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Abstract
Disordered elemental semiconductors, most notably a-C and a-Si, are ubiquitous in a myriad of
different applications. These exploit their unique mechanical and electronic properties. In the
past couple of decades, density functional theory (DFT) and other quantum mechanics-based
computational simulation techniques have been successful at delivering a detailed understanding
of the atomic and electronic structure of crystalline semiconductors. Unfortunately, the complex
structure of disordered semiconductors sets the time and length scales required for DFT
simulation of these materials out of reach. In recent years, machine learning (ML) approaches to
atomistic modeling have been developed that provide an accurate approximation of the DFT
potential energy surface for a small fraction of the computational time. These ML approaches
have now reached maturity and are starting to deliver the first conclusive insights into some of
the missing details surrounding the intricate atomic structure of disordered semiconductors. In
this Topical Review we give a brief introduction to ML atomistic modeling and its application to
amorphous semiconductors. We then take a look at how ML simulations have been used to
improve our current understanding of the atomic structure of a-C and a-Si.

Keywords: disordered carbon, disordered silicon, atomistic simulation,
machine learning potentials, molecular dynamics
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1. Introduction

Since the inception of the first experimental semiconductor
diodes in the early 1900s the presence of semiconductors
in daily appliances as well as high-tech equipment has
grown exponentially. Today, virtually all equipment incorpor-
ating electrical circuits or electronic components, including
computers and mobile phones, have parts made of silicon.
Commercially successful light-emitting diodes (LEDs) and
laser diodes also use semiconductors, most often III–V com-
pounds. Many of the familiar applications of semiconductors
use their crystalline forms, and the degree of crystallinity often
dictates the quality of the device. Indeed, in LEDs even tiny
amounts of crystallographic defects can severely deteriorate
device performance [1, 2].

On the other hand, amorphous semiconductors, notably a-C
and a-Si, can have useful properties of their own.Whether they
offer actual performance improvements over crystalline forms
for specific applications, or a significantly cheaper and more
scalable fabrication process gives them a practical advant-
age, these materials are widely used for applications where
their electronic, chemical, mechanical and optical properties
are exploited. Hydrogenated a-Si (a-Si:H) is used to fabricate
low-cost solar cells [3]. More generally, a-Si and its derivat-
ives find uses in applications where a cost-effective alternative
to crystalline Si (c-Si) is desirable, or where less stringent
growth conditions (e.g. lower deposition temperature) are
required [4]. This includes such applications as thin-film tran-
sistors [5], liquid-crystal displays [6] and medical x-ray ima-
ging [7]. a-C is even more versatile than a-Si since its prop-
erties can be more or less continuously tuned between those
of graphitic carbon (g-C) and diamondlike carbon (DLC) [8].
Current uses of a-C and a-C thin films include biocompat-
ible and bioimplantable devices (such as hip replacement
implants) [9], electrochemical sensors for in vivo analysis [10]
and hard coatings for tribological applications [11]. Further-
more, modified a-C such as oxygen-rich a-C (a-COx) [12],
nitrogen-doped a-C (a-C:N) [13], different carbon hybrid
materials [10], nanocarbons modified under extreme condi-
tions [14–16] and the wider family of disordered carbons are
starting or expected to make their way to emerging applica-
tions in energy storage [17]. More generally speaking, carbon-
based materials are envisioned to be key in the transition to
renewable raw materials utilization and the bioeconomy [18].

Unsurprisingly, the diversity and complexity of the atomic
structure of a-C and a-Si pose serious challenges for exper-
imental characterization. For crystalline materials, common
structural characterization methods, like x-ray diffraction, rely
on the periodic structure of crystals, and are thus less use-
ful to characterize amorphous materials. Instead, the structure
of a-C and a-Si (and other disordered materials) can be char-
acterized using experimental techniques such as x-ray photo-
electron or absorption spectroscopy (XPS and XAS, respect-
ively), Raman spectroscopy and neutron scattering. A very
complete summary of experimental structure characterization
techniques for a-C has been given by Robertson [8] (these
techniques are also relevant for the characterization of a-Si).

In our strive to understand the atomic structure of disordered
materials, computational atomistic modeling techniques arise
as an obvious choice: by being able to model the interatomic
energies and forces between atoms, and update or optim-
ize their positions accordingly, we can effectively ‘look’ at
the atomic structure. To access the length and time scales
involved in modeling amorphous materials accurately, ML
interatomic potentials (MLPs) have emerged in recent years
as game changers in the field [19].

In this Topical Review we will first discuss general con-
siderations pertaining to atomistic modeling of amorphous
semiconductors. We will then give a brief introduction to
MLPs that should be accessible to those with basic under-
standing of atomistic simulations, either coming from a (mod-
est) density-functional theory (DFT) or classical molecular
dynamics (MDs) background. We will then show how MLPs
have enabled a new degree of realism in modeling a-Si and
a-C, arguably the two most important elemental amorphous
semiconductors. We will end with a brief discussion of the
state of the field and an outlook for the future.

2. a-C and a-Si atomistic simulation

The main fundamental difference between a crystalline and
an amorphous semiconductor is the lack of long-range atomic
order in the latter. The other differences (electronic and
thermal conductivities, electronic and optical band gap, mech-
anical properties, etc) ultimately stem from the differences in
the atomic structure. In a-Si, local atomic structures are usually
4-fold tetrahedral motifs due to sp3 chemical bond hybridiza-
tion. Lower (3-fold) and higher (5-fold) coordinations in a-Si
are typically considered coordination defects [20]. Thus, the
structural complexity in a-Si is compounded by the interplay
between the local arrangement of nearby stable 4-fold motifs
and the existence of coordination defects in the amorphous
network. In the case of a-C the situation is significantly more
complex since stable chemical motifs in elemental carbon can
be due to sp (2-fold), sp2 (3-fold, ‘graphite-like’) and sp3 (4-
fold, ‘diamond-like’) hybridizations. The atomic structure of
a-C is consequently diverse, making a-C effectively a range of
materials, rather than just a material, typically characterized to
a first approximation by the relative amount of sp2 and sp3 car-
bon. The sp2-rich forms of a-C are low in mass density (down
to 2 g cm−3 and less [8]), whereas the sp3-rich forms have high
mass density and are often referred to as ‘diamond-like’ or ‘tet-
rahedral’ a-C (DLC and ta-C, respectively) [8]. To complicate
things, a-C and a-Si can exist with different degrees of hydro-
genation, where some of the C–C and Si–Si bonds are replaced
by C–H and Si–H bonds. These materials are usually referred
to as a-C:H and a-Si:H, respectively, and their properties, espe-
ciallymass density, may differ from those of the hydrogen-free
forms. We note here in passing that pure a-C and a-Si do not
exist in practice, and some level of impurities, mostly H and
O, are always present in experimental samples [8, 21].

The standard for predicting the structure of materials at the
atomic scale is DFT. DFT is a quantum mechanical method,
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providing an approximation to the Schrödinger equation. Its
popularity stems from the computational efficiency of the
Kohn–Sham (KS) formulation of DFT [22–24], which resides
at a ‘sweet spot’ of accuracy vs CPU cost. DFT is routinely
used to study crystals and to carry out crystal structure pre-
diction [25, 26], benefiting from the fact that crystals can be
represented with small primitive unit cells, often comprising
just a handful of atoms. Unfortunately, even DFT can become
prohibitively expensive to model amorphous materials, which
lack short-range order. In practice, DFT has been used to
study amorphous materials in a limited way by employing
the ‘supercell’ approach. A supercell is made of tens or, at
most, a few hundreds of atoms in periodic boundary condi-
tions [27–29]. Thus, effectively, amorphous compounds are
modeled as crystals with very large unit cells.

The accuracy of the supercell approach to model real
amorphous materials improves with system size, but not only.
To provide a realistic view of an amorphous structure it is
necessary to collect statistics via configurational sampling,
since each individual supercell will, in general, look differ-
ent from another. More critically, while a ‘single-point’ DFT
calculation (i.e. a calculation where the atomic positions are
not updated) for a given structure may be affordable even for
relatively large system sizes of a couple or few thousands of
atoms, placing the atoms in configurations that resemble real
amorphous structures is far from trivial [28].

Computational structure-generation protocols for amorph-
ous materials come in two flavors. On the one hand, there are
direct protocols trying to mimic the experimental growth pro-
cess as closely as possible. This is for instance the case for
simulated deposition, where the attachment of atoms onto a
growing film is simulated one atom at a time [30–33].

On the other hand, there exist indirect protocols that rely on
initially randomizing the atomic positions and subsequently
updating these positions. The positions can be updated by
either ‘relaxing’ the structure (e.g. using gradient-descent
optimization along the direction of the forces) [29, 34] or
by carrying out MD with a rapidly decreasing temperature
profile (‘quench’ simulations) [28, 35–37]. Sampling proto-
cols designed for free-energy sampling at given thermody-
namic conditions [38] are often not a good choice to generate
amorphous structures, since (a) amorphous materials are usu-
ally metastable and (b) these free-energy sampling methods
can be prohibitively expensive because they rely onmany indi-
vidual evaluations of the potential energy surface (PES). A rel-
atively recent comparison between generation methods for a-
C modeling, but lacking some of the latest developments with
ML interatomic potentials [32, 33], has been given in [10].

Arguably, the most popular protocol to generate atomistic
amorphous structures is the MD-based ‘melt-quench’ pro-
tocol [28], which resembles how glass is made in reality [39].
In a melt-quench simulation a material is first heated to high
temperature T until it melts. This liquid sample is then kept
at high temperature to ensure a disordered but relatively low-
energy distribution of atoms (e.g. much lower in energy than
random) to provide a reasonable starting point. Then, the
liquid is quickly quenched down to a temperature well below

Figure 1. Melt-quench simulations of a-Si formation carried out
with a GAP [45] potential refitted [46] from the database developed
by Bartók et al [47]. The simulations were carried out with the
TurboGAP code [48, 49].

the solidification temperature. Since the process is so fast, the
different atomic motifs are trapped into local minima, giv-
ing an amorphous structure as a result. How fast the system
is cooled down (the quench rate) will determine the quality
of the structure. A very fast quench will lead to numerous
defects, for example under (3-fold) and over (5-fold) coordin-
ated atoms in a-Si [40]. A very slow quench will (theoretic-
ally) lead to formation of the thermodynamically stable allo-
trope of the material, for example diamond-structure silicon.
Besides a temperature profile, imposed in MD through the use
of a thermostat [41], one may also couple the simulation to a
barostat [42], to control the pressure P. This enables explora-
tion of phases and phase transformations within widely vary-
ing thermodynamic conditions, including some extreme con-
ditions not accessible experimentally [43].

Additional steps can be added before or after the quench,
typically some sort of annealing step. For instance, a car-
bon sample can be held at around 3500K for a while before
quenching to favor graphitization [35, 37, 44]. Or an a-Si
sample can be annealed at a temperature below solidification
(but still significantly higher than room temperature) to heal
defects [40].

The melt-quench process leading to generation of a com-
putational atomic structure is exemplified for a-Si in figure 1.
Initially, the sample, containing 216 atoms, has been heated
to a very high temperature of 5000K to properly randomize
the atomic positions. The temperature is rapidly brought down
to 2000K, slightly above the melting temperature of silicon,
and kept there for some time (50 ps in our example). This is
the equilibration stage, where we aim to homogeneously dis-
tribute the available kinetic energy among all the degrees of
freedom and find local structures which are low in energy (for
the given values of T and P). After equilibration, we quench
the system down to 300K using a linear temperature pro-
file. The evolution of the potential energy does not follow this
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linear trend. Instead, there is a slow initial decrease in potential
energy because the temperature is too high to create stable
motifs. This is followed by an accelerated decrease in energy
where these stable atomic motifs, tetrahedra in a-Si, are cre-
ated at a fast pace. The final stage of the quench corresponds
to slow further decrease in potential energy, because of either
of two reasons: (a) all the Si atoms are already part of local
tetrahedra or (b) there is not enough kinetic energy to over-
come local potential energy barriers and the atoms are trapped
into their local metastable structures. The actual situation is
a combination of both factors. Recall that, according to the
virial theorem, as we linearly decrease the kinetic energy there
should be a corresponding linear decrease in potential energy,
assuming that the details of the potential energy surface do
not change. Therefore, the non-linear profile observed in our
example is indeed associated to the phase transition from the
disordered liquid to the amorphous solid.

After the MD quench, we further relax the structure using a
static relaxation of the atomic positions, following a gradient-
descent minimization of the potential energy. In figure 1 we
have additionally color-coded the Si atoms according to their
local energy, which can be extracted from a simulation with
MLPs, as we detail in section 3. The curious reader is encour-
aged to visit the turbogap.fi website for a series of tutorials
on how to run this type of simulation for a-Si and a-C.

Melt-quench simulations are popular because they provide
a good compromise between CPU cost and the quality of the
generated structures. However, they do not (typically) repro-
duce the experimental growth/formation protocol of the real
material, and that can have a non-negligible effect on the res-
ulting atomic structure, as is for instance the case for a-C [10].
Unfortunately, direct simulation protocols, such as deposition
in a-C [31–33], are orders of magnitude more expensive than
indirect methods.

Traditionally, direct simulation has been limited to empir-
ical interatomic potentials [31, 50–52]. These are very effi-
cient computationally, relying on simple mathematical func-
tions that depend on the interatomic distances and angles
and are parametrized by fitting to experimental or first-
principles data. Popular examples of these potentials, which
can often be used for both Si and C (and even SiC) by adjust-
ing the model’s parametrization, are Tersoff [53], Stillinger-
Weber [54, 55], EDIP [56] (and its carbon version C-
EDIP [57]), REBO [58, 59] and ReaxFF [60–63]. However,
these empirical potentials lack the accuracy of DFT, and thus
provide a representation of the PES of very inconsistent qual-
ity [33, 35, 44, 47, 64]. While low-lying harmonic regions of
the PES, i.e. the atomic configurations about equilibrium, can
be reproduced with reasonable accuracy, chemical reactions
are described very poorly. Therefore, we find ourselves at an
impasse: on the one hand, the breaking and formation of chem-
ical bonds, critical to understand the growth of amorphous
materials, are not correctly described with affordable empir-
ical potentials. On the other hand, DFT can describe chemical
reactions accurately but is computationally unaffordable.

Fortunately, new atomistic simulation techniques based
on ML have emerged in recent years [45, 64, 65] that

bridge this huge gap in atomistic modeling of amorphous
materials [36, 47]. These MLPs rely on non-parametric fits
to a reference PES, typically computed at the DFT level of
theory [66, 67]. While still significantly more expensive than
empirical force fields, MLPs offer accuracy close to that of
DFT for a tiny fraction of the CPU cost. MLPs have had, in
just the last few years, a huge impact on atomistic modeling
of amorphous and disordered materials, granting us atomistic
insight into problems that were completely out of reach less
than a decade ago.

3. ML interatomic potentials

In this section we explain the whole MLP workflow, graph-
ically summarized in figure 2. We start with a brief general
introduction to different popular ways to represent the PES,
with an emphasis on DFT. We will then give an overview of
the two main methodologies for learning and interpolating the
DFT-PES based on (a) artificial neural networks (ANNs) and
(b) the related kernel-ridge regression and Gaussian process
regression (GPR) methods. To take a pedagogical approach,
the introduction of these methodologies will be preceded by a
general introduction to relevant ML concepts (databases and
descriptors/features). We will compare ML potentials to DFT,
on the one hand, and classical force fields, on the other, to
get an idea of what is possible now in materials modeling,
thanks to the introduction of MLPs, that was not possible
just a few years ago. For more comprehensive information,
the reader is referred to a recent book which nicely summar-
izes the current state of the field [65] including a chapter on
GPR [68] and another on ANNs [69], and to several overview
papers [19, 66, 67, 70–72].

3.1. Database construction (structure selection)

The creation of a new MLP starts with the generation of train-
ing data (figure 2(a), step 1). Many considerations need to
go into carefully crafting a suitable database for the prob-
lem at hand. There are two main classes of MLPs depend-
ing on their scope: general- and single-purpose MLPs. A
single-purpose MLP is created with a very specific applic-
ation in mind. In this case, the MLP will be expected to
perform with excellent (or even exquisite) accuracy for the
problem of interest, but there is no guarantee that it will per-
form even reasonably for any other application. Recall that
the MLP does not ‘know’ about physics, chemistry, or the
Schrödinger equation; it only knows about data. Therefore,
an MLP will only be able to chart the portion of configura-
tion space corresponding to the data that it was fed. Indeed,
single-purpose MLPs (and poorly designed general-purpose
MLPs)will tend to ‘blow up’ (MD jargon for when a force field
becomes catastrophically unstable) when tested on a problem
for which they were not trained. A good example of a single-
purpose MLP would be one trained to reproduce the phonon
dispersion curves of a crystalline material, for instance to be
used in thermal transport or thermal expansion calculations of
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Figure 2. (a) Workflow of MLP training: a database of atomic structures and observables (energies, forces) is constructed, from which an
ML algorithm is used to learn the PES as a function of atomic descriptors. (b), (c) Different kinds of descriptors commonly used to represent
the atomic environments. (d) Schematics of neural network prediction. (e) Schematics of kernel-based prediction. [19] John Wiley & Sons.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

c-Si and diamond/graphite. A database suitable to fit a good
phonon MLP would typically incorporate many DFT calcu-
lations of structures distorted from the equilibrium ones, by
adding either homogeneously spaced or random strain trans-
formations to the unit cell in addition to rattling the atoms
about their equilibrium positions. Furthermore, the unit cells
should span from the primitive unit cell up to larger unit cells
which would allow to capture interactions between distant
atoms. An example of a single-purpose MLP is the graphene
GAP of Rowe et al [73].

A general purpose MLP, on the other hand, is expected to
perform reasonably accurately in as many regions of config-
uration space as possible, and be resistant to blowing up. A
good general-purpose MLP is often very difficult to achieve
because it may require prior knowledge about which these
regions are, and its training is consequently difficult to auto-
mate. For instance, if one wants to fit an MLP to study the
atomic structure of a-C surfaces, which can be prohibitively
expensive to generate with DFT using a melt-quench simu-
lation (cf figure 1), how are sample surfaces sourced for the
(single-point) DFT calculations that will serve as reference
for the MLP? In these cases, iterative training [36, 74] can

help in improving the accuracy of the MLP in regions of
interest in configuration space and also to get rid of patholo-
gical behavior. In our a-C surface example, iterative training
would consist of generating surface structures with an interim
(low-quality) version of the MLP via melt-quench simula-
tions. Single-point DFT calculations are then performed on the
final structures and this data added to the training set. A new
interim version of the MLP is trained and the whole procedure
is repeated until the MLP errors (compared to the DFT cal-
culations) are below an acceptable threshold. Besides regular
sampling of known crystal phases, iterative training can also
be combined with less directed exploration of configuration
space, such as random structure search [26, 75].

Finally, we can combine the features of a general-purpose
MLP with those of a single-purpose MLP, to improve the
accuracy of the general-purposeMLP for specific applications,
as has been done for phonons in Si [76] or fullerenes in C [43].

A way to visualize these structural databases is via so-
called structure maps [77, 78]. In these, the similarities
between different entries in a database, i.e. between differ-
ent atomic structures, can be plotted on a two-dimensional
map using low-dimensional embedding techniques [77, 78].

5



Semicond. Sci. Technol. 38 (2023) 043001 Topical Review

Figure 3. Low-dimensional embedding of high-dimensional data,
used in this case to visualize the atomic structural diversity in a
database constructed to fit an MLP for carbon. The closer two points
are on the graph, the more closely the corresponding atomic
environments resemble each other. Reprinted figure with permission
from [43], Copyright (2021) by the American Physical Society.

An example for the fullerene-augmented C MLP mentioned
earlier [43] is shown in figure 3. In this graph, each data point
represents an atom-centered environment and similar struc-
tures are clustered together. There is a transition from diamond
structures to amorphous sp3, then to amorphous sp2 and finally
to different graphitic structures, including fullerenes. These
sketchmaps are a useful tool to glimpse at the composition of
an entire database and understand the relationships between
the different structures.

3.2. Reference representations of the potential energy
surface

A central objective of computational atomistic modeling
is to gain access to an accurate representation of the
Born–Oppenheimer (BO) PES of a given ensemble of inter-
acting atoms. The BO approximation relies on decoupling
the electronic and nuclear degrees of freedom. That is, the
BO-PES gives the total cohesive energy of a set of interact-
ing atoms as the electronic ground state (GS) for fixed nuc-
lear positions [24]. This approximation is valid in many situ-
ations, in particular in condensed-matter physics, because of
the mass difference between electrons and nuclei. The elec-
tronic degrees of freedom evolve within much shorter time
scales than the nuclear degrees of freedom, and the atomic
trajectories can be propagated in time treating the nuclei as
classical particles, following Newton’s second law. The most
popular approximation used today to calculate the BO-PES
is DFT [22–24]. The fundamental tenet of DFT is that the

total (cohesive) energy of a system of interacting electrons in
a external potential (given by the positively charged nuclei)
is given by a universal functional E[n] of the electron density
n(r), where the density that minimizes the functional is the
GS density and the energy of the GS is given by the energy
functional evaluated at the GS density [22]:

nGS(r) = argmin
n(r)

E[n(r)], EGS = E[nGS(r)]. (1)

The practical means for solving equation (1) are provided by
the KS ansatz, which states that the density can be expressed
as a combination of single-particle contributions, one per elec-
tron (or electron pair, depending on whether or not spin is
explicitly modeled):

n(r) =
Ne∑
i=1

|ψi(r)|2, (2)

where ψi(r) is the KS orbital of the ith electron in the system
and Ne is the number of electrons. This approximation allows
us to avoid explicitly working with the many-body wave func-
tion of the system. In the KS formulation of DFT, the many-
body effects are collected into the exchange-correlation (XC)
density functional Exc[n(r)]. The quality of the used approx-
imation for Exc[n(r)] will determine how close to the actual
GS density and energy we can get.

The KS single-particle ansatz, coupled with the vari-
ational principle δE[n]/δψ∗

i = 0 leads to the eigenvalue-like
KS equation:

ϵiψi(r) = HKSψi(r), (3)

where the KS Hamiltonian HKS contains the single-particle
kinetic energy operator, the electrostatic potential and the
XC potential. A deeper account of DFT is beyond the scope
of this review, and the reader is referred to the excellent
(nowadays almost standard) book by Martin [24] for more
detailed information.

The emergence of KS DFT, together with many different
approximations to the XC functional [79, 80] and efficient iter-
ative algorithms for solving the KS equation implemented in
parallel computer codes [81] have enabled quantum mechan-
ical calculations of the properties of matter at affordable com-
putational cost. In addition to this, the community has been
very active at tackling the different shortcomings of KS DFT,
such as the self-interaction error or the lack of dispersion inter-
actions, e.g. by developing ‘hybrid’ XC functionals [82, 83],
and van der Waals ‘corrections’ [84–86], respectively. While
DFT is still too expensive to perform long- and large-scale
simulations of atomic systems, the tradeoff between accuracy
and CPU cost afforded by DFTmakes it the most popular elec-
tronic structure method and, indeed, the most popular method
to generate training data for MLPs.

The purpose of an interatomic potential, also referred to
as a force field, is to provide a computationally affordable
approximation of the BO-PES. When training MLPs we often
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assume that DFT provides a ‘good enough’ version of the
BO-PES. While we have just discussed that DFT has its own
shortcomings, it is also important to recognize the limita-
tions of the BO approximation itself. Notable breakdowns
of the BO approximation occur whenever protium atoms are
present (i.e. the common hydrogen isotope with one proton
in the nucleus) [87] or when high-energy collisions take place
(e.g. during radiation-damage events in materials) [88]. Exten-
ded MD formalisms are required when simulating these kinds
of systems, for instance time-dependent DFT or Ehrenfest
dynamics, where electronic and nuclear degrees of freedom
are propagated simultaneously [89, 90]. In addition, electronic
excitations and charge-transfer processes [91] cannot be cap-
tured out of the box by MLPs trained from DFT data. Despite
these limitations, which are at the hot spot of current work by
the community, MLPs have enabled incredible successes in
computational materials modeling in recent years, in particular
for a-Si and a-C. We review the basics of MLPs for materials
and molecular modeling in the next section.

3.3. MLP architecture

The rationale for replacing a DFT calculation (or, more gener-
ally, an expensive ab initio calculation) by an ML prediction
is that, in atomistic systems, the local atomic motifs are often
repetitious. Therefore, put in simple terms, if we compute
energies and forces for a series of reference structures with
DFT and store those values in a database, we should in prin-
ciple be able to infer a DFT-quality prediction for a new atomic
structure as long as said structure is similar enough to the
database entries. The interpolation should be computationally
inexpensive, compared to a DFT calculation, for the proced-
ure to be useful. The simplest example is a diatomic molecule,
where a series of DFT calculations are carried out for differ-
ent interatomic separations and a force field is trained from
that data to predict the energy vs distance curve at arbitrary
separations. An ‘old-fashioned’ empirical force field would
often tackle this problem by fitting the data to a fixed func-
tional form, e.g. a least-squares fit to a second-order polyno-
mial. In that sense,MLPs can be regarded as a glorified version
of an empirical force field, where themain difference is the fact
that the fit is now carried out in arbitrarily many dimensions
and without the user providing an explicit mathematical func-
tion. This is referred to in ML jargon as a non-parametric fit.
Although the distinction between MLPs and empirical force
fields may seem small in this context, in practice the flexibil-
ity of ML algorithms to fit high-dimensional data means that
much more complex PESs can be learned, and to much higher
accuracy.

Above, two fundamental assumptions are made whose
goodness will to a large extent determine the success of MLPs.
One is the assumption of locality of the PES. That is, we can
construct the entire system as a collection of local fragments,
each of which has an associated local energy. Physically, the
local energy ϵ̄i (where the bar indicates prediction) is not a
well-defined property of the system; instead, a DFT calcula-
tion will return a total energy E for a given ensemble of Nat

interacting atoms. An MLP will build this total energy from

Figure 4. Locality tests in carbon-based systems.
(a) Conceptualization of the locality test. (b) Convergence of the
residual force acting on the central atom for diamond and graphite
as a function of the cutoff radius. Reprinted figure with permission
from [36], Copyright (2017) by the American Physical Society.

the sum of all the individual contributions which, in simplified
terms, can be considered a sum over atom-wise contributions:

Ē=

Nat∑
i=1

ϵ̄i. (4)

An intuitive way to test the locality of the PES for a given
material is to monitor the evolution of the force acting on an
atom as other atoms beyond a certain cutoff distance are dis-
turbed, as a function of said cutoff. This was done in [36]
for crystalline and amorphous C. The procedure is illustrated
in figure 4(a) and the results for diamond and graphite in
figure 4(b) are reprinted from that reference. For diamond (as
well as high-density a-C, not shown here but reported in [36])
the approximation of locality is extremely good and the errors
are negligible for cutoffs around 5Å and beyond. For graph-
ite (and low-density a-C) the approximation is less good and
convergence with the cutoff is very slow. Mathematically, this
approximation implies that we can express a local (atomic)
energy prediction as a function of a finite environment of the
atom:

ϵ̄i = f(Si(rcut)) , (5)

where Si(rcut) represents all the relative atomic positions
within a sphere of radius rcut centered on atom i. In technical
terms this means that ϵ̄i has compact support.

The other main assumption is about the smoothness of the
PES. That is, a small change in the positions of the nuclei
should lead to a small change in the total energy of the sys-
tem. In mathematical terms, the PES should be continuous
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and continuously differentiable. In a data science context,
smoothness is referred to as regularity.

Besides the training (DFT) data and the two central approx-
imations for the PES, locality and smoothness, which we have
already discussed, anMLP requires also two basic ingredients.
The first one is the atomic structure representation, which is
carried out using atomic descriptors. While in principle the
Cartesian coordinates of the nuclei contain all the necessary
information, in practice they are not useful because they do
not fulfill the correct symmetries. Specifically, valid atomic
descriptors must fulfill translational, rotational and permuta-
tional invariance. The simplest descriptor is an interatomic dis-
tance. More sophisticated descriptors, which contain increas-
ingly more information about the environment of an atom,
can be constructed with a body-order expansion [92]. An
interatomic distance is a two-body (2b) descriptor, with a
single degree of freedom. A 3b descriptor has three degrees
of freedom and perfectly characterizes a system made of three
atoms, having subtracted the translation and rotation of the
center of mass, which do not affect energy and forces. Any
further body-order increase adds three more degrees of free-
dom, and the complexity of the model (and the cost of comput-
ing descriptors) explodes with relatively low body orders. For
many practical purposes inmaterials modeling there is no need
to go beyond 3b terms [93]. However, there is another type of
atomic descriptors that allow to encode the entire atomic envir-
onment, called many-body (mb) descriptors (cf figure 2(c)).
Arguably, the most important examples are the smooth over-
lap of atomic positions (SOAP) [94] and atom-centered sym-
metry functions (ACSFs) [95]. It can be shown that these
mb descriptors are formally equivalent to one another and,
as constructed from 2b sums within a finite cutoff sphere, are
also equivalent to an ensemble of 3b terms [96]. Two advant-
ages over 3b descriptors are that one mb descriptor can be
used instead of very many 3b ones (since the number of 3b
descriptors within a cutoff sphere explodes as a function of
its radius), and that mb descriptors with different numbers of
atoms can be compared to one another (directly relevant in
kernel regression methods, cf figure 2(e)). The topic of atomic
representations is very rich and has been recently summarized
in a comprehensive review paper [97].

The second basic ingredient is the ML algorithm.
The first method to interpolate high-dimensional PES
with close to DFT accuracy was introduced in 2007 by
Behler and Parrinello [64] based on ANNs and applied pre-
cisely tomodel Si. The secondmethod, based on kernel regres-
sion, was introduced by Bartók et al in 2010 [45] and used to
model C, Si and Ge. Clearly, group-IV semiconductors have
been strongly linked to the use of MLPs since their very incep-
tion, and as such it is unsurprising that the first applications of
MLPs to solving outstanding problems in materials modeling
have also focused on C and Si. Naturally, the methodology
has advanced significantly since those two seminal papers and
more recent reviews by the authors do a better job at introdu-
cing the concepts and practicalities to the beginner [66, 67,
70]. Many other methods and implementations have appeared
since then. A comprehensive account of those is beyond the

scope of this work and so we mention again the recent book
summarizing the state of the field [65]. Below we give a brief
overview of these methods, and refer the reader to the cited
literature for further detail.

3.3.1. Artificial neural network potential (NNP). NNPs [64]
use ANNs to interpolate the PES. An ANN consists of a series
of ‘layers’: input, hidden and output layers. There is one input
and one output layer, and one or more hidden layers. The input
layer contains a vector of features (an ACSF in the case of
NNPs) and the output layer returns an observable, which can
be a scalar or a vector (e.g. the total energy in NNPs). Each
hidden layer consists of a number of nodes, and the input
data is propagated forward through the different layers by per-
forming a series of linear and non-linear operations which
depend on the connection and the node in question, respect-
ively. This propagation procedure is illustrated in figure 2(d),
where the arrows represent the connections and the circles rep-
resent the nodes. We start out with a vector of real-valued
symmetry functions G of a certain dimension, which depends
on the number of species and the quality of the representa-
tion [69, 95]. Each of these functions Gi is propagated to each
of the nodes in the first hidden layer multiplied by a series of
weights a0,1ij (where 0, 1 indicates we are connecting layers 0
and 1):

β1
j =

N0∑
i=1

Gia
0,1
ij + b1j , (6)

γ1
j = f(β1

j ), (7)

where N0 is the number of nodes in layer 0, i.e. the number of
ACSFs (or, equivalently, the dimension of G) in this case. b1j
is the bias of node j in layer 1 which, together with the sum in
equation (6), define the function β1

j , which is linear in the input
variable Gi. This quantity, β1

j , is used as argument to evaluate
a non-linear activation function f. The result of this evaluation,
γ1
j , is then passed on to the next layer n= 2 in the same way

as above:

βnj =

Nn−1∑
i=1

γn−1
i an−1,n

ij + bnj , (8)

γnj = f(βnj ), (9)

where we note that N can in general vary from layer to layer.
We have substituted Gi by γ

n−1
i for generality, because Gi is

the notation used for the input layer specifically in the case of
ACSF for NNPs. This procedure is repeated until we reach the
output layer, which in our case returns a local atomic energy.
The forces can be evaluated analytically from the dependence
of the symmetry functions on the atomic positions.

Training an NNP consists in the optimization of the weights
{an−1,n

ij } and biases {bnj }, and is done using backpropaga-
tion, for a given training set of atomic structures, to minim-
ize the error in the corresponding observables (total energies,
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forces, stresses, etc). We will not go into the details of ANN
algorithms which, for most practical purposes in atomistic
materials modeling, can be considered a black box.

3.3.2. Gaussian approximation potential (GAP). GAPs are
based on kernel regression [45] and are arguably more inter-
pretable than ANNs. In GAPs, the local atomic energy ϵ̄i
for atom i is expressed as a linear combination of kernel
functions k:

ϵ̄i = δ2
Ntrain∑
t=1

αtk(qi,qt)+ e0, (10)

where δ is an energy scale, t runs over training configura-
tions, αt are the fitting coefficients, qi and qt are the atomic
descriptors (often a SOAP mb descriptor) of a test and train
configuration, respectively, and e0 is a per-atom energy offset,
usually taken as the reference energy of an isolated atom of
a given species. The kernel can be understood as a measure
of similarity between two atomic environments, as illustrated
in figure 2(e), and is bounded between 0 (nothing alike) and
1 (identical up to symmetry operations). Thus, intuitively, the
more a training configuration resembles the test configuration
for which we want to make a prediction, the more the fitting
coefficient associated with that training configuration contrib-
utes to the prediction. This is why we stated earlier that GAPs
are arguably more interpretable than NNPs.

Having cast the interpolation problem as a linear problem,
training a GAP simply consists in a least-squares-based inver-
sion of equation (10):

α=
1
δ2

K−1(ϵ− e0), (11)

where now the test index in equation (10) also runs through
training configurations, and we do not use the predicted atomic
energy ϵ̄ but the observed one ε. We note that in practice one
cannot train a GAP model (or an NNP, for that matter) using
local atomic energies, which are not generally available before
training the GAP. Instead, the local energy in equation (10)
is replaced by the sum over local energies leading to a total
energy observable. For instance, when using training data from
a DFT calculation for a supercell, we use EI =

∑
i ϵ̄i. In addi-

tion to this total energy consideration, one usually needs to use
regularization and sparsification to improve the stability, trans-
ferability and efficiency of a GAP, and may combine several
GAPs in the same fit. These details fall outside the scope of
this paper and the reader is referred to the literature for further
insight [67, 70]. Likewise, the explicit definition and discus-
sion of atomic descriptors and kernel functions is an active
research topic and better covered elsewhere [49, 94, 96–98].
As for NNPs, the forces can be computed analytically through
the dependence of qi on the atomic positions. Forces and
stresses can also be incorporated into the inversion equation,
together with total energies.

3.3.3. Other MLP approaches. The field of ML-based
atomistic simulation of materials is advancing fast. Since

NNPs and GAPs appeared, several other MLP flavors have
been developed and we expect applications in amorphous
materials modeling to follow soon. MLP methods besides
NNP and GAP include ‘linear’ models such as the moment-
tensor potential [72] and the spectral neighbor analysis poten-
tial (SNAP) [99], or MLPs based on asymptotically com-
plete atomic descriptors like the atomic cluster expansion
(ACE) [100]. The first ACE-based MLP able to simulate a-
C appeared very recently [101], and it is expected that these
new models and improvements thereof [102, 103] will over-
take NNPs and GAPs as the state-of-the-art tools for simulat-
ing disordered materials in the near future.

In the brief discussion of NNPs and GAPs above we
implicitly include short-range interactions only, since ACSFs
and SOAP use radial cutoffs that exclude all interactions
beyond a certain radius. We have therefore left out long-
range interactions which are important beyond the typical
cutoffs used to fit ‘regular’ MLPs. These long-range inter-
actions include van der Waals and electrostatics and must
be treated on a different footing to bonding and repulsion
interactions both (a) out of necessity, to avoid the explosion
of computational time with the cutoff distance, and (b) out
of opportunism, since these interactions can often be cast
in the form of simple analytical functions whose paramet-
ers can be machine learned but are in effect short ranged
[43, 104–107].

4. Amorphous and disordered carbon

The precise structure of a-C and how growth conditions can be
tuned tomodify it have been the topic of intense debate for sev-
eral decades. The reason is that, unlike in a-Si, in a-C coordina-
tion environments with different number of atomic neighbors,
ranging from two to four neighbors (sp and sp3 orbital hybrid-
izations, respectively) are all possible (meta)stable motifs.
Especially three- (sp2) and four-coordinated environments can
coexist in a-C thin films. Varying the relative concentration
of sp2 and sp3 bonding in a-C allows us to tune its material
properties (mechanical, electrical, optical, etc) from graphite-
like to diamond-like. Thus, much of the basic characteriza-
tion work on a-C has dealt with the dependence of the sp2/sp3

ratio on such parameters as the deposition energy during phys-
ical vapor deposition growth and, in turn, the dependence
of the material properties on the sp2/sp3 ratio. The reference
entry point into the properties of a-C, albeit a bit outdated
in terms of missing atomistic simulation insights that were
developed in the last few years, is Robertson’s monumental
review paper from 2002 [8]. Two of the most important figures
in that paper are reprinted here in figure 5. The top panel
shows the dependence of the sp2/sp3 ratio on the deposition
energy (the estimated kinetic energy of incident C atoms) for
different experimental techniques used to grow a-C. A com-
mon trend is the increase in sp3 content for increasing depos-
ition energy, up to around 100 eV, after which there is a further
decline. We also note that some of these a-C samples can be
grown with extremely high sp3 contents, approaching that of
diamond (100% sp3). Therefore, diamondlike or ‘tetrahedral’
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Figure 5. (Top) sp3 fraction vs deposition energy from a series of
literature works; data from Polo et al [108], Xu et al [109], Fallon
et al [110] and McKenzie et al [111]. The deposition energy is the
estimated kinetic energy of individual carbon atoms as they hit the
substrate. (Bottom) The subplantation mechanism postulated as
growth mechanism responsible for high sp3 fractions in ta-C.
Reprinted from [8], Copyright (2002), with permission from
Elsevier.

a-C (DLC and ta-C, respectively) can be made experimentally,
offering a route for cheap coatings with diamondlike hard-
ness for tribological applications. The bottom panel in figure 5
shows the proposed film growth mechanism in ta-C, subplant-
ation, which was widely regarded as the correct mechanism
until recently, when MLP simulations [32] provided quantit-
ative confirmation for earlier qualitative evidence [31] of an
alternative mechanism, peening, which we will discuss later
in more detail.

Thus, our journey into simulation of a-C starts with
the extensive atomistic modeling efforts carried out in the
pursuit of explaining how these high sp3 contents can be
achieved and, in turn, explaining the growth mechanism in
a-C. The state of the art in atomistic modeling of a-C, as
of 2017 (just 6 years before this review was completed),

using a variety of interatomic potentials (including DFT) and
modeling techniques, is summarized in figure 6. This figure
was compiled right after the first MLP able to model a-C was
published, also in 2017 [36]. We can see that the direct simu-
lation route, deposition, fell short of achieving the very large
sp3 contents observed experimentally at high deposition ener-
gies. This technique had, back in the day, been restricted to
fast empirical methods, such as tight binding (TB), C-EDIP
and Tersoff potentials, and was (and still is) computation-
ally unfeasible at the DFT level. Liquid quench simulations,
on the other hand, were accessible to more expensive meth-
ods, like DFT, but could only predict very large sp3 con-
tents at unphysically high pressures, which shows as a shift
towards higher mass densities on the graph. On that middle
panel of figure 6 we note the first ML-based simulations
of a-C generation with the MLP trained by Deringer and
Csányi [36], a stepping stone in a-C modeling and key devel-
opment leading to the advances that we will discuss later.
Finally, pressure-corrected DFT simulations from [10, 29],
based on a two-step relaxation procedure, managed to get
extremely good agreement with experiment for the sp3 content
as a function of mass density but, based on an indirect simu-
lation protocol, offered no insight whatsoever into the growth
mechanism.

4.1. Explaining the growth mechanism

With the introduction in 2017 of the first MLP able to handle
the structural complexity of a-C with close to DFT accuracy,
but at a fraction of the computational cost, the first MLP-based
simulation depositions followed soon. In 2018, Caro et al [32]
presented MD deposition simulations of ta-C growth. In these
simulations, incident atoms with varying kinetic energy (20,
60 and 100 eV) impinge on a carbon substrate, initially dia-
mond. After each impact, the system is equilibrated back to the
nominal deposition temperature (300K) and the next depos-
ition event takes place. After several thousands of atoms have
been deposited, the size of the film is enough to collect statist-
ics for material properties and growth mechanism. The work-
flow of these deposition simulations is shown in figure 7(a).
Panel (b) of the figure shows a more detailed view of the
impact process for a single event with a logarithmic time axis.
Initially, the incident atom approaches the substrate very fast.
The MLP algorithm allows us to monitor the local atomic
energy, as we have discussed in section 3.3, shown in the figure
offset by the average local energy in the growing film. The
highly energetic initial impact is followed by equilibration of
the atomic environment, where atoms settle in their new posi-
tions. GAPMLPs also allow us to monitor the predicted inter-
polation error, shown in the figure too. This deposition process
is rather complex, with the order of 50 bond breaking/forma-
tion events taking place for each impact at around 100 eV [33].
The process is better visualized as a video animation, with
several Open Access resources available from the literature,
including a single impact [117], the atom-by-atom growth of
a-C thin films from low to high density [118], and the result-
ing atomic structures in XYZ format [119] (which enable sub-
sequent studies).
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Figure 6. sp3 fractions vs mass density for different simulation protocols, compared to experimental data (black solid dots) from Fallon
et al [110] and (black solid triangles) Schwan et al [112]. Simulation data from Kohary and Kugler [113], Marks [31], Lee et al [114], de
Tomas et al [35], Wang and Komvopoulos [115], McCulloch et al [116] and Deringer and Csányi [36]. Pressure-corrected DFT data is taken
from Caro et al [29] for 192-atom supercells and Laurila et al [10] for 512-atom supercells. Reprinted from [10]. CC BY 4.0.

Figure 7. (a) Schematics of a deposition simulation. (b) Evolution of different observables during the course of a single impact event.
Reprinted figure with permission from [33], Copyright (2020) by the American Physical Society.
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Figure 8. Results of ta-C deposition simulations: (a) evolution of mass density and coordination fractions along the film’s growth direction
in ta-C over three different deposition energies. The extent of the sp2-rich surface, different for each energy, is indicated with an arrow; (b)
radial distribution function and structure factor, compared to experimental results from Gilkes et al [120]; (c) two-dimensional
pair-correlation functions indicating the regions of depletion/formation of sp2 and sp3 motifs as a function of distance from impact location.
Reprinted figure with permission from [32], Copyright (2018) by the American Physical Society.

Figure 9. Observed growth mechanisms in (a) low-density (low
deposition energy) and (b) high-density (high deposition energy)
a-C films. Reprinted figure with permission from [33], Copyright
(2020) by the American Physical Society.

Figure 8 shows the key results from these first deposition
simulations [32]. Panel (a) shows the mass density and
sp/sp2/sp3 fraction profiles along the growth direction for the
deposition energy ranges where ta-C growth takes place. The
three simulations at 20, 60 and 100 eV result in similar mass
densities and coordination fractions in the bulk of the film,
for the first time close to those reported experimentally for

the densest ta-C films. At the same time, the data shows
rather different surface morphologies, with increasing surface
roughness for higher deposition energies, a result that closely
follows experiment [121]. This, together with the also excel-
lent agreement with experiment for the radial distribution
function (RDF) shown in figure 8(b) gave confidence in the
quality of the simulations as representative of the microscopic
growth mechanism taking place experimentally. The collec-
tion of deposition statistics (up to 8000 individual events per
energy) then enabled drawing a precise picture of what that
growth mechanism actually looks like. In figure 8(c) we can
see the mass density and coordination fraction increase/de-
crease before and after an impact event, averaged over all
impacts, as a function of depth and lateral separation from the
impact site. The color maps clearly indicate a local decrease
of sp2 and, especially, sp3 carbons around the site of impact.
In fact, these maps show that locally (around the impact site)
there is an increase in the amount of sp2 carbon, whereas the
sp3 fraction increases laterally and away from the impact site,
due to pressure waves originating from the impact region. This
mechanism is known as peening, and had already been pro-
posed by Marks in 2005 on the basis of deposition simulations
with the C-EDIP empirical potential [31]. Because the C-EDIP
simulations lacked quantitative agreement with experiment
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Figure 10. Evolution of a-C film nanostructure as a function of deposition energy. The top (a) and bottom (b) panels show the degree of
similarity between atomic environments in the films and reference diamond and graphite, respectively. Brighter color indicates more
resemblance and darker color indicates less resemblance. Reprinted figure with permission from [33], Copyright (2020) by the American
Physical Society.

(cf figure 6), the peening mechanism did not gather general-
ized adoption. However, the GAP deposition simulations offer
strong quantitative support for peening as the growth mechan-
ism in ta-C, which is schematically illustrated in figure 9(b).

4.2. a-C structure across mass densities

Following the study of ta-C growth, these deposition
simulations were extended to low-density a-C and a more
comprehensive analysis of material properties and compar-
ison with other interatomic potentials was carried out [33]. At
low deposition energies (below the typical cohesive energy
per atom in carbon materials, ⪅9 eV), graphitic a-C grows
by direct attachment (figure 9(a)), where higher coordination
increases the stability of sp surface motifs by creating sp2 and
sp3 carbon. At very low deposition energies of a couple of eV
the rate of sp3 formation is small and the bulk of the a-C films
is highly graphitic, with ∼80% sp2 and similar amounts of sp
and sp3 motifs (∼10% each). Figure 10 shows the evolution of
the structure, as well as the ‘graphite likeness’ and ‘diamond

likeness’, of the simulated thin films as a function of deposition
energy. The similarity to graphite and diamond is computed by
calculating the SOAP kernels between each individual atomic
environment and either pristine graphite or diamond [33, 36].
Since the kernel can be understood as a similarity measure,
bounded between 0 and 1, as we have previously discussed, it
can also be used for this kind of quantitative comparison in a
very straightforward way. At and above ∼10 eV the structure
is largely homogeneous and dominated by sp3 motifs in the
bulk of the film. At 5 eV sp2 and sp3 motifs are approximately
equally frequent, and the material shows a ‘patched’ struc-
ture. At low deposition energies the material is graphitic in
nature, as we have already discussed, and made of tubular
(nanotube-like) structures and highly defective graphitic
sheets.

4.3. a-C surface structure

The surface structure in a-C is always graphitic like (figures 8
and 10), but the extent of this sp2-rich surface layer is strongly
dependent on the deposition energy. The MLP deposition
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Figure 11. Detail of the surface nanostructure in a-C films grown at different deposition energies, indicating the atomic motifs similarity to
graphite. Reprinted figure with permission from [33], Copyright (2020) by the American Physical Society.

simulations show a smoothest surface at around 20 eV and
roughest at 100 eV (and, presumably, higher energies, which
have not been studied) [32]. For very low deposition energies
there is no well-defined surface region, except for a higher rel-
ative abundance of spmotifs within the top 10Å or so, and the
film is graphitic and highly disordered throughout. A closeup
on the structure of a-C surfaces for different mass densities,
again color coding according to graphite likeness, is given in
figure 11.

4.4. Doped a-C

As-deposited a-C is rarely completely free of impurities.
Residual elements present in the reactor chamber and sample
setup lead to unintentional doping of a-C films with a wide
range of chemical species, the most significant of which are
H, O, N and Si (see, e.g. time-of-flight elastic recoil detection
analysis [122] results of the elemental makeup of a-C:N [13]).
Besides unintentional doping, it is possible to incorporate
impurities in order to achieve a desired effect. The mechan-
ical, electronic and (electro)chemical properties of a-C can be
modified via H, O and N incorporation [8, 12, 13]. Intention-
ally doped a-C is usually denoted by a-C:X, where X stands for
the dopant. The most common doped form of a-C is hydrogen-
ated a-C, or a-C:H, where typical H contents are of the order
of 30–50 at.-% [8]. This material can be made for instance

by depositing C in a H/methane plasma, or by depositing acet-
ylene or methane molecules directly, depending on the desired
C/H ratio [8]. The properties of a-C:H differ from those of a-C
in that H atoms will saturate many bonds, potentially leading
to high sp3 contents but relatively low mass densities, because
a H atom is about 12 times as light as a C atom. The mechan-
ical properties of a-C:H, e.g. its elastic moduli, will be inferior
to those of ta-C with similar sp3 content [8].

Computational studies on a-C:H are comparatively rare,
and direct deposition simulations of a-C:H with MLPs are
not yet available in the literature (although our group is
currently exploring this possibility). Indirect simulations of
a-C:H formation and H adsorption energetics mixing MLPs
and DFT or other electronic-structure methods have appeared
in recent years. Deringer et al [123] did grand-canonical
Monte Carlo (GCMC) simulations of H adsorption using
density-functional TB from a wide set of preexisting a-C sur-
face models. These results showed that a-C:H materials with
very high sp3 fractions (∼75%) can be obtained over a rel-
atively large range of H concentrations (ranging from 25%
to 40%). The results of these GCMC trajectories and snap-
shots of the resulting films are given in figure 12. Caro et al
[124] focused on the individual adsorption processes and how
those depend on the geometry of the preexisting pure carbon
sites, finding two separate regions of adsorption stability for
sp and sp2 sites each. Almost-linear and almost-planar sp and
sp2 motifs, respectively, are more stable and therefore less
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Figure 12. (a) sp3 fraction of hydrogenated a-C as a GCMC
simulation progresses where H is incorporated. The blue dots mark
the end points of the simulation. (b)–(d) Ball-and-stick
representation of the final a-C:H structures. Reprinted with
permission from [123]. Copyright (2018) American Chemical
Society.

reactive towards H adsorption than more bendy motifs. Caro
et al [124] also introduced a series of ML models reminis-
cent of MLPs to accurately predict adsorption energies. These
models are based on SOAP descriptors and were augmen-
ted with electronic structure information, directly incorpor-
ating the local density of states (DOS) into the structural
descriptor, which allowed to significantly increase the model
accuracy.

Growth of a-C:O and a-C:N usually takes place by intro-
ducing O2 and N2 into the deposition chamber [12, 13]. As
with a-C:H, the amounts of dopant that can be incorporated
is significantly higher than in traditional doped semiconduct-
ors, with maximum values of at least 30 at.-% [12, 125] and
10 at.-% [13] for O and N incorporation, respectively, repor-
ted in the literature. By adjusting the partial gas pressure the
concentration of dopants can be adjusted. Again [123, 124],
appear to be the only published work where MLPs were
used to study O incorporation into a-C, although this was
done less comprehensively than for H. In particular, [123] did
DFT-based MD simulations of a-C surface oxidation starting
from a MLP-generated surface model. The resulting struc-
tures are shown in figure 13. This work established the pre-
dominant oxygen-containing motif in a-C:O surfaces being
keto-like groups. ML models have also been recently used to

Figure 13. (a)–(c) Ball-and-stick representation of a-C:O DFT-MD
simulations carried out at different temperatures. (d) Most
representative O-containing motifs present in the resulting a-C:O
structures. Reprinted with permission from [123]. Copyright (2018)
American Chemical Society.

understand the structure of H- and O-containing disordered
carbon materials through atomistic simulation of XPS [125].
XPS and other spectroscopies are expected to provide increas-
ingly stronger links between experiment and simulation asML
techniques for atomistic structural characterization continue to
evolve.

We are not aware of atomistic studies of a-C:N based on
MLPs, although our group is currently developing an MLP
able to handle the CN system over a wide range of struc-
tures, including a-C:N. We are also developing MLPs for the
CH and CO systems, which will hopefully shed light onto
the structure and properties of a-C:H and a-C:O. Our more
ambitious objective in the longer term is to combine these
into a CHO(N) MLP able to accurately describe a wide vari-
ety of carbon-based materials and molecules under differ-
ent thermodynamic conditions. This objective will likely be
achieved, either by us or by others, within the next couple of
years.

4.5. Nanoporous carbon

Nanoporous (NP) carbon is related to low-density (highly
graphitic) a-C. They share the overall graphitic nature of
their chemical bonds and the lack of long-range order, but
NP carbons are organized in less defective graphitic layers
with very low sp or sp3 content. The usefulness of NP car-
bons resides in their porous structure and how it can be
exploited in particular for ion intercalation in energy-storage
solutions [17], such as Li-ion or Na-ion batteries and super-
capacitors. GAP-derived structural models have already been
used to understand intercalation mechanisms and diffusion in
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Figure 14. (a)–(d) Nanoporous carbon structures of different densities, where the density increases to the right and the average pore size
decreases correspondingly. (e) 3D model of the low-density nanoporous carbon structure from (a), where the pore morphology can be more
easily appreciated. (f)–(h) sp motifs are found in graphitic sheet termination (edges) and sp3 motifs are found interlinking stacked graphitic
layers, conferring three-dimensional rigidity to these nanoporous carbon networks. Reprinted from [37]. CC BY 4.0.

NP carbon materials [126, 127]. g-Cs of different densities
can be generated computationally following a ‘graphitization’
protocol. This is a special kind of melt-quench simulation
where there is a long annealing step at the graphitization tem-
perature [35] which, for GAP MLPs, is around 3500K [44].
MLPs have been used to study the intercalation of Li and
other alkali-metal ions in g-Cs using small-scale structural
models [128, 129]. More recently, GAP simulations by Wang
et al [37] have produced high-quality large-scale (>130 000
atoms) structural models of NP carbon throughout a wide
range of mass densities, some of which are shown in figure 14.
In these materials, the relative abundance of 5- and 7-ring
defects (the stable ring motif in graphite is a 6-ring) determine
the curvature of the graphitic planes and thus the pore mor-
phology. There are slightly more 5-rings than 7-rings in these
materials, and nanopore sizes and morphologies seem to be
rather homogeneous for a given mass density, according to the
results of this study. The mechanical properties of the materi-
als were found to evolve smoothly with density. We note that
these NP structural models are already one order of magnitude
bigger than those also obtained with MLPs just a couple of
years prior, highlighting the rapid pace of development in the
field.

4.6. Disordered carbon under extreme conditions

Atomistic simulation is a particularly attractive approach
to study matter under conditions that make direct
experimentation complicated or even impossible. This is the

case for high-temperature and high-pressure conditions under
which some allotropes are stable (notably, diamond is stable
at very high pressures). The landscape of carbon allotropes
is particularly rich given the flexibility of carbon covalent
bonding. Traditional search strategies for new crystals can
be accelerated by using MLPs which are able to navigate
the PES with close to ab initio accuracy but orders of mag-
nitude faster. New carbon allotropes have been found follow-
ing this approach [130]. MLPs also enable us to go one step
further thanks to the increased computational efficiency and
chart phase transformations for disordered materials expli-
citly (i.e. beyond the small unit cells used for crystal structure
search). An example of this is the large-scale study of the phase
diagram of C60 carried out by Muhli et al [43]. In this work,
phase transformations from a C60 precursor at high temperat-
ures and pressures were simulated with an MLP, successfully
leading to the prediction of a transformation to amorphous
diamond (a-D) from the collapsed precursor, later observed
experimentally at similar thermodynamic conditions [15]. The
detailed phase diagram, shown in figure 15, required struc-
tural models with thousands of atoms to correctly describe the
configurational disorder. Furthermore, this work exemplifies
the power of MLP simulation, where accuracy can be main-
tained within a unified methodological framework across a
wide range of thermodynamic conditions, from low pres-
sures and temperatures where weakly bonded (e.g. van der
Waals) interactions dominate to the extreme conditions at
which a material phase collapses into another. This high-
lights the potential of MLPs to chart unknown phases of

16

https://creativecommons.org/licenses/by/4.0/


Semicond. Sci. Technol. 38 (2023) 043001 Topical Review

Figure 15. High-pressure/high-temperature phase diagram of C60, where the molecular precursor leads to nucleation of high-density ta-C
(‘amorphous diamond’) as the molecular C60 collapse at high pressure. Reprinted figure with permission from [43], Copyright (2021) by the
American Physical Society.

materials taking different precursors as starting point and
applying a range of physical transformations on them, which
is of particular importance for the discovery of new carbon
materials.

5. Amorphous silicon

Just as they have opened up new avenues in carbon simulation,
MLPs have also enabled computational atomistic studies of
silicon that were out of reach just a few years ago. Silicon is the
archetypical semiconductor and, for this reason, the two sem-
inal papers on atomistic ML for materials modeling used Si as
a proof-of-concept material [45, 64]. Indeed, Behler and Par-
rinello even looked at the MLP-predicted structure of liquid Si
and compared it, favorably, to DFT results [64]. Possibly, this
was the first-ever MLP simulation of a ‘disordered’ material.
Much has happened in MLP modeling of a-Si in the few years
since those seminal papers appeared, which is summarized in
this section.

5.1. General-purpose Si MLPs

The first prerequisite on the way to accurate atomistic simula-
tion of an amorphous material is the availability of a general-
purpose potential. The first MLP of this type for silicon was
introduced in 2018 (the year following the introduction of the
first general-purpose carbon MLP) by Bartók et al [47]. The
authors lucidly proposed a materials-property benchmark as
a more relevant accuracy test for their potential than the pre-
valent train/test splits. These comprehensive tests are summar-
ized in figure 16, showing how this GAP MLP outperforms a
wide selection of other potentials available at the time of the
comparison. The tested properties include elastic moduli, sur-
face energies, point defects, and planar defects. Further tests
not shown in the figure included bulk crystal properties, liquid
and a-Si RDFs, phase diagram, phonons, and more, including
a simulation of crack propagation. These tests give confidence
in the quality and broad applicability of the MLP to diverse
problems, an important requirement for modeling the complex
structure of a-Si with high accuracy, especially to obtain the
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Figure 16. Comparison between the silicon GAP18 and other force fields for predicting a number of properties; from left to right: elastic
moduli, surface energies, point defect formation energies, and planar defect formation energies. Reprinted from [47]. CC BY 4.0.

correct concentration of coordination defects, both under- (3-
fold) and over-coordinated (5-fold) motifs. This Si GAP was
extensively validated specifically for a-Si simulation in [40].
The database of structures generated by Bartók et al has been
used to train new versions of theMLP [46, 131], and theirMLP
has enabled important subsequent work elucidating the atomic
structure of a-Si, summarized below.

5.2. The atomic structure of a-Si

Compared to a-C, the structure of a-Si may seem relatively
simple since every motif which is not made up of a 4-fold
coordinated atom is a coordination defect. However, the defect
concentration can have a massive impact on the optoelectronic
properties of this material and, therefore, a force field’s suc-
cess at modeling a-Si resides in being able to capture these
subtleties. In particular, the predicted relative formation ener-
gies for over (5-fold) and under (3-fold) coordinated defects
under varying local strain field will determine the quality of
the computational structural models that can be generated.
In figure 16 we see how the GAP MLP from [47], let us
call it GAP18 for short, outperforms all other available force
fields in simultaneously predicting the correct elasticity and
defect energetics in silicon. This basis provides the confidence
required to trust the a-Si structures derived from melt-quench
simulations. This confidence is reinforced by comparing the
structure factor of simulated a-Si with experimental results.

Figure 17 shows results from [40, 131] using GAP18 [47] and
a NN MLP (‘neuroevolution potential’, NEP [136]) trained
from the GAP18 database, respectively. Both works derive
similar levels of coordination defects, 0.5% 3-fold and 1% 5-
fold defects from [40], and 0.45% 3-fold and 1.45% 5-fold
defects from [131]. These MLP simulations show very good
agreement with experimental structure factors over a wide
range of wavelengths, free of the artifacts encountered by
other simulation methods, as shown in figures 17 (left-bottom)
and 18 (for the RDF, which has information equivalent to that
contained in the structure factor).

The medium-range order, often quantified in terms of ring
counts [137], shows prevalence of the stable 6-membered
ring motif (slightly less than one per atom, on average) fol-
lowed by relatively large amounts of defect ring motifs: 7-
membered (≲0.6 per atom), 5-membered (≲0.4 per atom) and
8-membered (≲0.1 per atom), followed by almost negligible
amounts of larger and smaller rings [40, 131]. Comparing
to carbon, a-C has significantly broader ring distributions at
low density but similar ones at high density [29], whereas
NP carbon has significantly narrower distributions centered
on 6-membered rings and skewed towards 5-membered rings,
instead of towards 7-membered rings [37].

The most sophisticated study, to date, on the structure
and structural transitions in disordered Si have been recently
presented in the hallmark study by Deringer et al [138].
The authors used large-scale structural models with up to
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Figure 17. Computational a-Si structural models and their corresponding structure factor from Deringer et al [40] (left panels) and Wang
et al [131] (right panels). Deringer’s structure factor is compared to that derived from preexisting structural models from the literature,
VBSB [132] and HTS [133], and to experiment. Wang shows the effect of the annealing rate on the structure factor and a direct comparison
to Deringer’s data (labeled GAP18). In both cases the experimental data is from Laaziri et al [134, 135]. Left: Reproduced from [40].
CC BY 4.0. Right: Reprinted figure with permission from [131], Copyright (2022) by the American Physical Society.

100k atoms and long-time-scale MD simulations to repro-
duce the liquid-to-amorphous phase transition at high temper-
ature (around 1180K). This transition is characterized by a
rapid decrease in the number of over-coordinated (Nneighbors >
4) structural motifs and rapid increase in the resemblance
of local a-Si atomic motifs to those in crystalline Si, even
in the absence of mid- or long-range order. An even more
impressive part of this work is the characterization of a
highly non-trivial high-pressure phase transition between the
amorphous semiconducting phase and the (poly)crystalline
metallic phase via intermediate nucleation of crystallites
embedded within the amorphous matrix (figure 19). The
metallic nature of the high-pressure crystalline phase was
established with a previously developed ML model for

the electronic DOSs [139]. Indeed, integration of ML
interatomic potentials with other ML-based approaches that
feed on similar or the same descriptors, for example charge
partitioning for model parametrization [43] or core-level ener-
gies for x-ray spectroscopy [125], is opening the door for ever
more sophisticated simulation of the properties of disordered
materials.

5.3. Properties of a-Si

While insight into the structure of a-Si is interesting on its
own, for device applications we are also interested in emerging
material properties, such as electronic band gap or thermal
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Figure 18. GAP results for the RDF of a-Si from Bartók et al [47],
and comparison to the RDF obtained from experiment [134, 135]
and using different popular interatomic force fields for silicon.
Reproduced from [47]. CC BY 4.0.

Figure 19. High-pressure phase transition in silicon from a
very-high-density amorphous (VHDA) phase to a (metallic)
polycrystalline phase. Reproduced from [138], with permission
from Springer Nature.

transport mechanism. To predict and understand these prop-
erties the key lies in finding the link between them and the
underlying atomistic structure of the material. The number of
MLP-driven studies of these properties in a-Si still lags behind
the more developed literature on its atomistic structure, for the
simple reason that the existence of reliable structural models
precedes the calculation of properties, which must necessarily
rely of the availability of those models. We expect to see rapid
development in characterization and prediction of the proper-
ties of a-Si within large-scale atomistic simulation in the next

Figure 20. Evolution with temperature of the thermal conductivity
of a-Si; comparison between simulation and experiment. ‘This
work’ here refers to [131]. Experimental references are to Zink
et al [141], Kim et al [142], Cahill et al [143], Zhang et al [144] and
Isaeva et al [145]. Reprinted figure with permission from [131],
Copyright (2022) by the American Physical Society.

few years. We mention here a recent example on thermal con-
ductivity in a-Si. Wang et al [131] used an ANN-based NEP
MLP [136], implemented in the GPUMD code [140], to per-
form highly efficient homogeneous non-equilibrium MD sim-
ulations of thermal transport in a-Si. This study has been able
to closely reproduce the experimental evolution of the thermal
conductivity of a-Si as a function of temperature and finite size
(figure 20). This opens the door, in the near future, to simulat-
ing thermal properties of materials yet to be synthesized, with
a high level of confidence in the accuracy of the computational
results, in turn providing the basis for accelerated materials
discovery and property-based materials design.

5.4. Hydrogenated a-Si

While a-Si is an interesting material from a fundamental sci-
entific perspective, as the prototypical amorphous semicon-
ductor, hydrogenated a-Si (a-Si:H) is arguably more import-
ant from a technological point of view. a-Si:H is commonly
used in solar cells, where the intentional doping with H heals
the coordination defects that are present in undoped a-Si,
improving material properties towards photovoltaic applica-
tions. Unfortunately, the introduction of additional chemical
species makes the development of accurate MLPs more chal-
lenging, because of the larger configuration spaced spanned.
At the same time, the CPU cost of an MLP calculation with
multiple species is more expensive (‘curse of dimensionality’)
than for single species, with descriptor construction typically
scaling between exponentially (worst-case scenario) and lin-
early (best-case scenario) with the number of species. For this
reason there are comparatively few studies on a-Si:H or Si
alloys compared to pure Si. On the other hand, thanks to recent
developments in MLP technology, such as descriptor com-
pression [103], and the improved collective expertise gained
by the community on how to generate good databases to train
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Table 1. List of some of the publicly available MLPs to simulate disordered C and Si, together with practical information. ‘Code’ refers to
the computer software which can be used to run a simulation with the corresponding MLP. GP stands for ‘general purpose’, i.e., it refers to
an MLP which is not tailored exclusively to simulate a disordered phase but can be reliably used for that purpose. Whenever more than one
version of the MLP exists, we give the reference to the latest one (i.e., on the table v2 refers to version 2 of a given MLP).

Material Year MLP flavor References Code(s)

a-C 2017 GAP [36] QUIP, LAMMPS
C (GP) 2020 SNAP [148] LAMMPS
a-C 2021 (v2) GAP [37, 149] QUIP, LAMMPS, TurboGAP
C (GP) 2021 GAP [43, 150] QUIP,a LAMMPS,a TurboGAP
C (GP) 2022 (v2) GAP [151, 152] QUIP, LAMMPS
a-C 2022 NEP [140, 153] GPUMD
C (GP) 2022 ACE [101] LAMMPS
Si (GP) 2018 GAP [47, 154] QUIP, LAMMPS
Si (GP) 2021 GAP [46] QUIP, LAMMPS, TurboGAP
Si (GP) 2021 NEP [136, 153] GPUMD
a-Si:H 2022 GAP [146] QUIP, LAMMPS
a Full van der Waals corrections for this MLP are only available with TurboGAP.

transferable MLPs, these multispecies force fields are start-
ing to emerge. Here we mention in particular the recent effort
by Unruh et al to develop an a-Si:H GAP [146]. The new Si-
H GAP shows quantitative agreement with DFT and a signi-
ficant improvement upon previously available classical (non-
ML) force fields. This new MLP enabled the authors to model
nanopores in a-Si:H. In the near future, either this force field
or an extension combining its training database with existing
and new ones may enable device-size simulation of c-Si/a-
Si:H heterojunctions towards mitigating degradation mech-
anisms [147], of major technological importance for high-
efficiency solar cells.

6. Available MLPs

Table 1 provides a non-comprehensive list of available MLPs
able to simulate a-C and a-Si, together with their ML ‘flavor’
and which code(s) they can be used with. These potentials are
mostly of the GAP flavor, since the GAP community has been
the most active at simulating a-C and a-Si among the different
MLP developers and users base.

7. Summary and outlook

In this Topical Review we have introduced MLPs as powerful
tools for the simulation of disordered materials at the atomic
scale, making it possible to accurately study atomistic systems
within sizes and time scales that were out of reach just a few
years ago. We have discussed how these new tools have been
used to shed light on important questions for understanding
the structure of a-C and a-Si. MLPs have been used to elu-
cidate the growth mechanism in DLC and the high-pressure
phase transformation from a-Si to a high-coordination metal-
lic Si phase. MLPs have been used to study phase transitions at
extreme thermodynamic conditions in carbonmaterials, and to
understand the structure of NP carbon, a material of increasing
importance in battery research. These tools are being extended
to more complicated systems, in particular H- and O-doped a-
C and H-doped a-Si, enabling a further degree of realism in

simulating these structurally complex materials. Furthermore,
MLPs are being coupled to other ML approaches, includ-
ing electronic-structure and spectroscopic signature predic-
tion, improving the prospects for direct comparison and bet-
ter integration between experiment and simulation. All in all,
the future of atomistic modeling of disordered materials, also
beyond a-C and a-Si, looks bright in the wake of MLPs. We
should expect important breakthroughs in materials research
in the years to come, brought about by these new powerful
computational tools.
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