity of the material can shift
the curves vertically, not affecting the tail of the α̂ vs. λ̂o
curve. The curve given by a pure elastic material is not ac-
curate at all dimensionless wavelengths. This implies that to
accurately compute the decay rate of a broken ice field, solid-
based energy damping caused by the viscoelastic behavior of
the solid needs to be taken into consideration, which is be-
ing lacked in a pure elastic model. The dimensional data and
curves related to field tests documented in Wadhams et al.
(1988) are presented in Appendix A. The aim is to show
whether a peak may emerge in α vs. T curves when models
are used or not, as the emergence of a peak value in high-
frequency range may not be real (Thomson et al., 2021).

Wet beam models are employed to calculate the decay
rates of waves traveling into viscoelastic covers, with an aim
to understand whether they can be used to predict attenua-
tion rates measured in flume tests or not. The reconstructed
α̂ vs. λ̂o curves are presented in Fig. 8. The upper and lower
rows show the data correspond to covers with low and large
rigidity.

The curves reconstructed by viscoelastic models cannot
follow the experimental data if the fluid damping is not con-
sidered. Dashed and dashed-dotted curves plotted in the first
and second columns provide shreds of evidence. Their re-
sults only match with experimental data at very short dimen-
sionless open-water wavelengths. Viscoelastic-based models
can accurately predict decay rates when the fluid damping
is set to be non-zero. The elastic model can calculate decay
rates with an acceptable level of accuracy. The fluid damping
that gives the best fitting for pure elastic material is slightly
greater than those of models built for viscoelastic materials.

At the final stage, the decay rates of the freshwater ice
formed in the wave flume of the University of Melbourne are
predicted by using the presented models. Figure 9 displays
the decay rates plots and experimental data. The results pre-
sented in the upper and lower rows of Fig. 9 are related to
1 and 1.5 cm thick ice covers. Before conducting flume ex-
periments, Parra et al. (2020) measured the Young’s modulus
of the dry freshwater ice, reporting that Young’s modulus is
≈ 3 GPa.

The KV model can accurately predict the decay rates of
1 cm thick ice when dynamic viscosity is set to be 2.6×
109 Pa s. Inclusion of the fluid damping is seen to be inef-
fective when the KV model is used. The Maxwell model can
also predict the decay rate curve of the 1 cm thick ice cover
with a good level of accuracy. But the decay rates that the
Maxwell model predict depend on the fluid damping. The
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Figure 7. Comparisons between α̂ vs. λ̂o curves predicted by different models and the data measured by Wadhams et al. (1988), upper row,
and Meylan et al. (2014), lower row. In the first and second columns, decay rates predicted by setting a zero fluid damping are also plotted.
The shear modulus of ice is set to be 1 GPa.

model developed for pure elastic materials can construct α̂
vs. λ̂o curve if fluid damping is set to be 1300 Pa s m−1,
which is 13 times greater than those considered for the KV
and Maxwell models. This significant difference between
fluid damping of pure elastic models and viscoelastic models,
which was never observed in previous Figures, indicates that
the solid-based damping highly contributes to energy dissi-
pation over the range of tested waves in the laboratory. To
compensate for the absence of the solid-based energy damp-
ing of the pure elastic model, a very large fluid damping co-
efficient needs to be used. This is in contrast with what was
observed for the tests of Sree et al. (2018), where the differ-
ence between fluid damping of elastic and viscoelastic mod-
els was not significant. The big difference between the elas-
ticity numbers of the covers tested by (Sree et al., 2018) and
ice covers tested by Yiew et al. (2019) explains this behav-
ior. It was also demonstrated that when the elasticity number
is low, the solid-based energy damping contributes to energy
dissipation over a narrow range of wavelengths (second row
of Fig. 2), compared to a cover with a larger elasticity num-
ber (first row of Fig. 2).

The KV model under-predicts the decay rate curve of
1.5 cm thick ice cover regardless of the values of the dynamic
viscosity and the fluid damping coefficients. The Maxwell
model, however, can construct α̂ vs. λ̂o curve when a dy-
namic viscosity value of 4× 106 Pa s is set. This value is
lower than that the dynamic viscosity gave the best fitting

for the thinner ice. Artificial effects, boundary conditions and
the presence of side walls may cause a larger energy damp-
ing pattern when fluid interacts with the thicker ice (Suther-
land et al., 2016). Thus, different values of dynamic viscos-
ity give the best fitting for 1 and 1.5 cm thick ice covers. It
is important to note that dynamic viscosity values giving the
best fitting for the landfast ice were not seen to be different
(Fig. 6), where artificial effects are less likely to contribute.
As seen, fluid damping does not have any significant effect
on the curve over the range of tested waves. It can only affect
the tail of curve. This again confirms that the solid-based en-
ergy damping is dominant over the range of tested waves. If
tests covered a wider range of open-water wavelengths, es-
pecially longer ones, a proper value for fluid damping could
be found through fitting predicted curves with experimental
data. When the pure elastic model is used to calculate decay
rates, a very large fluid damping coefficient needs to be set,
but the curve can never meet the experimental data.

3.3 Ability of models in the prediction of the dispersion
process

The accuracy of models in the calculation of the dispersion
process of waves traveling through viscoelastic covers is also
evaluated. First, the dispersion curves of waves propagat-
ing into landfast ice are constructed, and then the dispersion
curves of waves advancing in freshwater ice are plotted.
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Figure 8. Comparison between α̂ vs. λ̂o curves predicted by models and the data measured by Sree et al. (2018). Upper and lower rows show
the data related to a cover with a shear modulus of 20 and 80 KPa respectively.

Figure 9. Comparison between α̂ vs. λ̂o curves predicted by models and the data measured by Yiew et al. (2019). Upper and lower rows
show the data related to freshwater ice covers with thicknesses of 1 and 1.5 cm respectively.
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Figure 10. Comparison between k̂i vs. λ̂o curves predicted by wet beam models and the data measured by Voermans et al. (2021). Upper and
lower rows respectively show data related to tests performed in Arctic and Antarctic. The shear modulus of ice is set to be 1 GPa.

Figure 10 shows the normalized wavenumber k̂i vs. λ̂o
curves of landfast ice. Symbols indicate the field mea-
surements and curves denote the calculated dimensionless
wavenumbers. Left and right panels respectively show pre-
dictions made for KV and Maxwell materials. As seen, both
models can predict the dispersion process of waves traveling
into the landfast ice with an acceptable level of accuracy. The
inputs that are used for the construction of dispersion curves
are similar to what gives the best fitting for decay rates.

Figure 11 shows the k̂i vs. λ̂o plots of the flume tests per-
formed in the University of Melbourne. It was observed that
none of the models can predict the dispersion process of the
waves interaction with freshwater ice with the inputs giving
the best fitting for the decay rates plots (Fig. 9). This is in
contrast with what was observed in Fig. 10, where models
accurately predicted the wave dispersion process with simi-
lar inputs utilized for the calculation of decay rates. As seen
when the dispersion process of waves interacting with fresh-
water is constructed by using a KV model, the Young’s mod-
ulus values of 5× 105 and 2.5× 108 Pa give the best fitting
for the dispersion processes of 1 and 1.5 cm ice covers re-
spectively. As explained in the Introduction, some other re-
searchers observed that the effective Young’s modulus of a
material is different and smaller from what is measured in
dry tests. For a Maxwell material, however, different values
of dynamic viscosity can be used to fit the curves with the

experimental data. It was previously demonstrated that the
dynamic viscosity can affect k̂i vs. λ̂o plots by increasing the
wavenumber over the range of short waves. By setting larger
values for the dynamic viscosity, the constructed dispersion
curve matches with the experimental data (the solid curve).

Note that wavenumbers of field tests documented in Wad-
hams et al. (1988) and Meylan et al. (2014) are not presented.
Therefore, we were not able to compare the capability of wet
beam models in the predictions of wavenumbers of the field
with broken ice against those of a broken ice field.

3.4 Other models

In Sect. 3.2 and 3.3, it was observed that proposed models
cannot accurately calculate the dispersion process and decay
rates of waves advancing into the freshwater ice. Artificial
effects may have contributed to the dispersion and dissipation
process, though the large difference between inputs giving
the best fit for the decay rate and dispersion plots still leaves
us with a big question mark about the main reason for such a
difference.

As discussed, other researchers have hypothesized that the
effective elasticity or dynamic viscosity of the wet ice in-
teracting with water waves can be different from what have
been measured in dry tests. While the whole paper looks into
ability of KV and Maxwell in the prediction of decay rates
and dispersion process and discusses how accurate their re-
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Figure 11. Comparison between k̂i vs. λ̂o curves predicted by wet beam models and the data measured by Yiew et al. (2019). Upper and
lower rows show the data related to freshwater ice covers with thicknesses of 1 and 1.5 cm respectively.

sults can be, the idea of developing other models by consid-
ering various viscoelastic materials arises. We can use the
other solid models to evaluate whether the Young’s modulus
giving the best result for decay rates and dispersion process
matches with what was found in dry tests or not.

To provide an answer to the above question, the linear
combination of KV and Maxwell materials, known as the
standard linear solid (SLS) model, is used to describe the
mechanical behavior of ice. Two spring elements (G1 and
G2) are used to formulate these models. Standard linear solid
models are also called “Zener”. Two different Zener models
have been introduced in this paper. The first one is an SLS
model established using a Kelvin approach (a spring element
in series with a KV arm, also known as the first order gener-
alized Kelvin–Voigt model). The other model is acquired by
employing a Maxwell approach (a spring element in parallel
with a Maxwell arm, also known as the first order general-
ized Maxwell model). The schematic of both of these models
is shown in Fig. 12. The storage and loss moduli of these two
solid models are formulated as

GE =G0
(
1−

p

1+ τ 2ω2

)
− iG0

pτω

1+ τ 2ω2 . (25)

For the SLS KV material, G0, p and τ are given by

G0 =G1, p = G1
G1+G2

, τ =
η

G1+G2
. (26)

For the SLS Maxwell material,G0, p and τ are calculated as

G0 =G1+G2, p = G2
G1+G2

, τ =
η
G2
. (27)

Readers who are interested in the above formulations are re-
ferred to Serra-Aguila et al. (2019). The same method used
to establish dispersion relationships in Sect. 2 is applied, and
the related dispersion relationship for SLS materials is for-
mulated as
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)
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Decay rates and dispersion of waves propagating into the
1.5 cm freshwater ice cover are recalculated by using the
two introduced SLS models and plotted in Fig. 13. The left
and right panels respectively show the results found using
the SLS KV and SLS Maxwell models. Dispersion curves
are plotted in the upper panels, and the decay rates are illus-
trated in the lower panels. SLS KV and SLS Maxwell mod-
els both construct k̂i vs. λ̂o plots similarly. Interestingly, the
equivalent Young’s modulus of the SLS KV model is 2.5×
104 Pa and that of the SLS Maxwell model is 3.3× 109 Pa.
This confirms that the SLS KV model, which is built us-
ing the KV approach, can only predict the predicted process
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Figure 12. Standard linear solid models. Panels (a) and (b) respectively show the SLS KV and SLS Maxwell models.

Figure 13. Comparison between predictions of SLS models and val-
ues measured by Yiew et al. (2019). Upper and lower rows show the
decay rates and dispersion plots. The equivalent Young’s modulus
of the SLS KV model is 2.5× 104 Pa, and the equivalent Young’s
modulus of the SLS Maxwell model is 3.3× 109 Pa. Dynamic vis-
cosity of the SLS KV model is 4× 107 Pa s, and dynamic viscosity
of the SLS Maxwell model is 3.5× 109 Pa s.

with a very low equivalent Young’s modulus, which is much
smaller than the Young’s modulus found in dry tests (which
is around 2.6× 109 Pa). But the equivalent Young’s modu-
lus of the SLS Maxwell model is close to what is found in
dry tests. This signifies that the freshwater ice formed in the
flume is more likely to behave similarly to an SLS Maxwell
material. This can explain the difference between the effec-
tive Young’s modulus reported in different experimental re-
search. Researchers who conducted those flume/basin exper-
iments concluded that a lower Young’s modulus should be
used to calculate the dispersion process of waves propagat-
ing into ice when a dispersion equation built on the basis of
pure elastic material (or the KV material) is employed. But as
observed here, the material is more prone to show a rheologi-
cal behavior falling in between those of the KV and Maxwell
materials, arranged using a Maxwell approach, the equiva-
lent Young’s modulus of which is close to what is measured
in dry tests.

The decay rates are seen to be well predicted by both mod-
els. The interesting point is that the KV model was found not
to be able to construct the decay rates of 1.5 cm thick. But
as seen here, the results of the SLS KV model fairly agree
with experimental measurements. The SLS Maxwell model
can predict the decay rates very well. The trend of the decay
rates given by SLS Maxwell and SLS KV are very similar.

Note that adding more elements may make the dispersion
relationship more complex, leaving us with more options
(i.e., more inputs), though it can also lead to over-fitting as
more parameters are needed to be tuned. In the future, more
studies can be carried out to understand the mechanical be-
havior of different types of viscoelastic ice, and it can be
investigated whether it is required to use solid models with
more than two elements or not.

3.5 Final discussion

Decay rates and dispersion curves of gravity waves propagat-
ing into an ice cover can be constructed using the presented
wet beam models. With the same setups (e.g., dynamic vis-
cosity and Young’s modulus), different models can give dif-
ferent curves for the decay rates and the dispersion process.
Thus, the choice of the model for the prediction of the decay
rates and the dispersion process is very important. This needs
a better understanding of the ice mechanics and the way it is
formed. Simply stated, the mechanics of ice is a very compli-
cated field of research, with lots of open questions that have
not been answered yet.

Models formulated in the present research follow the ba-
sis of the Euler–Bernoulli beam theory, which describes dis-
placements of a solid layer by assuming small motions. To
provide a clear picture of this theory, transverse sections of
a beam flexed due to an external/internal load should be as-
sumed. If the displacement field follows the Euler–Bernoulli
law, the normal vector of any transverse section is always
parallel to the axis of the beam. That is, no local rotational
motion occurs. This is different from what happens for a
solid body following the Timoshenko–Ehrenfest beam the-
ory, where rotational motions are taken into consideration
(Timoshenko and Woinowsky-Krieger, 1959). Furthermore,
to establish any model, the mechanical behavior of a sub-
stance should be formulated. It left us with two common
choices as we are following a beam theory. The ice can be hy-
pothesized to be either elastic or viscoelastic (we may have
other choices for a solid ice layer, for example poroelastic
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ice). When elastic behavior is considered, Hooke’s law is uti-
lized to formulate the relationship between the stress and the
resulting strain. If viscoelastic behavior is assumed, different
linear models can be used. The KV and Maxwell models are
commonly used for this aim, the former of which represents
a viscoelastic solid body and the latter of which represents a
mass of viscoelastic fluid.

Using mechanical behavior prescribed for the ice and
employing an Euler–Bernoulli equation, dispersion relation-
ships can be formulated. If the ice layer is assumed to be
dry and no fluid–solid interaction is taken into account, dis-
persion relationships for wave motions in dry beams are ac-
quired. If the multi-physical problem is considered, the ice
layer is assumed to settle down on the water surface and fluid
forces emerge. If the fluid motion is assumed to be linear, a
fluid damping force can also be included in the beam motion
equation, as was suggested by Robinson and Palmer (1990).
The original models of Greenhill (1886) and Fox and Squire
(1991) do not consider fluid damping. Fluid damping was
considered in some other models, which were formulated
for an elastic ice cover as dissipation was either formulated
through introducing a complex term in flexural rigidity of the
ice cover (solid-based energy damping) or by considering
a linear damping term (fluid-based energy damping, Squire
et al., 2021). But, the fluid damping and the solid damping
can be considered at the same time, leading to a more gen-
eral dispersion relationship compared to available ones.

In the present research, it is hypothesized that energy dis-
sipation is caused by solid-based energy damping and fluid-
based energy damping. The former is dominant over high
frequencies (corresponding to short waves in an open-water
condition), and the latter is dominant over small frequen-
cies (corresponding to long waves in an open-water condi-
tion). The solid-based energy damping is caused by the vis-
coelastic resistance emerging in the solid and is absent for an
elastic material. Regardless of the viscoelastic model used to
treat the mechanical behavior of the material, the solid-based
energy damping decreases with an increase in the wave-
length. With an increase in elasticity number, the wavelength
range over which solid-based energy damping is dominant
becomes wider. This matches with physics. The body is more
rigid, and solid responses can contribute to energy damping
of longer waves compared to bodies with low rigidity. The
fluid-based energy dissipation is generated by a velocity de-
pendent force, decreasing with the increase in wavelength.
The energy damping triggered by a pure elastic cover is only
due to the presence of fluid damping force. Thus, to compen-
sate for the lack of solid-based energy damping of an elastic
cover, a larger fluid damping coefficient needs to be consid-
ered. Energy decay triggered by the landfast ice covers which
have large rigidity can be computed using the viscoelastic
models if fluid damping is included. If it is not, models can-
not work properly, and the predicted decay curves diverge
from field measurements. This well confirms that fluid-based
energy damping contributes to total energy dissipation. Both

viscoelastic models were seen to construct the decay curves
and fairly follow field measurements. But the dynamic vis-
cosity values were seen to be much different. A KV material
may be a more realistic indicator of ice behavior as the land-
fast ice is expected to be solid.

Decay rates of broken ice fields were seen to be calcu-
lated by both viscoelastic models when the fluid-based en-
ergy damping is considered. This provided us with another
piece of evidence for the contribution of fluid damping coef-
ficient force to energy dissipation. Compared to landfast ice
covers, different values of the dynamic viscosity were ob-
served to give the best fitting for the decay rates of waves
advancing in water partially covered with broken ice floes.
The coexistence of open water and ice floes on the upper
layer of the fluid domain can explain this. Models are formu-
lated for an integrated layer of solid ice. If water is included,
a mixed thin layer represents the cover. A volume fraction
model may describe the dynamic viscosity of the layer. The
dynamic viscosity of the water is much smaller compared to
that of ice, but the water entrapped between ice floes may
be turbulent, leading to eddy generation (turbulent flow can
cause damping of waves, e.g., Tavakoli et al., 2022). In some
mathematical models, an artificial damping term is usually
introduced to incorporate the gap effects on fluid pressure
(Lu et al., 2010). The KV model gives the best fitting of de-
cay rate when the dynamic viscosity is reduced, compared
to the landfast ice. In contrast, the Maxwell model gives the
best fitting with a larger dynamic viscosity. Thus, what can
be concluded is that if water reduces the dynamic viscosity
of the upper layer, the KV model will more likely to be a
better indicator of the ice behavior. Otherwise, the Maxwell
model prescribes the mechanical behavior of the material. In
addition, in a broken ice field, the gap between ice floes may
lead to emergence of an extra damping mechanism, which
is introduced as an artificial damping in studies highlighting
interactions between floating bodies. In the present research,
the aim was to develop a model for an integrated viscoelastic
ice cover with incorporation of fluid damping, and thus the
artificial damping was not employed.

The decay rates of the freshwater ice were also calculated.
The pure elastic materials can reconstruct the decay rates
only if a very large fluid damping coefficient is used, which
may not be realistic. But, viscoelastic models were seen to
predict the decay rate plots. Models, however, were not able
to capture the dispersion process under freshwater ice covers
with the same input observed to give the fitted decay rates.
Effective values were seen to construct dispersion plots with
an acceptable level of accuracy. This has been observed and
reported by other scholars, who measured the wavelength
and phase speed of disintegrated elastic/viscoelastic covers.
The interesting point is that, when a Maxwell model is used,
the dynamic viscosity can affect the dispersion process. This
motivates us to build other models which formulate the stor-
age modulus by applying the dynamic viscosity. Two avail-
able linear models were introduced. One is SLS KV and the
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other is SLS Maxwell. Both models include two springs and
one dashpot. The equivalent Young’s modulus giving the best
fitting when SLS KV is used is≈ 2.5×104 Pa, which is much
smaller compared to that of real freshwater ice. But, for SLS
Maxwell, the equivalent Young’s modulus was seen to be
≈ 3.3×109 Pa, which is close to that of freshwater ice. While
it is very interesting to add more elements to the solid model,
over-fitting may happen as more elements are needed to be
tuned. This leaves us with another question. Is it required to
consider more elements in the solid model or has the effec-
tive shear modulus of the ice formed in the flume been highly
reduced because of the ice formation process (for example,
porosity may reduce effective shear modulus, Zong, 2022)?

Based on what was observed when SLS models were used,
it can be concluded that a two-parameter models such as
Maxwell and KV, with a realistic Young’s modulus, cannot
reproduce mechanical behavior of the freshwater ice formed
in the flume, and its behavior is different from that of the
landfast ice. There are still doubts about the behavior of bro-
ken sea ice. Both the Maxwell and KV models were found
to give the best fitting. One reason is that the wave phase
is not measured in most of the field tests that took place in
the broken ice field, and researchers were mostly concerned
with decay rates. Since the phase speed and dispersion plots
are not available, the performance of models in the recon-
struction of dispersion plots cannot be evaluated. Especially,
this could show whether changes in the dynamic viscosity
can modify the accuracy of the Maxwell model in the predic-
tion of dispersion or not (the dispersion curves the Maxwell
model gives are sensitive to dynamic viscosity). That may be
still an open question for the future.

4 Conclusions

The common approach used to predict decay rates and the
dispersion of waves penetrating an ice cover is to formulate
a dispersion relationship of a continuum medium, the roots
of which give the decay rate and the relative wavenumber
in an ice-covered sea. The majority of models developed for
wave–ice interaction have been developed based on two com-
mon approaches. First, ice was assumed to be a viscous fluid
or a viscoelastic solid layer. Second, ice was assumed to be
elastic, and a fluid damping term is used to calculate the de-
cay rate. This paper aimed to present wet beam models by
considering both of fluid-based and solid-based energy dissi-
pation mechanisms by accommodating different rheological
for the ice layer (KV and Maxwell). Thus, the models were
called “wet beam”, which refers to water-based forces that
are taken into consideration.

Predictions of viscoelastic models and field measurements
were quantitatively compared against each other. KV and
Maxwell models were seen to reconstruct the decay rates
and dispersion process of landfast ice with a great level of
accuracy. Decay rates were observed to be poorly predicted

if the fluid-based energy damping is not taken into account,
suggesting that this mechanism has a very important role in
ice-induced energy decay over the range of long waves. The
decay rates of unconsolidated ice fields were also seen to be
accurately predicted by KV and Maxwell models by setting
a non-zero value for the fluid damping coefficient.

Decay rates and wave dispersion of freshwater ice were
predicted. The pure elastic model was seen to predict the de-
cay rate with an unrealistic fluid damping coefficient. The
decay rates predicted by KV and Maxwell models were seen
to agree with experiments, though the dispersion plots were
observed to diverge from the experimental data.

Two standard linear solid models were used and two other
dispersion relationships were formulated. These relation-
ships were seen to predict the attenuation rate and the disper-
sion plots with a good level of accuracy. But, the SLS model
which was fundamentally based on the KV material gave the
best fitting with an unrealistic Young’s modulus.

Overall, the wet beam dispersion relationships developed
by accommodating two-parameter solid models are able to
predict the decay rates and dispersion process of ice fields.
But, for a freshwater ice flume, a three-parameter solid model
may increase the accuracy of the predictions. As wet beam
models were observed to be capable of fitting decay rates of
different field measurements, they can be employed in wave
spectral modeling of polar seas in the future and can also be
coupled with ice break-up models to simulate the evolution
of marginal ice zones. In the future, nonlinear models can
also be developed to consider the effects of wave steepness
on dispersion, and other beam theories can be employed. In
addition, viscosity and turbulence effects can also be incor-
porated into wet beam models.

Appendix A: An example of dimensional data

The data presented in Sect. 3.2 are dimensionless. As was
observed in Fig. 4, α (dimensional decay rate) found using
viscoelastic models may not peak. This is because α̂ versus
λ̂o curves of the viscoelastic models are normalized using an
open-water wavenumber. Recently, it has been shown that in-
strument noise and local non-linear wave generation of high-
frequency waves may cause a peak in short-wave regimes
which may not be real (Thomson et al., 2021). To make it
clearer, the comparison between field measurements docu-
mented in Wadhams et al. (1988) and predictions of models
are presented in a dimensional way (Fig. A1). As shown, field
data reach a peak value at wave period of≈ 5.15 s, though the
decay rates predicted by viscoelastic models decrease under
the increase of wave periods (i.e., they never peak). Interest-
ingly, decay rate versus wave period curve predicted using
the pure elastic model (RP with an additional added mass
term) reaches a peak value in the short-wave regime.
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Figure A1. Comparison between α versus T curves constructed us-
ing different wet beam models against those of field measurements
documented in Wadhams et al. (1988). Curves are constructed using
the inputs giving the best fitting, which can be seen in Legends and
captions of Fig. 7.
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