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ABSTRACT

Background: Transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) is an
established treatment for major depressive disorder (MDD). Recent attempts to improve TMS efficacy by
individually targeting DLPFC subregions that are functionally connected to the subgenual anterior
cingulate cortex (sgACC) appear promising. However, sgACC covers only a small subset of core MDD-
related areas. Further, fMRI connectivity of sgACC is poorly repeatable within subjects.
Methods: Based on an fMRI database analysis, we first constructed a novel core network model (CNM),
capturing voxelwise emotion regulation- and MDD-related DLPFC connectivity. Then, in a sample of 15
healthy subjects and 29 MDD patients, we assessed (i) within-subject repeatability of the DLPFC con-
nectivity patterns computed from time segments of varying lengths of individual-level fMRI data and (ii)
association of MDD severity with the individual DLPFC connectivity strengths. We extracted group-level
connectivity strengths in CNM from individual DLPFC coordinates stimulated with neuronavigated TMS
in a separate sample of 25 MDD patients. These connectivity strengths were then correlated with in-
dividual TMS efficacy.
Results: Compared with sgACC connectivity, CNM increased intraindividual repeatability 5-fold. DLPFC
connectivity strength from CNM was associated with MDD severity and TMS efficacy. While the locations
of CNM-based individual TMS targets remained constant within individuals, they varied considerably
between individuals.
Conclusions: CNM increased repeatability of functional targeting to a clinically feasible level. The
observed association of MDD severity and TMS efficacy with DLPFC connectivity supports the validity of
the CNM. The interindividual differences in target locations motivate future individualized clinical trials
leveraging the CNM.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Transcranial magnetic stimulation (TMS) is a promising treat-
ment in several brain disorders, including major depressive disor-
der (MDD), which is among the leading causes of disability
worldwide [1]. In MDD patients failing to respond to first-line
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Suboptimal targeting of core neuronal networks underlying
MDD may be a major reason for limited efficacy [5]. For targeting,
the TMS coil is typically positioned over the DLPFC area based on
external scalp measures [G]. As functional DLPFC anatomy may vary
between individuals with respect to scalp measures [5,7], several
studies have attempted to develop individualized targeting
methods that are based on resting-state functional MRI (fMRI)
connectivity [5,7—15]. The overall conclusion of these studies has
been that the clinical outcomes correlate with functional connec-
tivity strength between the individual TMS target and a seed region
[7,9,13—15]. Typically, this seed (i.e., a region to compare fMRI time
course with those from other locations in the brain) has been the
subgenual anterior cingulate cortex (sgACC), as the sgACC has been
associated with outcomes of several MDD treatments [13]. The
fMRI signal-to-noise ratio is, however, poor in the sgACC regions
due to susceptibility artifacts, contributing to poor reproducibility
of sgACC connectivity-based targets at the individual level [16].

Recently, sgACC connectivity-based targeting of TMS in MDD
has yielded promising clinical outcomes [11,12]. In these studies,
targeting was, however, combined with a very intense TMS pro-
tocol and not compared with scalp-based targeting. To support
such comparisons, feasibility of techniques for functional individ-
ualized targeting needs to be ascertained, including increasing
validity for functioning of the core networks underlying MDD
(referred to as network validity) and enhancing repeatability of
individualized target localization.

There are many alternatives to map treatment targets. While
data-driven approaches help to avoid some potential errors, results
have been poorly reproducible with currently available sample
sizes [17,18]. In accordance, results of meta-analyses on brain cor-
relates of MDD have varied considerably [19]. One option to restrict
problems related to multiple comparisons is to focus analyses
based on clinical features. For example, while MDD is associated
with many symptoms, its two key features are low mood and
inability to feel pleasure [20]; other symptoms can vary, but
without one of these features MDD cannot be diagnosed. Mood is a
prevalent emotional state that is coupled to more fleeting emo-
tions, linking the two fundamental MDD symptoms with emotion
regulation, and accumulating evidence points to dysfunctional
emotion regulation strategies in MDD [21]. At the neuronal level,
the cingulo-opercular network, which is structurally and func-
tionally altered in MDD and several other common psychiatric
disorders [22], closely resembles the network most strongly asso-
ciated with behavioral and emotion regulation [23]. Accordingly,
developers of TMS treatment for MDD have suggested focusing the
stimulation on brain systems supporting emotion regulation [24].
These findings motivated the construction of a core network model
(CNM) in the present study.

The sgACC is involved in emotion processing [25], but according
to current views, any single brain region or connection could cover
only a small subset of the networks involved in emotion regulation
in MDD [23,25—28]. Fox and coworkers suggested expanding the
seed region to cover the entire brain, weighting each seed voxel in
computation of connectivity with the voxel's connectivity with i)
the sgACC or ii) effective TMS sites [29]. Results from such a seed
map method have been reproducible [8] and the resulting targets
have been shown to be associated with the clinical outcome of TMS
treatment [7]. It remains, however, unknown whether the sgACC
connectivity-based approach is optimal, and the field may benefit
from consideration of other network models as well.

Meanwhile, knowledge about the brain correlates of MDD and
emotion regulation has increased, enabling construction of models
with potentially stronger network validity. MDD-related networks
overlap widely with emotion regulation networks, including i)
emotion-processing regions, such as the amygdala and the sgACC,
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and ii) regions that regulate these emotion-processing regions,
such as the DLPFC and the cingulo-opercular network
[23,25—28,33,34]. Existing human brain imaging databases enable
voxelwise localization of relevant subregions and their connectivity
[35], which can be used to improve target network validity. Further,
delivering stimuli that engage emotion regulation instead of
resting-state during fMRI might increase validity for emotion
regulation. For example, emotional stories are an engaging natu-
ralistic stimulus [36—38], which may increase repeatablility of fMRI
[39].

Another major challenge of fMRI-based individualized targeting
is the noisy signal, which leads to poor within-subject repeatability
of the targets [16]. Attempts to enhance repeatability of sgACC
connectivity with spatial clustering and smoothing reduce accuracy
of the target maps [8,16,29]. While large network models may
enhance repeatability [29], their validity for the targeted disorder
and TMS efficacy remains poorly known. Accurate and repeatable
targeting methods with enhanced network model validity would
be necessary not only to define target locations, but also to estimate
whether target locations vary between individuals to an extent that
TMS targeting needs to be individualized [30—32].

Here, we aimed to increase network validity by constructing a
novel CNM to capture MDD- and emotion regulation-related DLPDC
connectivity. We hypothesized that this approach increases within-
subject repeatability of fMRI connectivity-based DLPFC targets to a
clinically feasible level, and that the resulting DLPFC connectivity
reflects MDD severity and TMS outcome. Moreover, we hypothe-
sized that presenting emotionally engaging audio stories during
fMRI, instead of recording resting-state fMRI data without stimuli,
would enhance the model performance. Finally, as repeatability
depends on scan time, we assessed the effect of scan length on
repeatability, with the overall aim of developing a feasible indi-
vidualized functional targeting method for clinical use.

2. Materials and methods
2.1. Participants

Data from three separate studies were used for evaluating the
network model. The first of these (“MDDAD”) included 29 MDD
patients randomized to receive 10 mg of escitalopram (n = 15) or
placebo (n = 14) daily for one week prior to imaging to evaluate
early medication-related brain functions [36]. The second sample
(“HC”) included 15 healthy controls without medication [37]. The
third dataset included 25 TMS-treated MDD patients from a study
of Weigand et al. (“MDDTMS”) [15] (See Supplementary Material).

2.2. Seed definition for the core network model

To construct the CNM, we used Neurosynth, which is a large
fMRI database that allows associating keywords with brain acti-
vation patterns [35]. This network model was constructed a priori,
before testing it with the individual level data. To derive seed re-
gions associated with MDD and emotion regulation, we con-
structed two probabilistic maps of voxels, the first one associated
with the keywords “major depression” and the second associated
with “emotion regulation”. Next, we multiplied these two maps,
resulting in regions associated both with MDD and emotion regu-
lation. As brain imaging studies on emotion regulation typically
evoke emotions, the emotion regulation-related regions include
both the regulatory and the regulated regions. As a regulatory re-
gion, the DLPFC has positive connectivity with other regulatory
regions, such as the cingulo-opercular network, and negative
connectivity with the regulated regions (especially in standardized
connectivity maps), such as the amygdala and the sgACC. If
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connectivity with the DLPFC was summed from the regulatory and
regulated regions, connectivities of these regions might cancel each
other out. We thus differentiated the negatively and positively
connected regions based on group-level functional connectivity
with DLPFC in Neurosynth resting-state fMRI connectivity data of
1000 individuals. The DLPFC was defined here as the largest clus-
ters of voxels in Neurosynth associated with the keyword “DLPFC”,
multiplied with the Harvard-Oxford cortical (binary) mask. Both
the left and the right DLPFC were included because both are used as
TMS targets. We then selected as seeds the largest clusters of voxels
associated with MDD and emotion regulation that showed positive
or negative DLPFC connectivity (maximum correlation >0.1
or < —0.1 within the DLPFC mask) and agreed with the literature on
emotion regulation and MDD [23,26—28]. The resulting clusters
were located bilaterally within the amygdala and the cingulo-
opercular network. In addition, even though sgACC, as defined by
Fox et al. [13], did not meet the inclusion criteria for network nodes
(existing association with “depression” but absent association with
“emotion regulation”), this area was added post hoc to build a
network that is more comprehensive for TMS targeting in MDD.
Specifically, the rationale for including sgACC was several previous
studies linking it to emotion regulation [25] as well as its central
role in MDD [26,27,34] and TMS targeting in MDD [5,13]. Due to
potential inter-hemispheric differences in brain functioning, seeds
crossing the midsagittal plane were separated to left and right
hemisphere parts, resulting in a total of eight seeds in non-DLPFC
regions (Fig. 1 and Table 1). Supplementary Figure 1A shows dif-
ferences together with considerable overlap of MDD-related and
emotion-regulation related regions in the Neurosynth data.

2.3. TMS treatment

We used the published clinical data set of 25 patients who
completed TMS treatment for MDD (MDDTMS) [15] to compare
CNM connectivity with clinical outcomes. Eighteen patients
received standard 10-Hz stimulation and 7 patients received 20-Hz
stimulation. Eleven patients were treated with the Magstim® and
14 with the Neuronetics® TMS system, and the number of treat-
ment sessions ranged from 20 to 32. MRIs were acquired before
treatment and coil position was registered with the Brainsight®
Neuronavigation system (see original publication for further
details).

Anterior insula

Amygdala

Brain Stimulation 16 (2023) 619—627
2.4. Imaging and stimulus

We had imaging data from the MDDAD and HC samples (but
only stimulation coordinates for the MDDTMS sample). The func-
tional blood-oxygenation-level-dependent (BOLD) and T1-
weighted structural MRIs were acquired at 3T (Supplementary
Material) in our earlier studies [36,37]. In MDDAD and HC each
subject's fMRI data with “stories” consisted of time series of 1000
full volume acquisitions that had been recorded while presenting a
total of 30 audio stories. Neutral stories and stories with negative
and positive emotional content, ten of each three categories, and
45 s of duration each, were presented with the Presentation®
software (Neurobehavioral Systems Inc., Albany, CA, USA). Valence
of the stories was confirmed with subjective ratings in an earlier
study [38]. The resting-state fMRI data were available from the
MDDAD patients only (not from the HC dataset) and consisted of
250 full-volume acquisitions without stimuli. The data were ac-
quired during the same MRI session before obtaining the data with
“stories”. For further details, see Supplementary Material and ref-
erences [37,38]. The MRI data from MDDAD and HC were also used
to derive estimates of connectivity strengths in coordinates actually
stimulated in the separate MDDTMS sample [15].

2.5. Preprocessing of individual data

We preprocessed the imaging data using the DPABI pipeline [40]
and SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
We used movement correction and spatial normalization of fMRIs
into the Montreal Neurologic Institute template based on structural
T1 images with a fast diffeomorphic image registration algorithm
(DARTEL) [41]. We did not use spatial smoothing, as it increases
repeatability at the cost of spatial accuracy. We regressed out
movement parameters and their exponentials, CSF and white
matter signals, bandpass-filtered signal time series at 0.01—-0.1 Hz,
and removed 1 previous and 2 later volumes at time points with
framewise displacement (FD_Power) > 0.5 mm to reduce move-
ment artifacts.

2.6. CNM to define targets at the individual level

We computed connectivity of the seed regions defined in 2.2
(see also Fig. 1) as Pearson's correlation between the seed fMRI time
series and those in other voxels in the whole brain, but focused on
the connectivity of the seed regions with the DLPFC due to its

Fig. 1. Title: Seed regions of CNM and their DLPFC connectivity. Caption: Panel A shows seed region connected positively (blue) and negatively (red) with the DLPFC. Green in panel
B presents sgACC connectivity and blue CNM connectivity (overlap in turquoise). Crosshair points to a previously suggested connectivity-based group-level TMS target in the left
DLPFC (x, y, z = —38, 44, 26) [13]. dACC, dorsal anterior cingulate cortex; sgACC, subgenual enterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex, CNM, core network
model, R, right side. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
Seed regions of the core network model.
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Seed Region Association with “Major Depression” Association with “Emotion Connectivity with DLPFC
Regulation”
X y z Z-score X X z Z-score X y z r

Left anterior insula -34 20 4 11.7 -36 14 2 6.8 36 45 30 0.39
Right anterior insula 36 20 -4 11.7 36 20 0 9 45 39 27 0.34
Left dorsal anterior cingulate cortex -2 24 40 9 -2 22 40 10.2 -33 54 18 0.34
Right dorsal anterior cingulate cortex 2 20 36 14.9 2 20 36 11.5 30 48 30 0.44
Left amygdala -22 -6 -16 22.6 -22 -6 -20 10.2 33 51 30 -0.18
Right amygdala 22 -2 -16 17.9 26 -2 -20 10.6 36 54 24 -0.14
Left subgenual cingulate cortex -6 16 -10 NA -6 16 -10 NA 42 48 27 -0.15
Right subgenual cingulate cortex 6 16 -10 NA 6 16 -10 NA 39 48 30 -0.16

Z-scores indicate the association strengths with keywords “major depression” and “emotion regulation”, and r values the connectivity strengths of each seed with DLPFC
(strongest connection is shown independently of laterality) in Neurosynth database. Coordinates refer to the voxel with the strongest association with the keywords or the

strongest (negative or positive) connectivity with a seed region.

established role in TMS treatment of MDD. In the model, the DLPFC
and the cingulo-opercular regions relate to downregulation of the
negatively connected regions (sgACC and amygdala) that are
involved in eliciting and experiencing emotional responses
[25—27]. In such a network, a regulatory region may activate
together with other regulatory regions (reflected in positive con-
nectivity between regulatory regions) to down regulate activity of
regulated regions (reflected in negative connectivity between the
regulatory regions and the regulated regions). In this network, the
connectivities of regulatory and regulated regions with a target
region are thus opposite (i.e., have different sign). Combining
connectivities with different signs would cancel each other out and
result in biased targeting. Thus, our model combines sign-reversed
negative connectivity of the sgACC and amygdalae and positive
connectivity of the cingulo-opercular seeds. This was operational-
ized by multiplying the individual-level sgACC and the amygdala
connectivity maps (images of voxelwise connectivity) by —1 (note
that absolute values cannot be used here as this would mix positive
and negative connectivity). Then the eight connectivity maps were
averaged to one target map for each individual, reflecting voxelwise
strength of emotion regulation-related DLPFC connectivity in the
MDD-related networks. These maps were computed separately for
resting state and story stimulus data. Supplementary Figure 1B
shows both differences and overlap in connectivity of the MDD-
related and emotion-regulation related regions.

2.7. Assessing within-subject repeatability of target maps

Individual target maps, within-subject spatial correlations be-
tween the target maps, and connectivity strengths were computed
from the MDDAD and HC datasets in Python using standard li-
braries (e.g., pandas [42], numpy [43], scipy [44]) and Nilearn [45]
that relies upon scikit-learn [46]. We split the fMRI time series to
segments of equal length and compared target maps derived from
the separate segments within individuals. To assess the de-
pendency of repeatability on scan length, we used data segments of
different lengths. Specifically, the 1000 vol collected during stories
were split into eight segments of 125 images, 4 segments of 250
images, and 2 segments of 500 images. The 250 vol collected during
rest were split to two segments of 125 images. Next, we computed
the target maps from each segment separately for each participant.
Then, we computed intraindividual spatial correlation (rspat) across
all the individual maps computed from the same length of scan
(e.g., an average of spatial correlation between all pairs of the maps
computed from four fMRI data segments of 250 vol each). We
focused on the DLPFC target regions used in TMS treatment in MDD,
computing rspa Within the bilateral DLPFC mask. We used Fisher Z-
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transformation before two-tailed statistical tests on correlation
values.

As the relationship between scan time and repeatability of
connectivity follows an exponential function [47], we fitted the
function rgpar = rspatmax—e(’t/a) to the data to estimate rgp,; across
the different scan lengths [48]. Here, e and a are constants, I'sparmax
is the maximum achievable rgp,; with the present data, and t is the
scan time.

2.8. Comparing repeatability between models and stimulus type

For fMRI data recorded with stories in the MDDAD and HC
datasets, we computed rsp,e for 7 min (250 vol) and 14 min
(500 vol) using sgACC only vs. the entire CNM. We then compared
T'spat between the two models with equal scan durations (250 vs.
250 vol and 500 vs. 500 vol). For resting-state fMRI data, available in
MDDAD, we computed rsp,e using the CNM for a data segment of
3.5 min (125 images as longer repeated segments were not avail-
able) and then compared it with rspa¢ for equally long data segments
recorded with stories.

2.9. Comparing target locations across individuals

Using the MDDAD and HC data, we selected 100 DLPFC voxels
with the largest connectivity values in the CNM for each subject for
each hemisphere (referred to as targets) computed individually
(see section 2.6) from 1000 functional volumes during stories. The
resulting maps were binarized, summed together, divided by the
number of subjects, and multiplied by 100, resulting in a percent-
age map of common target voxels between individuals. We also
computed the Euclidean distance between the most strongly con-
nected voxels across individuals in the left DLPFC.

2.10. Comparing target connectivity strengths between stimuli and
groups

To test the validity of the model in independent samples, the
connectivity strengths of individual targets (computed as average
connectivity across the 100 target voxels and 1000 fMRI volumes,
referred to as target connectivity strengths) were compared across
individuals between MDDAD and HC and correlated with severity
of MDD in the MDDAD sample. Here, target connectivity values
were pooled across the left and right hemispheres because they
were strongly intercorrelated (r = 0.91, P = 3*10~7). MDD severity
outcomes comprised of Montgomery-Asberg Rating Scale (MADRS)
[49] and Beck's Depression Inventory (BDI) [50] total scores, aver-
aged across 0 and 1 weeks before fMRI



T.T. Raij, E. Komulainen, D.B. Aydogan et al.

2.11. Comparing model connectivity strengths with TMS clinical
outcomes

We used published individual-level data of stimulation co-
ordinates and BDI % change before vs. after treatment in the
MDDTMS sample [15]. These coordinates were defined as the
nearest cortical location from the coil center during treatment.
CNM connectivity values for the coordinates were derived for each
individual in the MDDTMS group from the average across the in-
dividual CNM connectivity maps of the MDDAD patients. We then
correlated the group level CNM connectivity strengths from indi-
vidual stimulation locations with the TMS-related BDI % change
across individual MDDTMS patients following Fox and coworkers
[13]. These correlations were adjusted for device, stimulation pro-
tocol, and number of treatment sessions. For comparison, we
correlated the TMS outcome with the sgACC, emotion-regulation,
and MDD-related connectivity separately.

3. Results
3.1. Sample characteristics

Supplementary Table 2 shows the sample characteristics.
MDDAD and HC samples [36,37] did not differ significantly in sex,
but differed in age. Thus, age was adjusted for when comparing
these groups. In the MDDAD group, BDI score was 25 + 8. In
MDDTMS data [15], BDI score was 39 + 9 before and 21 + 13 after
treatment.

3.2. Comparison of within-subject repeatability of the target maps
between CNM and sgACC connectivity

These analyses focused on the DLPFC. We first compared
repeatability using within-subject spatial correlation (rspat) of the
target maps computed from juxtaposed 7-min fMRI-data segments
during stories. As the difference in rspa¢ between HC vs MDDAD was
non-significant (P > 0.22), the analysis of repeatability for stories
(available for both groups) was conducted in pooled groups in
addition to MDDAD group. Compared with sgACC connectivity
alone (rspar = 0.27 + 0.14 and 0.26 + 0.14, for pooled and MDD
groups, respectively), the CNM resulted in a clearly higher rgpac
(0.58 +0.14 and 0.59 + 0.12, P = 6.1 x 10~ and 8.2 x 10~ "2 for the
pooled and MDDAD group, respectively, paired samples t-test).
Variance of a target map constructed from one data segment
explained by those constructed from other data segments (i.e., rgpat)
was 4.5- and 5.1-fold higher (for the pooled and MDDAD group,
respectively) when computed between consequent story segments
and 5.5-fold higher when computed between the story and the
resting-state segments of equal length (MDDAD group). Examples
of individual targets with the two models are presented in Fig. 2A
and B, and Fig. 2C shows rsp,¢ dependence on scan time.

3.3. Within-subject repeatability of the target maps depending on
scan time and stimulus type

With stories as stimuli, the spatial correlation of the CNM target
maps increased from rspae = 0.58 + 0.14 and 0.59 + 0.12 at 7 min to
rspat = 0.75 + 0.12 and 0.76 + 0.08 for the pooled and MDDAD group,
respectively, at 14 min segments. For resting-state fMRI in MDDAD
sample, the spatial correlation of target maps from 7 min story
segments was 0.49 + 0.11. For story stimulus, the best fit for the
dependency of rsp,; 0n scan time was achieved with an exponential
function with maximum achievable group average of rspac = 0.83
during stories.
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The stories tended to result in higher rspa than rest
(Tspat = 0.36 + 0.11 vs. 0.31 + 0.12 for 3.5 min that were the longest
available repeated segments for resting-state data, P = 0.06). Mean
framewise displacement was similar during the stories
(0.09 + 0.04 mm) and rest (0.08 + 0.03 mm; P = 0.52).

3.4. Interindividual differences between targets

Group average of the target maps from the CNM during stories
in the MDDAD sample matched well with an earlier estimate of the
most efficient stimulation site in the left hemisphere (x,y, z = —38,
44, 26) [13]. However, this group-level result did not represent the
individual-level maxima well because this voxel was among the
100 strongest individual DLPFC connections in the CNM in only 28%
of the patients. The most strongly connected voxels tended to
cluster within each individual, and the locations and shapes of
these clusters differed clearly between individuals (Fig. 3). The
strongest overlap was located at X, y, z = 36, 45, 24, which was
among the top 100 individual target voxels in 41% of the patients
(Fig. 3). The between-subject Euclidean distance between the most
strongly connected voxels was 18 + 4 mm (mean + SD) in the left
hemisphere.

3.5. Comparison of CNM target connectivity strengths between
stimuli and groups

Target connectivity strengths from the CNM in the MDDAD
group were stronger while listening to the stories than during rest
(r=10.27 + 0.04 vs. 0.23 + 0.05, P = 0.002; paired samples t-test;
note that connectivity strengths do not depend on scan time as
repeatability does). Fig. 4A shows that the patients (MDDAD) had
stronger target connectivity than the healthy controls (HC)
(r=0.27 £ 0.05 vs. 0.24 + 0.05) during stories (P = 0.04). There was
no difference between the medicated and unmedicated patients in
connectivity strengths during stories or rest (P > 0.91).

3.6. Correlation of target connectivity strengths with MDD severity

Fig. 4B shows that during rest the target connectivity strength
correlated with depression severity (r = 0.40, P = 0.03) as assessed
with BDI. No such correlation was observed during stories or with
MADRS (P > 0.05). sgACC connectivity strength did not differ be-
tween patients and control subjects; it also did not correlate with
symptom severity during stories or rest (p > 0.25).

3.7. Correlation of target connectivity strengths with clinical
response to TMS

Fig. 4C shows that the MDDAD group's average connectivity
strengths from CNM, extracted from the coordinates of the
MDDTMS patients targeted during TMS treatment, correlated
(r = 0.44, P = 0.03 during rest; r = 0.48, P = 0.02 during stories)
with the treatment outcomes, as measured with BDI. These corre-
lations survived adjusting for device, stimulation protocol, and
number of treatment sessions (partial correlation P < 0.05). Cor-
relations of TMS outcome with connectivity of emotion regulation
and MDD-related regions, computed separately, were r = 0.32,
P = 0.12; r = 0.37, P = 0.07 respectively, during stories. No corre-
lation with TMS outcome was observed with sgACC connectivity
alone (P > 0.3 during stories and rest).

4. Discussion

We constructed a novel network model with strong face validity
for MDD-related core networks and showed the resulting targets to
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Fig. 2. Title: Intraindividual repeatability of target maps for CNM and sgACC connectivity. Caption: Panels A and B show intraindividual repeatability of target maps for a
representative individual for CNM and sgACC connectivity, respectively. Green shows target maps from one 14-min fMRI data segment and blue from another 14-min fMRI data
segment in the same individual during stories. Panel C presents dependency of repeatability on scan time. Error bars present +1 SD for CNM (upper bars) and for sgACC connectivity
(lower bars) at 7 and 14 min of fMRI data acquisition during stories. An exponential function was fitted to the CNM data to evaluate repeatability at different scan lengths. CNM, core
network model; sgACC, subgenual anterior cingulate cortex. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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Fig. 3. Title: Intraindividual vs interindividual variance of the CNM target locations. Caption: In panel A, red/yellow show target maps computed from two 14-min segments of fMRI
data in one individual (overlap in orange) and blue/green in another individual (overlap in turquoise). Panel B shows CNM targets in eight randomly selected subjects on a sagittal
slice. Different colors represent different subjects computed from 28 min of individual-level fMRI data. Panel C shows percentual intersubject overlap of targets across all 29 MDDAD
patients during stories. Individual targets consist of 100 voxels for each hemisphere. The crosshair points to the connectivity-based group-level target suggested by Fox and co-
workers [13]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Title: Relationship of the core network model target connectivity strengths with depression and effect of TMS. Caption: Panel A shows difference between patients (pt) and
healthy control subjects (hc) in the target connectivity strengths during stories. Panels B and C present correlation of the connectivity strengths during rest with depression severity
and TMS response, respectively. BDI, Beck's Depression Inventory; BDI change %, percentual decrease in BDI during TMS treatment. Error bars represent +1 SD.

be repeatable within individuals and valid for MDD and the TMS The CNM, based on association with the keywords “major
treatment response in MDD in independent samples. depression” and “emotion regulation” as well as DLPFC connec-

The finding that the cingulo-opercular regions and the DLPFC tivity in the Neurosynth database, agrees well with the previous
were negatively connected with the sgACC and amygdala is not literature. MDD relates to an imbalance between the cortical (reg-

new. The cingulo-opercular regions and the DLPFC are, however, ulatory) and the deep emotion-related (regulated) systems
large and functionally heterogeneous regions. The CNM seeds were centered at the amygdala and the sgACC [26,27]. Furthermore,
localized based on a large database to the cingulo-opercular sub- recent findings suggest that the most important cortical emotion
regions most strongly associated with MDD and emotion regula- regulation circuitries include the anterior insula and the dorsal
tion. Thus, connectivity of these subregions may help to advance anterior cingulate cortex [23]. These cingulo-opercular regions
localization of TMS-targets for MDD. have direct structural connections with the DLPFC, amygdala, and
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sgACC, being well-positioned to regulate the deep emotion-related
systems and to mediate regulatory signals from the DLPFC [13,51].

Emotion regulation encompasses explicit and implicit processes
that identify the need to regulate emotions, select among available
regulatory strategies, implement the selected strategy, and monitor
the outcome [52]. The present model may benefit further studies
aimed at testing the long-held hypothesis that TMS effects in MDD
are mediated by modulation of the emotion regulation pathways
[24]. For this purpose, changes in different components of emotion
regulation can be assessed by multiple neuropsychological and
brain-level measures [25,52] and linked in causal models to
treatment-related changes in symptoms and brain measures.

Patients had stronger target connectivity in the CNM than
control subjects, and the target connectivity strengths were posi-
tively correlated with the BDI scores. This agrees with the previous
literature suggesting that during automatic emotion regulation
situations (such as when presented with emotional stimuli without
an explicit emotion regulation task) patients with MDD tend to
engage DLPFC more strongly than healthy control subjects, which
may reflect compensatory mechanisms [25].

Adding to earlier findings of sgACC connectivity [7,9,15,29] our
results suggest that functionally defined TMS targets differ
considerably between MDD patients. The observed 18-mm mean
difference between targets across individuals was larger than the
error of a few millimeters resulting from modern non-linear spatial
normalization to a common brain template [53—55]. Meanwhile,
intraindividual repeatability was high, especially considering that
no spatial smoothing was used. While smoothing of fMRI data in-
creases apparent repeatability [16], it reduces spatial accuracy.
Importance of the spatial accuracy of the target maps depends on
the strength and spatial distribution of the TMS-induced electric
fields needed to trigger therapeutic mechanisms, while such
measures remain inadequately known [56—58]. However, induc-
tion of individual finger movements in humans as well as single-
cell recordings in non-human primates suggest that TMS-induced
action potentials can be restricted to a few square millimeters of
the cortex [59,60]. If the presently observed spatial accuracy with
non-smoothed data was unnecessary for some applications,
smoothing of the data would increase repeatability considerably
beyond the present results [16] and allow even shorter scan times.

The present results also suggest that employing emotional story
stimuli during fMRI, as opposed to resting-state paradigms, may
increase connectivity of the target maps and reduce scan time
demands. On the other hand, the relatively high spatial correlation
between story and resting-state target maps implies that resting-
state data may be sufficient, provided that the scan time is
adequate. As auditory stimuli such as stories can be easily pre-
sented in the MRI-scanner, we recommend further studies to
consider the potential advantages of using auditory narratives.

Limitations of this study include relatively small samples,
limited amounts of resting-state data, and the lack of individual-
level brain imaging data of MDDTMS patients. This may explain
the mixed findings on correlation between the CNM target con-
nectivity strengths and the measures of MDD severity, as well as
the trend-level difference in repeatability between the rest and
story stimulus. While repeatability of connectivity from 3.5 min
fMRI segments is generally poor, this depends on the analysis. The
fitted function in Fig. 4C suggests that repeatability of the CNM-
based targets is relatively good already at 3.5 min fMRI data.
Notably, we used these short data segments only to compare
repeatability and connectivity strengths of the CNM-based targets
between rest and story stimulus, while other analyses used longer
data segments.

Better understanding of the subprocesses of emotion regulation
would enhance development of these lines of research. Even if the
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fundamental symptoms of MDD relate to emotion regulation [20],
it is possible that at least some patient groups may benefit from
separate targeting for different symptoms or symptom clusters
such as anxiety and somatic symptoms [61]. Although we focused
on the DLPFC, future research should consider potential targets in
other regions as well. An alternative way to map seeds or targets
related to MDD and emotion regulation would be to directly assess
regions of altered emotion regulation in MDD patients. We selected
the present way as a large amount of imaging data is considered
necessary for reliable localization, and the available amount of data
on MDD and emotion regulation was considerable larger than that
on emotion regulation in MDD patients. Even if brain correlates of
psychiatric disorders may be better explained as functions of net-
works than of a single region, future clinical trials are needed to
show the difference in treatment outcome between different sin-
gle- and multi-seed models. Prospective randomized controlled
trials are also needed to exclude the possibility that such targeting
models would relate to treatment resistance rather than to clini-
cally useful localization.

The main strength of the study is its innovative use of individ-
ualized neural network connectivity patterns to identify targets for
treatment of MDD. To our knowledge, there are no previous studies
presenting a network targeting model with strong face validity for
the fundamental emotion regulation-related core symptoms of
depression, supported by association between the target connec-
tivity and both the MDD symptoms scores and TMS outcome.
Furthermore, our findings add to the literature showing that such a
model associates with good repeatability and spatial accuracy,
which may be further enhanced using a naturalistic stimulus dur-
ing imaging. In conclusion, these findings suggest that repeatable
and accurate individual targets can be computed based on con-
nectivity of the emotion regulation-related core neuronal networks
of MDD. The target connectivity strengths differed between MDD
patients and healthy control subjects and correlated with MDD
severity and TMS outcome in MDD in separate samples, supporting
model validity. The distance between repeatable individual targets
was considerable. Such findings build the foundation for future
clinical trials to test whether and to what extent individual func-
tional targeting enhances outcomes.
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