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Extended depth of field of an imaging system
with an annular aperture
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Abstract: A common drawback of high-resolution optical imaging systems is a short depth
of field. In this work, we address this problem by considering a 4f -type imaging system with a
ring-shaped aperture in the front focal plane of the second lens. The aperture makes the image
consist of nearly non-diverging Bessel-like beams and considerably extends the depth of field.
We consider both spatially coherent and incoherent systems and show that only incoherent light
is able to form sharp and non-distorted images with extraordinarily long depth of field.
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1. Introduction

In optical imaging, there is a trade-off between resolution and depth of field. In order to form
a high-resolution image, a lens needs to have a high numerical aperture, due to which even a
slight displacement of the object along the optical axis results in a blurred image. To overcome
this problem, a number of methods have been developed. Many of them utilize phase masks to
generate slowly diverging image fields [1–3]. Such phase masks are often combined with digital
post-processing of the obtained images [4–7]. These methods include the incoherent digital
holography that leads to a considerably extended effective depth of field [8,9]. An alternative
approach is to use apodization [10–12]. Famously, an annular aperture can be used to extend the
depth of focus of a lens (in contrast to the depth of field, the depth of focus is measured behind
the lens, where light is focused). Such systems have been studied quite comprehensively [13–21],
and have found applications, e.g., in scanning microscopes [22–24]. An annular aperture placed
in the front focal plane of a lens extends the depth of focus by converting the focal field to a
non-diverging zero-order Bessel beam [25–27]. This beam is a circularly symmetric version
of more general propagation-invariant optical fields [28,29]. Other well-known examples are
Mathieu and Weber beams [30,31] with elliptical and parabolic shapes, respectively. It has been
recently shown that, in addition to these relatively simple beam configurations, infinitely many
other non-diverging optical beams can be constructed by superposing multiple Bessel beams
[32,33].

Obviously, by composing an image of Bessel beams, one can make it independent of the
distance to the imaging system. This suggests that also the object can be freely moved along the
optical axis without influencing the sharpness of the image. Therefore, the depth of field should
be extraordinarily long. This can be achieved by using an infinitely thin annular aperture that acts
as a spatial filter [32]. Such systems, however, have an infinitely low transmittance. In practice,
the depth of field cannot be infinite because of a finite radius (R) of the imaging lens. If the focal
length of the lens is f and the radius of the aperture is a, the depth of field is limited by fR/a.

In this work, we consider a 4f -type imaging system (which is the simplest and probably also
the most efficient imaging system that allows spatial filtering) with an annular aperture of a finite
thickness. The images are therefore formed by nearly non-diverging Bessel-like beams. The
performance of the system is studied, both theoretically and experimentally. We find that, when
the illuminating light is spatially coherent, the Bessel beam sidelobes severely disturb the images,
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e.g., making thin lines split into interference fringes. This is in agreement with Ref. [32], where
the limit of an infinitely thin annular aperture is considered. With incoherent illumination, on the
other hand, high-quality images with remarkably long depth of field are possible to obtain. In the
calculations and experiments described below, we compare the performance of a system with
an ordinary circular aperture to that with an annular aperture of the same outer diameter and
reveal the advantages and drawbacks of the latter. The outer diameters are chosen to be equal for
the systems to have the same highest spatial frequencies and comparable lateral resolutions. A
larger circular aperture would result in a higher lateral resolution and a shorter depth of focus
associated with the axial resolution of the system.

2. Theoretical description

Consider a 4f -type imaging system shown in Fig. 1. A monochromatic light source illuminates a
flat transparency (object), the image of which is formed by two confocal lenses and recorded
by an array of detectors in the image plane (at the back focal plane of the second lens). If the
object is displaced from the front focal plane of the first lens, do ≠ f1, the image is blurred.
However, using an annular aperture in the common focal plane of the two lenses can make the
image sharper. The aperture acts as a spatial filter modifying the Fourier transform of the field
produced by the first lens, Ũo(kp/f1, kq/f1) [34]. An infinitely thin aperture with radius a would
transmit only the plane wave components with radial wave number kr = ka/f1. The second lens
then Fourier transforms the filtered field and forms an image composed only of the transmitted
plane waves. In the paraxial approximation, the vector properties of light can be ignored, and the
field in the image plane can be expressed as

Ui(x, y) = C
∬ ∞

−∞
δ

(︃√︂
p2 + q2 − a

)︃
Ũo

(︃
kp
f1

,
kq
f1

)︃
exp

[︃
−i

k
f2
(xp + yq)

]︃
dpdq

= C
∮

Ũo

(︃
ka cos ϕ

f1
,
ka sin ϕ

f1

)︃
exp

[︃
−i

ka
f2
(x cos ϕ + y sin ϕ)

]︃
adϕ,

(1)

where C ∝ exp[ik(do + di)] is a complex constant and ϕ is the azimuthal angle. This expression
takes the form of Whittaker’s integral that is the general diffraction-free solution of the Helmholtz
equation [26,28,33]. This means that the intensity distribution is independent of the distance
from the second lens, which in Eq. (1) is di = f2. Indeed, the image turns out to be formed by
non-diverging Bessel beams. Hence, if an infinitely thin ring-shaped aperture is used, the image
should stay equally sharp when the object is moved along the optical axis. The depth of field
should therefore be long.

Fig. 1. An imaging system with an extended depth of field. The image is formed by
Bessel-like beams owing to the presence of an annular aperture in the common focal plane
of the two lenses.
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The diffraction-free nature of the image field comes at a cost of removing most of the spatial-
frequency components of the object field. Therefore, it is not clear, if the image will resemble
the object. Let us calculate the image of a single point source P located in the object plane at a
coordinate (ξP, ηP) (see Fig. 1). The object field can be written as Uo(ξ, η) = APδ(ξ−ξP)δ(η−ηP),
where AP is a constant describing the strength of the source. Using this expression in Eq. (1), we
obtain

Ui(x, y) = C
∮

AP exp
{︃
−i

ka
f2
[(x − MξP) cos φ + (x − MηP) sin φ]

}︃
adφ. (2)

The formed image is symmetric around point P′ at (x, y) = (MξP, MηP) in the image plane, i.e.,
around the geometrical-optics image of P, where M = −f2/f1 is the magnification of the imaging
system including the image inversion. In Eq. (2), the complex amplitude AP is independent of
azimuthal angle ϕ, in which case, the Whittaker integral yields a zero-order Bessel beam [26],
Ui(x, y) ∝ J0(karP′/f2), where Jn is the nth order Bessel function, and rP′ is the radial distance
from P′. That is to say, the point spread function (PSF) of the imaging system is a Bessel-like
beam. Therefore, not only the PSF is diffraction-free, but also the images. Moreover, the
mainlobe of the Bessel beam is narrower than that of the Airy pattern generated by conventional
imaging system with the same numerical aperture (NA) (cf. the Rayleigh criterion of 0.38λ/NA
for the Bessel beam to the conventional 0.61λ/NA [35]). However, as will be shown shortly, the
energy of the Bessel beam is spread more to the sidelobes, which can considerably deteriorate
the image quality.

For a realistic imaging system with a ring aperture of a finite thickness, the propagation of the
object field through the setup is calculated in appendix A using the Fresnel diffraction theory.
The resulting image field is found to be given by the expression

Ui(x, y, do, di; ϵ) = G(x, y, do, di; ϵ) ∗ Ug(x, y), (3)

where the geometrical-optics image of the object Ug(x, y) = Uo(x/M, y/M) is convolved with the
following PSF

G(x, y, do, di; ϵ) = C
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exp

(︁−i u
2
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u
{︁
U1(u, v) + iU2(u, v) − ϵ2[U1(ϵ2u, ϵv) + iU2(ϵ2u, ϵv)]}︁ .

(4)

Here, C is a complex constant, U1 and U2 are the first- and second-order Lommel functions
of two variables, u and v, and ϵ is the ratio of the inner and outer radii of the annular aperture
(obscuration ratio). The variables u and v are, respectively, the normalized longitudinal and
transverse coordinates defined as

u = ka2

(︄
do − f1

f 2
1
+

di − f2
f 2
2

)︄
, (5)

v = k
a
f2

r
(︃
vx = k

a
f2

x, vy = k
a
f2

y
)︃

. (6)

The longitudinal coordinate u = 0 corresponds exactly to the image plane, for which Eq. (4)
simplifies to

G(0, v; ϵ) = C
[︃
J1(v)

v
− ϵ J1(ϵv)

v

]︃
. (7)
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For an object in the front focal plane, do = f1, the function G in Eq. (4) is equivalent to a focal
field distribution of a single lens with an annular aperture [13] providing an extended depth of
focus. From Eq. (5), it can be seen that a displacement of the object along z (do ≠ f1) has the
same effect as the displacement of the detector array (di ≠ f2). Hence, the annular aperture also
extends the depth of field.

Bessel beams produced by an annular aperture and a lens have been studied extensively [13–17].
In addition to reducing the effect of defocus, the annular aperture can influence other aberrations
that the lenses may introduce [20]. It has also been shown that increasing the obscuration ratio
ϵ decreases the transmitted energy by a factor

∫ ∞
0 |G(u, v; ϵ)|2vdv ∝ (1 − ϵ2) [14]. The loss of

light can be compensated for by increasing the detector integration time. The transmittance of
the system can be improved either by applying structured illumination or by making use of a
specifically designed polarization-coded aperture (such an aperture has been proposed in [36] for
extending the depth of field without reducing the system’s throughput). Additionally, an increase
of ϵ narrows the mainlobe of the Bessel-like profile, improving the resolution, but also dispensing
its energy to the sidelobes (see [15–17]). For example, an aperture with an obscuration ratio
ϵ = 0.8 produces a PSF corresponding to the Rayleigh criterion of 0.42λ/NA, but with only 17%
of the energy concentrated in the mainlobe (cf. 84% for the Airy pattern). Extension of depth of
field, narrowing of the mainlobe, and prominence of sidelobes are shown in Fig. 2, where the
intensity distribution of the PSF (|G|2) of the imaging system with the parameters f1 = 11 mm, f2
= 45 mm, a = 0.5 mm, λ = 632 nm, and obscuration ratios (a) ϵ = 0 and (b) ϵ = 0.8 are shown.
The longitudinal coordinate corresponds to the displacement of object ∆z = do − f1.

Fig. 2. The intensity distribution of PSF of the imaging system with obscuration ratio ϵ = 0
and ϵ = 0.8.

The influence of the sidelobes on the image quality can depend not only on ϵ , but also on
spatial coherence of the light source [32]. In general, the intensity distribution in the image plane
is given by Ii =

⟨︁ |Ui |2
⟩︁
, where the angular brackets stand for time averaging. In the limits of

fully spatially coherent and incoherent illumination, the intensity distribution in the image plane
is calculated as

Ic
i (u, vx, vy; ϵ) ∝ |G(u, vx, vy; ϵ) ∗ Ug(vx, vy)|2 and (8)
Iic
i (u, vx, vy; ϵ) ∝ |G(u, vx, vy; ϵ)|2 ∗ |Ug(vx, vy)|2, (9)



Research Article Vol. 31, No. 7 / 27 Mar 2023 / Optics Express 11106

respectively [37]. The asterisk stands for convolution. The squared PSF in Eq. (9) is more
localized (has smaller sidelobes) and should lead to better images. As an example, let us consider
imaging of a thin and long line, such that Ug(vx, vy) = A0δ(vx). In appendix B, the image formed
by a coherent light is found to be given by

Ic
line(vx; ϵ) = (1 − ϵ)2 cos2

(︃
1 + ϵ

2
vx

)︃
sinc2

(︃
1 − ϵ

2
vx

)︃
, (10)

where I(vx; ϵ) = I(vx; ϵ)/I(0; 0) is a normalized intensity distribution. Here, the intensity
distribution is obtained for an infinitely long line. A finite line, however, will yield essentially the
same result as long as its diffraction pattern at the focal plane (along the line) is smaller than the
annular aperture. It is quite remarkable that the obtained distribution is the same as the one found
in a double-slit experiment with slits of width (1 − ϵ)a and separation (1 + ϵ)a. Hence, for a high
obscuration ratio ϵ , the light does not retain a geometric image of the line, but forms intensity
fringes (see the blue solid line in Fig. 3(a)). Obviously, the approach does not work with spatially
coherent light. For comparison, the image of a line formed by an incoherent light is described by

Iic
line(vx; ϵ) = 3π

8

[︄
H1(2vx) + ϵH1(ϵ2vx)

v2
x

− 4ϵ
∫ ∞

vx

J1(v)J1(ϵv)
v
√︁

v2 − v2
x

dv

]︄
, (11)

as shown in appendix B (see also Ref. [18]). This function is introduced by the orange solid
line in Fig. 3(a). Without obscuration (ϵ = 0), the incoherent image is given by the first-order
Struve function H1(2vx)/v2

x shown in Fig. 3(a) by the orange dashed line alongside the coherent
counterpart shown by the blue dashed line. As shown in appendix B, the amount of light at the
center Iline(0; ϵ) depends on ϵ in accordance with

Ic
line(0; ϵ) = (1 − ϵ)2 and (12)

Iic
line(0; ϵ) = 1 + ϵ3 + (1 − ϵ2)K(ϵ2) − (1 + ϵ2)E(ϵ2) (13)

for coherent and incoherent light, respectively. Here, K and E are the complete elliptic integrals of
the first and second kind, respectively. The equations satisfy the inequality Ic

line(0; ϵ)<Iic
line(0; ϵ)

for ϵ ∈ (0, 1), as shown in Fig. 3(b). The incoherent light is obviously advantageous for this type
of imaging, as it does not spread as much as the coherent light. For example, for ϵ = 0.8, the
incoherent image retains 3.5 times more light at x = 0 compared to the coherent image.

Equations (8) and (9) can be used to simulate images of arbitrary objects. To accelerate
computations, the PSF can be expanded using Zernike’s method [39]. The expanded PSF is

G(u, v; ϵ) = C
√︃

2π
uv2

×
∞∑︂

n=0
in(2n + 1)

[︃
exp

(︂
−i

u
4

)︂
Jn+ 1

2

(︂u
4

)︂
J2n+1(v) − exp

(︃
−i
ϵ2u
4

)︃
Jn+ 1

2

(︃
ϵ2u
4

)︃
J2n+1(ϵv)

]︃
.

(14)

The imaging capabilities of the system with incoherent illumination are demonstrated in
Fig. 4, using a digital map of squares (512×512 pixels) of many shades and sizes as an object
("texmos2.s512" from the USC-SIPI image database [38]). For the simulation, we used the
parameters f1 = 11 mm, f2 = 45 mm, a = 0.5 mm, and ϵ = 0 and 0.8 for Figs. 4(a) - (c) and (d)
- (g), respectively. The object is shifted along z by ∆z = do − f1 equal to 0, 0.4 mm, and 0.8
mm. For ϵ = 0, the shift leads to considerable blurring of the image and loss of the information
(Fig. 4(a)-(d)). With ϵ = 0.8, on the other hand, the contrast is lower, but the shift does not
change the sharpness of the image, demonstrating a remarkable depth of field. The contrast can
be increased back by post-processing the image, e.g., by re-scaling its brightness or by a more
precise deconvolution technique [40].
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Fig. 3. (a) Transverse intesity distribution of the image of an infinitely thin and long line
obtained with the imaging system of Fig. 1 with (solid lines) and without (dashed lines) the
central obscuration, using both coherent (blue) and incoherent (orange) light sources. The
obscuration ratio is ϵ = 0.9. (b) The ratio of light intensities at the center of the image for
incoherent optical system to that of a coherent system as a function of ϵ .

Fig. 3. (a) Transverse intesity distribution of the image of an infinitely thin and long
line obtained with the imaging system of Fig. 1 with (solid lines) and without (dashed
lines) the central obscuration, using both coherent (blue) and incoherent (orange) light
sources. The obscuration ratio is 𝜖 = 0.9. (b) The ratio of light intensities at the center
of the image for incoherent optical system to that of a coherent system as a function of
𝜖 .

Fig. 4. Simulated images of an array of squares ("texmos2.s512" [38]) obtained for an
incoherent imaging system with 𝜖 = 0 [(a) - (c)] and 𝜖 = 0.8 [(d) - (f)]. The object is
displaced from the focal plane of the first lens by Δ𝑧 equal to 0, 0.4 mm, and 0.8 mm.
In (f), a part of the image is modified to improve the contrast.

Equations (8) and (9) can be used to simulate images of arbitrary objects. To accelerate149

computations, the PSF can be expanded using Zernike’s method [39]. The expanded PSF is150

𝐺 (𝑢, 𝑣; 𝜖) = 𝐶
√︂

2𝜋
𝑢𝑣2

×
∞∑︁
𝑛=0

𝑖𝑛 (2𝑛 + 1)
[
exp
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4
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(
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(
𝜖2𝑢

4
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]
. (14)

The imaging capabilities of the system with incoherent illumination are demonstrated in Fig.151

4, using a digital map of squares (512×512 pixels) of many shades and sizes as an object152

Fig. 4. Simulated images of an array of squares ("texmos2.s512" [38]) obtained for an
incoherent imaging system with ϵ = 0 [(a) - (c)] and ϵ = 0.8 [(d) - (f)]. The object is
displaced from the focal plane of the first lens by ∆z equal to 0, 0.4 mm, and 0.8 mm. In (f),
a part of the image is modified to improve the contrast.

3. Experiments

An imaging system corresponding to Fig. 1 was built to experimentally verify our theoretical
predictions. As a coherent light source, a HeNe laser (Uniphase 1135P) with a center wavelength
of 633 nm was used. For incoherent illumination, we used an LED (Thorlabs M625L3) with
a 632-nm center wavelength. The objects and the annular aperture were made by patterning
an aluminium film on glass. The diameter and thickness of the annular aperture are 1 mm and
100 µm, respectively, corresponding to the obscuration ratio ϵ = 0.8. For reference images, the
annular aperture was replaced with an iris (Thorlabs ID25/M) of 1-mm diameter. The setup was
used to form magnified images (M ≈ −4) using a lens and a microscope objective with the focal
lengths f1 = 11 mm and f2 = 45 mm, respectively. In addition, a demagnifying setup (M ≈ −1/2)
was tested, in which case we had f1 = 45 mm and f2 = 25 mm. The two systems have a resolution
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(the 1/e width of the PSF without magnification) δr = 5.2 µm (magnifying setup) and δr = 21.4
µm (demagnifying setup), corresponding to Rayleigh ranges zR of approximately 140 µm and
2.3 mm, respectively. The images were recorded with a camera Basler acA1920-25uc. All the
images were normalized such that the brightest pixel appears completely white.

Figure 5 shows images of a ring-shaped slit with a diameter of 200 µm and a width of 20 µm
taken by using the magnifying setup with coherent illumination. The images are obtained without
(Fig. 5(a)) and with the annular aperture (Fig. 5(b)) between the two lenses. The aperture is seen
to destroy the image by splitting it into many interference rings. The pattern corresponds to the
theoretical pattern shown in Fig. 5(c); it was obtained by solving Eq. (8). In fact, the observed
Poisson spot at the center of the pattern is so bright that Figs. 5(b) and (c) had to be severely
saturated in order to see the outer rings. This example clearly shows that, despite an increased
depth of field, the approach does not work when used with coherent illumination.

("texmos2.s512" from the USC-SIPI image database [38]). For the simulation, we used the153
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Fig. 5. Images of a ring-shaped slit in a metal film taken by the magnifying imaging
system with coherent illumination, when the annular aperture was (a) removed from
and (b) inserted into the system. In (c), the calculated image that corresponds to case
(b) is shown.

Figure 5 shows images of a ring-shaped slit with a diameter of 200 µm and a width of 20 µm176

taken by using the magnifying setup with coherent illumination. The images are obtained without177

(Fig. 5(a)) and with the annular aperture (Fig. 5(b)) between the two lenses. The aperture is seen178
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theoretical pattern shown in Fig. 5(c); it was obtained by solving Eq. (8). In fact, the observed180
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saturated in order to see the outer rings. This example clearly shows that, despite an increased182

depth of field, the approach does not work when used with coherent illumination.183

Fig. 5. Images of a ring-shaped slit in a metal film taken by the magnifying imaging system
with coherent illumination, when the annular aperture was (a) removed from and (b) inserted
into the system. In (c), the calculated image that corresponds to case (b) is shown.

Next, images of the same ring-shaped slit were taken using incoherent light. They are shown
in Figs. 6(a) and 6(d) for the system used with the annular aperture and the iris, respectively. The
annular aperture in this case does not destroy the image at all. The extended depth of field due to
the annular aperture is showcased by the images in Figs. 6(b) and 6(c) obtained with the object
shifted by ∆z = 0.4 mm (∆z/zR ≈ 3) and ∆z = 0.8 mm, respectively, away from the front focal
plane of the system. In both images, the slit edges are clearly seen, even though a smooth white
background appears when ∆z increases. In contrast, when using the iris, the defocused images are
significantly blurred (see Figs. 6(e) and (f)). In order to verify these results by calculations, the
images in Figs. 6(a) - (f) were reproduced by solving Eq. (13). They are shown in Figs. 6(g)-(l)
on the matching order. The calculated images are in agreement with the experimental ones. This
suggests that, if needed, the PSF given by Eq. (4) can be used to deconvolve the experimentally
obtained images and completely get rid of the parasitic background. For the imaging system
with the annular aperture, the intensity at the center of the PSF decreases by 20 % at distances
∆z = ±0.44 mm, which is often considered as an acceptable limit [41], yielding the total depth of
field of 0.88 mm (cf. 0.32 mm for a circular aperture). However, this quantitative measure of the
depth of field is not exact, as it fails to take into account the qualitive difference of the shapes of
the PSF in the two cases (see Fig. 2) and their influence on the defocused images demonstrated in
Fig. 6.

In order to show that not only narrow slits can be imaged with the system, we took images
of an opaque logo of Aalto University. The logo is formed by 20 µm thick aluminum stripes.
The images obtained by using incoherent illumination with the annular aperture and with the
equal-radius iris are shown in Figs. 7(a) - (c) and 7(d) - (f), respectively. In order to demonstrate
that the depth of field is extended symmetrically in both directions, we moved the object this
time towards the imaging system, by 0.4 and 0.8 mm. In the presence of the annular aperture,
the image remains sharp (Figs. 7(b) and (c)). The contrast of the image can be improved by
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Fig. 6. Images of ring-shaped slit obtained by using the magnifying imaging setup with
incoherent illumination and the annular aperture (a) - (c) or the iris (d) - (f) used in the
system. The corresponding simulated versions are shown in (g) - (l) in the same order.
The columns of images, starting from the left, are obtained for Δ𝑧 = 0, 0.4 mm, and 0.8
mm, respectively.
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Fig. 6. Images of ring-shaped slit obtained by using the magnifying imaging setup with
incoherent illumination and the annular aperture (a) - (c) or the iris (d) - (f) used in the
system. The corresponding simulated versions are shown in (g) - (l) in the same order. The
columns of images, starting from the left, are obtained for ∆z = 0, 0.4 mm, and 0.8 mm,
respectively.

a computer post-processing. With the iris, the image becomes blurred (Figs. 7(e) and (f)), as
before.

We have also tested the demagnifying setup by taking images of a 100 µm thick ring-shaped
slit with a 1 mm diameter. The images obtained in the presence of the annular aperture and the
iris are shown in Figs. 8(a) - (c) and 8(d) - (f), respectively. To evaluate the depth of field, the
object was moved by 6 mm (∆z/zR ≈ 3) and 12 mm away from focal plane of the first lens. Based
on the longitudinal intensity distribution of the PSF, the depth of field with the annular aperture
is 14.7 mm (cf. 5.3 mm for the circular aperture). The demagnifying setup has a much longer
depth of field, but the factor by which the annular aperture extends the depth of field appears to
be the same as in the magnifying setup. Indeed, the extension of the depth of focus for fields of
the form given by Eq. (4) is determined only by the obscuration ration ϵ .
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demonstrated in Fig. 6.201

Fig. 7. Images of an opaque logo of Aalto University obtained using the magnifying
imaging setup and the incoherent light source. The logo is formed by 20 µm thick
aluminum stripes. In (a) - (c) and (d) - (f), the images were taken in the presence of the
annular aperture and the iris, respectively. The columns of images, starting from the
left, are obtained at Δ𝑧 = 0, -0.4 mm, and -0.8 mm, respectively.
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the image remains sharp (Figs. 7(b) and (c)). The contrast of the image can be improved by208

a computer post-processing. With the iris, the image becomes blurred (Figs. 7(e) and (f)), as209

before.210

Fig. 8. Images of ring-shaped slit obtained by using the demagnifying imaging setup
with incoherent illumination and the annular aperture (a) - (c) or the iris (d) - (f) used
in the system. The columns of images, starting from the left, are obtained at Δ𝑧 = 0, 6
mm, and 12 mm, respectively.

Fig. 7. Images of an opaque logo of Aalto University obtained using the magnifying imaging
setup and the incoherent light source. The logo is formed by 20 µm thick aluminum stripes.
In (a) - (c) and (d) - (f), the images were taken in the presence of the annular aperture and
the iris, respectively. The columns of images, starting from the left, are obtained at ∆z = 0,
−0.4 mm, and −0.8 mm, respectively.
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aluminum stripes. In (a) - (c) and (d) - (f), the images were taken in the presence of the
annular aperture and the iris, respectively. The columns of images, starting from the
left, are obtained at Δ𝑧 = 0, -0.4 mm, and -0.8 mm, respectively.
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Fig. 8. Images of ring-shaped slit obtained by using the demagnifying imaging setup
with incoherent illumination and the annular aperture (a) - (c) or the iris (d) - (f) used
in the system. The columns of images, starting from the left, are obtained at Δ𝑧 = 0, 6
mm, and 12 mm, respectively.

Fig. 8. Images of ring-shaped slit obtained by using the demagnifying imaging setup with
incoherent illumination and the annular aperture (a) - (c) or the iris (d) - (f) used in the
system. The columns of images, starting from the left, are obtained at ∆z = 0, 6 mm, and 12
mm, respectively.

4. Conclusion

We have considered a 4f -type imaging system with an extended depth of field achieved by using an
annular aperture in the common focal plane of the two lenses. We have shown, both analytically
and experimentally, that the considered system generates images composed of Bessel-like beams,
resulting in an extraordinarily long depth of field. It was also shown that the system used with
spatially incoherent illumination produces nearly non-diverging high-quality images, whereas
coherent illumination distorts the images by splitting them into interference fringes. The system
is relatively compact and consists of only standard optical components, which makes the device
easy to build and use. The results obtained in this work can be used to design many practical
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devises with the extended depth of field, such as high-resolution microscopes and optical systems
imaging three-dimensional objects.

A. Field propagation through the imaging system

The field in the object plane, Uo(ξ, η), transmitted through the imaging system of Fig. 1 results in
a field Ui(x, y) in the image plane given by

Ui = h(di) ∗ tL(f2)(h(f2) ∗ tA{h(f1) ∗ tL(f1)[h(do) ∗ Uo]}), (15)

where tA is the amplitude transmission function of the aperture, tL = exp(−ikr2/2f ) is the
transmission function of the lens with focal length f , and h(z) is the PSF of free-space propagation
over a distance d, which, using the Fresnel approximation, is written as

h(d) = k
i2πd

exp
[︃
ik

(︃
d +

r2

2d

)︃]︃
. (16)

For a field V propagating from a plane n to a plane n + 1 in free space, we obtain

h(d) ∗ V =
k

i2πd
exp

[︄
ik

(︄
d +

r2
n+1
2d

)︄]︄

×
∬ ∞

−∞
V(xn, yn) exp

(︃
ik

r2
n

2d

)︃
exp

[︃
−i

k
d
(xn+1xn + yn+1yn)

]︃
dxndyn

=
k

i2πd
exp

[︄
ik

(︄
d +

r2
n+1
2d

)︄]︄
Fd

[︃
V(xn, yn) exp

(︃
ik

r2
n

2d

)︃]︃
,

(17)

where Fd[W(xn, xn)] = W̃(kx, ky) is the two-dimensional Fourier transform of W evaluated at
(kx, ky) = (kxn+1/d, kyn+1/d). Equation 17 is the Fresnel-Kirchhoff diffraction integral.

In order to solve Eq. (15), we start considering transformation of the field due to a single-lens
imaging system. By applying Eq. (17) twice, alongside the convolution theorem, the image of
object field Vo(xn, yn) can be expressed as

Vi = h(di) ∗ tL(f )[h(do) ∗ Vo]

= − k4

(2π)4d3
i do

exp

[︄
ik

(︄
di + do +

r2
n+2
2di

)︄]︄

× Fdi

[︄
exp

(︄
ik

r2
n+1
2
ψ

)︄]︄
∗ Fdi

[︃
Fdo

[︃
Vo(xn, yn) exp

(︃
ik

r2
n

2do

)︃]︃ ]︃
,

(18)

where ψ = d−1
o + d−1

i − f −1 is the focusing error. The double Fourier transform just invert and
scale the function FD [Fd[W(xn, yn)]] ∝ W

(︂
− d

Dxn+2,− d
Dyn+2

)︂
, whereas Fourier transform of

exp
(︁
ikr2

n+1ψ/2
)︁

can be calculated as a Hankel transform, yielding

Fdi

[︄
exp

(︄
ik

r2
n+1
2
ψ

)︄]︄
= 2π

∫ ∞

0
exp

(︄
ik

r2
n+1
2
ψ

)︄
J0

(︃
k

rn+2rn+1
di

)︃
rn+1drn+1

=
i2π
kψ

exp

(︄
−ik

r2
n+2

2di
2ψ

)︄ (19)

if ψ ≠ 0. If ψ = 0, Eq. (19) yields the Dirac delta-function, and consequently, Eq. (18) yields
a perfectly sharp image (if the lens aperture is neglected). Inserting the evaluated Fourier
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transforms into Eq. (18), we obtain

Vi =
kdo

i2πd3
i ψ

exp

[︄
ik

(︄
di + do +

r2
n+2
2di

)︄]︄

× exp

(︄
−ik

r2
n+2

2di
2ψ

)︄
∗

[︄
Vo

(︃
−do

di
xn+2,−do

di
yn+2

)︃
exp

(︄
ik

r2
n+2do

2d2
i

)︄]︄

=
kdo

i2πd3
i ψ

exp

[︄
ik

(︄
di + do +

r2
n+2
2di

)︄]︄
exp

(︄
−ik

r2
n+3

2d2
i ψ

)︄
×

∬ ∞

−∞
Vo

(︃
−do

di
xn+2,−do

di
yn+2

)︃

exp

[︄
ik

r2
n+2

2d2
i

(︂
do − ψ−1

)︂]︄
exp

[︃
ik

di
2ψ

(xn+3xn+2 + yn+3yn+2)
]︃

dxn+2dyn+2.

(20)

Using the change of variables Xn = −doxn+2/di, Yn = −doyn+2/di, Xn+1 = xn+3 = −diXn/do, and
Yn+1 = yn+3 = −diYn/do, Eq. (20) can be rewritten as

Vi =
k

i2πdodiψ
exp [ik (do + di)] exp

[︄
ik

R2
n+1

2d2
i

(︂
di − ψ−1

)︂]︄

×
∬ ∞

−∞
Vo (Xn, Yn) exp

[︃
ik

R2
n

2d2
o

(︂
do − ψ−1

)︂]︃
exp

[︃
ik

dodiψ
(Xn+1Xn + Yn+1Yn)

]︃
dXndYn

=
k

i2πdodiψ
exp [ik (do + di)] exp

[︄
ik

R2
n+1

2d2
i

(︂
di − ψ−1

)︂]︄

× Fdodiψ

[︄
Vo (Xn, Yn) exp

(︄
ik

R2
n

2do

d−1
i − f −1

ψ

)︄]︄
.

(21)

For di = f and do = f , Eq. (21) simplifies to the following expressions

Vi(di = f ) = k
i2πf

exp [ik (do + f )] exp

[︄
ik

R2
n+1

2f 2 (f − do)
]︄

Ff [Vo (Xn, Yn)] , (22)

Vi(do = f ) = k
i2πf

exp [ik (f + di)]Ff

[︃
Vo (Xn, Yn) exp

[︃
ik

R2
n

2f 2 (f − di)
]︃ ]︃

, (23)

respectively.
The first lens of the imaging system transforms the field according to Eq. (22) with transverse

coordinates (X1, Y1) = (ξ, η) and (X2, Y2, R2) = (p, q, ρ). Therefore, the field Uf incident on the
annular aperture is given by

Uf(p, q) = k
i2πf1

exp [ik (do + f1)] exp

[︄
ik
ρ2

2f 2
1
(f1 − do)

]︄
Ff1 [Uo (ξ, η)] . (24)

The second lens transforms the field according to Eq. (23). Thus, the image field given by Eq. (15)
can be expressed as

Ui(x, y) = k
i2πf2

exp [ik (f2 + di)]Ff2

[︄
tA(ρ)Uf (p, q) exp

[︄
ik
ρ2

2f 2
2
(f2 − di)

]︄ ]︄
. (25)
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We recall that Ff2 [W(p, q)] = Ff2 [W(X2, Y2)] = W̃(kX3/f2, kY3/f2) = W̃(kx/f2, ky/f2). Inserting
Eq. (24) into Eq. (25) yields

Ui = − k2

(2π)2f1f2
exp [ik (do + f1 + f2 + di)]

× Ff2

[︄
tA(ρ) exp

[︄
ik
ρ2

2f 2
1
(f1 − do)

]︄
Ff1 [Uo (ξ, η)] exp

[︄
ik
ρ2

2f 2
2
(f2 − di)

]︄ ]︄
.

(26)

Using the convolution theorem, the expression for the image field can be rewritten as

Ui = − k4

(2π)4f1f 3
2

exp [ik (do + f1 + f2 + di)]

× Ff2

[︄
tA(ρ) exp

[︄
ik
ρ2

2

(︄
f1 − do

f 2
1
+

f2 − di

f 2
2

)︄]︄]︄
∗ Ff2

[︁
Ff1 [Uo (ξ, η)]

]︁
= G(x, y, do, di; ϵ) ∗ Uo(x/M, y/M),

(27)

where M = −f2/f1 is the magnification of the imaging system. For an annular aperture with the
outer and inner radii a and ϵa, respectively, the Fourier transform determining the PSF of the
system G is

G =
k2

2πMf 2
2

exp [ik (do + f1 + f2 + di)]
∫ a

ϵa
exp

[︄
ik
ρ2

2

(︄
do − f1

f 2
1
+

di − f2
f 2
2

)︄]︄
J0

(︃
k

rρ
f2

)︃
ρdρ

= C

{︄∫ 1

0
exp

[︄
−ik

a2τ2

2

(︄
f1 − do

f 2
1
+

f2 − di

f 2
2

)︄]︄
J0

(︃
k

raτ
f2

)︃
τdτ

−ϵ2
∫ 1

0
exp

[︄
−iϵ2k

a2τ2

2

(︄
do − f1

f 2
1
+

di − f2
f 2
2

)︄]︄
J0

(︃
ϵk

raτ
f2

)︃
τdτ

}︄
.

(28)

Here, C = (ka)2 exp[ik(do + f1 + f2 + di)]/(2πMf 2
2 ) is a complex constant.

B. Image of a line

If coherent illumination is used and the imaging system is ideally aligned, the image of an
infinitely thin and long line can be found by inserting the corresponding geometric image field
Ug = A0δ(vx) and the PSF given by Eq. (7) into Eq. (8). The intensity distribution in the image
plane is found to be

Ic
line(vx, vy; ϵ) ∝

|︁|︁|︁|︁A0

∫ ∞

−∞
G

(︃
0,

√︂
v2

x + v2
y ; ϵ

)︃
dvy

|︁|︁|︁|︁
2

∝
|︁|︁|︁|︁|︁2A0C

∫ ∞

vx

[︃
J1(v)

v
− ϵ J1(ϵv)

v

]︃
v√︁

v2 − v2
x
dv

|︁|︁|︁|︁|︁
2 (29)

for vx ≥ 0 (Ic
line(−vx) = Ic

line(vx)). In Eq. (29), a substitution vy =
√︁

v2 − v2
x has been used in order

to solve the integral, yielding

Ic
line(vx; ϵ) ∝ 4|A0C |2

(︃
sin vx − sin ϵvx

vx

)︃2

∝ 4|A0C |2 (1 − ϵ)2 cos2
(︃
1 + ϵ

2
vx

)︃
sinc2

(︃
1 − ϵ

2
vx

)︃
.

(30)
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If the illumination is incoherent, the intensity distribution is given by Eq. (9), resulting in the
expression

Iic
line(vx; ϵ) ∝ 2|A0C |2

∫ ∞

vx

[︃
J1(v)

v
− ϵ J1(ϵv)

v

]︃2 v√︁
v2 − v2

x
dv

∝ |A0C |2
[︄
H1(2vx) + ϵH1(ϵ2vx)

v2
x

− 4ϵ
∫ ∞

vx

J1(v)J1(ϵv)
v
√︁

v2 − v2
x

dv

]︄
,

(31)

where H1 is the first-order Struve function. At the position of the geometric image of the line
(vx = 0), Eq. (31) simplifies to

Iic
line(0; ϵ) ∝ 2|A0C |2

∫ ∞

0

[︃
J1(v)

v
− ϵ J1(ϵv)

v

]︃2
dv

∝ 8
3π

|A0C |2 [︁
1 + ϵ3 + (1 − ϵ2)K(ϵ2) − (1 + ϵ2)E(ϵ2)]︁ ,

(32)

where K and E are the complete elliptic integrals of the first and second kind, respectively.
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