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Abstract—We are interested in deducing whether two user
equipments (UEs) in a cellular system are at nearby physical
locations from measuring similarity of their channel state
information (CSI). This becomes essential for fingerprinting
localization as well as for channel charting. A channel chart
is a low dimensional (e.g., 2-dimensional) radio map based on
CSI measurements only, which is created using self-supervised
machine learning techniques. Analyzing CSI in terms of the angle-
delay power profile (ADPP) takes advantage of the uniqueness of
the multipath channel between the base station and the UE over
the geographical region of interest. We consider super-resolution
features in the angle and delay domains in massive multiple-input
multiple-output (MIMO) systems and consider the earth-mover
distance (EMD) to measure the distance between two features.
Simulation results based on the DeepMIMO data set show that
the super-resolution ADPP features with EMD leads to a better
quality channel chart as compared to other CSI features and
distances from the literature.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) base
stations (BSs) can be used for location-based services, and
the position of a user equipment (UE) can be estimated based
on the high angular resolution provided by mMIMO. The
wide bandwidths of 5G systems can be leveraged to further
improve the accuracy of localization. With a large antenna
array and a wide bandwidth, a BS can acquire higher multipath
resolution in the angle and delay domains [1]. Several papers
have considered joint estimation of delay, angle of arrival, and
receive power for complex multipath environments [2], [3].

Localization methods based on channel state information
(CSI) fingerprinting perform well under non-line-of-sight
(NLoS) conditions and highly cluttered multipath environments.
For example, K-nearest neighbour fingerprinting (KNN-FP) is
widely used for this purpose [4]–[6]. The localization accuracy
of KNN-FP highly depends on the used CSI feature and the
feature distance.

Channel charting (CC) is a self supervised machine learning
framework to create a radio map of the cell, constructed from
CSI only, which preserves the neighborhood relations of UEs.
Several CSI features, distances, and dimensionality reduction
(DR) techniques have been considered for CC. Similar to KNN-
FP-based localization, the CSI feature and feature distance
highly affect the quality of the channel chart [7]–[9].

The simplest form of CSI feature based fingerprinting utilizes
the received signal strength (RSS). In [10], a comprehensive

study of distance and similarity measures for fingerprinting
localization based on RSS was considered. Applying more
generic CSI features for fingerprinting provides better localiza-
tion performance than only relying on RSS [4]. The similarity
measures devised for RSS cannot be directly used for generic
CSI features based fingerprinting. CSI distances based on linear
algebra, such as the Euclidean distance and correlation matrix
distance, can reveal when two UEs are close to each other. Such
distances, however, are unable to distinguish between whether
another UE is immediately outside the nearest neighborhood
of a UE or far away. Using linear algebraic CSI distances for
applications like CC and KNN-FP requires a high sampling
density of the radio environment. Identifying a distance measure
that is able to reveal both near and far locations based on CSI
is important for improving the quality of CC and for reducing
the sampling density.

In this paper, we consider a super-resolution delay-angle-
power profile feature and apply the earth-mover distance
(EMD), which has the ability to go beyond the limitations
of linear algebraic distances. We evaluate performance in terms
of local topology, as well as measures of global geometry
preservation and the Rajski distance measuring the mutual
information between the distances of UEs in the feature domain,
and distances in the spatial geometry. We use the EMD of the
UEs in the cell to create the channel chart using classical DR
techniques.

The remainder of this paper is organized as follows: In
Section II, the system model is presented. In Section III,
CSI features and linear algebraic distances are introduced.
In Section IV, the super-resolution CSI feature and EMD
are presented. In Section V, the channel charting and metric
learning frameworks are discussed. Simulation results are
presented and discussed in Section VII. Finally, conclusions
are drawn in Section VIII.

II. SYSTEM MODEL

We consider a mMIMO BS with a uniform linear array
(ULA) of M antennas. The wireless signal transmitted from
a UE propagates along K multipaths. The baseband channel
response vector at the BS form multipath component k arising
from an impulse transmitted at time 0 is

ck =
√
αke

−jβka(ϕk) δ(τk), (1)



where δ(·) is the Dirac delta distribution,
√
αke

−jβk is the
complex attenuation, τk the propagation delay, and ϕk the
angle of arrival (AoA) of path k. The array steering vector
corresponding to AoA ϕ is

a(ϕ) = [1, e−j2π
r sinϕk

λc , . . . , e−j2π
r(M−1) sinϕk

λc ]T , (2)

where r is the antenna element spacing, and λc is the carrier
wavelength.

Considering an orthogonal frequency-division multiplexing
(OFDM) system with N subcarriers, assuming the cyclic prefix
is larger than the maximum delay spread, the channel frequency
response vector at the nth subcarrier becomes

hn =

K−1∑
k=0

√
αke

−jβka(ϕk) e
−j2πn

υk
N , (3)

where υk = ⌊ τk
T ⌉ denotes the temporally resolvable propagation

delay associated with the kth path, and T is the sample interval.
The CSI matrix in the frequency-antenna domain is:

H = [h0, . . . ,hN−1]
T ∈ CN×M . (4)

III. CSI FEATURES AND LINEAR ALGEBRAIC DISTANCES

For fingerprinting based localization and CC, several CSI
features have been considered [4]–[7]. The selection of the CSI
feature and the distance highly affects the resulting performance.
In this section, the CSI features are created from the CSI
matrix using matrix operations. The distances in this section
are computed based on methods of linear algebra, i.e., matrix
operations as well as vector and matrix norms.

A. Channel Matrix

The channel matrix in different domains (frequency-antenna,
frequency-beam, delay-antenna, and delay-beam) can be used
as a CSI feature. We will consider, the frequency-antenna
channel matrix H given by (4).

B. Covariance Matrix

The covariance matrix in different domains (antenna, beam,
frequency, and delay) can be considered as a CSI feature.
For example, the antenna domain covariance matrix can be
estimated using S samples as

R =
1

S N

S−1∑
s=0

HH
s Hs, (5)

where R ∈ CM×M , and Hs ∈ CN×M denotes the frequency-
antenna channel matrix at time domain sample s. In R, the
effect of the frequency domain is averaged.

C. Finite Resolution Angle-Delay

The frequency-antenna channel matrix Hs can be trans-
formed into an approximately sparsified matrix H

′

s in the
beam-delay domain via 2D-DFT by [11]

H
′

s = FH
d HsFa, (6)

where Fd ∈ CN×N and Fa ∈ CM×M are DFT matrices. Due
to limited spread, performing DFT on the frequency domain

TABLE I
NOTATION AND DEFINITIONS OF DISTANCES [12], [13].

Name Notation Expression

Euclidean dEuc

(
M,M

′
) ∥∥∥M−M

′
∥∥∥
F

CMD dCMD

(
M,M

′
)

1
2

∥∥∥∥∥ M
∥M∥F

− M
′∥∥∥M′
∥∥∥
F

∥∥∥∥∥
2

F

Log Euc. dLogEuc

(
R,R

′
) ∥∥∥log(R)− log

(
R

′
)∥∥∥

F

Roots Euc. dRooEuc

(
R,R

′
) ∥∥∥√R−

√
R′

∥∥∥
F

Chol. Euc. dChoEuc

(
R,R

′
) ∥∥∥chol(R)− chol

(
R

′
)∥∥∥

F

Riemannian dRiem

(
R,R

′
) ∥∥∥log(√RR

′√
R
)∥∥∥

F

Chordal dChord

(
R,R

′
) ∥∥∥projχ(R)− projχ

(
R

′
)∥∥∥

F

Procrustes dProc

(
R,R

′
)

inf
WWH=I

∥∥∥√R−
√
R′W

∥∥∥
F

channel vectors can transform Hs into a sparse matrix in the
delay domain, with only the first N

′
< N rows having distinct

non-zero values. Therefore, H
′

s can be truncated to H
′′

s , by
considering the first N

′
rows, i.e.,

H
′′

s = AsH
′

s, (7)

where A = [IN ′ ,0N ′×(N−N ′ )]. The angle-delay-power matrix
averaged over S samples is computed as [4]

Ω =
1

S

S−1∑
s=0

∣∣∣H′′

s

∣∣∣2 , (8)

where | · |2 is element-wise squared absolute value.

D. Linear Algebraic Distances

Multiple natural metrics can be derived from vector and
matrix norms. The simplest distance between two matrices is
the Euclidean distance (i.e., the Frobenius norm), which is in-
variant under unitrary transformation (including permutations),
i.e., ∥M∥F = ∥ULMUR∥F where UL and UR are unitary
matrices. The correlation matrix distance (CMD) is the squared
Euclidean distance between two normalized matrices, which is
also unitarily invariant.

The Euclidean distance, while simple, is not a natural metric
on the space of covariance matrices, since covariance matrices
live on a non-Euclidean space. Several covariance distances
based on matrix logarithms, square roots, and Cholesky
decomposition have been considered [12], [13]. In addition, the
affine invariant Riemannian, chordal, and Procrustes distances
have been considered [14], [15]. All of these are invariant under
unitary transformations except for the Cholesky distance. The
logEuclidean and Riemannian metrics are geodesic, rotation
invariant, scale invariant, and inversion invariant [14], [15].
These metrics are summarized in Table I. The notations M and
R are used for a matrix and a covariance matrix, respectively.
The matrix logarithm, square roots, Cholesky factorization
and the projection to the subspace spanning the χ largest
Eigenvectors of matrix R are denoted as log(R),

√
R, chol(R),

and projχ(R), respectively.



IV. SUPER-RESOLUTION CSI FEATURE AND EMD
Assume that the channel has K multipath components

(MPCs), represented by angle of arrivals ϕk, propagation delays
τk and average powers pk with pk = E{αk} for k = 1, . . . ,K.
Here, E{·} denotes expectation. The angle-delay-power profile
{ϕk, τk, pk} is the super-resolution CSI feature, which can
be estimated from the channel matrix using the mutiple signal
classification (MUSIC) and the space-alternating generalized
expectation-maximization (SAGE) algorithms [2], [16].

It is not straightforward to measure the distance between two
super-resolution CSI features. Different orderings of the MPCs
may result in different distances, and handling two features
with different number of MPCs is not trivial. To tackle these
problems, we consider the earth-mover distance (EMD), which
measures the distance between sets of MPCs, but not based on
distances between individual components. As such the EMD is
not affected by the ordering of MPCs, and can handle features
with different numbers of MPCs.

A. Earth-Mover Distance

The EMD (also known as Wasserstein distance) is a distance
defined between probability distributions on a given metric
space. The EMD is computed by solving a linear program [17].

Let Xu = [xu(1), . . . ,xu(Ku)] ∈ Rd×Ku be the fea-
ture representation at point u in terms of Ku vectors and
wu = [wu(1), . . . , wu(Ku)] is a weight vector representing
the probability mass across the vectors xu(k). To compute the
EMD between the suppliers (modeled by X1 and w1) and the
receivers (modeled by X2 and w2), we need first to compute the
distance matrix B ∈ RK1×K2 , where bi,j = ∥x1(i)− x2(j)∥ν
and ν is the norm used to measure the distance between ith
supplier and jth receiver. The EMD finds the flows {fi,j}
moving the probability mass from the supplier points to the
receiver points that minimize the overall cost, respecting the
flows constraints [17]:

minimize
{fi,j}

K1∑
i=1

K2∑
j=1

fi,jbi,j (9a)

subject to fi,j ≥ 0,

K1∑
i=1

K2∑
j=1

fi,j = 1, (9b)

K2∑
j=1

fi,j ≤ w1(i),

K1∑
i=1

fi,j ≤ w2(j). (9c)

In (9b), the positivity constraints allow the flows to move
from suppliers to receivers and not vice versa, and the equality
constraint force to move the full probability mass from the
suppliers to the receivers. Constraint (9c) limits the individual
suppliers and receivers to their weights. Problem (9) is a LP
which can be solved efficiently. Substituting the optimal flows
in the objective function gives the EMD between the supplier
probability mass function (PMF) and the receiver PMF.

B. Model of MPCs for EMD

We transform the super-resolution CSI feature into a form
that can be used within the EMD framework. Two models are

Fig. 1. The feature distance versus physical distance for covariance features
using CMD, and super-resolution features using EMD. The layout is shown
in the lower right corner of the figure.

considered. For a UE at point u, the angles, delays and the
powers of MPCs represented by {pu,k}, {τu,k} and {ϕu,k}
for k = 1, . . . ,Ku, are used to construct the feature Xu =
[xu(1), . . . ,xu(Ku)] ∈ R2×Ku and the weight vector wu =
[wu(1), . . . , wu(Ku)]. In the first model, the kth component
of the feature is constructed as:

xu(k) = [τu,k cosϕu,k, τu,k sinϕu,k]
T , (10)

where xu(k) ∈ R2×1. The power of a MPC is used to create the
corresponding probability weight, i.e., wu(k) =

pu,k∑Ku
i=1 pu,i

. We
call this model ”ADPP-Prop,” since the weight is proportional
to the normalized power. In the second model, the kth
component of the feature xu(k) is the same as in (10), however,
the power of a MPC is ignored and equal probability weight is
assigned to each MPC, i.e., wu(k) =

1
Ku

. We call this model
”ADPP-Eq.”

C. Illustrative Example

To understand the difference between linear algebraic dis-
tances and EMD, we consider a simple scenario, where the BS
is equipped with ULA consisting of M = 32 elements. Two
UEs are in the radio environment, each equipped with a single
antenna. The received signal at the BS of each UE has one MPC
as illustrated in the lower right corner of Figure 1. The AoA
of UE i is denoted by Θi. We assume that the location of the
first UE is fixed, and the second UE moves from that location
along a circle centered at the BS. We consider two CSI features
and distances: (i) the covariance with CMD distance (other
algebraic distances can be used). (ii) The super-resolution (i.e.,
AoA) with EMD. Figure 1 shows the CSI feature distances
(i.e., CMD and EMD) versus the physical distance. We can
see that the covariance feature with CMD can resolve only
small physical distances, as long as the other user stays within
the beam width. In contrast, the super-resolution feature with
EMD is able to accurately reveal larger physical distances.

V. CHANNEL CHARTING AND METRIC LEARNING

The underlying assumption of CC is that there exits a
continuous mapping from the spatial location zu of UE u



Fig. 2. Triplet network architecture. The three DNN blocks are identical and
use common weights [9], [19].

to the CSI feature yu at the BS:

H : Rρ → CF ; H(zu) = yu. (11)

Here, ρ is the spatial dimension which is either 2 or 3, and F
is the feature dimension. CC starts by measuring the distance
of the CSI features between pairs of UEs as seen at the BS.
Next, based on the distance matrix, low dimensional channel
chart is found in a self-supervised manner, providing chart
locations for the set of UEs, such that UEs that are neighbors
in the physical space will be neighbors in the channel chart.
Several DR techniques have been considered for CC. We apply
t-distributed stochastic neighbor embedding (t-SNE) for CC,
as it has been shown to perform well in [8], [18].

We consider metric learning to benchmark the performance
of CSI features and distances. For this, the physical locations
are assumed to be known and used to label the CSI features. The
data set T consists of CSI features {yi} and the corresponding
true physical locations {zi}. The data set T is arranged in the
form of triplets of samples (i, j, k) ∈ Ta, for which it is known
that the respective true distances

∥zi − zj∥2 < ∥zi − zk∥2 , (12)

i.e., point j is closer to the reference point i than than point k.
Distance learning aims to find a deep neural network (DNN)
which maps CSI features to channel chart points with a function
gθ(.) parameterized with θ such that

dθ(yi,yj) < dθ(yi,yk), (13)

where dθ(yi,yj) = ∥gθ(yi)− gθ(yj)∥. The cost function is
defined as [9]:

1

|Ta|
∑

(i,j,k)∈Ta

(dθ(yi,yj)− dθ(yi,yk) + µ)
+
, (14)

where (t)+ = max(t, 0) and µ > 0 is a margin to avoid trivial
solutions. Figure 2 shows the triplet network structure: the
three DNN blocks share common weights and biases.

VI. PERFORMANCE EVALUATION

We assume the original space is the physical location space,
and the representation space is the CSI feature space. The
distance in the original space is based on Euclidean distance,

while, the distance in the representation space is based on CSI
features distance.

To measure the degree of preserving the local topology, we
consider the continuity (CT) and trustworthiness (TW). For a
data set of U points, these can be computed by considering a
neighborhood of J points, denoted as VJ(zi), around locations
{zi}Ui=1 in the original space, and the J-neighborhood denoted
as V ′

J(yi), around the corresponding points {yi}Ui=1 in the
representation space. The equations to compute the average
values are given as

CT(J) = 1− a
∑
i

∑
j∈VJ (zi)
j /∈V ′

J (yi)

(r(i, j)− J) , (15)

TW(J) = 1− a
∑
i

∑
j /∈VJ (zi)
j∈V ′

J (yi)

(
r
′
(i, j)− J

)
, (16)

where r(i, j) is the rank of a point zi in terms of its distance
from a point zj in original space, r

′
(i, j) is the rank of a point

yi in terms of its distance from a point yj in the representation
space and a = 2

UJ(2U−3J−1) is a normalization factor.
Global geometry preservation is measured by the Kruskal

Stress (KS). It is computed by comparing pairwise distance
matrix D̄ of the points in original space {zi}Ui=1 with pairwise
distance matrix D of points in the representation space {yi}Ui=1

using a distance scaling factor λ as [20]:

KS = min
λ

√√√√∑
i,j

(
di,j − λd̄i,j

)2∑
i,j d

2
i,j

, (17)

where d̄i,j = ∥zi − zj∥2 and di,j = d(yi,yj).
In addition, we consider the Rajski distance to measure the

mutual information between the quantized pairwise distances
in the original space and the quantized pairwise distances in
the representation space, which is computed as [21]:

dRD(V,Q) = 1− I(V,Q)

H(V,Q)
, for H(V,Q) ̸= 0, (18)

where V and Q are two discrete random variables,

I(V,Q) =
∑

v∈V, q∈Q

PV,Q(v, q) log2
PV,Q(v, q)

PV (v)PQ(q)
, (19)

is the mutual information, which measures the dependence
between the two distributions,

H(V,Q) = −
∑

v∈V, q∈Q

PV,Q(v, q) log2 PV,Q(v, q), (20)

is the joint entropy information of V and Q, PV,Q(v, q) is the
joint probability distribution, and PV (v) and PQ(q) are the
marginal distributions of the quantized pairwise distances in
the original space and the quantized pairwise distances in the
representation space, respectively.

All four metrics are in the range [0, 1] with the optimal value
being 1 for TW and CT and 0 for KS and RD.



TABLE II
SIMULATION PARAMETERS.

Parameter Value Parameter Value

Center Freq. 3.5 GHz Subcarriers 4086
Scenario O1-3p5 BW 100 MHz
BS Location [287.5, 489.5] m UE Locations Vert. str.
BS Height 6 UE Height 2 m
BS Array 32 ULA UE Array 1

VII. SIMULATION

We use the DeepMIMO data set to generate the CSI [22].
Channels are constructed based on ray-tracing data obtained
from the Remcom Wireless InSite [23] channel emulator.
Figure 3 shows the simulation layout. One BS is considered,
marked with a red star in the layout. The UEs are located in the
southern part of the vertical street. The streets have buildings
on both sides. Buildings are 60 m×60 m or 60 m×30 m, with
the height written on the layout. A distance of 1.2 m between
adjacent UEs samples is considered. Table II summarizes the
simulation parameters. Some location in the street are blocked.
The data set consists of 4100 UE locations, after filtering out
the blocked locations. For each location six samples with 0.2 m
spacing are used to compute the covariance matrix and the
finite resolution CSI features. The super-resolution features are
taken directly from the data set.

We evaluate the performance of several CSI features and
distances in terms of CT, TW, KS, and RD. We consider
J = 100 neighbours (which corresponds to 2.4% of the data
set) to compute the CT and TW. To compute the Rajski distance,
the pairwise distances are divided into 20 bins. Performance
results are summarized in Table III.

First, we consider the frequency-antenna domain channel
matrix given by (4) with the Euclidean distance and CMD. The
average of CT and TW, i.e., (CT + TW)/2, is considered to
characterize topology preservation. The results are inconclusive;
Euclidean distance outperforms CMD in terms of all measures
except KS. The covariance matrix feature (5) is considered
with several linear algebraic distances. Overall, the covariance
feature outperforms the channel matrix feature in terms of all
performance measures. For the covariance feature, the Log-
Euclidean distance outperforms CMD, Euclidean, square-root
Euclidean, Cholesky Euclidean, affine invariant Riemannian,
chordal and Procrustes distances in terms of all measures except
KS, for which CMD is better.

For the finite resolution angle-delay (FRAD) feature in (8),
N

′
= 10 is used. The Euclidean distance and CMD are

considered with this feature. Overall, the covariance feature
is better than FRAD, except for KS. As for the covariance
feature, for FRAD the Euclidean metric is better at preserving
topology, while CMD preserves global geometry better and
provides more mutual information.

The super-resolution feature with EMD outperforms all of
the other features and distances in terms of all considered
performance measures with a wide margin. Using weights

Fig. 3. Simulation layout. The selected street segment is in pink colour. The
BS location is indicated by a red star.

based on the normalized power (i.e., ADPP-Prop) slightly
improves performance.

A DNN composed of six fully connected layers and five
batch normalization layers is trained to learn the mapping
function gθ by optimizing the cost function (14) using the
Adam optimizer. Each fully connected layer except the last one
applies a ReLU nonlinearity [9]. We consider the following CSI
features to train the DNN: (i) The covariance matrix. (ii) The
covariance matrix normalized by its Frobenius norm. (iii) The
logarithm of the covariance matrix. (iv) The finite-resolution
angle delay profile. (v) The super-resolution angle-delay-power-
profile. For the first three features, the real and imaginary parts
are stacked in a vector to create a data entry. With metric
learning, the super-resolution feature outperforms all other
features. Interestingly, EMD outperforms metric learning in
terms of all performance measures. Figure 4 shows the average
of the CT and TW measures as a function of the number
of neighbours J (in percentage of the number of points in
the data set). The covariance matrix feature with CMD and
LogEuc is compared to the super-resolution feature with EMD
and metric leaning. The super-resolution feature with EMD
performs best, with metric learning performing worse for small
J , but approaching EMD when J increases. The gains of
the super-resolution based methods over the linear algebraic
distances grows with the number of neighbours. This confirms
the observation made in Section IV-C, i.e., the super-resolution
feature with EMD preserves larger distances than the linear
algebraic distances. Simulation results indicate that metric
learning is capable of preserving this property of the super-
resolution feature, albeit slightly worse than EMD.

Figure 5 shows the Rajski distance as a function of the
number of bins for the same features and metrics as in
the previous figure. Super-resolution features consistently
outperform covariance features with linear algebraic distances.

Finally, we create 2D channel charts for several features and



TABLE III
PERFORMANCE MEASURES FOR DIFFERENT CSI FEATURES AND DISTANCES.

ALL MEASURES ARE IN [0, 1]; ↑ LARGE IS BETTER; ↓ SMALL IS BETTER.

CSI Feature Distance CT↑ TW↑ KS↓ RD↓

Channel
Euclidean 0.73 0.57 0.63 0.97

CMD 0.70 0.50 0.56 0.98

Covariance
Euclidean 0.93 0.92 0.81 0.97

CMD 0.72 0.91 0.55 0.96

LogEuc 0.93 0.93 0.60 0.96

FRAD
Euclidean 0.92 0.87 0.81 0.97

CMD 0.79 0.89 0.51 0.96

ADPP-Prop
EMD

0.99 0.96 0.25 0.84
ADPP-Eq 0.98 0.94 0.27 0.85

Covariance

Met. Lea.

0.81 0.81 0.83 0.98

Nor. Cov. 0.73 0.73 0.84 0.98

Log Cov. 0.92 0.85 0.45 0.95

FRAD 0.92 0.89 0.47 0.96

ADPPP 0.96 0.95 0.30 0.88

CC Cov. CMD

Euclidean

0.74 0.86 0.54 0.96

CC Cov. LogEuc 0.93 0.92 0.59 0.96

CC FRAD CMD 0.73 0.86 0.53 0.97

CC ADPPP EMD 0.97 0.95 0.22 0.83

1 2 3 4 5 6 7

% of neighbours

0.75

0.8

0.85

0.9

0.95

1

(C
T

+
T

W
)/

2

CMD

EMD

LogEuc

MetLea

Fig. 4. (TW + CT)/2 as a function of the number of neighbours J for
covariance with CMD and LogEuc, super-resolution with EMD and super-
resolution with metric learning.

distances. We consider covariance with CMD, covariance with
LogEuc, finite resolution angle-delay profile with CMD and
super-resolution with EMD using t-SNE DR technique. The
CC based on super-resolution with metric learning is obtained
directly from the mapping function gθ(.). The channel charts
are shown in Figure 6. The CC locations are marked by colors
corresponding to the physical locations shown in (a). Note that
areas of blockage are removed from the image. We evaluate the
CCs in terms of CT, TW, KS, and RD, comparing the pairwise
distances of physical and CC locations. The CCs performance
measures are shown in lower part of Table III. Metric learning
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Fig. 5. The Rajski distance as a function of the number of bins for covariance
with CMD and LogEuc, super-resolution with EMD and super-resolution with
metric learning.

directly learns a metric in 2D, thus for metric learning the
results in Table III represent DR. The KS of the CC based on
super-resolution CSI with EMD is 0.22, super-resolution CSI
with metric learning gives 0.30 while covariance features with
Log-Euclidean distance give 0.59. The channel chart based on
the super-resolution CSI with EMD is best at preserving global
geometry. Note that KS is slightly improved in dimensionality
reduction from feature dimension to 2D.

VIII. CONCLUSIONS

In this paper, we studied super-resolution angle-delay-power
profile channel state information (CSI) features. The discrete
nature of these features makes linear algebraic distances not
particularly suitable to measure the distance between two
features. In this regard, we considered the earth-mover distance
(EMD). We compared the performance of the super-resolution
features and EMD with other CSI features and linear algebraic
distances in terms of local topology preservation, global
geometry preservation, and mutual information measures. Our
simulation results showed that the super-resolution features
with EMD outperformed other features and distances in all
considered performance measures. To benchmark performance,
we also considered a metric learning approach, in which a
triplet neural network was trained based on full knowledge
of the true physical distances. Super-resolution features with
EMD outperformed metric learning in terms of all performance
measures, even when super-resolution features were used for
metric learning. This highlights the importance of domain
knowledge when applying machine learning to CSI. Two-
dimensional channel chart based on the super-resolution
features with EMD outperformed the channel chart based on
other CSI features and distances as well as the channel chart
based on a triplet neural network.
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Fig. 6. (a); UE physical locations. (b); CC based on covariance with CMD using t-SNE. (c); CC based on covariance with LogEuc using t-SNE. (d); CC based
on FRAD with CMD using t-SNE. (e); CC based on super-resolution with EMD using t-SNE. (f); CC based on super-resolution using DNN. CC locations are
marked by colours corresponding to the physical locations in (a).
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