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Abstract
The different superfluid phases of 3He are described by p-wave order parameters that include
anisotropy axes both in the orbital and spin spaces. The anisotropy axes characterize the broken
symmetries in these macroscopically coherent quantum many-body systems. The systems’ free
energy has several degenerate minima for certain orientations of the anisotropy axes. As a
result, spatial variation of the order parameter between two such regions, settled in different
energy minima, forms a topological soliton. Such solitons can terminate in the bulk liquid,
where the termination line forms a vortex with trapped circulation of mass and spin superfluid
currents. Here we discuss possible soliton-vortex structures based on the symmetry and
topology arguments and focus on the three structures observed in experiments: solitons bounded
by spin-mass vortices in the B phase, solitons bounded by half-quantum vortices (HQVs) in the
polar and polar-distorted A phases, and the composite defect formed by a half-quantum vortex,
soliton and the Kibble-Lazarides-Shafi wall in the polar-distorted B phase. The observations are
based on nuclear magnetic resonance (NMR) techniques and are of three types: first, solitons
can form a potential well for trapped spin waves, observed as an extra peak in the NMR
spectrum at shifted frequency; second, they can increase the relaxation rate of the NMR spin
precession; lastly, the soliton can present the boundary conditions for the anisotropy axes in
bulk, modifying the bulk NMR signal. Owing to solitons’ prominent NMR signatures and the
ability to manipulate their structure with external magnetic field, solitons have become an
important tool for probing and controlling the structure and dynamics of superfluid 3He, in
particular HQVs with core-bound Majorana modes.
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1. Introduction

Solitary waves, or solitons, often refer to localized wave pack-
ets that maintain their shape as they propagate through a
medium or interact with other solitons. In the context of this
paper, the word ‘soliton’ refers to continuous variation of the
superfluid order parameter between two regions settled in dis-
tinct yet degenerate energy minima. Within the soliton the free
energy is not minimized—instead, it is stabilized by the topo-
logy of the underlying superfluid. Topological solitons are pro-
tected by the same mechanism as linear topological defects,
quantized vortices, on which solitons can terminate in bulk
liquid. Such composite objects are in the focus of this work.

We discuss vortex-bound solitons in the p-wave super-
fluid 3He [1], where complex spontaneous symmetry breaking
(SSB) patterns allow for the existence of a plethora of differ-
ent topological objects [2]. The topological protection of com-
posite objects is described by relative homotopy groups [3],
which reflect on the relation between residual symmetries in
two ordered phases. These phases may appear in a sequence of
SSB phase transitions, similar to some scenarios of the evol-
ution of the early Universe. Alternatively, they may refer to
the same ordered state viewed at two distinct length scales set
by different orientational energies. Both scenarios are realized
in superfluid 3He and discussed in this paper: Several super-
fluid phases are observed in bulk and more are engineered
with nanostructured confinement. In these phases condensa-
tion, magnetic anisotropy, and spin-orbit interaction energies
provide the hierarchy of relevant length scales ranging from
tens of nanometers to a fraction of a millimeter. Diversity of
superfluid 3He even allows for the existence of an object where
a quantized vortex both terminates a planar topological soliton
and simultaneously serves as a starting line of another planar
object, the Kibble-Lazarides-Shafi (KLS) wall—we call such
composite defect a nexus.

Vortex-bound solitons provide an experimental handle to
probing topological defects, as the characteristic size of a
soliton is often a few orders of magnitude larger than that of
the accompanying linear defects. The nuclear magnetic reson-
ance (NMR) signature of solitons may be used to identify such
defects, including half-quantum vortices (HQVs) in the polar
and polar-distorted superfluid phases [4]. Interesting on their
own right, HQVs can also provide experimental insight into
grand unified theories (GUTs) when taken through success-
ive phase transitions [5], or host Majorana zero modes in the
chiral superfluid or superconducting phases [6]. Experimental
systems with known and sufficiently complex order paramet-
ers for testing the predictions of GUTs are extremely rare
and therefore valuable, while Majorana zero modes are highly
sought after for their promise in topological quantum comput-
ing scenarios [7]. The superfluid phases of 3He provide exper-
imental access to such scenarios; to date the polar-distorted
A (PdA) phase of 3He is the only experimental platform
known to host HQVs in a chiral superfluid. Therefore, under-
standing vortex-bound solitons is important for many research
directions.

This work aims to provide the necessary theoretical back-
ground for understanding vortex-bound solitons in the super-
fluid phases of 3He, as well as review the relevant experimental
results. In section 2 we discuss the symmetries that govern
the order parameters of the normal fluid, as well as super-
fluid phases encountered in bulk or confined samples. We fur-
ther discuss how these symmetries are linked to topological
defects, and how they are affected by the presence of orient-
ing energy terms. In section 3 we introduce relative homo-
topy groups and their connection to topological and composite
defects, and solitons. The rest of the paper focuses on experi-
mental aspects: section 4 lays out the theoretical background
for understanding the NMRmeasurements and solitons’ effect
on the observed NMR spectrum, while the experimental obser-
vations of different types of vortex-bound solitons in various
superfluid phases of 3He are discussed in section 5. Finally,
we provide concluding remarks in section 6.

2. Residual symmetries in 3He

2.1. Superfluid phases in the bulk liquid

At temperatures well below the Fermi temperature TF ∼ 1 K
but above the superfluid transition temperature Tc ∼ 1 mK,
3He behaves as Fermi liquid, as described by Landau [8].
Properties of the Fermi liquid can be modeled through a
weakly interacting gas of excitations in the vicinity of the
Fermi surface. According to the Bardeen–Cooper–Schrieffer
theory [9], the presence of any attractive interaction, in the
case of 3He arising from Van der Waals interaction accompan-
ied by spin-fluctuation exchange mechanism [1], there exists a
temperature below which the fermions tend to form a coherent
macroscopic condensate via Cooper pairs. The spin-exchange
mechanism favors p-wave pairing with angular momentum
l= 1. Simultaneously, the antisymmetry of the fermionic wave
function requires s= 1, where s is the spin quantum number
for the Cooper pair.

The formation of Cooper pairs becomes energetically
favorable below the critical temperature Tc, and the liquid
undergoes a phase transition to the superfluid state. Above the
superfluid transition bulk 3He is described by the symmetry
group [10]

G= SO(3)L × SO(3)S ×U(1)ϕ ×T×C×P, (1)

which includes continuous symmetries, three-dimensional
rotations of coordinates SO(3)L, rotations of the spin space
SO(3)S, and the global phase transformation group U(1)ϕ, as
well as discrete symmetries, T is the time-reversal symmetry,
C is the particle-hole conversion symmetry, and P is the space
parity symmetry. The transitions from normal fluid to super-
fluid phases as well as transitions between different super-
fluid phases are accompanied by spontaneous breaking of con-
tinuous and/or discrete symmetries in G. In bulk 3He three
superfluid phases have been realized [1], figure 1; the fully-
gapped superfluid B phase characterized by broken relative
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Figure 1. Superfluid phase diagram of bulk 3He. At 1 bar pressure
3He liquefies at 3.2 K. It remains liquid all the way to the absolute
zero temperature for pressures P< 34 bar. In bulk fluid, three
different superfluid phases are observed below the critical
temperature—the time-reversal symmetric B phase, the chiral equal
spin-pairing A phase, and at high magnetic fields the A1 phase
which only allows Cooper pairs with both spins oriented along the
magnetic field.

spin-orbit symmetry, the chiral px + ipy superfluid A phase,
and finally, the spin-polarized A1 phase close to Tc in high
magnetic fields. In the rest of the section 2.1, we discuss the
symmetry-breaking patterns in the B and A phases, while
the infomation on A1 phase is included for completeness in
appendix A.

2.1.1. B phase. In the absence of magnetic field, the super-
fluid B phase has the total angular momentum j= l+ s=
0. The requirement j= 0 allows three spin configurations
for Cooper pairs, i.e. sz = {−1,0,1} and, respectively, lz =
{1,0,−1}. The B phase is characterized by broken spin-orbit
symmetry, i.e. the relative orientation of the spin and orbital
vectors becomes locked. It is reflected in the order parameter
of the B phase [1]

AB
µj =∆Be

iϕRµj(n̂,θ), (2)

where ∆B is the pressure- and temperature-dependent super-
fluid gap characterizing the energy required to break a Cooper
pair, ϕ is the superfluid phase, and matrix R(n̂,θ) describes
the rotation of spins with index µ relative to the orbital
coordinates with index j around the vector n̂ by angle θ. In
equilibrium the spin vector ŝ can be obtained from the orbital
vector l̂ by rotating l̂ around axis n̂ by the ‘Leggett angle’
θL = arcsin(−1/4)≈ 104◦, minimizing the spin-orbit
interaction [11].

Taking into account the broken relative symmetry between
the spin and orbital parts of the order parameter and the broken
phase symmetry, the remaining symmetry in the B phase is
[1, 10]

HB = SO(3)J ×T×C×PUπ, (3)

where SO(3)J denotes the joint three-dimensional rotation in
the orbital and spin spaces, and PUπ denotes the joint discrete
symmetry of the parity P and π phase rotation Uπ.

2.1.2. A phase. The A phase is an equal-spin-pairing state,
where the Cooper pairs consist of spins with the same sign and
thus sz = {−1,1}. The order parameter of the A phase can be
written as

AA
µj =∆Ae

iϕd̂µ(m̂j+ in̂j), (4)

where the vectors m̂ and n̂ (different from the n̂ vector in the
B phase) form an orthogonal triad with the Cooper pair orbital
angular momentum axis l̂= m̂× n̂, d̂ is the spin anisotropy
vector along which the total spin of a Cooper pair vanishes,
and ∆A is the maximum superfluid gap in the A phase. In
the A phase, the gauge symmetry U(1)ϕ is broken and any
change of the order parameter phase ϕ → ϕ +∆ϕ may be
compensated by rotating the orbital component of the order
parameter about l̂ by an angle −∆ϕ, leaving the order para-
meter invariant under that particular combination of trans-
formations. This combination corresponds to a remaining rel-
ative U(1)ϕ+L symmetry. Additionally, rotation of the spin
space about vector d̂ leaves the order parameter unchanged,
corresponding to a remaining SO(2)S symmetry. The order
parameter is also symmetric under the simultaneous rotation
about perpendicular axis and π phase change, i.e. under trans-
formation (d̂,ϕ)→ (−d̂,ϕ+π), corresponding to a discrete
symmetry described by the cyclic group Z2 (denoted Z2(ϕ+S))
of order 2. In the A phase, the time-reversal symmetry is par-
tially broken due to the non-zero imaginary part in the orbital
space, reducing it to the combined discrete symmetry Z2(T+L)

corresponding to simultaneous time reversal and π-rotation
of the orbital space about m̂. The remaining symmetries are
described by the group [1]

HA = U(1)ϕ+L × D̃∞S×Z2(T+L) ×C×PUπ, (5)

where we have combined the symmetries D̃∞S=̂SO(2)S ⋊
Z2(ϕ+S).

2.2. 3He under confinement by nafen

The presence of nanostructured confinement, i.e. thin slabs
[12, 13] or various aerogels [14–18], modifies the super-
fluid phase diagram. Anisotropic confinement may also alter
the symmetry group of the normal phase of 3He by expli-
citly breaking the three-dimensional rotational symmetry in
the coordinate space. Here we consider the effect of com-
mercially available nematically ordered material called nafen
[16], which breaks the three-dimensional continuous rota-
tional symmetry SO(3)L in equation (1). The total symmetry
group of the normal phase is reduced to [10]

G ′ = D∞L × SO(3)S ×U(1)ϕ ×T×C×P, (6)

where D∞L contains rotations about the nafen anisotropy axis
ẑ and π rotations about perpendicular axes. This symmetry
may also be written as a product of rotations of the space
around the anisotropy axis and reflection with respect to the
perpendicular plane, i.e. D∞L=̂SO(2)L ⋊Z2L.
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Figure 2. Schematic phase diagram of superfluid 3He under confinement by nafen. Nanostructured confinement by uniaxial cylinders
modifies the symmetries of 3He in the normal fluid and below the superfluid transition temperature. The superfluid transition with the
highest critical temperature under these conditions occurs to the polar phase [16]. The phase diagram shown in this figure sketches the
measured phase diagram in a sample of nematically ordered aerogel called nafen-90, which consists of nearly uniaxial strands of Al2O3

with density 90 mg cm−3. In addition to the polar phase, PdA and PdB phases are encountered at lower temperatures. The PdA phase can be
supercooled, as illustrated by the patterned area. The phase diagram in the low-pressure and low-temperature region (white) is not well
known and there is a possibility that the direct transition from the polar to the PdB phase is realized in this area.

The resulting phase diagram in nafen with 90 mg cm−3

density [16] is shown in figure 2. There are notable differ-
ences to the bulk phase diagram as novel superfluid phases—
the polar, PdA, and polar-distorted B (PdB) phases—are
observed. In all cases the superfluid gap becomes anisotropic
due to the effect of the confinement. Schematic illustrations
of the superfluid gap in these phases are shown in figure 3.
It is interesting that despite strong scattering by the confin-
ing strands, the critical temperature is suppressed only by a
few percent compared to the bulk liquid. The robustness of
the polar phase which appears immediately below transion is
provided by extension of the Anderson theorem. This theorem
has been derived in the case of p-wave pairing for the specu-
lar scattering from parallel strands [19]. This robustness of the
polar phase is also demonstrated by the characteristic T3 low-
temperature dependence of the gap resulting from the presence
of the nodal line [20]. In realistic samples scattering is never
completely specular, nor are the strands perfectly aligned, and
a small suppression of Tc is thus observed.

2.2.1. Symmetry breaking patterns and fibrations of vacuum
manifolds. Besides stabilizing novel superfluid phases, con-
finement by nafen features even more complicated sym-
metry breaking patterns not possible in bulk samples. Such
symmetry-breaking phase transitions can be used to study cos-
mological and dark matter models with SSB [21–28] and, in
particular, topological defects that appear in such theories. In
nafen samples, the following symmetry breaking pattern can
be realized:

Here solid arrows represent the directions of symmetry reduc-
tion through SSB, and the dashed line represents the first
order transition. The sequence of transitions from normal →
polar → PdA → PdB phases is seen on the phase diagram in
figure 2, while a direct transition form the polar to the PdB
phase remains a possibility at low pressures and temperatures.

The SSB pattern, equation (7), suggests that, starting from
the normal phase, both the PdA and PdB phases are accessible
via two consecutive second-order steps. Such situation can-
not be realized in bulk superfluid 3He. One can calculate the
vacuummanifolds R of the confined phases from their respect-
ive residual symmetry groupsH by taking the quotient space of
G′ over H. Denoting the vacuum manifolds generated through
SSB from the normal phase as

RP = G ′/HP, R
PdA
1 = G ′/HPdA, R

PdB
1 = G ′/HPdB, (8)

and the vacuum manifolds accessible via the polar phase as

RPdA
2 = HP/HPdA, R

PdB
2 = HP/HPdB, (9)

we find R2 ⊂ R1. In the rest of the subsection we omit PdA or
PdB indices at R and H, since equations apply in both phases.
Detailed discussion of residual symmetries in each of the con-
fined phases is presented in the following subsections.
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Figure 3. Schematic illustration of superfluid gaps in superfluid phases presented in figure 2. The polar phase and PdB phase gaps are
symmetric under rotation about the nafen anisotropy axis, and the PdA phase gap is shown in two projections as it lacks the rotational
symmetry. For each phase, the maximum gap is oriented along the anisotropy axis of nafen strands, which have characteristic diameter
d1 ≈ 9 nm and separation d2 ∼ 50 nm. Gap asymmetry is not drawn to scale.

Applying the third isomorphism theorem R1/R2 =
(G ′/H)/(HP/H) [29], we get

R1/R2
∼= RP = G ′/HP. (10)

Equation (10) suggests that the normal phase vacuum man-
ifold R1 consists of infinite disjoint subspaces (cosets) Rρ

2 ,
which relate to R2 though action of ρ ∈ R1 i.e. Rρ

2 = ρR2. We
also notice that every Rρ

2is isomorphically mapped to an ele-
ment of the vacuum manifold of the polar phase. Mathem-
atically speaking, this signifies that the vacuum manifold R1

covers RP [30]. The resulting fibration p between the vacuum
manifolds R1 and RP is

leading to the relationship between the homotopy groups of
different vacuum manifolds

πn(R1,R2)∼= πn(R
P). (12)

Consequently, for n= 1 this relationship suggests that the
polar phase linear topological defects are conserved as lin-
ear topological objects in the subsequent second order phase
transition. These defects, as we will see later, are HQVs
and singly quantized vortices. To assess whether the result-
ing linear objects are composite topological defects and serve
as a termination line of a planar object, one must calculate
the exact sequences of π1(R1,R2). Similarly, one can extract

information about composite defects where monopole termin-
ates a string [31] by setting n= 2 in equation (12). The result-
ing topological objects are discussed in section 3.

The presence of various effects, such as liquid-surface
interactions, Zeeman splitting, and spin-orbit interaction affect
the underlying symmetries of the superfluid phases. Since
these orientational energies have characteristic length scales
(see appendix B), both residual symmetryH and vacuumman-
ifold R of a superfluid depend on the length scale at which
superfluid is considered. ThemaximumH is found at the smal-
lest length scales, limited by coherence length from below and,
depending on conditions, by the magnetic ξH or the spin-orbit
ξD lengths or by the confining geometry from above. At lar-
ger scales the symmetry is reduced. For polar and PdA phases
below we provide one example of such reduction relevant to
the soliton bounded by HQVs found in those phases. For the
PdB phase we discuss reduced symmetries in more details in
section 2.2.5 as they are relevant for analysis of composite
objects in section 3.

2.2.2. Polar phase. The order parameter of the polar phase
can be written as

AP
µj =∆Pe

iϕd̂µm̂j, (13)

where ∆P is the maximum superfluid gap in the polar phase.
The order parameter is invariant with respect to rotations of
the spin space about d̂ and rotations of the orbital space about
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m̂, as well as about combined rotations about perpendicular
axes and π phase changes, i.e. with respect to transforma-
tions (d̂,ϕ)→ (−d̂,ϕ +π) and (m̂,ϕ)→ (−m̂,ϕ +π). Sim-
ilarly to other superfluid phases, the gauge symmetry U(1)ϕ
is broken in the transition. The maximum group of remaining
symmetries in the polar phase is

HP = D̃∞L × D̃∞S ×T×C×PUπ , (14)

where D̃∞L and D̃∞S are the symmetries involving π rota-
tions about axes transverse to m̂ or d̂ in the orbital and spin
spaces, respectively, combined with a phase rotation by eπ i,
i.e. D̃∞L=̂SO(2)L ⋊Z2(ϕ+L) and D̃∞S=̂SO(2)S ⋊Z2(ϕ+S).
The vacuum manifold RP of the polar phase is [1]

RP = G ′/HP = (S2S ×U(1)ϕ)/Z2(ϕ+S), (15)

where S2S denotes inversion.
The spin–orbit coupling (SOC) energy in the polar phase

is proportional to (d̂ · m̂)2, which favors d̂ orientation in the
plane perpendicular to the nafen anisotropy axis. In addition,
there is a magnetic energy term proportional to (H · d̂)2, which
orients d̂⊥H at sufficiently large magnetic fieldsH above the
dipole field HD ∼ 3mT. For a tilted field H ∦ m̂, the combina-
tion of the spin-orbit and magnetic energies breaks the SO(2)S
symmetry of HP in equation (14), resulting in the reduced
residual symmetries at scales larger than ξH and ξD

H̃P = SO(2)L ×Z2(ϕ+S) ×T×C×PUπ . (16)

Here we additionally took into account strong orienting effect
of nafen strands on the orbital space which fix m̂ along the
strands (common direction of m̂ can be assumed since (d̂,m̂)
and (−d̂,−m̂) is the same state), while keeping the symmetry
SO(2)L of orbital rotation about the strand direction unaffected
by any other orientational energy.

The existence of the symmetry group Z2(ϕ+S) in
equation (16) signifies that there are two degenerate min-
imum energy states which can be obtained via transformation
(d̂,ϕ)→ (−d̂,ϕ +π). Such degenerate regions are connected
by topological d̂ solitons, which can be terminated in bulk by
HQVswith π phase winding, discussed in detail in section 3.3.

2.2.3. PdA phase. In the 90 mg cm−3 nafen sample, the
PdA phase is reached on cooling via a second-order phase
transition from the polar phase [16]. The order parameter of
the PdA phase is

APdA
µj =∆PdAe

iϕd̂µ(m̂j+ ibn̂j), (17)

where 0< b< 1 is a dimensionless parameter characterizing
the gap distortion and ∆PdA(b) is the maximum gap in the
PdA phase. For b= 0 the order parameter of the polar phase is
obtained, while b= 1 recovers the order parameter of the bulk
A phase. The order parameter is symmetric under rotations
of the spin space about d̂, about the combined transformation
Z2(ϕ+S), and with respect to π rotation about l̂ and π phase
change, i.e. about (m̂, n̂,ϕ)→ (−m̂,−n̂,ϕ +π). Moreover,

the D̃∞S symmetry is preserved in the polar-PdA transition
due to similar spin structure of the order parameter. In the
orbital space, π rotation about the axis l̂, in combination with a
phase rotation eπ i, form a symmetry, i.e. the orbital symmetry
is reduced to a discrete symmetryUπ (ϕ+L). Similar to the bulk
A phase, the time-reversal symmetry is partially broken in the
PdA phase and the PdA phase is invariant under the combined
discrete symmetry Z2(T+L). The maximum residual symmetry
group in the PdA phase is

HPdA = Uπ (ϕ+L) × D̃∞S ×Z2(T+L) ×C×PUπ . (18)

Assuming phase transition from the normal phase, the vacuum
manifold of the PdA phase becomes

RPdA
1 = G ′/HPdA = SO(2)L × S2S ×U(1)ϕ . (19)

In addition, the groupHPdA is also the subgroup ofHP, reflect-
ing the fact that the PdA-polar phase transition is of the
second order. For the polar-PdA transition, the vacuum mani-
fold becomes

RPdA
2 = HP/HPdA = SO(2)L. (20)

The SOC ∝ (d̂ · l̂)2 in the PdA phase affects distribution
of both spin d̂ and orbital l̂ anisotropy axes since, unlike the
polar phase, the orbital degrees of freedom are not fully fixed
by the confinement. The effect of the magnetic anisotropy is
similar to that in the polar phase. The reduced symmetry at
scales larger than ξH and ξD is

H̃PdA = Z2(ϕ+S) ×Z2(T+L) ×C×PUπ . (21)

A similar consideration holds for the spin part of the bulk A
phase, where the residual symmetries in the presence of mag-
netic and spin-orbit energies become

H̃A = U(1)ϕ+L ×Z2(ϕ+S) ×Z2(T+L) ×C×PUπ . (22)

In both cases of bulk A and confined PdA phases the resid-
ual symmetry groups contain the two degenerate ground states
connected by the Z2(ϕ+S) symmetry and thus support HQVs,
as in the polar phase.

It is worth noting that the symmetry considerations above
concern an ideal confinement without random inhomogeneity.
In practical samples, fluctuations of the density of confin-
ing strands leads to formation of the Larkin-Imry-Ma (LIM)
orbital glass state in the PdA phase. Originally, LIM state was
discovered in the A phase confined in the isotropic aerogels
[32, 33], where random anisotropy breaks long-range order
of the orbital vector l̂ and orientation of l̂ fluctuates over all
possible directions in 3D space with a characteristic length
scale significantly smaller that the dipolar length ξD. In the
PdA phase under strong anisotropic columnar confinement, l̂
is fixed into the plane perpendicular to the confining strands.
Experimental evidence [34, 35] suggests, that also in this case
the long-range orientational order of l̂ within this plane is lost,
and the 2D LIM state is formed. Formation of LIM state does
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not eliminate the Z2(ϕ+S) symmetry responsible for the exist-
ence of solitons considered in this work, but it does modify the
NMR response.

Another way to introduce a discrete Z2 symmetry is to
confine superfluid 3He into a narrow slab. Independently of
the original superfluid phase, the boundary orients the orbital
momentum of the Cooper pairs along the surface normal. Two
states connected with Z2 symmetry correspond to the orbital
momentum oriented toward or away from the wall. The corres-
ponding solitons or domain walls connecting two states were
observed both in the B [36] and A [37–39] phases. At the con-
ditions near the phase transition between A and B phases such
walls can proliferate and create a spatially modulated order
parameter [36]. In the A phase, reorientation of the orbital
momentum can take place independently or in combination
with d̂, owing to the SOC. In the latter case the soliton is rel-
atively thick, of the order of the slab thickness, and has been
directly visualized by magnetic resonance imaging [39].

2.2.4. PdB phase. Depending on the confinement, the
phase transition to the PdB phase may occur directly from the
normal phase [40], via a first-order transition from the PdA
phase [16] (as realized in the nafen-90 sample), or, in prin-
ciple, via a second-order phase transition from the polar phase.
The order parameter of the PdB phase in zero magnetic field
can be written as

APdB
µj =∆PdBe

iϕ(d̂µẑj+ q1ê1µx̂j+ q2ê2µŷj), (23)

where |q1|= |q2| ≡ q ∈ (0,1) describes the relative gap size
in the plane perpendicular to the strands. Vectors ê1 and ê2

are unit vectors in the spin space and form an orthogonal triad
with vector d̂. The maximum gap ∆PdB(q) is achieved along
the nafen anisotropy axis ẑ. For q= 0, the order parameter of
the polar phase is obtained while q= 1 recovers the order para-
meter of the bulk B phase. The order parameter is symmetric
under the joint rotation of the spin and orbital spaces about the
nafen anisotropy axis ẑ. The remaining symmetries in the PdB
phase are

HPdB = SO(2)J ×T×C×PUπ, (24)

where the subscript notation J refers to the symmetry of the
simultaneous rotation of orbital and spin spaces.

The vacuummanifold for the normal-PdB phase is obtained
from

RPdB
1 = G ′/HPdB = SO(3)J ×U(1)ϕ . (25)

The group HPdB is again a subgroup of HP, reflecting the fact
that also the polar-PdB phase transition is of second order. In
this case, the resulting vacuum manifold becomes

RPdB
2 = HP/HPdB = SO(2)J ×Z2(ϕ+S). (26)

We note that RPdB
2 is a disconnected space character-

ized by states (d,e1,e2,ϕ) and (−d,−e1,e2,π+ϕ). These
right-handed and left-handed spaces can not be made equal

by any action from HP. Moreover, calculating π0(RPdB
2 ) yields

Z2(S+ϕ) describing a domain wall structure (whereas solitons
are described by the π1 homotopy group). As we will see
further, the domain wall may combine with various types of
solitons to form composite topological defects.

2.2.5. Residual symmetries in the presence of orientation
energies in the PdB phase. The orientational energies with
different coupling strengths and hierarchy of characteristic
length scales reduce the normal phase symmetry group, res-
ulting in reduced degrees of freedom for the order parameter
vacuum manifolds after SSB phase transitions. The reduced
vacuum manifolds introduce a different set of topological
objects than those generated through fibration, discussed in
section 2.2.1. For example, in the PdB phase the orientation
energies allow the topological objects described by the relative
homotopy groups πn(RPdB

1 ,RPdB
2 ) to expand into mesoscopic

length scales, forming a nexus [41–43]. In this section we will
discuss the reduction of the vacuum manifolds at mesoscopic
length scales.

In 3He the relevant length scales are the magnetic length ξH
and the dipole length ξD [1, 4], which characterize the spatial
ranges in which the gradient energy dominates over the orient-
ational energy. When the length scale of the spatial variation is
larger than these characteristic length scales, the vacuumman-
ifolds are reduced to minimize the orientation energies. See
appendix B for details on calculation of values of ξH and ξD.

If a static magnetic field H(0) with fixed direction is turned
on [5], the degenerate space of the PdB order parameter
reduces to

RH
1 = S1S ×U(1)ϕ (27)

in the region where length scale of spatial variation is larger
than ξH. Here S1S is the reflection symmetry. Since the mag-
netic energy locks the d̂ vector into the plane perpendicular to
H(0), RPdB

2 retains its form inside the region characterized by
the length scale ξH. It follows that RPdB

2 = SO(2)J ×Z2(ϕ+S)

in the region where d̂ is approximately constant. In figure 4,
we illustrate the RH

1 and ξH in the presence of the KLS wall.
When the SOC is taken into account, the vacuummanifolds

are further reduced from RH
1 and RPdB

2 . In general, the require-
ment of minimizing the SOC energy in the region with r> ξD
fixes the relative directions between spin and orbital vectors,
resulting in the broken relative spin-orbit symmetry [1]. Thus
RH
1 reduces to

R̃SOC
1 = RSOC

S ×U(1)ϕ (28)

in the region with r> ξD, where RSOC
S is the reduced vacuum

manifold of the spin degree of freedom. Generally speaking,
RSOC
S has a complicated form, which may be simplified by

using the following parametrization

d̂= x̂cosθ− ẑsinθ, ê1 =−x̂sinθ− ẑcosθ, ê2 = ŷ, H(0) =Hŷ,
(29)
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Figure 4. Illustration of relevant length scales in the PdB phase.
The smallest length scale in the PdB phase is provided by the
coherence length ξ, which sets the size of the vortex core. The KLS
wall, described by π1(R

PdB
1 ,RPdB

2 ), is larger than the the coherence
length by a factor q−1. In the region r< ξH the vacuum manifolds
are described by the groups RPdB

1 and RPdB
2 , while the presence of

magnetic and SOC energies extends the hierarchy of length scales to
mesoscopic lengths. In the region ξH < r< ξD, RPdB

1 reduces to RH
1

and the spin vector d̂ becomes fixed perpendicular to the static
magnetic field H(0), while the RPdB

2 remains unchanged. When the
SOC energy is taken into account, RH

1 further reduces to R̃SOC
1 and

RPdB
2 reduces to R̃2.

where θ is the angle between d̂ and local orbital-coordinate
frame [5]. In this case, we find

RSOC
S = {θ0,π− θ0,−θ0,π+ θ0}, (30)

where θ0 = arcsin(q/(1− |q|)). In the region where d̂ is
approximately constant, the SOC energy fixes the relative rota-
tion of SO(2)J, reducing RPdB

2 to

R̃2 = Z2(ϕ+S) (31)

in the region r> ξD. The regions described by groups RH
1 ,

R̃SOC
1 , and R̃2 are illustrated in figure 4.

3. Composite topological objects

The relative homotopy groups may be utilized to investigate
topological objects in the presence of multiple characteristic
length scales [3, 44, 45]. In addition to the PdB phase discussed
in the previous section, examples of such systems include
e.g. solitons terminated by HQVs in spinor Bose condensates
with quadratic Zeeman energy [46, 47]. In this section, we will
discuss various composite objects connected by solitons in the
superfluid phases of 3He.

3.1. Relative homotopy groups—from polar to polar-distorted
phases

In experimentally reachable magnetic field H(0) the magnetic
healing length is much larger than the coherence length, ξH �
ξ. The symmetry group G′ and the symmetry breaking pattern
described by equation (7) are valid in the region ξ � r⩽ ξH.
In section 2.2.1, we have seen that the polar-phase topological
objects survive a second symmetry-breaking transition into
either PdA or PdB phases. In this section, we will study how
these objects change in the transition to the PdA and PdB by
analyzing the relative homotopy groups πn(R1,R2). The struc-
tures of the relative homotopy groups πn(R1,R2) can be extrac-
ted from their short exact sequences (SESs). The SESs are cal-
culated by splitting the long exact sequences of πn(R1,R2). In
this section we use the results calculated in appendices C.1
and C.2.

The SES of π1(RPdA
1 ,RPdA

2 ) is

and SES of π2(RPdA
1 ,RPdA

2 ) is

where the vacuum manifolds RPdA
1 and RPdA

2 are given by
equations (19) and (20). From the SESs of π1(2)(RPdA

1 ,RPdA
2 )

in equations (32) and (33), we find that the boundary
homomorphisms ∂∗ are trivial both for π1(RPdA

1 ,RPdA
2 ) and

π2(RPdA
1 ,RPdA

2 ). In other words, linear and point-like defects
(HQVs and d-monopoles, respectively), which PdA phase
inherits from polar phase, are simple (i.e. not composite) topo-
logical objects. Due to similar spin structure, the HQVs and
d-monopoles are similar in both phases [41].

In contrast, the symmetry breaking pattern resulting in
the PdB phase yields the SESs for π1(RPdB

1 ,RPdB
2 ) and

π2(RPdB
1 ,RPdB

2 ), which have non-trivial boundary homomorph-
isms. Specifically, they are

and

where RPdB
1 , RPdB

2 are given by equations (25) and (26). The
homotopy group Z2(ϕ+S) = π0(RPdB

2 ) gives rise to the KLS
domain walls [48, 49] owing to the disconnected vacuumman-
ifold RPdB

2 discussed in section 2.2.4, while the homotopy
group 2ZJ ⊂ π1(RPdB

2 ) describes spin vortices with an even
winding number [41].

Non-trivial boundary homomorphisms ∂∗ in equations (34)
and (35) describe how low-dimensional objects, e.g. KLS
walls and spin vortices, connect to objects with higher dimen-
sionality. Here we have considered HQVs and d-monopoles,
inherited from the polar phase. We refer to the resulting
composite objects consisting of D-dimensional and (D+ 1)-
dimensional objects, as string-walls and string-monopoles,
respectively, based on the rank of their relative homotopy
groups [41].
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3.2. Vortex-bound solitons in the PdB phase and the nexus
object

We now know that the PdB phase supports several compos-
ite topological objects with different dimensions, contained in
length scales smaller than ξH. However, typical NMR experi-
ments probe superfluid properties at length scales larger than
ξH, which poses a question: what happens to composite objects
at length scales approaching ξH? This question is both the-
oretically interesting and relevant for understanding experi-
mental observations, as composite objects with characteristic
length scales ξ or ξ/|q| cannot be observed directly with NMR
methods.

Composite defects, such as walls bounded by strings stud-
ied in [5], can be identified from the NMR signature of the
related spin solitons. HQVs can therefore be considered as
one dimensional (1D) nexuses connecting defects with differ-
ent characteristic sizes [42, 43]. In this section, we will dis-
cuss the relative homotopy groups for the reduced vacuum
manifolds analyzed in section 2.2.5. We will see how HQVs
and KLS walls with characteristic length scales ξ and ξ/|q|,
respectively, connect to spin solitons with much larger char-
acteristic length scale, set by the dipole length ξD. In this prob-
lem the length scales are well separated, ξD � ξ/|q| � ξ [42].
For technical details, we refer the reader to appendix C.3.

3.2.1. Walls bounded by strings. In the region ξH < r< ξD,
the SES of π(RH

1 ,R
PdB
2 ) is

Equation (36) determines how linear defects with a character-
istic length scale ξH < r< ξD connect with a possible domain
wall. Equation (36) suggests

π1(R
H
1 ,R

PdB
2 )∼= Z̃, (37)

which is isomorphic to π1(RPdB
1 ,RPdB

2 ) within ξH. In other
words the KLS wall, determined by two length scales ξ
and ξ/q, extends into the region ξH ⩽ r⩽ ξD. However,
equation (36) only contains the phase factor ϕ. In particular,
all information about the spin degrees of freedom is lost as
they are trivial elements of π1(RH

1 ,R
PdB
2 ). To restore the spin

part of the KLS wall, we recall that the domain wall connects
regions with (d,e1,q,ϕ) and (−d,−e1,−q,π+ϕ) [50]. How-
ever, equation (37) only catches the phase degree of freedom,
i.e. phase vortices. Similarly, the spin degree of freedom can
be described by the group

M≡ {nS/2|nS ∈ Z}, (38)

such that M/π1(S1S)
∼= Z2 = {[0], [1/2]}, where π1(S1S)⊂

π1(RH
1 ) represents free spin vortices. The cosets [0] and [1/2]

correspond to the absence or presence of the KLS stringwall in
the region ξH < r⩽ ξD, respectively. Coset [0]∼= 2Z contains
all integer spin vortices, while the Coset [1/2]∼= {n+ 1/2|n ∈
Z} contains all half-integer spin vortices, including the HQV.
These properties are equivalent to SES

3.2.2. Spin solitons. For r> ξD, RH
1 reduces to R̃SOC

1 =
RSOC
S ×U(1)ϕ. The resulting linear objects are classified by

the homotopy group π1(RH
1 , R̃

SOC
1 ) which has the SES

It follows that

π1(R
H
1 , R̃

SOC
1 ) = {nS/4|nS ∈ Z} ∼= Z, (41)

and

π1(R
H
1 , R̃

SOC
1 )/ZS

∼= Z4. (42)

Because equation (40) is determined byZS = π1(S1S) andZ4 =
π0(RSOC

S ) (see details in appendix C.3), we have

π1(R
H
1 , R̃

SOC
1 ) = π1(S

1
S,R

SOC
S ). (43)

Equation (43) signifies that the linear objects classified by
π1(RH

1 , R̃
SOC
1 ) only involve the spin degree of freedom, i.e. they

are spin solitons and spin vortices [41, 45]. The four cosets of
π1(S1S,R

SOC
S ) are

[0] ={nS} ,
[
1
4

]
=

{
nS +

1
4

}
,[

2
4

]
=

{
nS +

2
4

}
,and

[
3
4

]
=

{
nS +

3
4

}
.

(44)

These cosets give the topological invariants of the four types
of linear objects corresponding to spin vortices and three types
of spin solitons. Figure 5 shows the representatives of spin
solitons of π1(S1S,R

SOC
S ). Following the terminology in [5],

they are the big-soliton (|∆θ|= π + 2θ0), the soliton (|∆θ0|=
π− 2θ0), the KLS-soliton (|∆θ0|= 2θ0), and the π-soliton
(|∆θ|= π). Spin vortices, i.e. the coset [0], are not discussed
further as they are outside the scope of this manuscript.

A significant property of π1(S1S,R
SOC
S ) is that it has a sub-

group Gsub ≡ {[0], [2/4]} such that Gsub/ZS
∼= Z2. It follows

that the SES of Gsub is given by equation (40) as

The mapping diagram of equation (45) is shown as the dashed
panel in figure 6. Comparing equations (39) and (45) leads to

Gsub = π1(S
1
S, R̃2)∼= Ẑ=M, (46)

where Ẑ≡ {nS/2|nS ∈ Z}.
Equation (46) suggests that one can continuously transform

spin solitons, classified by the [2/4] coset of π1(S1S, R̃2), to half
spin vortices of M. In other words, the KLS wall smoothly
connects to the [2/4] spin soliton via a HQV. Similarly to a 2D
nexus connecting the stringmonopole and the vortex skyrmion
[41, 43], the HQV is a 1D nexus connecting the KLS wall and
the [2/4] spin soliton [42]. The composite object formed by
the [2/4] spin soliton and the KLS wall is called the 1D nexus
object.
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Figure 5. Soliton structures in the PdB phase. The black fine dotted lines represent the four elements of RSOC
S i.e. ±θ0 and π ± θ0. The

colored dashed, dotted, dash-dotted, and solid lines correspond to π-soliton (|∆θ|= π), soliton (|∆θ|= π − 2θ0), KLS-soliton
(|∆θ|= 2θ0) and big-soliton (|∆θ|= π+ 2θ0), respectively. Panel (a) sketches the spin solitons with topological invariants 1/4, 2/4 and
3/4 originating at θ0 (orange) and π− θ0 (blue), respectively, and panel (b) sketches similar spin solitons originating at −θ0 (pink) and
π+ θ0 (green).

Figure 6. LES, SES, and spin solitons in the PdB phase. The mapping diagram drawn here demonstrates that the linear objects given by
π1(R

H
1 , R̃

SOC
1 ) are spin solitons. This is because the mapping between π1(R̃

SOC
1 ) and π1(R

H
1 ) is a projection, the image of homomorphism

i∗ : π1(R̃
SOC
1 )→ π1(R

H
1 ) = Zϕ, i.e. the topological invariant of all phase vortices. As a result, all the trivial linear objects given by

π1(R
H
1 , R̃

SOC
1 ) are phase vortices as Im[i∗]∼= ker[j∗]. Since ker[k∗]∼= Im[∂∗] = Z4, there are three types of spin solitons (and one type of spin

vortex). In addition, the subgroup G= {[n], [n+ 2/4]} is an extension of ZS by π0(R̃
SOC
2 ) = Z2 and therefore isomorphic to M. The

corresponding SES is marked by the dashed line. The HQV acts as a 1D nexus between the spin soliton given by the coset [2/4] and the
KLS wall [42].

3.2.3. The 1D nexus object. We note that since
π1(S1S,R

SOC
S )/ZS

∼= Z4, we have [2/4] = [1/4] + [1/4]. It fol-
lows that the relative homotopy group π1(S1S, R̃2) can be rep-
resented both as {[0], [1/4] + [1/4]} and as {[0], [2/4]}. In
other words, there are two types of spin soliton configurations
connecting to a KLS wall via a HQV for a given element of
π1(S1S, R̃2). When the topological invariant is 2/4, the spin
soliton is spatially inseparable and forms a π-soliton sketched
in figure 7(a).

On the other hand, when the topological invariant is 1/4+
1/4, the spin soliton is a combination of two spatially separ-
able spin solitons, each described by the topological invari-
ant 1/4. These two spatially separated spin solitons are the
KLS soliton (|∆θ|= 2θ0) and the soliton (|∆θ|= π − 2θ0).

As illustrated in figure 7(b), the 1D nexus object contains two
spin solitons. As we will see in section 4, the free energies
and spin textures of the two cases are quite different, resulting
in distinguishable dynamic spin response properties and NMR
frequency shifts. The corresponding minimum energy config-
urations based on 2D calculations [42] for both configurations
are shown in figure 8.

3.3. Vortex-bound solitons in the polar phase

In the polar phase, the solitons are bound by HQVs. The
existence of HQVs was predicted decades ago in 3He-A [51]
and observed recently in the polar [4] and polar-distorted
[5] phases of 3He. Previously, HQVs have been observed in
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Figure 7. Nexus object configurations. The 1D nexus object consists of spin soliton(s), a HQV and a KLS wall. The green and cyan arrows
represent the d̂ and ê1 vectors respectively. (a) Configuration of the inseparable spin soliton. In this configuration, the topological invariant
of spin soliton is 1/2, which corresponds to π-soliton. (b) In this configuration there are two spin solitons with topological invariant 1/4
when the group π1(S

1
S, R̃2) is implemented in alternative way. Following the requirement of continuity of order parameter, these two spin

solitons are the KLS-soliton (∆θ = 2θ0) and the soliton (∆θ = π− 2θ0).

Figure 8. Minimum energy configurations for different spin solitons. Numerically calculated equilibrium configurations of inseparable and
separable spin solitons in one-half unit cell with |q|= 0.18 and D= 18ξD. (a) Inseparable configuration with the π-soliton, corresponding
to the sketch in figure 7(a). (b) Separable configuration with combination of the KLS-soliton and the soliton, corresponding to the sketch in
figure 7(b).

grain boundaries of d-wave cuprate superconductors [52], in
superconductor rings [53], and in Bose condensates [54, 55].
In p-wave superfluids such as 3He, HQVs provide access to
vortex-core-bound fermion states, which have been predicted
to harbor non-Abelian anyons in 2D px+ ipy superconductors
and superfluids [6, 7].

In the polar phase the presence of magnetic field larger
than the dipole field, H> 3 mT, fixes the spin anisotropy
vector d̂= îcosθ(r)+ ĵsinθ(r) in equation (13) via the spin-
orbit interaction Fso ∝ (d̂ · m̂)2 to the plane perpendicular to
H. Vectors î and ĵ are mutually orthogonal unit vectors in
the plane normal to H. The orbital anisotropy vector m̂ is
pinned parallel to nafen strands, m̂ ‖ ẑ. The combined effect
of the confinement and magnetic field affects the distribution
of the d̂ vector such that θ is governed by the Sine-Gordon
equation

∇2θ =
1

2ξ2D
sin2µ sin2θ. (47)

Here ξD ∼ 10µm is the dipole length and µ is the angle of the
magnetic field with respect to ẑ.

The polar phase order parameter supports three different
vortex types illustrated in figure 9—the singly quantized phase
vortices, the spin-current vortices (SCVs), and the HQVs.
Reorientation of d̂ outside of SCV and HQV cores is gov-
erned by solitonic solutions of equation (47). In tilted H ∦ ẑ
field the SCV terminates two π-solitons, while the HQV ter-
minates just one. Additionally, solitons may be terminated at
the sample boundary. The soliton width is fixed by the charac-
teristic length scale ∼ξD/sinµ. For H ‖ ẑ or at zero magnetic
field, all states with d̂⊥ m̂ are degenerate, and solitons are not
created.
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Figure 9. Vortex types in the polar phase. The phase of the order parameter ϕ is shown as the background color. The spin anisotropy vector d̂
is locked to the plane (green disks) perpendicular to the magnetic field H by magnetic energy. In this plane, the vector d̂ rotates by π around
the HQV core and by 2π around the spin vortex core. In a tilted magnetic field (H ∦ m̂) the reorientation of the d̂ vector is concentrated in
one or two solitons (illustrated with dashed lines) with π winding, terminating at the HQV or at the spin vortex core, respectively. The nafen
strands, oriented along m̂, and the vortex lines are orthogonal to the figure. The phase vortex and the HQV have hard cores (red discs) of the
size of coherence length ξ ∼ 40 nm, while the spin vortex has a soft core (blue disc) of much larger dipolar size ξD ∼ 10 µm.

Figure 10. Structure of the SMV in 3He-B. (Left)Mass vortex traps winding of phase ϕ around a hard core. (Center) Disclination in the
orbital rotation field takes form of a soliton tail terminated by a spin vortex with a hard core. (Right)When cores of mass and spin vortices
merge, a stable configuration of SMV in rotating container is possible.

3.4. Composite spin-mass vortex with soliton tail in 3He-B

The existence of the spin-mass vortex (SMV)—a composite
defect in superfluid 3He-B [56, 57]—may be seen from the
B-phase order parameter, equation (2). The B phase order
parameter supports different types topological defects
sketched in figure 10. In rotation the most usual defect is a
mass-current vortex, a conventional quantized vortex line.
Around it the phase ϕ winds by 2π, which results in a super-
current proportional to ∇ϕ around its singular core. Within
the core the amplitude of the order parameter |Aαj| is depleted
from its equilibrium value ∆B. A second defect is a disclin-
ation in the Rαj field. It also has a singular core which is
encircled by a spin current. On moving once around the core
n̂ reverses its direction twice: First by smooth rotation while
the angle θ remains at the equilibrium value θL ≈ 104◦, which
minimizes the spin-orbit interaction energy. Later by increas-
ing θ to 180◦, where both directions of n̂ are equivalent,
and then decreasing back to θL. The second leg in the direc-
tion reversal does not minimize the spin-orbit interaction and
hence it becomes confined in space within a planar structure,
a soliton sheet, which terminates on the linear singular core or
on the wall of the container. This structure becomes possible

through the existence of two different energy (and length)
scales: The superfluid condensation energy defines the scale
of the coherence length ξ ∼ 10–100 nm, which is roughly the
radius of the singular core. The much weaker spin-orbit inter-
action defines the scale of the dipolar healing length ξD ∼ 10
µm, which is approximately the width of the soliton sheet. The
detailed topological analysis of the B-phase soliton structures
can be found in [58], where experimentally realized config-
urations correspond to (−+ 1) or (+− 1) classes in terms of
that work.

The spin vortex by itself is an unstable structure: The sur-
face tension of the soliton leads to its annihilation and disap-
pearance. Another composite defect—the combined SMV—
can be stabilized in the rotating container. It has both phase
ϕ winding and a Rαj disclination trapped on the same core.
If the number of mass-current vortex lines in the container
is less than that in the equilibrium state in rotation, then the
existing lines are confined to a cluster in the center of the con-
tainer by the Magnus force from the uncompensated normal-
superfluid counterflow. Due to the trapped mass current the
SMV also experiences the Magnus force which pulls it toward
the vortex cluster. This force is opposed by the surface ten-
sion of the soliton and as a result its equilibrium position is
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slightly outside the cluster of mass vortices. The soliton tail of
the SMV has a characteristic NMR absorption response which
allows its identification.

Another possible stable configuration is the soliton sheet
bounded by two SMVs and embedded within the vortex
cluster. The size of such pair is set by competition of the sur-
face tension of the soliton sheet, which tries to pull vortices
together and repulsion of two mass vortices of the same circu-
lation. The equilibrium size is estimated to be about 6ξD and
it is too small to identify contribution of a single pair in the
NMR spectrum.

4. Spin dynamics and NMR

NMR techniques are used as a non-invasive way to probe the
properties of different superfluid phases of 3He. NMR meth-
ods are particularly useful for extracting information about the
SOC. This is because the long range coherence in superfluid
states enhances the SOC energy [59, 60]. In the superfluid
state, the observable NMR resonance frequency is often shif-
ted from the Larmor value since the precessing spin experi-
ences an additional torque from SOC. The topological solitons
form potential wells for bound spin-wave states, which res-
ult in satellite peaks with characteristic frequency shifts. Since
the characteristic time scale of SOC is much longer than the
microscopic time scales of superfluid, i.e. ℏ∆−1, the micro-
scopic processes remain in equilibrium under weak magnetic
perturbation. In other words, the NMR response is the hydro-
dynamic response of the spin densities δSa and spin vectors
[1, 61].

Under weak magnetic perturbation δHa ≡ δH along y-axis,
the linear response of spin density is

δS+(r, t) =
ˆ

dσ ′
ˆ

dt ′
δS+
δHa

(r, t,r ′, t ′)δHa(r ′, t ′)+O(δHa
2),

(48)

where δS+ = [δS1 + iδS3]/
√
2 is transverse spin density and

a= 1,2,3 are spatial coordinate indices. To calculate the
response function and its poles, we use method based on
hydrodynamic equations [61]. In the hydrodynamic limit, the
system of dynamic equations of spin densities Sα and spin vec-
tors are a system of Liouville equations

∂Sα
∂t

= {Fhy,Sα},
∂Va

α

∂t
= {Fhy,V

a
α}, (49)

where Va=1
α = d̂, Va=2

α = ê1 and Va=3
α = ê2, such that ê2 =

d̂× ê1 is directed along spin polarization, denote the three
spin vectors of order parameter. These equations are known
as the Leggett equations [1]. The hydrodynamic free energy
of a superfluid dominated by the SOC energy is

Fhy =

ˆ
Σ

( fH + fsoc + fgrad)dΣ. (50)

Equation (49) can be rewritten as

∂Sα
∂t

=

ˆ
Σ

d3r ′
δFhy

δSβ
(r ′){Sβ(r ′),Sα(r)}

+

ˆ
Σ

d3r ′
δFhy

δVa
β

(r ′){Va
β(r

′),Sα(r)}
(51)

and

∂Va
α

∂t
=

ˆ
Σ

d3r ′
δFhy

δSβ
(r ′){Sβ(r ′),Va

α(r)}, (52)

where α,β = 1,2,3 are indexes of spatial components of
hydrodynamic variables. The Poisson brackets between Sα
and Va

α are [62]

{Sα(r1),Sβ(r2)}= ϵαβγSγδ(r1 − r2)

{Sα(r1),Va
β(r2)}= ϵαβγV

a
γδ(r1 − r2),

(53)

where r1 and r2 are the spatial coordinates and ϵαβγ is the Levi-
Civita symbol.

4.1. Satellite shifts induced by spin solitons in the PdB phase

After plugging equation (53) into equations (51) and (52), the
coupled first order dynamic equations for spin densities Sα and
Va
α for the PdB phase are given as

∂Sα
∂t

= γHβϵαβγSγ −
6
5
gDV

d
j V

b
γϵαβγQ

bd
βj

+(∂i∂jV
b
β)V

a
γϵαβγK

ba
ij ,

(54)

∂Va
α

∂t
= γHβϵαβγV

a
γ − δγ2χ−1

⊥ SηV
3
ηV

3
βϵαβγV

a
γ

− γ2χ−1
⊥ SβϵαβγV

a
γ ,

(55)

where δ = (χ⊥ −χ∥)/χ∥ in which χ⊥ and χ∥ are the PdB
phase transverse and longitudinal magnetic susceptibility,
respectively. Here

Kbaij = K1δijX
b
mX

a
m+K2X

a
j X

b
i +K3X

b
j X

a
i ,

Qbd
βj = XbβX

d
j +XdβX

b
j

(56)

with X1
i =∆⊥1x̂i,X2

i =∆⊥2ŷi,X3
i =∆∥ẑi. Starting from the

first order equations of spin densities and degenerate para-
meters in equations (54) and (55), we can further derive the
second order spin dynamic response equations of δSα under
weak magnetic drive δHα by plugging

Hα = H(0)
α + δHα(t)

Sα = S(0)α + δSα(r, t)

Va
α = Va(0)

α + δVa
α(r, t)

(57)

into equations (54) and (55). Here the S(0)α and Va(0)
α are

the equilibrium spin densities and equilibrium degenerate
parameters, respectively. The δSα(r, t) and δVa

α(r, t) are the
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dynamic parts of the perturbed spin densities and degenerate
parameters, the H(0)

α is the static magnetic field and δHα(t) =
|δH|x̂e−iωt is the RF drive. The derived spin dynamic response
equations are

iωδSα(ω) = γϵαβγH
(0)
β δSγ(ω)+ γϵαβγS

(0)
γ δHβ(ω)

+
Ξαλ

iω
δSλ(ω)+

Cαη

iω
δHη(ω)

(58)

and

Ξαλ =
γ2

χ⊥
Kbaij Λ

ba
ijαλ +

6gDγ2

5χ⊥
RdbjλαβQ

bd
βj

+
6gDγ2

5χ⊥
Vd(0)
ζ Vb(0)

γ ϵjλζϵαβγQ
bd
βj

Cαη = γGba
ijαηK

ba
ij −

6gDγ
5

RdbjηαβQ
bd
βj

− 6gDγ
5

Vd(0)
ζ Vb(0)

γ ϵjηζϵαβγQ
bd
βj,

(59)

where

Rdbjηαβ = Vd(0)
j Vb(0)

β δηα −Vd(0)
j Vb(0)

α δηβ ,

Gba
ijαγ = (∂i∂jV

b(0)
α )Va(0)

γ − (∂i∂jV
b(0)
β )δβγV

a(0)
α ,

Λba
ijαλ = (∂i∂jV

b(0)
β )δβλV

a(0)
α +(Vb(0)

γ Va(0)
γ δαλ

− δγλV
b(0)
α Va(0)

γ )∂i∂j+ [(∂iV
b(0)
γ )Va(0)

γ δαλ

− (∂iV
b(0)
α )Va(0)

γ δγλ]∂j+ [(∂jV
b(0)
γ )Va(0)

γ δαλ

− (∂jV
b(0)
α )Va(0)

γ δγλ]∂i− δγλ(∂i∂jV
b(0)
α )Va(0)

γ .

(60)

The first two terms of equation (58) correspond to the Lar-
mor precession with frequency ωL = γH(0), while the last two
terms, known as torque terms, describe the NMR response
related to the superfluid order parameter texture.

The torque terms in equations (59) and (60) are fully
determined by the equilibrium order parameter texture, i.e. the
NMR frequency shift arises from the equilibrium texture of
spin solitons. Taking the static magnetic field H(0) = |H(0)|ŷ
and the parametrization equation (29) into account, the poles
of the dynamic response equations for the transverse spin
density δS+ = 1√

2
[δS1(ω)+ iδS3(ω)] under weak magnetic

drive δH(t) become

(ω2 −ω2
L)δS+(ω) = (Ξ11 +Ξ33)+ i(Ξ13 −Ξ31)δS+(ω).

(61)

In experiments, the observed transverse frequency shift λ is
found from an eigen-equation using the parametrization in
equation (29). For the full calculation, we refer the reader to
[42, 63]. The end result of the calculations is

λδS+(ω) = ξ2D[(6q
2
2 + q21 + 1)∂y∂y

+(3q21 + 2q22 + 1)∂x∂x]δS+(ω)

− (2ξ2DiV−U)δS+(ω) (62)

with

V= (1+ 3q21 cos2θ)∂xθ∂x+(1+ q21)∂yθ∂y

+
1

2ξ2D
[(1+ q1)

2 sin2θ− (1+ q1)q2 cosθ],

U= (1+ q1)[−(1+ q1)cos2θ− 5q2 sinθ] + 1+ q21 + 4q22,
(63)

and

λ=
(ω2 −ω2

L)

Ω2
PdB

, Ω2
PdB =

6γ2∆2
PdBgD

5χ⊥
, (64)

where ΩPdB is the Leggett frequency in the PdB phase. The
Eigen-equation (62) was solved through Galerkin Eigen-value
method with a finite element mesh [42, 63–65]. The Eigenval-
ues λ resulting from stationary configuration of spin solitons
are plotted in figures 11 and 12. The relative intensity of the
soliton satellite, determined as the ratio of the area of the satel-
lite Isat to the total area Itot under the absorption spectrum can
be calculated using found eigenfunctions δS+ as

Isat
Itot

= n
|
´
δS+ dV|2´
|δS+|2 dV

, (65)

where n= D−2/2 is the density of the solitons. The numer-
ical results for λ agree well with experimental observations,
discussed in more detail in section 5.4, while Isat/Itot scales
proportionally to

√
Ω, also similar to the experiment.

5. Experimental observations

In many experiments, vortex-bound solitons result in observ-
able signatures in the NMR spectrum, playing an integral role
in distinguishing various topological and composite defects in
superfluid phases of 3He. This section aims to provide a review
on the experimental observations of such defects to date,
underlining the role of solitons that led to these observations.

5.1. Identification of the SMV in 3He-B

Spin-mass vortices are formed in 3He-B as a rare event in two
different processes: When the front of the transition between
A and B phases of superfluid 3He sweeps through the rotating
sample [56] or by the Kibble-Zurek mechanism (KZM) [57].
Identification of the SMV is based on the NMR spectrum.

Owing to spin-orbit interaction the NMR absorption in
3He-B is shifted from the Larmor frequency by an amount
∆ν which depends on the local orientation of the anisotropy
axis n̂ with respect to the applied magnetic field H. In the
experiment in figure 13, the field is oriented along the rota-
tion axis Ω, which is also the symmetry axis of the sample
cylinder. At the soliton sheet n̂⊥H (figure 10), which pro-
duces the maximum possible frequency shift ∆νmax. Every-
where else in the rotating cylinder the angle between n̂ and H
(and thus the frequency shift) is smaller: The cluster of vor-
tex lines in the center of the container gives rise to absorption
with frequency shifts close to zero. The annular region with
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Figure 11. Intensity and frequency shift for inseparable π-soliton. The relative frequency shift λ corresponds to the lowest eigenvalue of
equation (62) with the equilibrium texture of π-solitons in the London limit. Filled circles represent the numerical results, while the lines are
guides for the eye. (a) For experimentally relevant values of |q|⩽ 0.2 the relative frequency shift λ≈−1 for all tested inter-vortex
separations D, in agreement with the experimental data from [5] (red diamonds). (b) The relative satellite intensity remains fairly constant
with q, but decreases with increasing inter-vortex distance. (c) The relative frequency shift increases when the inter-vortex distance is small
and saturates to a value λ≈ 1 for larger separation, regardless of q. (d) The relative satellite intensity scales with intervortex separation
approximately as Isat/Itot ∝

√
Ω, in agreement with the experimental observations.

vortex-free counterflow between normal and superfluid com-
ponent around the cluster is responsible for the large absorp-
tion maximum at 0.8∆νmax. The height of this peak decreases
with the decrease of the counterflow velocity, that is, when
new vortex lines are added to the cluster or if rotation velo-
city decreases with given number of vortices. The spectrum
drawnwith the solid linewasmeasured after the neutron irradi-
ation and shows the absorption from the soliton sheet, centered
around ∆νmax. A top view of the rotating cylinder with the
vortex cluster is depicted on the top row of the figure. This
illustrates how the SMV can be selectively removed by redu-
cing Ω to where the cluster has almost expanded to the wall
(at 0.2 rad s−1) and the SMV as the outermost vortex has
been pushed to the cylinder wall. After increasing Ω back to
the original 1.6 rad s−1 the spectrum plotted with the dashed
line was recorded. The difference from the original spec-
trum is the absence of the soliton signal (shown by the gray
area).

5.2. HQVs in the polar phase

In the polar phase, the minimum energy configuration of the
order parameter forms the main peak in the NMR spectrum at
the frequency [66]

∆ωP = ωP −ωL ≈
Ω2

P

2ωL
cos2µ. (66)

Here ΩP is the Leggett frequency in the polar phase, which
characterizes the spin-orbit torque.

Winding of the d̂ vector, e.g. in the form of a soliton,
provides an additional potential energy term for spin waves as
the spin-orbit energy is not at minimum. Excitation of stand-
ing spin waves within these potential wells leads to a satellite
peak in the NMR spectrum at frequency

∆ωPsat = ωPsat −ωL ≈
Ω2

P

2ωL

(
cos2µ+λP sin

2µ
)
, (67)
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Figure 12. Intensity and frequency shift for separable solitons. The relative frequency shift λ corresponds to the lowest eigenvalue of
equation (62) with the equilibrium texture of 1/4+ 1/4-solitons in the London limit. Filled circles represent the numerical results, while the
lines are guides for the eye. (a) The relative frequency shift λ increases with increasing |q|, since only solitons (|∆θ|= π− 2θ0) contribute
to the lowest transverse spin dynamic response mode. (b) The relative satellite intensity remains fairly constant with q, but decreases with
increasing inter-vortex distance. (c) The relative frequency shift increases when the inter-vortex distance is small and saturates to a constant
value determined by |q| for larger separation. (d) The relative satellite intensity scales with intervortex separation approximately as
Isat/Itot ∝

√
Ω.

where the parameter λP(µ) is specific to the type of the topo-
logical object. For example, an infinite planar d̂ soliton gives
λP =−1 for the zero mode on the soliton [1, 66, 67]. The
frequency shift for the satellite in this case becomes equal,
but opposite than for the main peak, i.e. ∆ωPsat(µ= π/2) =
−∆ωP(µ= 0). In reality, the finite soliton length (similar to
figure 12(c)) and disorder in the nafen confinementmay lead to
reduced shift, and |λP|< 1 is expected [68]. In the experiments
[4], a controlled amount of polarized HQVs was created by
slowly cooling the sample in rotation with constant angular
velocity Ω from above Tc in zero or axial (along Ω̂ ‖ m̂) mag-
netic field. The presence of HQVs is apparent from the NMR
spectrum via the related spin soliton peak, figure 14(a). The
experimental results, summarized in figures 14 and 15 indeed
yield λP(µ= π/2) =−0.93± 0.07, in good agreement with
theoretical expectations. We note that the predicted spin polar-
ization of the HQV core [69] does not affect the signal, as
the winding of the d̂ vector (and thus the spin polarization)

is always opposite for a pair of HQVs connected by the spin
soliton.

In the polar phase HQVs are energetically preferable to
SQVs in axial or zero magnetic field [70, 71]. Application of
tilted magnetic field changes the situation via the spin-orbit
interaction related to winding of the d̂ vector within the HQV-
bound spin solitons, making SQVs preferable to HQVs. In
addition, SCVs can be created during the cooldown if strong
time-dependent magnetic field is applied to generate a random
distribution of vector d̂ [32, 34].

HQVs can be distinguished from SCVs by their connec-
tion to rotation. In particular, the dependence of the relative
satellite peak intensity Isat on the angular velocity Ω, shown
in figure 16(a), is expected to follow ∝

√
Ω. This dependence

originates from the following considerations; for solitons with
their width set by the dipole length ξD, the expected signal
intensity is Isat = (nv/2)gsLξD [72]. Here L= bn−1/2

v is the
average soliton length set by the average inter-vortex distance,
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Figure 13. Observation of the SMV in 3He-B. The SMV can be identified by comparing two NMR spectra [57]. The first spectrum contains
the signal from a SMV created by neutron irradiation, and the second spectrum was measured after selectively removing the SMV as
illustrated at the top of the figure. The contribution of the SMV (gray area) is centered around ∆νmax, distinguishable from the larger feature
centered at 0.8∆νmax, resulting from the mismatch of the normal fluid and superfluid velocities, i.e. from counterflow.

Figure 14. NMR spectra in the polar phase in the presence of HQVs. (a) Normalized spectra measured in transverse field µ= π/2 (blue
thick line) shows the HQV satellite at the negative frequency shift ∆ωPsat and the main line at zero frequency shift [4]. In the axial field
µ= 0 (red thin line) only the main line at positive shift ∆ωP is seen. This spectrum is not sensitive to presence of vortices as the spin-orbit
interaction results in no trapping potential for spin waves. (b) Temperature dependencies of the satellite position in the transverse field
|∆ωPsat(µ= π/2)| (blue circles) and the main line position in the axial field ∆ωP(µ= 0) (red squares) closely match as expected for
HQVs. The error bars show full width at half maximum of the main line as an estimate of possible systematic error.

while gs ∼ 1 and b∼ 1 are numerical factors. For a very low
vortex density and long solitons L→∞ one has gs → 2. Since
the vortex density nv ∝ Ω, one expects Isat ∝ Ω1/2, as indeed
confirmed in figure 16(a).

We note that the observation of solitons bounded by HQVs
relies on a crucial experimental detail. Namely, the tension
related to the energy cost of the solitons is overcome by
the pinning of HQVs by the nafen strands. In fact, the pin-
ning force is stronger than any relevant energy scale in the

system. Each HQV core with a characteristic size given by
the coherence length ξ ∼ 40 nm, is penetrated by a few nafen
strands of ∼10 nm diameter, leading to reduced energy cost
of the HQV core thus leading to effective pinning of HQVs in
place as they are created. For example, after stopping the rota-
tion the satellite in the NMR spectrum remained unchanged
for weeks, while the Magnus force, pulling vortices toward
the sample boundary, exceeds the soliton tension by a large
factor 103. It is worth pointing out that the experiments shown
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Figure 15. Frequency shift of the HQV satellite. (a) Measured values of the dimensionless frequency shift λP as a function of the field tilt
angle µ (symbols) are compared with numerical calculations for the uniform polar phase (solid line) using theoretical value of ξD = 17 µm
[4]. Leggett frequency ΩP is determined from a separate measurement at µ= 0. Deviation from the infinitely-long d̂ soliton value λP =−1
increases towards small µ. The disagreement between the experiment and calculations likely originates from disorder in the nafen strand
orientation [68], which leads to fluctuations of the spin-orbit interaction energy within the solitons. (b) Values of λP are found from
positions of the HQV satellite ∆ωPsat (blue circles) and of the main line ∆ωP (red squares). The red and blue solid lines show results of
equations (66) and (67), respectively, for λP =−1. The bars show full width at half maximum of the spectral lines in both panels.

Figure 16. Intensity of the HQV satellite. (a) The satellite intensity Isat measured in slow (τQ ≈ 1.5 · 105 s, magenta circles) and fast
(τQ ≈ 5.5 · 102 s, blue triangles) zero-field cooldowns as a function of Ω. The solid lines are theoretical fits assuming that HQV creation by
the KZM is independent from rotation. The dash line shows fitted equilibrium Isat, corresponding to vanishing HQV density from KZM.
Applying rf drive at the resonance during the cooldown in the axial field creates SCVs (red squares), seen as extra rotation-independent
satellite intensity. (b) The satellite intensity Isat measured in the absence of rotation and bias fields (green diamonds) follows the KZM power
law Isat ∝ τ

−1/4
Q (solid line). The fitted satellite intensities at Ω= 0 from panel a are marked with the corresponding symbols and colors.

in figure 16 were performed with a stationary cryostat, after
rotating it with constant angular velocity during the superfluid
transition. Due to the strong pinning of HQVs by the nafen
strands [73], the relation Isat ∝ Ω1/2 holds for pinned vortices,
as long as one takes Ω at the time of the superfluid transition.

In the rotating experiments with the magnetic field ori-
ented transverse to the nafen strands during cooldown [4],
the NMR satellite peak related to HQV-bound solitons was
absent—consistent with the absence of HQVs. However, since
the angular velocity is conserved in the superfluid phase trans-
ition, this implies that SQVs were created. The effect of the
applied magnetic field on HQV creation was further studied in

stationary (non-rotating) measurements in [74], where HQVs
were created by temperature quenches via the KZM. The con-
clusion was that the HQV density is suppressed at the normal-
polar phase transitionwhen the solitonwidth, controlled by the
magnetic field, becomes smaller than the Kibble-Zurek length
lKZ, cf figure 17 and equation (68). One way to understand
this observation is by assuming that the applied magnetic field
then fixes the d̂ vector on a characteristic length scale already
during the phase transition. If the size of this length scale is
smaller than lKZ, the d̂ vector orientation becomes correlated
at length scales exceeding lKZ—in contrast to the original idea
assuming a random realization of the order parameter, i.e. lack
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Figure 17. Suppression of the HQV density created by the KZM under a symmetry-breaking bias. (a) Filled red circles, magenta triangles,
and black diamonds correspond to quench rates of τQ ≈ 3.8× 102 s, τQ ≈ 1.4× 103 s, and τQ ≈ 7.7× 103 s, respectively, while applying a
constant H= 11 mT magnetic field [74]. The field is rotated to achieve different bias fields H⊥ = Hsinµ. Open blue squares
(τQ ≈ 6.0× 102 s) correspond to measurements with zero axial field component, H⊥ = H. Vortex density is constant for H⊥ < H⊥t and
suppressed for higher bias fields. The suppression starts when the characteristic length scale of the bias field ξbias(H⊥) becomes smaller than
the relevant Kibble-Zurek length. Solid lines correspond to theoretical model (see text for details). (b) The extracted threshold bias length ξt
as a function of lKZ with the same symbols. The dashed line corresponds to ξt = lKZ. The patterned gray diamond is the same measurement
as the black diamond, but with lKZ on the horizontal axis replaced with an estimation of the transition front thickness lF [75]. For other
measurements, lF lies beyond the right border of the plot.

Figure 18. Detection of vorex-bound solitons using magnon BEC. (a) In continuous-wave NMR coherently precessing magnetization state
is formed with the sweep of the frequency of the pumping field f of sufficient magnitude via Larmor frequency fL in the upward direction
[73]. It is manifested by a characteristic non-linear response. (b) When external pumping is switched off, the pumped magnons decay, but
magnetization of the sample continues to precess coherently while the precession frequency f returns to fL in exponential decay with time
constant τ . (c) When solitons are present in the sample, the relaxation rate τ−1 increases proportionally to the volume occupied by the
solitons, which is in the plot is characterized by the intensity of the soliton satellite in the NMR spectrum measured independently. The
measurements were performed with the nafen-243 sample at P= 7 bar and T= 0.4Tc, where the polar phase is the equilibrium phase.

of correlation, at such length scales. Therefore, the very same
properties that define the characteristic length scales of topo-
logical solitons also play an integral role in formation of topo-
logical defects during phase transitions.

Additionally, one might ask what is the interplay of the
KZM [76, 77] and rotation. The KZM is expected to create
various order-parameter defects, including vortices of all pos-
sible types [78–81]. In the transition, the inter-vortex distance
is set by the KZ length

lKZ = ξ0(τQ/τ0)
1/4, (68)

where τ−1
Q = − d(T/Tc)

dt

∣∣∣
T=Tc

is the cooldown rate at Tc, ξ0 =

ξ(T= 0) and the order-parameter relaxation time τ0 ∼ 1 ns.

For HQVs the inter-vortex distance sets the length of the inter-
connecting solitons and thus the amplitude of the satellite sig-
nal. The resulting dependence Isat ∝ nvlKZ ∝ l−1

KZ ∝ τ
−1/4
Q is

indeed observed in the experiment, figure 16(b). The mag-
nitude of the signal corresponds to the averaged soliton length
of 1.4 lKZ, as has been estimated also in the B phase of 3He
[81, 82]. The shift of experimental data in figure 16(a) above
the theoretical expectation indicates that the KZM is important
also in cooldowns with applied rotation.

Alternative method of observation of the solitons bounded
by HQVs in the polar phase utilizes coherent magnetization
precession state formingBose–Einstein condensate ofmagnon
quasiparticles, figure 18. The relaxation rate of the magnon
condensate increases proportionally to the volume occupied
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Figure 19. HQVs in thermal cycling. (a) The plot shows the measured NMR spectra in transverse (µ= π/2) magnetic field in the presence
of HQVs. HQVs were created by rotation with 2.5 rad s−1 during the transition from normal phase to the polar phase. The NMR spectrum
includes the response of the bulk liquid and the d̂-solitons, which appear as a characteristic satellite peak at lower frequency. The satellite
intensity in the PdA phase remains unchanged after thermal cycling. The NMR spectrum in the PdB phase at the same temperature,
measured between the two measurements in the PdA phase, is shown for [5]. (b) The 3He sample is confined within a cylindrical container
filled with nafen-90, which consists of nearly parallel Al2O3 strands with d2 ≈ 8 nm diameter, separated by d1 ≈ 50 nm on average. The
strands are oriented predominantly along the axis denoted ẑ. The sample can be rotated with angular velocities up to 3 rad s−1 around the
same axis. The sample is surrounded by rectangular NMR pick-up coils. The static magnetic field transverse to the NMR coils can be
oriented at an arbitrary angle µ with respect to the ẑ axis. (c) The magnetic field, oriented along the y-direction (µ= π/2) in this figure,
locks the ê2-vector in the PdB phase order parameter, equation (23). Vectors d̂ and ê1 are free to rotate in the xz-plane by angle θ.

by the solitons. This method is especially useful with small
amounts of solitons present in the sample, as accurate meas-
urement of the satellite intensity in cw NMR might require
hours of averaging while the relaxation rate can be measured
with sufficient precision in seconds. At larger soliton densit-
ies, though, the relaxation rate becomes too fast to be reliably
measured.

5.3. HQVs in the PdA phase

The transverse resonance frequency of the bulk fluid in the
PdA phase with magnetic field in the direction parallel to the
strand orientation, i.e. for µ= 0, is [16]

∆ωPdA = ωPdA −ωL ≈
Ω2

PdA

2ωL
, (69)

where ΩPdA is the frequency of the longitudinal resonance in
the PdA phase. The NMR line retains its shape during the
second order phase transition from the polar phase but renor-
malizes the longitudinal resonance frequency due to appear-
ance of the order parameter component b n̂ in equation (17).

Since the m̂ vector is fixed by nafen parallel to the aniso-
tropy axis, the l̂ vector then lies on the plane perpendicular to
it, prohibiting the formation of continuous vorticity [83] like
the double-quantum vortex in 3He-A [84]. Some planar struc-
tures in the l̂-vector field, such as domain walls [39] or dis-
clinations, remain possible but the effect of the l̂ texture on the
trapping potential for spin waves is negligible due to the large
polar distortion [16] (i.e. for |b| � 1).

In the presence of HQVs the excitation of standing spin
waves localized on the soliton leads to a characteristic NMR

satellite peak in transverse (µ= π/2) magnetic field, c.f.
figure 19, with frequency shift

∆ωPdAsat = ωPdAsat −ωL ≈ λPdA
Ω2

PdA

2ωL
, (70)

where λPdA is a dimensionless parameter dependent on the
spatial profile (texture) of the order parameter across the
soliton. For an infinite d̂-soliton, one has λPdA =−1, corres-
ponding to the zero-mode of the soliton, as in the polar phase
[66, 67, 72, 85]. The measurements in the supercooled PdA
phase, figure 19, at temperatures close to the transition to the
PdB phase give value λPdA ≈−0.9, which is in good agree-
ment with theoretical predictions and the polar phase meas-
urements with the 243 mg cm−3 nafen sample. This confirms
that the structure of the d̂-solitons connecting theHQVs is sim-
ilar in polar and PdA phases and the effect of the orbital part
to the trapping potential can be neglected. Furthermore, the
satellite intensity shown in figure 20(b) scales with

√
Ω as in

the polar phase, indicating that the observed signal is linked to
topological solitons bounded by HQVs also in the PdA phase.

5.4. Walls bounded by strings in the PdB phase

As established in section 3.2, isolated HQVs cease to be pro-
tected by topology in the PdB phase as its order parameter
lacks the relevant Z2(ϕ+S) symmetry. The experimental data,
figure 19, strongly suggests that HQVs survive the phase trans-
ition to the PdB phase as composite defects, walls bounded by
strings (or KLSwalls), see section 3.1. Let us now take a closer
look at the experiments that led to this conclusion.

For a magnetic field oriented transverse to the uniaxial
nafen anisotropy axis ẑ, the order parameter of the PdB phase
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Figure 20. NMR spectra in the PdB phase. (a) The plot shows the measured NMR spectrum in the PdB phase at 0.38 Tc for different HQV
densities, controlled by the angular velocity Ω at the time of crossing the Tc [5]. The presence of KLS walls produces characteristic features
seen both as widening of the main line (located at small positive frequency shift) and as a satellite peak with a characteristic negative
frequency shift. The inset shows magnified view of the satellite peak. (b) The satellite intensity in the PdA phase at 0.60Tc (blue circles) and
in the PdB phase multiplied by a factor of 9 (red triangles) at 0.38Tc show the expected

√
Ω-scaling. The solid black line is a linear fit to the

measurements including data from both phases. The non-zero Ω= 0 intersection corresponds to vortices created by the KZM [4, 76, 77].
(c) The FWHM of the main line, determined from the spectrum in panel (a), gives FWHM ≈ 3 kHz for 2.5 rad s−1. FWHM for other
angular velocities is recalculated from the amplitude of the main NMR line, shown in panel (a), assuming constant area.

is given by equation (23). We denote with θ the rotation of
the spin space with respect to the orbital space, with sinθ0 =
q2(2− 2q1)−1 corresponding to the minimum energy config-
uration for θ. The transverse frequency shift with uniform
θ = θ0 (i.e. the response of the bulk) is given by [40]

ω2
⊥ −ω2

L

Ω2
PdB

= q1 − q22. (71)

In the axial field, withH oriented along the anisotropy axis,
the homogeneous transverse frequency shift with uniform θ =
θ0,∥ = sgn(q2)π/2 is given by [40]

ω2
∥ −ω2

L

Ω2
PdB

= 1+
5
2
|q2|. (72)

The q-parameter value is determined from the frequency
shifts in equations (71) and (72), following amethod described
in [40]. In the experimental region of interest, the distortion
factor is given by

q=
2− 5C

4
− 1

4

√
25C2 − 36C+ 4, (73)

where

C=
ω⊥ −ωL

ω∥ −ωL
. (74)

The expression (73) is valid in the range q ∈ [0,(
√
14−

2)/5≈ 0.348]. To measure q, we carefully prepare the state by
cooling the sample through the superfluid transition temperat-
ure at zero rotation in the transverse magnetic field to avoid
creation of HQVs. Then we cool the sample down to the low-
est temperatures and start warming it up slowly, continuously

Figure 21. The measured distortion parameter q as a function of
temperature. The dots represent the measured values for q. The solid
red line is an estimation of q, calculated based on Ginzburg-Landau
theory with strong-coupling corrections using two fitting parameters
in the spirit of [40] and taking β parameter values from [86]. The
PdB phase critical temperature is shown by dashed line for the
transition to the PdA phase on warming. The jump in q at this
temperature reflects the fact that the PdB-PdA transition is of the 1st
order.

monitoring the NMR spectrum. We perform two temperature
sweeps, first in the axial and then in the transverse field. This
way we can measure the q parameter in the coexistence region
of the PdA and PdB phases. The results of our measurements
are shown in figure 21.

In the transverse magnetic field H exceeding the dipolar
field ∼3 mT, the order parameter vector ê2 in equation (23)
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Figure 22. Composite defect of KLS wall and spin π-soliton connected by HQVs. Each HQV core terminates one soliton—reorientation of
the spin part of the order parameter denoted by the angle θ—and one KLS wall. The orientation of the d̂-vector is shown as cones where
their color indicates the angle θ, based on numerical calculations. The π-soliton (blue), responsible for the observed NMR feature,
corresponds to a situation where the KLS wall (light green) is bound between a different pair of HQV cores (green) than the soliton. The
order parameter is continuous as the KLS walls are accompanied by virtual jumps, where ϕ → ϕ +π, θ → θ+π, and q2 →−q2.

becomes locked along the field, while vectors d̂ and ê1 are
free to rotate around the axis ŷ, directed along H, with the
angle θ between d̂ and ẑ. The order parameter of the PdB
phase on a loop around a HQV has the following proper-
ties. The phase ϕ around the HQV core changes by π and the
angle θ (and thus vectors d̂ and ê1) winds by π. Consequently,
there is a phase jump ϕ → ϕ +π and related sign flips of
vectors d̂ and ê1 along a perpendicular direction. In the pres-
ence of order-parameter components with q> 0, equation (23)
remains single-valued if, and only if, q2 also changes sign. We
conclude that the resulting domain wall separates the degen-
erate states with q2 =±q and together with the bounding
HQVs has a structure identical to the domain wall bounded by
strings—the KLS wall—proposed by Kibble, Lazarides, and
Shafi in cosmological context [48, 49] and discussed in detail
in section 3.2.

The KLS wall and the topological soliton have distinct
defining length scales [50, 87], see figure 4. The KLS wall has
a hard core of the order of q−1ξ0 and the soliton has a soft core
of the size of the dipole length ξD � q−1ξ0. The combination
of these two objects may emerge in two different configura-
tions, see figure 7. The observed frequency shift suggests the
configuration, depicted in figure 22, where π-soliton and KLS
wall connect at the HQV acting as nexus.

The appearance of KLS walls and the associated d̂-solitons
leads to a characteristic frequency shift

∆ωPdBsat = ωPdBsat −ωL ≈ λPdB
Ω2

PdB

2ωL
. (75)

The dimensionless parameter λPdB has been calculated in
section 4.1. Comparison of calculations with the experiment
for all possible soliton structures from figure 5 is shown in
figure 23. Numerical calculations give the low-temperature
values λsoliton ∼−0.6 for the soliton (∆θ = π− 2θ0) and
λbig ∼−1.5 for its antisoliton, the big soliton (∆θ = π + 2θ0).
The KLS-soliton (∆θ = 2θ0) provides too shallow potential
to have a bound spin-wave state distinguishable from the main
line. The last possibility, the inseparable π-soliton, gives λπ ≈
−1 for the accessible temperature range, in good agreement
with the measured value, λPdB ∼−1. The measured values

Figure 23. Frequency shift of the HQV satellite as a function of
temperature in the polar-distorted phases. In the PdA phase the
measured values are in reasonable agreement with the theoretical
prediction for a d̂-soliton with π winding, shown as the red dashed
line. The corresponding values in the PdB phase for the
lowest-energy d̂-soliton (soliton) and its antisoliton (big soliton), as
well as the π-soliton (see text) are shown as dashed blue lines. The
experimental data is taken from [5] and the dashed lines are based
on 2D numerical calculations, section 4.1, using D= 20ξD. The
error bars denote the uncertainty in the position of the satellite peak
by 1.0 and 0.5 kHz in the PdB and PdA phases, respectively. The
uncertainty is taken as the full width at half maximum (FWHM) of
the satellite peak in the PdB phase and as half of the FWHM due to
improved signal-to-noise ratio in the PdA phase.

for λPdB, together with the fact that the total winding of the
d̂-vector is also equal to π in the PdA and polar phases, sug-
gest that the observed soliton structure in the PdB phase cor-
responds to the π-soliton in the presence of a KLS wall.

In addition, the KLS wall possesses a tension∼ξ q2∆2
PdBN0

[87, 88], where N0 is the density of states. Thus the presence
of KLS walls applies a force pulling the two HQVs at its ends
towards each other. The fact that the number of HQVs remains
unchanged through the phase transitions signifies that the KLS
wall tension does not exceed themaximumpinning force in the
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studied nafen sample. Strong pinning of single-quantum vor-
tices in B-like phase in silica aerogel has also been observed
previously [89]. An alternative way to remove a KLS wall is
to create a hole within it, bounded by a HQV [48]. However,
growth of such a HQV ring is also prohibited by the strong
pinning by the nafen strands. We also note that for signific-
antly larger values of q creation of a HQV vortex-antivortex
pair within the KLS wall may become energetically favorable
and as a result the HQV pairs bounded by KLS walls would
eventually shrink to singly-quantized vortices.

The satellite intensity in the PdB phase, cf figure 20(b),
scales as

√
Ω—as in the polar and PdA phases. Although the

scaling is identical, one striking difference appears in the PdB
phase—the satellite intensity normalized to the total absorp-
tion integral in the PdB phase is smaller by a factor of∼9 com-
pared to the PdA phase. Simultaneously, the original satellite
intensity in the PdA phase is restored after a thermal cycle.
There is currently no explanation for this observation.

Another effect of rotation in the PdB phase transverse
(µ= π/2) NMR spectrum is observed at the main peak,
cf figure 20(a). The full-width-at-half-maximum (FWHM),
extracted from the amplitude of the main peak assuming w ·
h= const, wherew is its width and h is height, scales as∝

√
Ω;

figure 20(c). Increase in the FWHM may indicate that the
presence of KLS walls enhances scattering of spin waves and
thus results in increased dissipation. The small frequency shift
of this feature may originate from spin waves weakly bound
between KLS walls.

6. Conclusions and outlook

In superfluid 3He topological solitons are manifested as local-
ized winding of the order parameter anisotropy vectors, con-
necting two energetically degenerate regions with one another.
The soliton width is set by the magnetic or the SOC energy
arising from deflection of the order parameter from the lowest-
energy configuration within the soliton. The topological pro-
tection of the soliton structure is given by the π1 homotopy
group, which is the same as for linear topological defects,
quantized vortices. Thus solitons may terminate in bulk liquid
on linear topological defects, in addition to the possibility
to terminate at the sample boundary. Vortex cores typically
are of coherence length size, and are too small to be directly
observed with the available experimental methods. Vortex-
bound solitons provide an experimental tool for accessing
properties of a range of exotic objects via NMR methods.

In this review article, we have shown the connection
between solitons and the underlying order parameter symmet-
ries, and how solitons aremanifested in the experiments. So far
experiments have demonstrated three well-identified cases of
solitons terminated at the quantized vortices: Solitons bounded
by HQVs in the polar and PdA phases, solitons accompanying
the KLS-walls in the PdB phase, and solitons connecting spin-
mass vortices in the B phase of 3He. The frequency shift of
the associated feature in the NMR spectrum in all cases agrees
with theoretical predictions. This observation, together with

the scaling of the soliton peak intensity with the angular velo-
city of the sample container confirmed the existence of HQVs
[4] and of the spin-mass vortices [56]. The soliton peak has
also been used to study the KZM of topological defect form-
ation, in particular to demonstrate variety of defect types cre-
ated by the KZM [57] and to find modification of the KZM
in the presence of a symmetry-breaking bias field [74], where
the number of defects created in the phase transition was sup-
pressed by applying magnetic field tilted with respect to the
system symmetry axis during the superfluid transition. In the
PdB phase, the NMR properties of the spin soliton were used
to identify the type of soliton accompanying the KLS walls,
where multiple possibilities existed [5, 42]—the experiments
and numerics are in beautiful agreement. More recent numer-
ical work on a spinor BEC [90, 91] studies the effect of the
strong coupling correction on the domain wall structure and
the instability of the domain wall induced by spin current.

In conclusion, vortex-bound solitons are ubiquitous in dif-
ferent superfluid phases of 3He. They have proven import-
ant for experimental identification of composite topological
defects. Some composite topological defects, such as the
KLS walls bounded by strings, require a specific hierarchy
of symmetry-breaking phase transitions in order to be real-
ized. Simply proving their existence in the cosmological
vacuum would be a major step forward in the study of
the early times of our Universe, immediately ruling out
some GUTs [48]. Additionally, it has been proposed that
solitons could provide observable signatures of axion dark
matter [28]. Recently, topological classifications of Yang-
Mills solitons, non-Abelian sine-Gordon solitons, and skyrmi-
ons in quantum field theories and quantum chromodynam-
ics have also been discussed in terms of composite objects
[92]. HQVs, identified by the NMR signature of the vortex-
bound solitons, hold promise for topological, or error-tolerant,
quantum computation with non-Abelian Majorana core-
bound states [6]. Therefore, understanding and identifying
vortex-bound solitons is important for a number of research
directions.
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Appendix A. A1 phase—order parameter and
remaining symmetry

In bulk fluid, the A1 phase exists only at a very narrow tem-
perature region close to Tc in the presence of magnetic field.
The A1 phase consists of Cooper pairs with both spins oriented
along the direction of the magnetic field. The order parameter
of the A1 phase can be written as

AA1
µj =∆A1e

iϕ(d̂µ + i ê1µ)(m̂j+ in̂j), (A.1)

where d̂ and ê1 form an orthogonal triad in spin spacewith vec-
tor ê2 = d̂× ê1 and ∆A1 is the maximum gap in the A1 phase.
Similar to theA phase, a gauge transformationAA1

µj → ei∆ϕAA1
µj

can be compensated by simultaneous rotation of the orbital
space by −∆ϕ about l̂, corresponding to remaining U(1)ϕ+L

symmetry. On the other hand, the spin part of the order para-
meter has identical structure to the orbital part, and the gauge
transformation can be compensated also by rotation of the spin
space around ê2 by −∆ϕ, resulting in a symmetry U(1)ϕ+S

corresponding to simultaneous rotation of the spin space and
change of phase. Alternatively, one of the U(1) symmetries
may be interpreted as a simultaneous rotation of the orbital and
spin spaces. Additionally, the time-reversal symmetry is par-
tially broken due to the non-zero imaginary part both in orbital
and spin spaces, reducing it to the combined discrete sym-
metry Z2(T+J) corresponding to simultaneous time reversal,
π-rotation of the orbital space about m̂, and π rotation of the
spin space about d̂. Thus, the order parameter of the A1 phase
is invariant under [1]

HA1 = U(1)ϕ+L ×U(1)ϕ+S ×Z2(T+J) ×C×PUπ . (A.2)

Appendix B. Length scales in the presence of
orientation energies

The magnetic healing length ξH is determined by the compet-
ition of the gradient energy density

f∇ =
1
2
K1∂iA

PdB
αj ∂i

(
APdB
αj

)∗
+

1
2
K2∂jA

PdB
αi ∂i

(
APdB
αj

)∗
+

1
2
K3∂iA

PdB
αi ∂j

(
APdB
αj

)∗
,

(B.1)

where K1 = K2 = K3 [1], with the magnetic energy density,
which is

fH =−1
2
χαβHαHβ =

1
2
γ2SaSb(χ

−1)ab− γHaSa, (B.2)

where the χαβ is the uniaxial magnetic susceptibility tensor
of the PdB phase, Hα are magnetic field strengths with α=
1,2,3, Sa are spin densities with a= 1,2,3, and γ is the gyro-
magnetic ratio of 3He [1]. Using equations (B.1) and (B.2)
allows writing the magnetic length as

ξH =

√
K1∆2

PdB

(χ⊥ −χ∥)H2
, (B.3)

where χ⊥ and χ∥ are transverse and longitude spin magnetic
susceptibilities of PdB phase. Following the same idea, the
dipole length ξD is determined by the gradient energy dens-
ity f∇ and the SOC energy density

fSOC =
3
5
gD

((
APdB
ii

)∗
Ajj+

(
APdB
ij

)∗
Aji−

2
3

(
APdB
ij

)∗
Aij

)
,

(B.4)
where gD is the strength of the SOC. Then we have

ξD =

√
5K1

6gD
. (B.5)

Appendix C. Relative homotopy groups and exact
sequences

The homotopy groups and relative homotopy groups of
vacuum manifolds R1 and R2 form a long exact sequence
(LES) [44]

The exact sequence of (relative) homotopy groups means
that the image of any homomorphism xn−1

∗ :M→ N in
equation (C.1) (the sets of the elements of the group N into
which the elements of A are mapped) is the kernel of the
next homomorphism xn+1

∗ : N→W (the sets of the elements
of N which are mapped to the zero or unit element of W), i.e.
Imxn∗ ∼= kerxn+1

∗ with n ∈ Z [44].
The relative homotopy classes of πk+1(R1,R2) are mapped

to the homotopy classes of πk(R2) by mapping the k-
dimensional subspace of k+ 1 sphere, which surrounds the
defects, into R2. This mapping between two homotopy classes
with different dimensions is called boundary homomorphism
∂∗ [44]. When this mapping is not trivial, i.e. Im∂∗ 6= 0, topo-
logical defects given by πk(R1,R2) can be mapped to those
given by πk−1(R2), living on the k+ 1 sphere enclosing the
original defects. In other words, boundary homomorphism
describes how topological objects with different dimension-
alities connect to one another—it is therefore a convenient
tool for describing composite topological objects. In contrast,
the commonly used homotopy group πk(R1) lacks boundary
homomorphism and therefore does not provide information
about such connections.

The LES, equation (C.1), has infinite number of terms. It is
therefore useful to split it up to SESs [93]. For every relative
homotopy group π1(R1,R2), the LES can be split as

by the image of ∂∗ and xn∗. In this case, the relative homotopy
group πk(R1,R2) is an extension of Imxn∗ by Im∂∗.

C.1. SESs of πn(RPdA
1 ,RPdA

2 )

Following the definition of LES in equation (C.1) and
the vacuum manifolds mentioned in section 2.2, we have
the LESs

24



J. Phys.: Condens. Matter 35 (2023) 214001 J T Mäkinen et al

and

which in fact are

and

It is easy to see that in equation (C.5) Im∂∗
1 = 0, while

Imxn−1
∗ = ZL as the orbital vertices formed by n̂ (or l̂= m̂×

n̂) form same group ZL. It follows that ker xn∗ ∼= ZL and

Imxn∗ ∼= (ZL ×Zϕ)/ZL = Zϕ, (C.7)

leading to the SES of π1(RPdA
1 ,RPdA

2 )

Following similar reasoning, we have Im∂∗
2 = 0, where 0 is

the kernel of the mapping xn−1
∗ : ZL 7→ ZL ×Zϕ, resulting in

C.2. SESs of πn(RPdB
1 ,RPdB

2 )

We now conduct the calculations of SESs for the PdB phase.
Similarly to the previous section, we start from

and

where

ZJ = π1(R
PdB
2 ), Zϕ ×Z2J = π1(R

PdB
1 ), 0= π0(R

PdB
2 ) = π0(R

PdB
1 ).
(C.12)

Mapping xn−1
∗ : π1(RPdB

2 ) 7→ π1(RPdB
2 ) (xn+1

∗ in
equation (C.11)) plays a significant role in splitting
equations (C.10) and (C.11). The ZJ vertices are mapped
into Z2J through a surjection, i.e. Imxn−1

∗ = ZJ. A nat-
ural choice of ker xn−1

∗ is 2ZJ, which is a group of vor-
tices with even winding number [41]. As a result, Im∂∗ in
equations (C.10) and (C.11) are Z2(ϕ+S) and 2ZJ, respect-
ively. Since Imxn−1

∗ = Z2J = ker xn∗ in equation (C.10), we
also have

Imxn∗ = (Z2J ×Zϕ)/ker x
n
∗ = Zϕ. (C.13)

Then we get the SES

for π1(RPdB
1 ,RPdB

2 ) and

for π2(RPdB
1 ,RPdB

2 ).

C.3. SES of π1(RH
1 , R̃

SOC
1 )

The long exact sequence for π1(RH
1 , R̃

SOC
1 ) with reduced

vacuum manifolds is written as

where ∂∗ is the boundary homomorphism [44, 93]. Plug-
ging in the homotopy groups of the reduced manifold,
equation (C.16), gives

It is worth noting that Im∂∗ = Z4 and Imxn∗ = ZS, resulting in
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