
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Ma, Jing; Naas, Si-Ahmed; Sigg, Stephan; Lyu, Xixiang
Privacy-preserving federated learning based on multi-key homomorphic encryption

Published in:
International Journal of Intelligent Systems

DOI:
10.1002/int.22818

Published: 01/09/2022

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Ma, J., Naas, S.-A., Sigg, S., & Lyu, X. (2022). Privacy-preserving federated learning based on multi-key
homomorphic encryption. International Journal of Intelligent Systems, 37(9), 5880-5901.
https://doi.org/10.1002/int.22818

https://doi.org/10.1002/int.22818
https://doi.org/10.1002/int.22818

OR I G I N A L A RT I C L E
Jou rna l Se c t i on

Privacy-preserving Federated Learning based onMulti-key Homomorphic Encryption
Jing Ma1,† | Si-Ahmed Naas2 | Stephan Sigg2 |
Xixiang Lyu1,*

1School of Cyber Engineering, Xidian
University, Xi’an, Shaanxi, 710071, China
2Department of Communications and
Networking, Aalto University, Espoo,
Uusimaa, 00076, Finland
Correspondence
Xixiang Lyu, School of Cyber Engineering,
Xidian University, Xi’an, Shaanxi, 710071,
China
Email: xxlv@mail.xidian.edu.cn
Present address†Department of Communications and
Networking, Aalto University, Espoo,
Uusimaa, 00076, Finland
Funding information
China National Science Foundation,
Grant/Award Number: 62072356; The
National Key Research and Development
Program of Shaanxi, Grant/Award Number:
2019ZDLGY12-08.

With the advance of machine learning and the Internet of
Things (IoT), security and privacy have become critical con-
cerns in mobile services and networks. Transferring data to
a central unit violates the privacy of sensitive data. Fed-
erated learning mitigates this need to transfer local data
by sharing model updates only. However, privacy leakage
remains an issue. This paper proposes xMK-CKKS, an im-
proved version of the MK-CKKS multi-key homomorphic
encryption protocol, to design a novel privacy-preserving
federated learning scheme. In this scheme, model updates
are encrypted via an aggregated public key before sharing
with a server for aggregation. For decryption, a collabora-
tion among all participating devices is required. Our scheme
prevents privacy leakage from publicly shared model up-
dates in federated learning and is resistant to collusion be-
tween k < N − 1 participating devices and the server. The
evaluation demonstrates that the schemeoutperforms other
innovations in communication and computational costwhile
preserving model accuracy.
K E YWORD S
privacy protection, federated learning, multi-key homomorphic
encryption, IoT, smart healthcare

1

2 Ma et al.
1 | INTRODUCTION
With the popularity of IoT devices, the amount of distributed data has increased dramatically, promoting the vigorous
development of machine learning in many domains, including, for instance, smart healthcare, smart home, or traffic
accident detection [1, 2, 3]. While the benefit of machine learning is undeniable, it requires large amounts of data
to be collected and analyzed at central servers, which may be sensitive to sharing with other parties due to strategic
(business) or privacy reasons.

To improve data protection in machine learning, federated learning [4, 5, 6] has been proposed to train a machine
learning model while protecting data across multiple distributed devices by sharing the model updates instead of local
datasets (Fig. 1(a)). Nevertheless, federated learning still suffers from critical threats as the communicating model up-
dates throughout the training process can reveal sensitive information. From the shared model updates, the adversary
can steal the training data [7] or infer “unintended” information such as membership and property [8]. The adversary
can also train a Generative Adversarial Network (GAN) to generate prototypical samples of the targeted local training
set when only a small percentage of model updates is shared by clients [9]. Any curious device participating in training
may pose a threat to the data breach by observing and analyzing these updates and external malicious adversaries can
eavesdrop on the communication channel or comprise the server to access the model updates, thus leading to data
leakage. These threats can damage personal privacy, bring unpredictable economic and life losses, and hinder data
owners from contributing to the development of machine learning. Therefore, a secure and data-protecting federated
learning framework is needed.

To fulfill the requirement of data protection in federated learning, this work proposes a data-protecting federated
learning scheme based on multi-key homomorphic encryption (MK-HE) (Fig. 1(c)). We improve the existing MK-HE
scheme to achieve more robust security and better efficiency, then establish a data-protecting federated learning
scheme based on it. Our federated learning scheme guarantees the confidentiality of the model updates to prevent
external malicious adversaries and, more importantly, can resist threats from internal curious participants and the
collusion between curious participants and the server.

Although many secure federated learning schemes based on cryptographic technologies have been proposed in
past years, these solutions are not directly applicable to distributed IoT scenarios or have an inevitable performance
loss. For example, secure multi-party computation (SMC) based federated learning [10, 11, 12, 13] usually requires
many rounds of interaction between participants to achieve secure aggregation, which is not practical distributed IoT
scenarios. Federated learning based on differential privacy (DP) [14, 15, 16] has an inevitable loss of model accuracy
due to the noise added. Moreover, federated learning based on homomorphic encryption [17, 18, 19, 20, 21] avoids
the model accuracy reduction and complicated interactions between clients while protecting data by enabling the
aggregation of encrypted model updates.

All these prior work cannot resist data leakage attacks from curious internal devices as well as collusion attacks
between internal devices and the server since all clients share the same public and secret key (Fig. 1(b)). In contrast,
xMK-CKKS based data-protecting federated learning achieves more robust security while preserving learning perfor-
mance. Specifically, our contributions are:

(1) To avoid the risk of data leakage and to omit the need for an additional interactive protocol in the collabora-
tive decryption process of the existing MK-CKKS multi-key homomorphic encryption scheme [22], we develop
xMK-CKKS multi-key homomorphic encryption. Specifically, we propose an aggregated public key, the sum of
all individual public keys, for encryption. For secure decryption, devices compute their decryption share, which
implicitly contains the information of individual secret keys and the aggregated ciphertexts but can be publicly

Ma et al. 3

(a) Federated learning without encryption (b) Homomorphic encryption (HE)-based
federated learning using the same keys for
all devices

(c)Multi-key HE-based federated learning
using distinct keys. Decryption is possible
only by combining all keys

Fig. 1. Different federated learning schemes with/without encryption.

shared to the server. In this way, our xMK-CKKS scheme provides more robust security and avoids an additional
interactive decryption protocol. It is suitable for federated learning and other distributed scenarios.

(2) Weestablish a privacy-preserving federated learning scheme based on xMK-CKKS to achieve secure and efficient
sum aggregation of all participants’ model updates. Using the FedAvg algorithm, the scheme reduces the com-
munication cost during the whole process. Our scheme is resistant to attacks from internal curious participants
as well as external malicious adversaries while achieving accuracy preservation. For a total of N participating
devices, it is also robust against collusion attacks between k < N − 1 compromised participating devices and the
server.

(3) We evaluated and compared the scheme to state-of-the-art federated learning schemes based on homomorphic
encryption in a realistic federated learning scenario using Jetson Nano IoT devices. Results show a significant
reduction in communication and computation costwhile featuring reasonable energy consumption and preserving
the model accuracy.

2 | RELATED WORK
Our work is mainly related to prior research conducted in multi-key homomorphic encryption and federated learning,
particularly concerning privacy-preserving federated learning schemes.

2.1 | Multi-key homomorphic encryption
Popular additive homomorphic encryption (HE) schemes include Goldwasser and Micali [23], Paillier [24], Damgard
and Jurik [25], andKawachi et al. [26]. The first fully homomorphic encryption (FHE) has been proposed byGentry [27],
which has seen many follow-up improvements to reduce computational load. Homomorphic encryption schemes can
be symmetric (same key for encryption and decryption), as well as asymmetric (different keys) [28].

Unlike traditional homomorphic encryption that evaluates the arithmetic circuits of ciphertexts encrypted with
the same key, multi-key homomorphic encryption (MK-HE) allows different parties to use different keys for encryption.
As a result, decryption requires the collaboration of all participants. López-Al et al. [29] proposed the first MK-FHE
scheme known as LTV12, which is based on the NTRU encryption system [30]. It uses relinearization and modu-

4 Ma et al.
lus switching technologies to obtain a leveled multi-key fully homomorphic encryption scheme but suffers from the
high computational complexity of decryption operations. While more efficient protocols such as DHS16 [31] have
been proposed, NTRU-based MK-FHE schemes are not practical due to their large decryption complexity and high
communication load. The use of other types of FHE schemes for MK-FHE has been first discussed by Michael et
al. [32]. Further simplifications in the ciphertext extension process and multiple rounds of multi-party computation
(MPC) have been introduced in [33]; however, the size of the ciphertext in these schemes increases exponentially
with the increase in the number of participants, which causes large communication and storage costs that are infeasi-
ble for application in a practical setting. Chen et al. [22] proposed MK-BFV and MK-CKKS, multi-key variants of the
fully homomorphic encryption schemes BFV [34, 35] and CKKS [36]. In these schemes, the length of the ciphertext
increases linearly with the number of participants. The implementations of MK-BFV and MK-CKKS provide the first
experimental results of MK-HE with packed ciphertexts. However, the distributed decryption of a multi-key cipher-
text needs an additional secure method, otherwise has the risk of privacy leakage. The proposed scheme xMK-CKKS
in this paper provides simple and secure decryption for an aggregated ciphertext generated by only addition.

2.2 | Privacy-preserving federated learning
Federated learning was first introduced by Konečnỳ et al. [4] in 2016, as a distributed machine learning scheme in
which distributed devices collaborate with a central coordinator in sharing locally trained updates to a global model for
aggregation. To reduce the uplink communication cost in federated learning, structured and sketched updates were
introduced. In addition, McMahan et al. proposed Federated Averaging (FedAvg) [37], which achieves a reduction in
the communication load by one to two orders of magnitude through iterative model averaging. Their implementation
is robust to unbalanced and not independent and identically distributed (non-iid) data and further obfuscates the
shared information through aggregated model updates.

Despite this, concerns about information leakage and privacy issues of federated learning have been raised. For
example, Aono et al. [17] pointed out an adversary capable of observing only a small fraction of the shared gradients
can lead to information leakage and data privacy issues for the distributed devices sharing their updates. Indeed,
Melis et al. [8] demonstrated that in distributed federated learning, even if only model update information is shared,
sensitive information of the participant may be leaked. It is even possible to recover original training data from the
publicly shared gradients [7].

To address this weakness and to enhance the privacy protection of federated learning, cryptographic methods
have been proposed, such as multi-party computation [38], differential privacy [39, 40, 41], as well as homomorphic
encryption [42], to protect the shared model updates.

In secure multi-party computation, a group of mutually distrustful parties u ∈ U collaborate to compute an
aggregated sum A =

∑
u∈U xu for their private values xu without revealing xu . The scheme of secure aggregation has

been adapted for federated learning, for instance, in [10, 11], to ensure that globally, an individual update from any
distributed party cannot be derived from the aggregation of all updates. Related to this, Li et al. [12] proposed to chain
local gradient updates across all remote participating devices in order to mask the individual values. However, the
protocol requires secure and reliable communication channels and honest devices. In addition, the greedy generation
of the chain of devices might fail in partly disconnected topologies. Xu et al. [13] proposed privacy-preserving and
verifiable collaborative learning, which uses double masking to ensure the confidentiality of the individual gradients.
In particular, distributed devices secretly establish random numbers for each device pair to mask their local data.
However, the masking process is computationally expensive and constraints practical use by requiring that all devices
are within pairwise communication range. Furthermore, a trusted third party is needed to establish asymmetric key

Ma et al. 5
pairs initially.

Differential privacy [14] may protect the privacy of individual data of deep learning algorithms via a differentially
private gradient descent mechanism that adds noise to gradient updates. Geyer et al. [15] developed an implemen-
tation of differential privacy for federated learning, which realizes client differential privacy guarantees at the cost of
severely reduced model performance.

Dowlin et al. [19] presented a neural network based on homomorphic encryption [29]. In particular, the model
inference from a pre-trained network is computed on encrypted data by an untrusted party. Network training, how-
ever, has to be conducted offline and does not involve the untrusted party. Improved schemes have been proposed
in [20], [17] using additive homomorphic encryption to protect model updates, by Zhang et al. [18] exploiting privacy-
preserving and verifiable federated learning using the Paillier cryptosystem [24], as well as by Froelicher et al. [21]
who proposed a decentralized system for privacy-conscious statistical analysis on distributed datasets by applying the
ElGamal Elliptic Curve additive homomorphic cryptosystem [43]. In these approaches, all participating devices share
the same encryption and decryption key. As a result, private information may leak among devices. Furthermore, any
curious party colluding with the server will breach the privacy of other parties. Hao et al. [16] proposed an efficient
and privacy-enhanced federated learning (PEFL) scheme. PEFL can resist collusion between an adversary andmultiple
devices by applying differential privacy and additive homomorphic encryption. However, the model accuracy will be
seriously degraded when the collusion rate is greater than one-half. In contrast, in this paper, we enhance the privacy
protection of federated learning by applying multi-key homomorphic encryption.

3 | PRELIMINARIES
We propose xMK-CKKS, a multi-key homomorphic encryption scheme based on theMK-CKKS homomorphic encryp-
tion, to increase privacy protection in distributed machine learning, specifically in federated learning. In the following,
we discuss our assumptions on federated learning and introduce the concept of the MK-CKKS homomorphic encryp-
tion scheme.

3.1 | Federated learning
Federated Learning is a distributed machine learning concept. It enables the training of a machine learning model from
data that is kept at decentralized devices. As shown in Fig. 1(a), a remotely participating device first downloads the
global model from the server, trains it with local data, and then summarizes the results into a model update (model
weights or gradients) which is returned to the server. At the server, model updates from remote devices are aggregated
into a new global model, to be shared again. The server and remote devices iteratively exchange model updates and
the global model computed during the training.

Stochastic Gradient Descent (SGD) can be naively applied in distributed learning but requires many communi-
cation rounds between distributed devices and the server. To address this, McMahan et al. [37] proposed Feder-
atedAveraging (FedAvg, Algorithm 1), which exploits iterative model averaging in federated learning to reduce the
communication load as follows. For N remote devices di , i ∈ {1, . . . ,N }, a fraction of these devices N̂ performs local
model training in each round. In particular, in each round, N̂ remote devices di conduct L training epochs on their
local datasets before sharing the model parameters w it+1 with the server. In particular, when L = 1, the algorithm is
referred to as FedSGD. Then the server computes an average of all devices’ model parameters as the updated global
model. This process iterates until the global model converges.

6 Ma et al.
Algorithm 1 FederatedAveraging(FedAvg)
Let η be the learning rate, and B be the minibatch size for local model training.
The server initializes w0 // Global model parameters
for each round t = 1, 2, ... do
St ← (random set of remote devices di)
for each remote device di ∈ St in parallel do
w it+1 ← DeviceUpdate(di ,w it)
wt+1 ← 1

N̂

N̂∑
i=1
w it+1

Remote devices compute their local updates.
DeviceUpdate(di ,w) : B ← (select batches of size B) //Run by each remote device di locally
for local epochs l = 1, . . . , L do
for batch b ∈ B do
w ← w − η+` (w ; b) // update the weight using the loss ` (w ; b) and the learning rate η

return w to server

3.2 | Multi-key Homomorphic encryption
An encryption scheme E (k , x) for a key k and an input x is called homomorphic if for the encryption algorithm E and
operation f , there is an efficient algorithm G such that

E (k , f (x1, . . . , xn)) = G (k , f (E (x1), . . . , E (xn))) . (1)
If equation (1) only holds for either addition or multiplication, the scheme is called partially homomorphic encryption.
It is fully homomorphic encryption if it holds for both addition and multiplication (FHE).

Multi-key homomorphic encryption (MK-HE) allows different participants to use different keys for encryption.
The aggregated ciphertext obtained after performing polynomial operations on different individual ciphertexts can
only be jointly decrypted by combining the respective secret keys associated with these ciphertexts. MK-CKKS is an
MK-HE scheme [22] which is a multi-key variant of the CKKS FHE scheme [36] that supports approximate fixed-point
arithmetic. Since homomorphic multiplication is not involved in our federated learning mechanism, we introduce the
additive homomorphism ofMK-CKKS only. MK-CKKS is a Ring Learning with Errors [44] (RLWE)-based homomorphic
encryption scheme. Let

R = Ú[X]/(X n + 1)

be the cyclotomic ring in which n has the power of two dimension, and Ú[X] is the polynomial ring with integer
coefficients and the elements in R satisfy X n = −1. Rq = Úq [X]/(X n + 1) is the residue ring of R with coefficients
modulo an integer q . For parameters (n, q ,χ ,ψ) , our RLWE assumption is that, given polynomials of the form (a, b =
s · a + e) ∈ R 2q , the term b is computationally indistinguishable from uniformly random elements of Rq when a is
chosen uniformly at random from Rq , s is chosen from the key distribution χ over Rq , and e is drawn from the error
distribution ψ over R [44].

We denote vectors in bold and use 〈u,v 〉 to denote the dot product of two vectors u and v . x ← Γ denotes the
sampling of x according to the distribution Γ. λ denotes the security parameter throughout the paper: all known valid

Ma et al. 7
attacks against the cryptographic scheme under scope should take Ω (2λ) bit operations. g ∈ Z d is an integral vector,
called the gadget vector. MK-CKKS assumes the Common Reference String (CRS) model so all devices share a random
polynomial vector a ← U (R dq) , here U (·) represents the uniform distribution. Let sk i = (1, si) for the secret key si ,
sk = (1, s1, ...sN) for the concatenation of multiple secret keys. Let ct i = (cdi0 , cdi1) be the ciphertext of plaintext mi
from remote device di , i = 1, . . . ,N .

Setup. For a given security parameter λ, set the RLWE dimension n , ciphertext modulus q , key distribution χ and
error distribution ψ over R . Generate a random vector a ← U (R dq) . Return the public parameter (n, q ,χ ,ψ, a) . A
remote device di generates its secret key si ← χ , and computes its public key as b i = −si · a + ei ∈ R 2q , here ei is an
error vector drawn from the error distribution ψ over R .

Encoding and decoding. Before encryption, a complex number is first expanded into a vector and then encoded
as a polynomial of ring R based on the complex canonical embedding map. The decoding transfers a polynomial into
a complex vector after decryption.

Encryption. After encoding a message vector into a plaintext mi , which is an element of a cyclotomic ring, di
then encrypts mi as a ciphertext ct i = (cdi0 , cdi1) where cdi0 = vi · bi +mi + e

di
0 (mod q) and cdi1 = vi · a + e

di
1 (mod q) .

Here a = a [0] and bi = b i [0], vi ← χ and edi0 , edi1 ← ψ . Tiny errors are inserted to ensure security, and the
rounding operation can remove them after carrying out homomorphic operations. InMK-CKKS, an additive ciphertext
associated to N different parties is of the formCsum

def
=

(
N∑
i=1
c
di
0 , c

d1
1 , c

d2
1 , . . . , c

dN
1

)
∈ RN+1q .

Decryption of individual ciphertext. di computes a dot product of sk i = (1, si) and ct i = (c
di
0 , c

di
1) as follows.

<ct i , sk i > (mod q) = c
di
0 + c

di
1 · si (mod q)

= vi · bi +mi + e
di
0 + vi · a · si + e

di
1 · si (mod q)

= vi · (−si · a + e i) +mi + e
di
0 + vi · a · si + e

di
1 · si (mod q)

= mi + vi · e i + e
di
0 + e

di
1 · si (mod q)

≈ mi

Additive homomorphism. Let ct i = (cdi0 , cdi1) and ct j = (c
dj
0 , c

dj
1) be two ciphertexts of plaintext messages mi

and m j from remote devices di and dj . The sum of the ciphertexts isCsum
def
= (cdi0 + c

dj
0 , c

di
1 , c

dj
1) . It can be decrypted

by computing a dot product ofCsum and sk = (1, si , s j) . The correctness is proved as follows:
<Csum , sk > (mod q) = (cdi0 + c

dj
0) + c

di
1 · si + c

dj
1 · s j (mod q)

= (cdi0 + c
di
1 · si) + (c

dj
0 + c

dj
1 · s j) (mod q)

≈ mi +m j

Decryption of sum. The distributed decryption based on noise flooding is introduced in MK-CKKS since it is not
reasonable to assume that any party holds multiple secret keys. The decryption consists of two algorithms: partial
decryption and merge.
MK − CKKS.PartDec(cdi1 ,si) : Given a polynomial cdi1 and a secret si , sample an error e∗

i
← φ and return µi = cdi1 ·

si + e
∗
i
(mod q) .

MK − CKKS.Merge(N∑
i=1
c
di
0 ,{µi }1≤i≤N) : Compute and return µ= N∑

i=1
c
di
0 +

N∑
i=1
µi (mod q) ≈ <Csum , sk > (mod q) .

8 Ma et al.
Here e∗

i
is generated from error distribution φ which has a larger variance than the standard error distribution ψ .

4 | MULTI-KEY HOMOMORPHIC ENCRYPTION FOR FEDERATED LEARNING
MK-CKKS is not directly applicable to federated learning since the serverwould be capable of decrypting the individual
model updates and learning about the private data. In this section, We improve the MK-CKKS protocol so that the
server becomes only able to decrypt the aggregation of the shared encrypted model updates, thereby obfuscating
the individual model updates with updates from all other remote participating devices. The proposed xMK-CKKS
simplifies the decryption process of MK-CKKS while maintaining strong privacy protection. Based on xMK-CKKS, we
propose a privacy-preserving federated learning scheme.

4.1 | Threat model
In our work, we apply homomorphic encryption in a federated learning scenario to protect data privacy. In this context,
we assume that the server and all remotely participating devices are honest-but-curious. This means that they follow
the scheme honestly but intend to infer the private information of other devices from the information shared during
the execution of the protocol. We further assume that collusion may exist between compromised devices and the
server. In particular, we consider an attack in which k < N −1 devices collude together with the server to jointly attack
particular devices, where N is the total number of devices and k is the number of compromised colluding devices.

4.2 | xMK-CKKS
As described in Section 3, the decryption of the sum of the ciphertexts requires two steps, partial decryption and
merge. In a federated learning scenario, each device sends encrypted model updates to the server for aggregation.
In this way, the server obtains ct i = (cdi0 , cdi1) . If µi = cdi1 · si + e∗i (mod q) were also to be shared, the server could
directly decrypt mi (cf. equation (2)).

c
di
0 + µi = c

di
0 + c

di
1 · si + e

∗
i ≈ mi (mod q) (2)

To resolve this problem, the server shall not obtain cdi0 and µi at the same time. For instance, either N∑
i=1
c
di
0 or N∑

i=1
µi

may instead be computed collaboratively by the remote devices. However, this would introduce the risk of private
information mi leaking if devices and the server collude.

xMK-CKKS. To avoid privacy leakage during decryption, we propose xMK-CKKS. In xMK-CKKS, an aggregated
public key is computed for encryption by aggregating the public keys of all devices. For decryption, the server requires
decryption share Di computed by each device di . Di combines the sum over all ciphertexts as well as the secret key
si and error term e∗

i
of di (see equation (6)). The following methods define the xMK-CKKS scheme in detail.

Setup(1λ) : Given a security parameter λ, set the RLWE dimension n , ciphertext modulus q , key distribution χ and
error distribution ψ over R . Generate a random vector a ← U (R dq) . Return the public parameters (n, q ,χ ,ψ, a) .

KeyGen(n, q ,χ ,ψ, a) : Each device di (1 ≤ i ≤ N) generates its secret key si and computes its individual public key

Ma et al. 9
b i = −si · a + ei (mod q) . We define the aggregated public key b̃ as

b̃ =
N∑
i=1

b i =
N∑
i=1

(−si) · a +
N∑
i=1

ei (mod q) (3)

Here ei ← ψd .
Enc(mi , b̃, a) : The plaintext mi of a device di is encrypted as

ct i = (c
di
0 , c

di
1) = (v

di · b̃ +mi + e
di
0 ,v

di · a + epi1) (mod q) (4)
Here a = a [0], b̃ = b̃ [0], v ← χ , edi0 , edi1 ← ψ .

Add(ct1, . . . , ctN) : The sum of all ciphertexts is

Csum =
N∑
i=1

ct i
∆
= (Csum0 ,Csum1)

=

(
N∑
i=1

c
di
0 ,

N∑
i=1

c
di
1

)
=

(
N∑
i=1

(v di · b̃ +mi + e
di
0),

N∑
i=1

(v di · a + edi1)
)
(mod q) (5)

Dec(Csum , s1, . . . , sN) : Each device di computes its decryption share Di

Di = si · Csum1 + e
∗
i = si ·

N∑
i=1

(v di · a + edi1) + e
∗
i (mod q) (6)

Here e∗
i
← ψ .

Then, the sum of all plaintexts can be recovered as follows.

Csum0 +
N∑
i=1

Di mod q

= Csum0 +
N∑
i=1

si · Csum1 +
N∑
i=1

e∗i mod q

=
N∑
i=1

(v di · b̃ +mi + e
di
0) +

N∑
i=1

si ·
N∑
i=1

(v di · a + edi1) +
N∑
i=1

e∗i mod q

= −
N∑
i=1

v di · si · a +
N∑
i=1

v di ·
N∑
i=1

e i +
N∑
i=1

mi +
N∑
i=1

e
di
0 +

N∑
i=1

v di · si · a +
N∑
i=1

(
si · e

di
1 + e∗i

) mod q

=
N∑
i=1

mi +
N∑
i=1

v di ·
N∑
i=1

e i +
N∑
i=1

e
di
0 +

N∑
i=1

(
si · e

di
1 + e∗i

) mod q

≈
N∑
i=1

mi (7)

In xMK-CKKS, the aggregated public key is computed for encryption. The decryption requires each device to
compute its decryption share. The decryption share implicitly contains the information of individual secret key of each

10 Ma et al.

Fig. 2. Privacy-preserving federated learning based on xMK-CKKS multi-key homomorphic encryption

participant and the aggregated ciphertexts Csum , and an error is added for security, thus is useless to decrypt any
other ciphertext, including individual ciphertext. Therefore, the risk of privacy leakage during decryption is mitigated
by the protocol. Consequently, in federated learning and similar collaborative learning scenarios, xMK-CKKS provides
stronger security than MK-CKKS. We show in section 5 that it is also robust against any collusion between k < N − 1
compromised devices and the server. Note that xMK-CKKS does not require any interaction among devices and is
suited to scenarios in which devices are not fully interconnected.

4.3 | Privacy-preserving federated learning based on xMK-CKKS
Wepropose a privacy-preserving federated learning scheme based on xMK-CKKS. As a federated learningmechanism,
we apply the FedAvg scheme (cf. section 3.1) with the fraction of remotely participating devices as 1 (all devices
contribute to model training in each round).

The complete model training process consists of multiple aggregation rounds between the server and the devices.
Fig. 2 details the process of one aggregation round. In each aggregation round t , all devices obtain the current global
model from the server, train it for multiple epochs on local data (step 1) and encrypt the resulting local model weights
with the aggregated public key b̃ (step 2). All remote devices then send the ciphertexts to the server, where they are
aggregated as the sum over all encrypted model weights (step 3). In order to obtain the plaintext from this encrypted
sum, the server requires all devices to compute their decryption shares Di (step 4). After obtaining the decryption
shares from all devices, the server merges them with the ciphertext to decrypt the encrypted sum over all shared
model weights (step 5). In particular, after decryption, the server obtains the sum of all devices’ weights N∑

i=1
w it before

computing averaged weights wt+1 as the new global model weights for the next aggregation round. This procedure
(steps 1 to 5) is executed iteratively until the global model converges. We introduce each step in detail below.

Setup: For a given security parameter λ, set the RLWE dimension n , ciphertext modulus q , key distribution χ and
error distribution ψ over R . Generate a random vector a ← U (R dq) . Return the public parameters (n, q ,χ ,ψ, a) . Each
device di samples a secret key si ← χ an error vector ei ← ψd , then computes its public key b i = −si · a + ei (mod q) .
Then all participating devices collaboratively compute the aggregated public key as

b̃ =
N∑
i=1

b i =
N∑
i=1

(−si) · a +
N∑
i=1

ei (mod q) (8)

Ma et al. 11
Step 1: Local training: In each aggregation round t , each device di first downloads the current global model weights
wt from the server. Every device applies the model optimization algorithm, for instance, SGD or Adam, to train the
obtained global model on its local data. After multiple training epochs, each device di derives a local model with
weights w it .
Step 2: Encryption of model weights: Let mi ∈ R be an encoded plaintext input of w it and let a = a [0], b̃ = b̃ [0].
Sample v di ← χ and edi0 , edi1 ← ψ . Compute the ciphertext

ctdi = (cdi0 , c
di
1) = (v

di · b̃ +mi + e
di
0 ,v

di · a + edi1) (mod q) (9)
Then, each device di shares ctdi = (cdi0 , cdi1) with the server.
Step 3: Computation of the homomorphic sum: After receiving encrypted model weights from all devices, the server
aggregates them by adding them together to get an encrypted sum Csum . The server then publishes Csum1 to all
devices.

Csum =
N∑
i=1

ctdi =

(
N∑
i=1

c
di
0 ,

N∑
i=1

c
di
1

)
∆
=(Csum0 ,Csum1) (mod q) (10)

Step 4: Computation of the decryption share: All the devices di are required to decrypt the multi-key ciphertext. For
this, each device samples e∗

i
← ψ , then computes its decryption share Di and sends it to the server.

Di = si · Csum1 + e
∗
i = si ·

N∑
i=1

(v di · a + edi1) + e
∗
i (mod q) (11)

Step 5: Model aggregation: After receiving all decryption shares, the server merges all decryption shares Di , i ∈
{1, . . . ,N } with Csum0 = N∑

i=1
c
di
0 to recover the plaintext.

N∑
i=1

mi ≈ Csum0 +
N∑
i=1

Di (mod q) (12)

Finally, the server decodes N∑
i=1
mi to obtain the sumover theweights N∑

i=1
w it before computing the averagedweights

wt+1 as the updated global model weights for the next aggregation round.

wt+1 =
1

N

N∑
i=1

w it (13)

5 | SECURITY AND FUNCTIONALITY ANALYSIS
We discuss how our scheme guarantees privacy for the data hosted at distributed devices by ensuring the confiden-
tiality of the model weights. In particular, the following theorems describe the security of the scheme for various po-
tential adversaries. Then we show the functionality of our scheme by comparing it to other latest privacy-preserving
federated learning schemes.

12 Ma et al.
5.1 | Security analysis
Theorem 1. Security against an honest-but-curious server: In our scheme, an honest-but-curious server cannot infer
any private information about the devices’ data.

Proof: In our xMK-CKKS based federated learning scheme, remotely participating devices di send two types of
information to the server. First, in step 2, di shares ciphertext ctdi with the server, which is encrypted by xMK-
CKKS. Then, in step 4, di sends its decryption share Di to the sever. Here we have ctdi = (cdi0 , c

di
1) , where cdi0 =

v di · b̃ + mi + e
di
0 (mod q) and cdi1 = v di · a + edi1 (mod q) , Di = si · Csum1 + e∗i = si · N∑

i=1
(v di · a + edi1) + e

∗
i
(mod q) .

All messages contain an added error to guarantee security according to RLWE assumption. RLWE guarantees that
the cdi0 and Di are computationally indistinguishable from uniformly random elements of Rq . They do not leak any
information of mi and si to the server S . After collaborative decryption, the server can only get a sum of all model
weights, which does not leak information about the individual model weights.

Therefore, our scheme can ensure the confidentiality of individual model weights, thereby guaranteeing the pri-
vacy of the data distributed at remote devices. The server cannot infer any private information about the device from
the information it receives.

Theorem 2. Security against honest-but-curious distributed devices: In our scheme, an honest-but-curious de-
vice cannot infer any private information by stealing the shared information of other devices.

Proof: In our scheme, the model updates of each device di are encrypted via xMK-CKKS, which is based on RLWE.
Each device individually chooses a secret key si to establish a public key bi . In addition, all devices collaboratively
compute an aggregated public key to encrypt their model weights. An error is added to the decryption share to protect
the secret key of each device. Therefore, an honest-and-curious device cannot infer any information by stealing the
information uploaded by other devices.

Theorem 3. Security against the collusion between compromised devices and the server: Collusion between
k < N − 1 devices and the server does not leak information about model updates from other devices, where N is the
total number of devices and k is the number of compromised colluding devices.

Proof: In our scheme, model updates of each device are encrypted by the aggregated public key b̃ =
N∑
i=1

b i =

N∑
i=1
(−si) · a +

N∑
i=1

ei (mod q) and shared with the server. Then, the server computes a sum over the model weights.
The decryption of the individual encrypted weights ctdi and the encrypted sumCsum can only be done by combining
the decryption shares of all devices.

The first collusion attack is that colluding parties try to infer mi of the victim di from its individual ciphertext ctdi .
In the worst case, we assume there is a victim di , and other N −1 devices collude with the server S . A possible attempt
is to compute cdj1 · s j for j , i , then to merge them with cdi0 .

c
di
0 +

N∑
j,i

c
d1
1 · si (mod q) = v di ·

∼
b +mi + e

di
0 +

∑
j,i

(v dj · a + edj1) · s j (mod q)

= −
N∑
i=1

v d1 · si · a +mi + e
di
0 +

∑
j,i

v dj · s j · a +
∑
j,i

e
dj
1 · s j (mod q)

= −v di · si · a +mi + e
di
0 +

∑
j,i

e
dj
1 · s j (14)

The result is roughly equivalent to a partial ciphertext encrypted by the individual public key bi , thereby having no
privacy risk. Even if the other devices collude and own the secret keys s j , j , i , they cannot jointly decrypt the

Ma et al. 13
Table (1) Comparison of existing privacy-preserving federated learning schemes and xMK-CKKS based federated
learning scheme
Scheme Aono et al. [17] Keith et al. [11] Zhang et al. [18] PEFL [16] Our scheme
Condentiality of model updates X X X X X

Resistance to collusion × X × X X

Non-interaction among participants X × X X X

Non-secure communication channel × X X X X

Model accuracy preservation X X X × X

individual ciphertext encrypted with bi by the victim di .
We note that the colluding parties might try to infer mi from the decrypted aggregation result N∑

i=1
mi . We ar-

gue that the attack cannot be successful as long as there are two uncompromised devices. In the worst case, the
N − 2 colluding devices subtract their plaintexts mi from the sum N∑

i=1
mi . The result is the sum of plaintexts of two

uncompromising devices, therefore has no risk of privacy leakage for individual data.
Therefore, our protocol can resist collusion between k < N − 1 compromised devices and the server.

5.2 | Functionality analysis
Our scheme enhances the privacy protection of federated learning by applying multi-key homomorphic encryption.
Table (1) compares our scheme and the latest privacy-preserving federated learning schemes. Although the scheme
proposed in [11] and PEFL [16] are resistant to collusion between compromised devices and the server, [11] requires
many interactions among participants to build secret shares, and the model’s accuracy of PEFL will be seriously de-
graded when the collusion ratio is greater than half. The privacy-preserving deep learning schemes based on additive
homomorphic encryption [17, 18] are vulnerable to collusion attacks between compromised devices and the server.

6 | EVALUATION
This section evaluates the proposed xMK-CKKS based federated learning scheme on a smart healthcare scenario,
particularly elderly-fall detection. To validate the potency of our scheme, we compare three schemes: traditional
federated learningwithout encryption, federated learning based onMK-CKKS, and federated learning based onPaillier
homomorphic encryption. The traditional federated learning has no additional privacy protection for model updates,
which risks privacy leakage. Federated learning based on MK-CKKS encrypts model updates by MK-CKKS but has
privacy risks due to the noise flooding technique for decryption. For federated learning based on Paillier, we use Paillier
to encryptmodel weights, different from the privacy-preserving deep learning scheme proposed by Le et al. [17] which
uses Paillier to encrypt the gradients. However, in Paillier, all devices share the same secret and public keys, which
compromises privacy. We then report fall detection model accuracy, communication cost, energy consumption, and
computational cost during the whole training process.

14 Ma et al.

(a) Distribution strategy to remote devices. The server shares
a small fraction of the data to decrease weights divergences

(b) Environment testbed setting with 10 Jetson Nano IoT
devices

Fig. 3. Illustration of the experimental setting and distribution strategy utilized in our case study. 10 Jetson Nano IoT
devices are utilized as remote devices storing the data while a server is computing the model aggregations.

Table (2) Data Distribution for each distributed device in acceleration samples.
Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 Test set
Data size 28K 27K 28K 27K 28K 25K 28K 26K 27K 27K 37K

6.1 | Experimental Setup
We set up 10 Jetson Nano nodes as our IoT devices, with 128 NVIDIA CUDA® cores, Quad-core ARM CortexA57
MPCore processor, 4 GB 64-bit LPDDR4 RAM, and 64 GB of storage (see example Fig. 3(b)). The Jetson Nano IoT
devices are compatible with various machine learning frameworks and are mainly used for model training. We employ
as a server a laptop of Intel(R) Core(TM) i7-7700HQCPU@2.80GHz (8 CPUs). We use the TensorFlow 2.0 framework
and Keras to build our CNN baseline.

Dataset. We focus on fall detection for elderly persons as universally relevant health and general well-being
problem. In particular, we employ a multimodal dataset called "UP-FALL" [45] which includes 17 healthy young indi-
viduals. Each subject performs 10 different activities and falls with three trials. All the falls activities are recorded in
10-seconds duration. The data is collected from wearable and ambient sensors and vision devices. In our evaluation,
we utilize the dataset from the data of the accelerometer sensors of 10 devices. We allocate one Jetson Nano IoT
device with the data of one acceleration sensor. In practice, the data generated by IoT devices is exclusive, and the
accuracy of federated learning with not independent and identically distributed (non-iid) data significantly decreases
due to weight divergence. For our scheme, we share a small amount of data called the ‘global set’ with all devices as
suggested in [46] (Fig. 3(a) depicts the process). In Table (2), we detail the size of data distributed to each device which
is on average approximately 25,000 samples per device. To evaluate the model accuracy, we construct a global testing
set consisting of a subset of around 37,000 samples where no redundancy to data is used for the global testing set
and with the data of the distributed devices.

Model and implementation. A fall detection model is trained to recognize five types of falls, 1) falling forward
using hands, 2) falling forward using knees, 3) falling backward, 4) falling sitting in an empty chair, and 5) falling sideward.
If the activity belongs to no class, it classifies as unknown activity. To recognize different types of falls, we employ
the "categorical cross-entropy" as a loss function. The model was trained with Adam optimizer [47] at a learning rate
of 0.01 with 1, 20 local epochs in one aggregation round. The batch size is 32 in each epoch. Our model structure is

Ma et al. 15
Table (3) Description of our Fall Detection model on UP-FALL dataset.

Layer Description
Input An input vector of dimension of 3.
Layer-1 Fully-connected layer with ReLU activation function with 160 parameters.

It has the dimension of 20.
Output layer Fully-connected layer with softmax activation function with 492 parame-

ters. It has the dimension of 12.

summarized in Table (3). The fully-connected layer is trained with ReLU (Rectified Linear Unit) activation function [48].
We employ Softmax [49] as an activation function for our output layer where the size of the output vector equals all
the classification classes.

After distributed model training, each device encrypts the model weights by different homomorphic encryption
algorithms and then sends them to the server for decryption and aggregation. The implementations of MK-CKKS
and xMK-CKKS homomorphic encryption are based on the HEAAN library (https://github.com/snucrypto/HEAAN).
Specifically, the security parameter is λ = 128 bits, the RLWE dimension is n = 216 and the bit length of ciphertext
modulus is log q = 800. We set the secret distribution χ as the uniform distribution over the set of polynomials in R
whose coefficients are in {0,±1}, and use the Gaussian distribution of standard 3.2 deviations to sample error poly-
nomials. For Paillier homomorphic encryption, we apply the Paillier library (http://hms.isi.jhu.edu/acsc/libpaillier/), in
which the two primes for key generation are set to be 1536 bits. Therefore, the encryption key is 3072 bits that
guarantees 128-bits security level. All of these homomorphic encryption implementations are written by C++ lan-
guage. For arbitrary-precision arithmetic operations, we employ GMP framework (https://gmplib.org/), NTL library
that provides algorithms and structures for big integers (https://libntl.org/).

6.2 | Discussion of results
We evaluated fall detection model accuracy to ensure the effectiveness of our scheme and compared it to the fed-
erated learning scheme without encryption. In particular, we analyzed the communication cost and tested the ag-
gregation rounds with different numbers of local training epochs (L). In addition, since our scheme is deployed on
IoT devices with constrained hardware resources, we evaluated its energy consumption. We compared it to other
federated learning schemes to validate its applicability for IoT devices. We further evaluated the computational cost
of each scheme during encryption, decryption, computation of cipher sums, and computation of decryption share.

Accuracy. We compared the accuracy of our scheme to traditional federated learning and xMK-CKKS based fed-
erated learning(cf. Fig. 4). For each scheme, we executed five trials and reported the accuracy along with the standard
deviation. When we employ FedAvg with the local epochs L = 20 in one aggregation round, the xMK-CKKS based
scheme provides 94.28% of accuracy, which is almost the same as the federated learning scheme, which has 94.47%
of accuracy. In the case of FedSGD (with one local epoch), the xMK-CKKS based scheme provides 90.15% of accuracy,
which is very close to the federated learning scheme, which has 90.54% of accuracy. The results demonstrate the
efficiency of our scheme, which preserves model accuracy while protecting the model updates in federated learning.

Communication cost. In our implementations, the local model weights are represented by 64 bits. As shown in
Fig. 5, in one aggregation round, as the number of model weights increases, the communication cost of our scheme is
much lower than Paillier based scheme. Take the fall detection model we use with 492 model weights as an example;

16 Ma et al.

0 5 10 15 20 25 30
Aggregation rounds

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Ac
cu
ra
cy
 (%

)

FL without encryption
MK-CKKS based FL
xMK-CKKS based FL

(a) Accuracy of the federated learning schemes
utilizing L = 1 local training epochs(F edSGD)

0 5 10 15 20 25 30
Aggregation rounds

90

91

92

93

94

95

Ac
cu

ra
cy

 (%
)

FL without encryption
MK-CKKS based FL
xMK-CKKS based FL

(b) Accuracy of the federated learning schemes
utilizing L = 20 local training epochs

Fig. 4. Classification accuracy comparison with different number of training
epochs executed locally(L) by each device in one aggregation round. Note that
the y-axis range in figures (a), (b) is adapted for better visibility.

5 10 15 20 25 30 35
Number of weights * 104

0

50

100

150

200

250

Co
m
m
un
ica

tio
n
co
st
 (B

yt
es
) *
 1
06

Paillier based FL
xMK-CKKS based FL

Fig. 5. Communication cost for
Paillier based federated learning
and xMK-CKKS based federated
learning as the number of weights
increases.

Table (4) Energy consumption of different federated learning (FL) schemes executed on distributed Jetson Nano
IoT devices.
Scenario xMK-CKKS based FL MK-CKKS based FL Paillier based FL FL w/o encryption No activity (idle)
Energy (W) 2.4 2.4 2.3 2.3 1.8

in xMK-CKKS based federated learning, the ciphertext size of the model weights is 24KB. This is much smaller than
the ciphertext size of the Paillier based Federated learning, which is 378KB. Although our scheme needs one more
communication round for collaborative decryption, the additional message size is only 43 KB for the cipher sum Csum1and 43KB for decryption shareDi in each aggregation round. To further reduce the communication cost in general, we
apply FedAvg with 20 local epochs (Fig. 4(b)) in one aggregation round instead of FedSGD (Fig. 4(a), each minibatch
update requires one aggregation round). Our scheme achieved a 90.55% model accuracy after three aggregation
rounds, which is significantly smaller than the FedSGD based federated learning scheme using 27 aggregation rounds
to achieve closer accuracy of 90.11%.

Energy Consumption. We monitored the energy consumption during the operation of the IoT devices for MK-
CKKS, xMK-CKKS, Paillier based federated learning schemes, federated learning without encryption, and when the
IoT device is idle (Table (4)). The energy consumption is sampled every two seconds, and we obtain the average
consumption of these five measurements. The energy consumption of xMK-CKKS based federated learning is around
2.4watts, which is only 24% of themaximum energy of the JetsonNano IoT device (10Watts). Therefore, we conclude
that the scheme is applicable for IoT devices.

Computational cost. We discuss the computational cost when varying the number of model weights (up to nearly
1/3 million) in Fig. 6. We report computational cost at the encryption phase (Fig. 6(a)), aggregation phase (Fig. 6(b)),
decryption share calculation phase (Fig. 6(c)), and decryption phase (Fig. 6(d)), where each experiment is executed four
times. We compare our scheme with MK-CKKS based scheme and Paillier based scheme. We notice that our scheme
behaves approximately similar to MK-CKKS based scheme while significantly taking less time than the Paillier based
scheme. The results show that our proposed scheme can be deployed in large-scale data scenarios due to its reduced
time cost during all scheme phases.

Ma et al. 17

10 20 30
Number of Weights * 10^4

0

250

500

750

1000

Ti
m

e
co

st
 (m

s)
 *

10
^4

Paillier based FL
MK-CKKS based FL
xMK-CKKS based FL

(a) Encryption cost for different
number of weights

10 20 30
Number of Weights * 10^4

0

250

500

750

1000

Ti
m
e
co
st
 (m

s)
 *
10

^4

(b) Decryption cost for different
number of weights

10 20 30
Number of Weights * 10^4

0.0

0.5

1.0

1.5

2.0

Ti
m
e
co

st
 (m

s)
 *
10

^4

(c) Ciphers sum cost for different
number of weights

10 20 30
Number of Weights * 10^4

1

2

3

Ti
m
e
co
st
 (m

s)
 *
10

^4

(d) Decryption share cost for
different number of weights

Fig. 6. Computational cost for Paillier based federated learning, MK-CKKS based federated learning, and xMK-CKKS
based federated learning in different phases.

7 | CONCLUSION AND FUTURE WORK
Wehave proposed a novel privacy-preserving federated learning scheme based onmulti-key homomorphic encryption
to protect data privacy. We improved theMK-CKKS homomorphic encryption scheme, overcoming the risk of privacy
leakage when used in the federated learning scenario to protect the privacy of individual model updates. Our xMK-
CKKS scheme defines the aggregated public key and the decryption share to achieve secure and simple encryption
and decryption. Therefore, it is more suitable for privacy protection in federated learning scenarios. Furthermore, the
proposed xMK-CKKS based federated learning scheme guarantees the confidentiality of model updates by applying
multi-key homomorphic encryption and is resistant to collusion attacks between k < N − 1 participating devices and
the server. Therefore, the proposed scheme provides strong privacy protection for federated learning.

We evaluated this xMK-CKKS based federated learning scheme in terms of accuracy, communication cost, energy
consumption, and computational cost. Furthermore, we compared it with federated learning based on MK-CKKS
homomorphic encryption and Paillier homomorphic encryption. In particular, in an experiment with 10 Jetson Nano
IoT devices and a single dedicated server, we executed a large-scale data scenario situated in the domain of elderly care.
We extensively evaluated and compared the schemes. The experiment demonstrates that our scheme is effective,
applicable in IoT domains, and efficient in accuracy, communication cost, energy consumption, and computational
cost. It enables the implementation of secure federated learning on IoT devices.

The proposed xMK-CKKS based scheme is robust against honest-but-curious participating devices; however,
it may not withstand attacks of malicious participants that sabotage the learning process. For instance, malicious
devices may send incorrect or random values or even values specifically designed to interfere and bias the federated
learning process instead of sharing correct model updates. A common mechanism to address this problem attempts
to identify incorrect parameters to discard them by designing Byzantine robust aggregation rules. For further details,
we refer to Median [50] and Krum [51]. Nevertheless, these defense mechanisms assume that the training data of
each device is independent and identically distributed (iid), which is difficult to be guaranteed in actual IoT scenarios.
More importantly, the server needs to obtain the model updates from each device, which again introduces a risk of
privacy leakage to the server or other participants overhearing the communication. However, protecting the individual
model updates via cryptographic routines, as the xMK-CKKS based federated learning scheme we have proposed,
prevents individual model updates from being analyzed for potential anomalies or suspicious patterns. Therefore,
further research is needed to investigate how federated learning can not only resist Byzantine attacks but also protect
the privacy of the remotely participating devices.

18 Ma et al.
ACKNOWLEDGEMENTS
This work is partially supported by China National Science Foundation under grant number 62072356, and the Na-
tional Key Research and Development Program of Shaanxi under grant number 2019ZDLGY12-08. We would like to
acknowledge partial funding by the Academy of Finland in the project ABACUS (ICT 2023). The support provided by
China Scholarship Council (CSC) during a visit of JingMa to Aalto University is acknowledged (file No.201906960151).

References
[1] Kianoush S, Raja M, Savazzi S, Sigg S. A cloud-IoT platform for passive radio sensing: Challenges and application case

studies. IEEE Internet of Things J. 2018;5(5):3624-3636.
[2] Li J, Jin J, Yuan D, PalaniswamiM,Moessner K. EHOPES: Data-centered Fog platform for smart living. 2015 International

Telecommunication Networks and Applications Conference (ITNAC). 2015:308-313.
[3] Li J, Jin J, Yuan D, Zhang H. Virtual fog: A virtualization enabled fog computing framework for Internet of Things. IEEE

Internet of Things J. 2017;5(1):121-131.
[4] Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D. Federated learning: Strategies for improving commu-

nication efficiency. arXiv preprint. 2016;arXiv:1610.05492.
[5] Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol.

2019; 10(2):1-19.
[6] Li J, Lyu L, Liu X, Zhang X, Lv X. FLEAM: A Federated Learning Empowered Architecture to Mitigate DDoS in Industrial

IoT. IEEE Trans. Ind. Inform. 2021.
[7] Zhu L, Han S. Deep leakage from gradients. Federated learning. 2020:17-31.
[8] Melis L, Song C, De Cristofaro E, Shmatikov V. Exploiting Unintended Feature Leakage in Collaborative Learning. In:

2019 IEEE Symposium on Security and Privacy (SP). 2019:691-706.
[9] Hitaj B, Ateniese G, Perez-Cruz F. Deep models under the GAN: information leakage from collaborative deep learning.

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017:603-618.
[10] Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K. Practical secure

aggregation for federated learning on user-held data. arXiv preprint. 2016;arXiv:1611.04482.
[11] Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K. Practical secure

aggregation for privacy-preserving machine learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017:1175-1191.

[12] Li Y, Zhou Y, Jolfaei A, Yu D, Xu G, Zheng X. Privacy-Preserving Federated Learning Framework Based on Chained Secure
Multiparty Computing. IEEE Internet Things J. 2020;8(8):6178-6186.

[13] Xu G, Li H, Liu S, Yang K, Lin X. Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf. Forensic Secur.
2019;15:911-926.

[14] Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L. Deep learning with differential privacy.
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016:308-318.

[15] Geyer RC, Klein T, Nabi M. Differentially private federated learning: A client level perspective. arXiv preprint.
2017;arXiv:1712.07557.

Ma et al. 19
[16] Hao M, Li H, Luo X, Xu G, Yang H, Liu S. Efficient and privacy-enhanced federated learning for industrial artificial intelli-

gence. IEEE Trans. Ind. Inform. 2019;16(10):6532-6542.
[17] Aono Y, Hayashi T, Wang L, Moriai S. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE

Trans. Inf. Forensic Secur. 2017;13(5):1333-1345.
[18] Zhang X, Fu A,Wang H, Zhou C, Chen Z. A privacy-preserving and verifiable federated learning scheme. ICC 2020-2020

IEEE International Conference on Communications (ICC). 2020:1-6.
[19] Gilad-Bachrach R, Dowlin N, Laine K, Lauter K, Naehrig M, Wernsing J. Cryptonets: Applying neural networks to en-

crypted data with high throughput and accuracy. International conference on machine learning. 2016:201-210.
[20] Li P, Li J, Huang Z, Li T, Gao CZ, Yiu SM, Chen K. Multi-key privacy-preserving deep learning in cloud computing. Futur.

Gener. Comp. Syst. 2017;74:76-85.
[21] Froelicher D, Troncoso-Pastoriza JR, Sousa JS, Hubaux JP. Drynx: Decentralized, secure, verifiable system for statistical

queries and machine learning on distributed datasets. IEEE Trans. Inf. Forensic Secur. 2020;15:3035-3050.
[22] Chen H, DaiW, KimM, Song Y. Efficient multi-key homomorphic encryption with packed ciphertexts with application to

oblivious neural network inference. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 2019:395-412.

[23] Goldwasser S, Micali S. Probabilistic encryption & how to play mental poker keeping secret all partial information. Pro-
viding sound foundations for cryptography: on the work of Shafi Goldwasser and Silvio Micali. 2019:173-201.

[24] Paillier P. Public-key cryptosystems based on composite degree residuosity classes. International conference on the theory
and applications of cryptographic techniques. 1999:223-238.

[25] Damgrd I, Jurik M, Generalisation A. a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System,
PKC. 2001:119-136.

[26] Kawachi A, Tanaka K, Xagawa K. Multi-bit cryptosystems based on lattice problems. International Workshop on Public
Key Cryptography. 2007:315-329.

[27] Gentry C. A fully homomorphic encryption scheme. Stanford university. 2009.
[28] Rothblum R. Homomorphic encryption: From private-key to public-key. Theory of cryptography conference. 2011:219-

234.
[29] López-Alt A, Tromer E, Vaikuntanathan V. On-the-fly multiparty computation on the cloud via multikey fully homomor-

phic encryption. Proceedings of the forty-fourth annual ACM symposium on Theory of computing. 2012:1219-1234.
[30] Hoffstein J, Pipher J, Silverman JH, NTRU. A ring-based public key cryptosystem. Algorithmic Number Theory. 2000:267-

288.
[31] Doröz Y, Hu Y, Sunar B. Homomorphic AES evaluation using the modified LTV scheme. Designs Codes Cryptogr.

2016;80(2):333-358.
[32] ClearM,McGoldrick C.Multi-identity andmulti-key leveled FHE from learningwith errors.Annual Cryptology Conference.

2015:630-656.
[33] Mukherjee P, Wichs D. Two round multiparty computation via multi-key FHE. Annual International Conference on the

Theory and Applications of Cryptographic Techniques. 2016:735-763.
[34] Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP. Annual Cryptology Con-

ference. 2012:868-886.

20 Ma et al.
[35] Fan J, Vercauteren F. Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch.2012. 2012:144.
[36] Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for arithmetic of approximate numbers. International Con-

ference on the Theory and Application of Cryptology and Information Security. 2017:409-437.
[37] McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient learning of deep networks from

decentralized data. Artificial intelligence and statistics. 2017:1273-1282.
[38] Cramer R, Damgård IB. Secure multiparty computation. Cambridge University Press. 2015.
[39] Dwork C. Differential privacy: A survey of results. International conference on theory and applications of models of compu-

tation. 2008:1-19.
[40] Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. Theory of cryptography

conference. 2006:265-284.
[41] Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M. Our data, ourselves: Privacy via distributed noise generation.

Annual International Conference on the Theory and Applications of Cryptographic Techniques. 2006:486-503.
[42] Rivest R L, Adleman L, Dertouzos ML. On data banks and privacy homomorphisms. Foundations of secure computation.

1978;4(11):169-180.
[43] ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory.

1985;31(4):469-472.
[44] Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings. Annual international conference

on the theory and applications of cryptographic techniques. 2010:1-23.
[45] Martínez-Villaseñor L, Ponce H, Brieva J, Moya-Albor E, Núñez-Martínez J, Peñafort-Asturiano C. UP-fall detection

dataset: A multimodal approach. Sensors. 2019;19(9):1988.
[46] Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V. Federated learning with non-iid data. arXiv preprint.

2018;arXiv:1806.00582.
[47] Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint. 2014;arXiv:1412.6980.
[48] Maas A L, Hannun A Y, Ng A Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. Proc. icml.

2013;30(1):3.
[49] Hinton G E, Salakhutdinov R R. Replicated Softmax: an Undirected Topic Model. Adv. Neural Inf. Process. Syst.

2009;22:1607-1614.
[50] Yin D, Chen Y, Kannan R, Bartlett P. Byzantine-robust distributed learning: Towards optimal statistical rates. International

Conference on Machine Learning. 2018:5650-5659.
[51] Blanchard P, El Mhamdi E M, Guerraoui R, Stainer J. Machine learning with adversaries: Byzantine tolerant gradient

descent. Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:118-128.

