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A B S T R A C T

Public transport service (PTS) analysis and provision is an important and challenging issue for public transport
agencies. The results of the PTS analysis help transport planners to identify the areas in need of PTS
improvement. Furthermore, relevant policy actions need to be determined for service provision to reach the
desired level of PTS improvement in the identified areas. Without an appropriate decision support tool, planners
need to apply several blind trials to find a policy action which improves the PTS in the examined areas. This
paper introduces a data-driven decision support tool for PTS analysis and provision. The proposed framework
combines a potentially large number of PTS measures while taking the correlation among the investigated
measures into account and develops high-dimensional supervised classification models that predict the PTS
levels for different policy actions. With this approach, planners can identify and prioritize the areas in need of
PTS improvement, determine what policy actions should be targeted to improve the PTS in the identified areas,
and predict the PTS impacts of these policy actions in the examined areas. The application of the proposed
framework is demonstrated in detail through a case study of Budapest, Hungary, which is followed by a
hypothetical policy implementation. The results show that mostly outskirts are in need of PTS improvement.
Furthermore, the underlying reasons behind the areas with poor overall PTS are studied to target the relevant
policy actions that improve the PTS in the identified areas. The PTS impacts of the targeted policy actions are
studied by using the developed high-dimensional supervised classification models.

1. Introduction

Public transport service (PTS) provision is considered as an impor-
tant element of the overall transport planning and management (Mur-
ray, 2001). However, the analysis and provision of PTS is a challenging
issue for public transport agencies. The results of the PTS analysis
help transport planners to identify the areas in need of PTS improve-
ment (Mavoa et al., 2012; Wu and Hine, 2003; Fransen et al., 2015;
Currie, 2010). Moreover, relevant policy actions need to be determined
to reach the desired level of PTS improvement in the examined areas.
Without an appropriate decision tool, planners need to conduct sev-
eral blind trials to find a policy action that improves the PTS in the
identified areas.

The public transport agencies primarily use bespoke database soft-
ware tools to investigate the impacts of various policy actions on the
PTS. Some examples of such tools, among others, are Amelia (Mackett
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et al., 2008), Accession (Preston and Rajé, 2007), and Snapta (Karou
and Hull, 2014). These tools are useful to examine the effects of various
policy actions. However, these are unavailable to the wider academic
public, on top of the functionalities embedded in the software, plan-
ners/analysts are unable to develop their own procedures since the
tools are not flexible enough (Fransen et al., 2015).

Regarding the PTS analysis, the importance and need of combining
multiple PTS measures into one comprehensive measure is highlighted
in the literature (Aman and Smith-Colin, 2020; Klumpenhouwer and
Huang, 2021). Current paper introduces a data-driven decision support
tool for the analysis and provision of PTS. The proposed framework
combines a potentially large number of PTS measures while taking
the correlation among the investigated measures into account. Addi-
tionally, high-dimensional supervised classification models that predict
the PTS levels for various policy actions are developed. With this
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Fig. 1. Framework of the proposed decision support tool for the PTS analysis and provision.

approach, planners can identify and prioritize the areas in need of
PTS improvement, determine what policy actions should be targeted
to improve the PTS in the identified areas, and predict the impacts of
these policy actions and service provisions on the PTS in the examined
areas. The introduced framework is flexible. Thus, planners/analysts
are not restricted to some predetermined PTS measures, and in this
framework, they can study any relevant measure of interest according
to the scope of the study and the availability of the data. Moreover,
analysts have the opportunity to incorporate a potentially large number
of PTS measures not merely in the evaluation of the existing PTS but in
the proposed prediction framework, as well, to predict the PTS levels
of various policy actions.

This paper is structured as follows. After the introduction in Sec-
tion 1, the details of the proposed approach are discussed in Section 2.
Section 3 demonstrates the application of the developed approach
through a case study, which is followed by a hypothetical policy imple-
mentation along with a discussion of the results. Some limitations and
suggested future works are presented in Section 4. Finally, Section 5
provides the conclusion of the paper.

2. Methodology

In this paper, the framework of the proposed decision support tool
contains four phases, as shown in Fig. 1. The first three phases evaluate
the existing PTS for each zone – by combining various PTS measures
into comprehensive measures while taking the correlation among them
into account – and create supervised PTS data matrices. The Phase
IV applies the obtained supervised PTS data matrices to build high-
dimensional supervised classification models that predict the PTS levels
of different policy actions.

2.1. The evaluation of the existing PTS

To evaluate the existing PTS in the study area, planners often need
to study multiple service measures/criteria and indicators, each of

which has different units. In Phase I, following the scope of the analysis,
relevant PTS criteria and indicators are set as the basis of the analysis.
Afterward, the defined PTS measures can be computed at the level of
the desired unit of analysis (e.g., traffic analysis zones (TAZs), census
tracts, districts). The output of Phase I is an unsupervised overall PTS
data matrix, which is the following:

𝑀1 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑖1 𝑖2 ⋯ 𝑖𝑛
𝑈𝑜𝐴1 𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑈𝑜𝐴2 𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋮ ⋱ ⋮

𝑈𝑜𝐴𝑧 𝑎𝑧1 𝑎𝑧2 ⋯ 𝑎𝑧𝑛

⎞

⎟

⎟

⎟

⎟

⎠

Where the desired unit of the analysis (UoA) in the investigated area
is denoted by 𝑈𝑜𝐴 = {𝑈𝑜𝐴𝑍 |𝑍 = 1,… , 𝑧}, 𝑖 = {𝑖𝑁 |𝑁 = 1,… , 𝑛} stands
for the PTS indicators, and a𝑧𝑛 represents the value of the 𝑛th PTS
indicator for UoA z. It is worth highlighting that the overall PTS data
matrix 𝑀1 could be further split into multiple, criterion-specific data
matrices. For illustration, see the overall PTS data matrix 𝑀1 and the
criterion-specific data matrices 𝑀1.1, 𝑀1.2, and 𝑀1.3 as the calculated
data matrices of the case study shown in Table 2.

In Phase II, the various PTS measures computed in Phase I are
combined to evaluate the PTS of the existing services. Combining
multiple PTS measures into a comprehensive measure requires an
approach which weights the relative importance of each PTS measure.
Some studies in the literature simply assume the same importance
for all of their investigated measures (Aman and Smith-Colin, 2020;
Mavoa et al., 2012). Other studies use extensive survey data as their
underlying structure in the weighting process (McNeil, 2011; Zheng
et al., 2019). Using the experts’ opinions in the weighting process as a
flexible approach that could be easily applied to different PTS measures
has been recently highlighted in the literature (Klumpenhouwer and
Huang, 2021; Hawas et al., 2016). Current paper weights the relative
importance of the defined PTS criteria and indicators by using the ex-
perts’ opinions through applying the analytic hierarchy process (AHP)
method proposed by Saaty (1980). AHP is a structured approach that
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utilizes the experts’ opinions to quantify the weights of the decision
criteria (i.e., PTS measures) through pairwise comparisons by using a
comparison scale proposed by Saaty (1980). In the AHP method, the
decision criteria are compared to each other to compute their rela-
tive importance. Furthermore, within each criterion, the sub-criteria
(i.e., the indicators representing each PTS criterion) are compared with
each other to assess their relative importance in forming the criterion.
The overall relative importance of each sub-criterion is calculated by
multiplying their relative importance in their own criterion and the
relative importance of their criterion compared to the other criteria.
Therefore, the sub-criteria (i.e., PTS indicators) have one relative im-
portance (i.e., weight) within their own criterion (i.e., indicator weight
in the criterion) and one overall relative importance (i.e., overall
indicator weight) compared to the other sub-criteria representing other
PTS measures. For illustration, see Table 3 presenting the results of the
weights of the criteria and the indicators in the case study. Having
computed the relative weights of the PTS criteria and the indicators
with the AHP method, the PTS in the UoA can be evaluated based on its
relative closeness to the ideal situation by using the technique for order
preference by similarity to ideal solution (TOPSIS) proposed by Hwang
and Yoon (1981). In the traditional TOPSIS, each alternative (e.g., the
𝑈𝑜𝐴 in the PTS analysis) is globally evaluated following its Euclidean
distances to the positive and negative ideal solutions assuming that
the evaluation criteria are independent (Vega et al., 2014). Within
the context of the PTS analysis, several PTS measures are expected to
correlate with each other. For instance, having more public transport
stops in the 𝑈𝑜𝐴 may result in more service area, more opportunity of
direct origin-destination (O-D) coverage, and potentially, more overall
service frequency in the 𝑈𝑜𝐴. Therefore, it is of great importance to
take the correlation among the PTS indicators into account in the
evaluation framework.

TOPSIS-M is one of the approaches that has been widely used in
the literature (Wang and Wang, 2014; Liu et al., 2019; Sheikh et al.,
2019) to address the dependent criteria by applying a decorrelation
procedure through incorporating the Mahalanobis distance measures
into the traditional TOPSIS method. Thus, TOPSIS-M method is used
in Phase II of the proposed tool to evaluate the PTS in the 𝑈𝑜𝐴. In this
process, the unsupervised PTS data matrix 𝑀1 computed in Phase I is
normalized and further used to calculate the positive and negative ideal
solutions taking the benefit (i.e., the more is better, such as the area
of the service) and cost (i.e., the less is better, such as waiting time)
nature of the PTS indicators into account. The Mahalanobis distances
from both the positive (𝐷𝑀+

𝑧 ) and negative (𝐷𝑀−
𝑧 ) ideal solutions are

computed by using Eq. (1).

𝐷𝑀+
𝑧 =

√

(𝑈𝑧,𝑛 − 𝑈+)𝑇 𝛥𝑇 𝑆−1
𝑈 𝛥 (𝑈𝑧,𝑛 − 𝑈+)

𝐷𝑀−
𝑧 =

√

(𝑈𝑧,𝑛 − 𝑈−)𝑇 𝛥𝑇 𝑆−1
𝑈 𝛥 (𝑈𝑧,𝑛 − 𝑈−)

(1)

Where 𝑈𝑧,𝑛 stands for the normalized value of 𝑎𝑧𝑛 (i.e., PTS indicator
values in𝑀1), 𝑈+ and 𝑈− are the positive and negative ideal solutions,
𝛥𝑇 represents the transposed diagonal matrix of the squared root of
the weights obtained through the AHP method, and 𝑆−1

𝑈 is the inverse
covariance matrix of the normalized unsupervised PTS data matrix 𝑀1.
Finally, the relative closeness measures (i.e., TOPSIS-M PTS scores) are
calculated in a way that the UoA with the higher scores are the ones
with the better PTS. Further details about the AHP and TOPSIS methods
as well as TOPSIS-M method can be read in Tzeng and Huang (2011)
and Shih and Olson (2022), respectively.

It should be highlighted that the PTS in each UoA can be evaluated
based on the overall PTS (i.e., by using the overall PTS data matrix 𝑀1
and the overall indicator weight values) as well as based on each of the
defined PTS criteria (i.e., by using the criterion-specific data matrices
and the indicator weight in the criterion values). Hence, for each UoA,
there is one TOPSIS-M PTS score for the overall PTS and one for each
of the defined PTS criteria.

Furthermore, by taking the resulted scores into account, the UoA
can be ranked with respect to their overall PTS as well as each of the
investigated PTS criteria in a way that the one with the lowest score is
considered to be in the worst situation thus in higher priority for PTS
improvement. For illustration, see the computed TOPSIS-M PTS scores
of the case study shown in Fig. 4.

While Phase II assesses and ranks the UoA based on the computed
TOPSIS-M PTS scores (𝑦∗𝑧 ∈ [0, 1]), Phase III assigns a PTS class
(i.e., poor, moderate, or good) to the UoA in the examined area ac-
cording to the related scores by using Jenks natural breaks optimization
algorithm (Jenks, 1967), which is proved to be a reliable classification
scheme in the literature (Lu et al., 2021). The Jenks algorithm attempts
to minimize the distance between the TOPSIS-M PTS scores and the cen-
ter of the clusters (i.e., poor, moderate, or good) they belong to while
maximizing the difference between the cluster centers by minimizing
the following cost function (Khan, 2012):

𝐽 =
∑

1≤𝑖≤𝑧
1<𝑗<𝑘

𝑑𝑖𝑠𝑡(𝑦∗𝑧 , 𝑐𝑗 ) −
∑

1≤𝑗≤(𝑘−1)
𝑑𝑖𝑠𝑡(𝑐𝑗+1, 𝑐𝑗 ) (2)

Where 𝑧 represents the number of the 𝑈𝑜𝐴, 𝑘 denotes the number of
the clusters, 𝑑𝑖𝑠𝑡(𝑦∗𝑧 , 𝑐𝑗 ) shows the distance between the TOPSIS-M PTS
score of 𝑈𝑜𝐴𝑧 computed in Phase II and its nearest cluster center 𝑐𝑗 .

It is worth mentioning that the PTS class assignment could be
done based on the overall PTS (i.e., by using TOPSIS-M PTS scores
representing the overall PTS) as well as based on each of the defined
PTS criteria (i.e., by using the scores representing each of the criteria).
The outputs of Phase III are the accessibility classes related to the
overall PTS as well as the PTS based on each of the investigated criteria.
To assess in-class priorities (e.g., which 𝑈𝑜𝐴 has a higher priority for
PTS improvement in poor class zones), rankings obtained in Phase II
are normalized following a Min–Max normalization approach. Thus,
the 𝑈𝑜𝐴 with higher rankings (i.e., worse PTS) have higher priority
compared to others with lower rankings (see Fig. 6).

Joining the assigned overall PTS classes (i.e., the outputs of Phase
III) of each UoA to the unsupervised PTS data matrix 𝑀1 (i.e., the
outputs of Phase I) creates a supervised PTS data matrix𝑀2, as follows:

𝑀2 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑖1 𝑖2 𝑖𝑛 𝑐𝑈𝑜𝐴

𝑈𝑜𝐴1 𝑎11 𝑎12 ⋯ 𝑎1𝑛 𝑐𝑈𝑜𝐴1
𝑈𝑜𝐴2 𝑎21 𝑎22 ⋯ 𝑎2𝑛 𝑐𝑈𝑜𝐴2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑈𝑜𝐴𝑧 𝑎𝑧1 𝑎𝑧2 ⋯ 𝑎𝑧𝑛 𝑐𝑈𝑜𝐴𝑧

⎞

⎟

⎟

⎟

⎟

⎠

Where 𝑐𝑈𝑜𝐴𝑧
represents the overall PTS class of the 𝑧th unit of the anal-

ysis. Likewise, joining the PTS classes of each defined criterion to the
criterion-specific data matrices (i.e., 𝑀1.1, 𝑀1.2, and 𝑀1.3 matrices in
the case study) creates supervised, criterion-specific PTS data matrices
(i.e., 𝑀2.1, 𝑀2.2, and 𝑀2.3).

2.2. Predicting the PTS levels for different policy actions

In the first three phases of the proposed framework, areas in need
of PTS improvement (i.e., areas with poor overall PTS) are identified
and ranked (i.e., prioritized for PTS improvement). Furthermore, the
underlying reasons (i.e., which PTS criteria result in poor overall PTS)
behind the UoA with poor PTS are studied to target the relevant policy
actions improving PTS in the identified areas. In Phase IV, by using the
obtained supervised data matrices, high-dimensional supervised clas-
sification models are trained through a high-dimensional discriminant
analysis (HDDA) framework proposed by Bouveyron et al. (2007) to
predict the impacts of the different policy actions on PTS. It is proven
that the prediction performance of the HDDA models does not sink by
increasing the number of the dimensions (i.e., PTS measures) (Bergé
et al., 2012). Therefore, in the proposed framework, planners have
the opportunity of incorporating a potentially large number of PTS
criteria and indicators (i.e., represented by the number of dimensions)
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Table 1
The investigated HDDA
models (Bergé et al., 2012).
No. HDDA model

1 A𝑘𝑗B𝑘Q𝑘D𝑘
2 A𝑘𝑗BQ𝑘D𝑘
3 A𝑘B𝑘Q𝑘D𝑘
4 AB𝑘Q𝑘D𝑘
5 A𝑘BQ𝑘D𝑘
6 ABQ𝑘D𝑘
7 A𝑘𝑗B𝑘Q𝑘D
8 A𝑘𝑗BQ𝑘D
9 A𝑘B𝑘Q𝑘D
10 AB𝑘Q𝑘D
11 A𝑘BQ𝑘D
12 ABQ𝑘D
13 A𝑗BQD
14 ABQD

not solely in the PTS evaluation stage (i.e., Phases I to III) but in the
PTS prediction stage, as well.

This prediction framework is made of a learning step, in which
model parameters are estimated from a set of learning observations,
and a classification step, which aims to predict the class belonging to
the new unlabeled observations (Bergé et al., 2012). In current paper,
the HDDA model development is conducted by using the R package
HDclassif (Bergé et al., 2012). In the training process, 14 HDDA models
proposed by Bergé et al. (2012), as shown in Table 1, are compared to
each other, and the best model is selected according to the 𝐵𝐼𝐶 values.

In the models presented in Table 1, 𝐴𝑘𝑗 (𝑗 = 1,… , 𝐷𝑘) models the
variance of the data of the 𝑘th class, 𝐵𝑘 models the variance of the
noise, 𝑄 and 𝑄𝑘 represent the orientation matrices, and 𝐷 and 𝐷𝑘
represent the intrinsic dimensions of the classes.

It is worth mentioning that the supervised PTS data matrices need to
be centered and scaled (i.e., mean = 0, standard deviation = 1) in the
model development phase because the values of some PTS indicators
might be much larger than the values of others. For illustration, see
the trained HDDA models of the case study in Tables 4, 5, 6, and 7.

3. The case study

The application of the proposed framework is demonstrated in detail
through a case study of Budapest, Hungary. Budapest has a population
of approximately 1.7 million inhabitants in an area of 525 km2, which is
geographically divided into 23 districts. These districts are separated by
political boundaries and administered by separate administrative units,
i.e., each has its own municipal government.

General transit feed specification (GTFS) data along with the census
data of Budapest in the TAZs (KSH (Hungarian Central Statistical
Office), 2017) are the main data sources applied in this case study.
This information is used to analyze a series of PTS criteria and their
numerical indicators at the level of the TAZs in Budapest. The study
area along with the location of the public transport routes and stops as
well as the population density (i.e., population per square kilometer)
of the TAZs in Budapest are shown in Fig. 2.

According to the availability of data, three PTS criteria are inves-
tigated in this case study. The three criteria are the followings: the
relative value of the spatial spread and the population exposure of the
PTS (i.e., PTS coverage), the extent of the PTS available in a TAZ and
the magnitude of the available public transport infrastructures (i.e., PTS
supply), and the sprawl of the PTS (i.e., PTS diversity) in a TAZ. The
PTS coverage is studied by taking the area of the service concept into
account. The area of the service is the catchment area of public trans-
port, which serves as the actual area with access to the location of the
public transport stops with a threshold limit of distance. To estimate the
area of the service in Budapest, a 400 meter walking distance threshold
to the public transport stops is set, as suggested in the literature (Kimpel

et al., 2007). The estimated area of the service in Budapest is illustrated
in Fig. 3. The service coverage is measured based on the following two
indicators: the magnitude of the service area per inhabitant in each TAZ
(i.e., population coverage 𝑖1) and the percentage of the land area of
each TAZ within its area of service (i.e., land coverage 𝑖2). The PTS
supply can be represented by a number of numerical indicators, such
as vehicle-kilometers, passenger trips per capita, and passenger trips
per hour Dargay and Hanly (2002), Holmgren (2008), Webster and Bly
(1981) and Meyer (2000). In current study, the PTS supply is measured
based on the following three indicators: the PTS availability of the TAZ
based on the demand and the area of the TAZ (i.e., trips per day per
square kilometer area 𝑖3), the relative service frequency based on the
area of the TAZ (i.e., frequency of service per square kilometer area,
𝑖4), the provision of public transport infrastructure and the area of the
TAZ (i.e., stops per square kilometer area 𝑖5). The PTS diversity can
be assessed by investigating every possible service between an origin
and a destination (Frappier et al., 2018). In current research work,
the PTS diversity refers to the concept of more connections to more
destinations (i.e., TAZs), which represents a better availability of PTS,
an indicator of service effectiveness (Hawas et al., 2016). In this case
study, the public transport alternatives are defined as a sequence of
public transport routes and transfers. This criterion of the evaluation
of the public transport system denotes the number of the possible
routes available between any origin and any destination pair. The PTS
diversity aims to find the empirical evaluation of the access to and from
a TAZ to another by using public transport. In current research, PTS
diversity is measured by the following two indicators: the percentage
of the total TAZs accessible from a TAZ by making a single public
transport journey (i.e., direct O-D coverage 𝑖6) and the public transport
pair routes available to reach all other remaining possible TAZs from
an origin district (i.e., O-D pair routes 𝑖7).

Having computed all of the defined PTS indicators (i.e., seven indi-
cators representing three PTS criteria) separately for each TAZ in the
case study, the overall unsupervised PTS data matrix (𝑀1) is obtained,
as shown in Table 2. The PTS data matrix 𝑀1 can be further split
into 𝑀1.1, 𝑀1.2, and 𝑀1.3 data matrices representing the PTS coverage,
the PTS supply, and the PTS diversity data matrices, respectively (see
Table 2).

The existing PTS is further evaluated through an AHP-TOPSIS-M
framework, which results in one TOPSIS-M PTS score representing the
overall PTS in the TAZs and one score for each of the defined PTS
criteria. Furthermore, the obtained scores are applied to rank the TAZs
based on their overall PTS and each of the investigated criteria. As
mentioned before, in this multicriteria framework, the relative impor-
tance (i.e., weights) of the criteria and the indicators are quantified
through the AHP method, the TAZs are the alternatives, the PTS criteria
with the different units are the decision criteria, and the indicators are
the sub-criteria. In current research, the relative weights of the criteria
are quantified through the AHP method and equally distributed among
their respective indicators. The obtained weights and TOPSIS-M PTS
scores are presented in Table 3 and Fig. 4, respectively. As expected, by
taking the overall PTS into account, the results show that the inner-city
zones have better PTS compared to the outskirts. This difference is most
obvious in the PTS supply and diversity criteria while the PTS coverage
criterion has somewhat more equal distribution among the TAZs (i.e.,
once compared to the PTS supply and diversity). Regarding the PTS
supply, most of the TAZs have low scores, except for the densely-built
inner city areas. Overall, the computed TOPSIS-M PTS scores show
that the studied TAZs are more in need of PTS supply and diversity
improvement than the development of PTS coverage.

Furthermore, Jenks natural breaks optimization algorithm is used
to assign a PTS class (i.e., poor, moderate, or good) to the studied
TAZs based on their TOPSIS-M PTS overall scores and their PTS scores
with respect to each of the three investigated criteria, as shown in
Fig. 5. Furthermore, the obtained rankings are normalized through a
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Fig. 2. The study area along with its population density (KSH (Hungarian Central Statistical Office), 2017).

Table 2
The values of the PTS indicators in the case study (𝑀1).
District No. Zone ID PTS coverage (𝑀1.1) PTS supply (𝑀1.2) PTS diversity (𝑀1.3)

i1: population
coverage
(m2/inh.)

i2: land
coverage
(%)

i3: trips per
day per
square
kilometer
area

i4: frequency
of
service per
square
kilometer
area

i5: stops per
square
kilometer
area

i6: direct O-D
coverage
(%)

i7: O-D
pair
routes

District 1
1001 1054.7 99.7 40220.1 10044.9 21.32 12 150
1002 1691.3 99.7 25587.4 39256.2 94.8 22 342
1003 890.1 99.7 14753.9 27844.6 49.9 21.9 306

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

District 8
8228 541.9 99.72 49602.7 30984.3 26.03 16.48 318
8229 406.1 99.73 62605.01 33907.7 31.1 13.73 288
8230 321.01 99.7 23326.7 30152.1 15.35 5.57 120

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

District 15
15516 2318.8 99.6 1192.7 5746.7 18.04 12.5 204
15517 1605.4 99.7 1663.4 7541.1 21.6 15.1 264
15518 2606.02 99.7 2041.1 12967.1 20.08 18.4 362

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

District 23
23734 1590.5 99.6 877.1 3860.6 15.7 5.25 64
23735 999.08 84.7 339.04 795.8 6.26 3.46 38
23736 1663.2 98.1 1123.2 2493.4 14.3 5 62
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 3
The weights of the criteria and the indicators.
Criterion The weight of

the criterion
Indicator Indicator weight

in the criterion
Overall indicator
weight

PTS coverage 0.38 i1: population coverage 0.5 0.19
i2: land coverage 0.5 0.19

PTS supply

0.33
i3: trips per day per
square kilometer area

0.33 0.11

i4: frequency of service per
square kilometer area

0.33 0.11

i5: stops per square
kilometer area

0.33 0.11

PTS diversity 0.29 i6: direct O-D coverage 0.5 0.145
i7: O-D pair routes 0.5 0.145

Min–Max normalization within each class to represent in-class priori-
ties. This would help to prioritize the zones in need of improvement
(i.e., the zones with poor overall PTS). Thus, the zones in need of PTS
improvement (i.e., mostly outskirts) are identified and prioritized.

Moreover, the underlying reasons (i.e., which PTS criteria resulted
in poor overall PTS) behind the TAZs with poor overall PTS are studied
to target the relevant policy actions improving the PTS in the identified

zones. For example, zone 17594 in District 17 has poor overall PTS
with a considerable priority, and it is in need of improvement for PTS
coverage and supply (see Fig. 6). The resulted class belongings as well
as in-class priorities are presented in Fig. 6 (note for the sake of clarity
merely poor-class priorities are illustrated in the figure).

As mentioned before, joining the assigned PTS classes to the ob-
tained unsupervised PTS data matrices (i.e., 𝑀1, 𝑀1.1, 𝑀1.2, and 𝑀1.3)
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Table 4
HDDA model for the overall PTS class prediction, model type: A𝑘𝑗B𝑘Q𝑘D𝑘, out-of-sample correct classification rate:
93.9%.
Class Prior

prob.
Intrinsic
dimen.

A𝑘𝑗 B𝑘

a1 a2 a3 a4
Poor 0.044 2 1.88 0.56 – – 0.057
Moderate 0.91 4 2.41 1.14 0.66 0.41 0.1
Good 0.039 2 16.05 4.89 – – 0.67

Table 5
HDDA model for PTS coverage class prediction, model type: A𝑘𝑗B𝑘Q𝑘D,
out-of-sample correct classification rate: 95.2%.
Class Prior

prob.
Intrinsic
dimen.

A𝑘𝑗 B𝑘

a1
Poor 0.04 1 1.86 0.37
Moderate 0.93 1 0.5 0.15
Good 0.02 1 2.8 0.37

Table 6
HDDA model for PTS supply class prediction, model type: A𝑘𝑗B𝑘Q𝑘D,
out-of-sample correct classification rate: 93.9%.
Class Prior

prob.
Intrinsic
dimen.

A𝑘𝑗 B𝑘

a1 a2
Poor 0.62 2 0.13 0.04 0.37
Moderate 0.26 2 0.76 0.43 0.15
Good 0.1 2 4.57 2.02 0.37

Table 7
HDDA model for PTS diversity class prediction, model type: A𝑘𝑗B𝑘Q𝑘D,
out-of-sample correct classification rate: 98.6%.
Class Prior

prob.
Intrinsic
dimen.

A𝑘𝑗 B𝑘

a1
Poor 0.36 1 0.13 0.005
Moderate 0.52 1 0.46 0.029
Good 0.11 1 1.54 0.1

Fig. 3. The service area in Budapest.

creates supervised PTS data matrices. The obtained supervised PTS data
matrices are further used to train the HDDA models (i.e., one model
for the overall PTS and one for the PTS with respect to the coverage,
supply, and diversity) to predict the PTS impacts of the different policy
actions. The trained HDDA models are presented in Tables 4, 5, 6, and
7. It is worth highlighting that the HDDA models are validated via the
out-of-sample validation method (i.e., 80%–20% training–testing).

3.1. Hypothetical policy implementation

To demonstrate the functionality of the trained HDDA models
within the framework of the proposed decision support tool, a two-step
hypothetical policy is set aiming to develop the PTS of the zones in need
of improvement (i.e., zones with poor overall PTS) hereinafter called
target zones. In Step 1, the target criteria (i.e., criteria with poor PTS
class) in the target zones are increased by 25%. For instance, the PTS
coverage and supply are the target criteria for the target zone 17594 in
District 17 (see Fig. 6). The impacts of this increment on those criteria
and the overall PTS of the target districts are predicted by the trained
HDDA models. The predictions made in Step 1 are expected to update
the target zones and their target criteria. In Step 2, the target criteria
of the remaining target zones are increased by another 25%, which is
followed by predicting the impacts of this increment on those criteria
and the overall PTS of the updated target zones. The predictions made
in Step 2 are expected to update the results obtained in Step 1.

The results of this hypothetical, two-step policy are shown in Fig. 7.
As mentioned before, the target zones are identified, and the underlying
reasons (i.e., target criteria) behind their poor overall PTS are studied.
The leftmost map in Fig. 7 shows the existing 68 target zones with poor
overall PTS. Following the rules set in Step 1 of the hypothetical policy,
the numerical indicators of the target criteria (see the PTS coverage,
supply, and diversity classes of the target zones in Fig. 6) of the 68
target zones are increased by 25%.

The impacts of the increment applied in Step 1 on the target criteria
and the overall PTS of the target zones are predicted by the trained
HDDA models, as shown in Fig. 7 (note for the sake of clarity, merely
the predicted overall PTS is illustrated). The predictions made in Step
1 update the target zones and their target criteria as the target zones
become 57.

As mentioned before, in Step 2 of this hypothetical policy implemen-
tation, the target criteria of the remaining target zones are increased
by another 25%. The impacts of this increment on PTS are predicted
by using the trained HDDA models, as shown in Fig. 7. The results of
the prediction show that the increment applied in Step 2 results in the
decrease of the target zones from 57 to 44 zones.

4. Limitations and future works

This paper and the introduced framework have some limitations.
Firstly, cost implications are not included in the framework presented
in this study. The framework might be extended to an optimization
problem to find the best combination of the targeted policy actions and
to improve the PTS of the identified areas with minimized implemen-
tation cost to be minimized. Secondly, a wide range of PTS measures
could be incorporated in the case study to demonstrate the flexibility of
the introduced approach to a greater extent. However, due to the data
availability issues at the time this research is conducted, introductory
measures are used in the case study. Future works might demonstrate
the flexibility of the approach by using more varied PTS measures.
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Fig. 4. PTS evaluation: the TOPSIS-M PTS overall, coverage, supply, and diversity scores.

Fig. 5. PTS class assignment by using Jenks natural breaks optimization algorithm. P:poor, M:moderate, G:good.

5. Conclusion

Current paper proposes a comprehensive approach to combine a po-
tentially large number of PTS measures and to build high-dimensional

supervised classification models that predict the PTS levels for various
policy actions. With this data-driven decision support tool, planners can
identify and rank the areas in need of PTS improvement, determine
what policy actions should be targeted to improve the PTS in the
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Fig. 6. The results of the PTS class assignment along with in-class priorities (i.e., existing services/current situation).

Fig. 7. The results of the policy implementation.

identified areas, and predict the impacts of these policy actions on the
PTS in the identified areas. The proposed framework is flexible in a way
that the planners/analysts are not restricted by some predetermined
PTS measures and can study any relevant measure of interest in this

framework according to the scope of the analysis and the availability
of data. Moreover, a potentially large number of PTS measures can be
incorporated not solely in the evaluation of the existing PTS but in the
prediction of the PTS levels for different policy actions, as well.
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The application of the proposed framework is demonstrated in detail
through a case study, which is followed by a hypothetical policy imple-
mentation. In this case study, three PTS criteria and seven indicators
are assessed to evaluate the PTS of the TAZs in the city of Budapest,
Hungary. Furthermore, the impacts of a two-step hypothetical policy
implementation on the target zones and the targeted PTS criteria are
predicted by using the trained HDDA models in the case study (i.e., four
HDDA models for predicting the PTS classes of the overall PTS, the
PTS coverage, supply, and diversity). It is worth highlighting that
solely seven indicators are assessed in the case study; however, the
proposed approach is capable of handling considerably more number of
indicators depending on the objectives of the study and the availability
of data.
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