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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� Gadolinium-doped ceria is syn-

thesized through a wet chemical

co-precipitation technique.

� The synthesized GDC electrolyte

exhibits a high ionic conductivity

of 0.1 S/cm at 450 �C.

� The fuel cell using the synthesized

GDC produced 569 mW/cm2 at 450
�C.

� The fuel cell device remained sta-

ble for 150 h at a high current

density of 110 mA/cm2.
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a b s t r a c t

Reducing the operational temperature of solid oxide fuel cells (SOFC) is vital to improving

their durability and lifetime. However, a traditional SOFC suffers from high ohmic and

polarization losses at low temperatures, leading to poor performance. Gadolinium-doped

ceria is the best ionic conductor for SOFC at lower temperatures. The present work en-

visages the GDC as an electrolyte for applying low-temperature solid oxide fuel cells (LT-

SOFCs). So, in this regard, herein, GDC is synthesized through a wet chemical co-
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precipitation technique as a functional electrolyte layer fixed between two symmetrical

porous electrodes NCAL (Ni0.8Co0.15Al0.05LiO2). Due to the improved surface properties of

the synthesized GDC, particles perform better than commercially available GDC. The

synthesized GDC electrolyte shows an impressive fuel cell performance of 569 mW/cm2

and a high ionic conductivity of 0.1 S/cm at a shallow temperature of 450 �C. Moreover, the

fuel cell device utilizing the synthesized GDC remained stable for 150 h of operation at a

high current density of 110 mA/cm2 at 450 �C. The high conduction mechanism has been

proposed in detail. The results show that excellent fuel cell performance, high ionic con-

ductivity, and better stability can be achieved at exceptionally low enough temperatures.

Also, the proposed work suggests that new electrolytes can be designed for developing

advanced low-temperature fuel cell technology.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

Introduction

Solid oxide fuel cell (SOFC) enables the efficient use of multi

fuels (hydrogen, methane, ammonia, hydrocarbons, etc.). In

addition, a good performance without emissions can be ach-

ieved, making SOFC technology a promising future energy

conversion technology [1e5]. Typically, a SOFC requires a high

operating temperature to achieve adequate ionic conductivity,

essential to high performance but suffers from degradation

effects and poor durability. As a result of the high working

temperatures (>800 �C), the fuel cell's startup and shut down

cycles are lengthened, which raises the cost of and rate of

degradation for the fuel cell's materials. Today, reducing the

working temperature of SOFCs is a significant task, but it also

comes with a substantial drawback. Reducing the operating

temperature shows a considerable drop in ionic conduction

and an increase in Ohmic losses. Several techniques have

been devised to overcome these obstacles, such as the use of

novel materials as electrolytes and the fabrication of ultra-

thin electrolytes with low Ohmic resistance using thin-film

technology. For example, YSZ (Yttria-stabilized zirconia),

SDC (samarium-doped ceria), and YSZ/GDC (Yttria-stabilized

zirconia/Gadolinium-doped ceria) electrolytes have been

constructed using thin-film techniques to overcome the

ohmic losses and retain the meaningful fuel cell performance

at low temperatures [6e15]. But due to higher cost, difficulty

scaling up, and the longer manufacturing time of thin films,

these solutions have not been practical for SOFC.

Recently, GDC and other single-layer electrolytes made of

semiconductor materials (semiconductor-ionic fuel cell SIFC)

have been used to realize fuel cell operation with high ionic

conductivity and long-term stability at reduced operational

temperature (450e550 �C) [16,17]. For example, Gang-Chen

et al. have reported a GDC nanocrystalline electrolyte exhib-

iting high ionic conductivity of 0.37 S/cm and high fuel cell

performance of 591 mW/cm2 at 550 �C. The amorphous phase

in the fuel cell environment with a multitude of O-vacancies

at the surface of the GDCwas proven to be the primary key for

speedy ionic transport via grain boundary diffusion [17]. At the

same time, the interfacial conduction in the GDC electrolyte

was discovered to be the dominant conduction mechanism

for protons and oxide ions. Also, ceria-based electrolytes are a

good candidate for delivering high ionic conductivity at in-

termediate and low operational temperatures. In this regard,

the core-shell structure (CeO2/CeO2-d) has been reported to

build up proton shuttles to obtain higher proton conductivity

of 0.16 S/cm and high fuel cell performance of 697 mW/cm2 at

520 �C. Moreover, non-doped ceria with a primary focus on

surface properties of CeO2-d has delivered a high ionic con-

ductivity of 0.1 S/cm and a high-power density of 660mW/cm2

at low operational temperature. The core-shell structure

supported with energy band alignment enhances the ionic

conduction while suppressing the electronic conduction

[18,19].

The Li-based metal oxide layered structure Ni0.8Co0.15-
Al0.05LiO2 (NCAL) has commonly been used in semiconductor-

based fuel as an efficient electrode, either anode or cathode,

due to high catalytic activity and better redox reaction rate at

low operational temperature (300e600 �C) [16]. Furthermore,

numerous semiconductor and ionic conducting electrolytes

(single-phase & heterostructure) have been reported using

symmetrical electrodes to perform well at low temperatures.

Also, numerous studies have been documented using GDC-

based material for higher power density and stability at low

(450e550 �C) and intermediate temperatures (500e650 �C)
[17,20e23]. However, to our knowledge, there is still no liter-

ature on reporting good SOFC performance at exceptionally

low operating temperatures, around 350e450 �C.
We report a simple and original design using a GDC elec-

trolyte sandwiched between two symmetrical electrodes

(NCAL) under an H2/Air environment operating at exception-

ally low temperatures (350e450 �C). The most known and

efficient precipitant agent, Na2CO3, synthesized the GDC by

employing the co-precipitationmethod and then used it as the

electrolyte in a fuel cell [24]. It delivered a remarkable fuel cell

performance of 562 mW/cm2 and high ionic conductivity at

450 �C. Also, commercial GDC was used as an electrolyte

yielding 359 mW/cm2 at 450 �C. The high performance and

better stability at low temperatures are owing to the remain-

ing Na2CO3 in the form of a thin layer on the surface of the

GDC, which further protects the GDC from being reduced,

keeping it stable and creating a rapid interface ionic conduc-

tion channel. The obtained results suggest that the surface

modification in doped ceria is as essential as in non-doped

ceria to enhance the surface functionality in terms of higher
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fuel cell performance and long-term stability pointing out a

different mechanism than in previous reports [17]. The pre-

sent work provides a new way to design novel electrolytes

with high ionic conductivity and better fuel cell performance

for advanced and next-generation low-temperature solid

oxide fuel cells. The experimental method and results with

detailed discussion have been debated in a later section.

Experimental portion

Synthesis of GDC particles

GDC powder was synthesized using the wet chemical co-

precipitation method with Na2CO3 as a precipitating agent.

Typically, 1 g of Ce(NO3)3.6H2O (0.9 g) and Gd(NO3)3.6H2O (0.1 g)

(Sigma Aldrich, 99.9%) was dissolved in a beaker of 200 mL

deionized water under stirring. Also, the appropriate amount

of precipitating agent (Na2CO3) was dissolved in a separate

beaker of 200 mL of deionized water for mixing. After 4e5 h of

stirring, Na2CO3 solutions were steadily and dropwise poured

into the GDC solution to form fine precipitation. The molar

ratio among the GDC and precipitating agent (Na2CO3) was 1:2.

Afterwards, the mixture solution was stirred for 4 h and then

aged for 12 h; subsequently, the final solution was filtered,

washed with deionized water to get rid of surface impurities,

and dried in an oven at 120 �C calcined in a muffle furnace at

600 �C for 24 and 4 h respectively. In the end, obtained powder

was grounded for proper mixing to get a fine powder of GDC.

Moreover, the commercial GDC (Ningbo SOFCMAN Energy,

Ningbo City, Zhejiang Province, P.R. China) was also used to

compare synthesized GDC with Na2CO3 precipitating agents.

The prepared GDC synthesis procedure and obtained

morphology and structure have been shown in Fig. 1.

Fuel cell assembly and measurements

The synthesized and the commercial GDC powder were

compressed and sandwiched between two symmetrical elec-

trodes Ni-NCAL (Ni0.8Co0.15Al0.05LiO2). The GDC acts as an

electrolyte, whereas the pasted NCAL Ni-foams act as sym-

metrical electrodes (anode & cathode). The prepared config-

uration of Ni-NCAL/GDC/NCAL-Ni was compressed under the

partial pressure of 250 MPa for 2 min to obtain the circular

pellet of button shape with a diameter of 13 mm and an active

area of 0.64 cm2. The thickness of the prepared pellet was

1.5 mm, while the thickness of the electrolyte was 0.75 mm.

The prepared cell with the following configuration (Ni-NCAL/

GDC/NCAL-Ni) was sintered at 650 for 2 h before the fuel cell

measurements. The Ni-NCAL electrode was assembled using

commercial NCAL (Ni0.8Co0.15Al0.05LiO2) powders and terpinol

solvent. An appropriate amount of terpinol was poured into

the NCAL powder to get the viscous slurry of NCAL. At the

same time, on the other hand, button-shape Ni-foam was cut

with an active area of 0.64 cm2. Finally, the viscous slurry was

pasted on the Ni-foam and then dried at 120 �C for 15 min to

form the Ni-NCAL electrode. The remaining detail of the NCAL

electrode can be found elsewhere [16].

Later the pellet was fixed into the device to start measuring

fuel cell and electrochemical impedance spectroscopy (EIS). At

the anode side, fuel was pure hydrogen, and on the cathode

side, Air as an oxidant was supplied in 80e120 mL min�1 and

150e200 mL min�1, respectively. The fuel cell performance

was studied using a programmable electronic load (IT8511) to

Fig. 1 e Schematic diagram of synthesis procedure of GDC with morphology.
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collect the current and voltage reading and plot the IeV/IeP

characteristic curve. The Gemmary, 3000 electrochemical

workstation was used to measure the electrochemical

impedance spectroscopy under H2/Air environment at

different operational temperatures of 350e450 �C. The applied

frequency was set in the range of 0.1 Hze1 MHz with an

amplitude of 10 mV.

Characterization

The crystallographic phases were determined and analyzed

using the X-ray diffraction (XRD) patterns of the as-

synthesized GDC and commercial GDC samples. The XRD

analysis was performed using a Bruker D8 X-ray diffractom-

eter (XRD, Germany, Bruker Corporation) under the operating

voltage and current of 45 kV and 40 mA, respectively, with Cu

Ka radiation (l ¼ 1.54060 �A). Field-emission scanning-electron

microscope (FESEM, JSM7100F, Japan) was used to analyze the

samples operating at 15 kV morphology. A high resolution-

transmission electron microscope (HR-TEM, JEOL ARM-

200CF) was used to characterize the detailed microstructure

further. A 532 nm beam commenced Raman microscope (Lab

RAMHR 800 UV, Horiba Jobin Yvon, France) was used to obtain

the Raman spectra of commercial and prepared GDC. The

thermos gravimetry-differential scanning calorimetry (TG-

DSC, NetzschSTA449F5) was used to analyze the thermal

weight losses of the powder samples of commercial and pre-

pared GDC, and operation was performed in the temperature

range of 29e1200 �C under synthetic air environment.

Furthermore, for checking the surface properties of the pow-

der samples of commercial and prepared GDC, X-ray photo-

electron spectroscopy (Escalab 250 Xi, Thermo Fisher

Scientific, UK) was performed to obtain the XPS spectra.

Results and discussion

Structural and morphological properties of commercial and
prepared GDC

In the current study, we have synthesized the GDC electrolyte

powder using the wet co-precipitation method. In previous

studies, GDCwas synthesized with a differentmethodology to

obtain the pure phase of the fluorite structure. The XRD (x-ray

diffraction) analysis was used to study the phase of prepared

GDC powder. The obtained result have confirmed the forma-

tion of pure fluorite structure of GDC, which matched well

with the previous studies, as displayed in Fig. 2(a) [17,24].

Fig. 2 e (a, b) XRD pattern and Raman spectra of commercial and synthesized GDC (cef) HR-TEM images of (c, e) commercial

and the (d, f) synthesized GDC.
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Commercial or synthesized samples have the pure cubic

fluorite structure of phase group of Fm3m corresponding to

the JCPDS card # 00-034-0394 of refined ceria fluorite structure

[18,19]. Both samples show the exact peak positions but

slightly different intensities, revealing the GDC fluorite

structure. The Scherrer formula was used to calculate the

crystalline size of 40 nm and 43 nm corresponding to syn-

thesized and commercial GDC, respectively, confirming

nanosized particles' formation. The slight difference in crys-

talline size might be due to the GDC synthesis using precipi-

tating agent Na2CO3 [25].

Raman spectra were performed to investigate further ob-

tained products in both samples (commercial & synthesized

GDC), as displayed in Fig. 2(b). Typically, Raman spectra are

the most powerful technique to examine the structural

properties (local short distance) and defect array in the GDC

lattice [25]. Themost intense peak in both samples occurred at

468 cm�1 due to the F2g symmetric vibration mode of CeeO

bonds, mainly belonging to the CeO2 fluorite structure. Also,

the synthesized sample peak at 1071 cm�1 cross ponds to the

amorphous phase Na2CO3 proves the existence of Na2CO3

with no limits in synthesized samples. These findings are

well-matched with the previously reported literature [25e29].

Fig. 2(c and d) revealed the HR-TEM image of the com-

mercial GDC and the synthesized GDC exhibiting nano-

structure particles, which are homogeneous and well

dispersed. The obtained nanostructure is favorable to syn-

ergistic effects of GDC particle characteristics, which benefits

the electrochemical properties of the prepared device.

Moreover, the formation of nanoparticles enhances the

surface area. It creates more active sites, benefiting the ionic

conductivity of the prepared fuel cell device [25]. Fig. 2(e and

f) shows the HR-TEM image at a 10 nm scale withmulti fringe

[111] with d-spacing of 0.26 nm and 0.23 nm for commercial

GDC and synthesized GDC. Also, in synthesized GDC, resid-

ual Na2CO3 existence has been noticed, confirming the

Na2CO3 as an amorphous phase covering the GDC surface as

a coating layer helps in excelling the ionic transport and

protect GDC layers from a reduction in the fuel cell envi-

ronment [21,25].

Morphological and structural properties

Fig. 3 (a, b) shows the morphology of commercial GDC and

synthesized GDC. Both images reveal the uniform distribution

of all particles at nanoscale 500 and 100 nm, leading to the

Fig. 3 e a, b) SEM images of commercial and synthesized GDC respectively, c, d) TGA-DSC spectra of commercial and

synthesized GDC in the range of 100e1000 �C.
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enhanced area and active sites, which benefits the device's
electrochemical performance. Both the commercial and syn-

thesized GDC shows a spherical surface; also, the surface of

GDC has been coveredwithNa2CO3; the difference can be seen

in Fig. 3(a, b).

The commercial, DSC, and TGA characterized the synthe-

sized GDC samples for comparison, as shown in Fig. 3(c and d).

DSC and TGA were performed in the temperature range of

30e1200 �C for commercial and synthesized GDC, as depicted

separately in Fig. 3(c and d). Two sharp exothermic peaks have

been observed in the DSC curve of synthesized GDC, as shown

in Fig. 3(c). In contrast, no prominent peak of endothermic or

exothermic has been traced in the DSC curve of commercial

GDC. The TGA curve for both samples, either the commercial

or synthesized GDC, has been displayed in Fig. 3(d). A weight

loss of 3e5% has been noticed for synthesized GDC at the

temperature range of 68e100 �C, ascribed to the evaporation

of absorbedwater. Moreover, a slight weight loss was detected

in the temperature range of 100e860 �C, possibly due to

crystal-absorbed water and moisture resulting in no

decomposition reaction. At 850e1000 �C, additional weight

loss was noticed, mainly attributed to the melting of Na2CO3,

as reported earlier [25,30,31]. These results suggest that

Na2CO3 does not entirely decompose even at high operational

temperature, as confirmed by a sharp peak at 858 �C cross-

bonds to the Na2CO3 in Fig. 3(c).

Surface properties of commercial and prepared GDC

Fig. 4 (a) shows the cropped Ni foam with porous structure,

painting of NCAL slurry on Ni foam using the proper brush to

cover Ni foam's surface to obtain the Ni-NCAL electrodes

(anode & cathode). Fig. 4 (b-d) reveals the SEM image of the

porous structure of Ni-foam, the surface of Ni-foam covered

NCAL and NCAL particles of prepared electrodes, respectively.

The porous structure of Ni -NCAL confirms the better catalytic

activity of electrodes and helps enhance the fuel cell device

[16]. The SEM image of the porous electrode and cross-

sectional view of commercial and prepared GDC pellet have

been shown in Fig. SI 1, 2. Moreover, Fig SI.3(a, b) reveals the

Fig. 4 e a) Schematic diagram of the preparation of Ni-foam pasted NCAL electrodes b-d) SEM of Ni-foam and NCAL

electrodes e-g) XPS full spectra and O-1s spectra of commercial and synthesized GDC.
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SEM image of commercial and prepared GDC in the mm range

(1 mm), showing a clear view of particle connection.

Furthermore, XPS (x-ray photoelectron spectroscopy)

analysis was employed to investigate both samples' chem-

ical states (commercial and synthesized GDC). The full XPS

spectra of both commercial and synthesized GDC samples

have been displayed in Fig. 4(e). A detailed analysis of XPS

showed the co-existence of Na, Ce, Gd, and O in synthesized

GDC. Most importantly, the sharp peak at the binding en-

ergy of 498 eV and 1070 eV indicates the existence of Na in

the synthesized GDC lattice. Also, the Ce-3d region is

composed of two spin-orbit splits, 3d5/2 and 3d3/2 core holes,

as demonstrated in Fig. SI 4. Also, the six (v, v2, v3, u, u2, and

u3) and four (v0, v1, u0, and u1) fitted peaks of Ce evidenced

the presence of two states, Ceþ4 and Ceþ3, respectively, as

can be confirmed in the Fig. SI 4(a, b). Also, the obtained

peaks and data are well-matched with the previous reports

[17,18,32]. The O-1s spectrum of commercial and synthe-

sized GDC have been presented in Fig. 4(f and g). The oxygen

spectra of both samples have been deconvoluted into three

peaks, OI, OII and OIII. The synthesized materials have

widened peak areas which assist in producing more O-va-

cancies, which might appear due to the usage of precipi-

tating agent Na2CO3 in the preparation of GDC. The binding

energy 529e530 Ev peak OI relates to or is connected with

the lattice oxygen. While the peak about 531 eV is relevant

to O-vacancies and is denoted by OII. The peak at 533 eV can

be attributed to surface O-defects or O-species adsorbed on

O-vacancies, both of which represent the loosely bound

oxygen denoted as OIII. Also, it has been speculated that the

528e533 eV peaks signify the existence of oxide ions and O-

vacancies, which is essential in enhancing ionic conduc-

tivity and impressive electrochemical fuel cell performance

[18,19,25,33,34].

Electrochemical fuel cell performance and EIS analysis

The performance of commercial GDC and synthesized GDC

electrolytes have been achieved under H2/Air environments at

low operating temperatures of 350e450 �C. The setup of

measuring the fuel cell performance, OCV and current density

has been displayed in Fig. SI 5. The IeV/IeP characteristics

curves of commercial and synthesized GDC are shown in

Fig. 5(a and b). The synthesized GDC as electrolyte has deliv-

ered meaningful fuel cell performance of 569e237 mW/cm2

and higher OCV >1V at different and low operating tempera-

tures of 450e350 �C. Moreover, the commercial GDC as an

electrolyte also gives good fuel cell performance of 380 mW/

cm2 at 450 �C, but the obtained performance of commercial

GDC is less than the synthesized GDC. Also, the received

performance of synthesized GDC is higher than the fore-

reported electrolyte SFT, SFT-ZnO, CF-LBZY, TiO2, BCFZY-

ZnO, SDC and SDC-STO in SOFCs [34e39].. Such high perfor-

mance owes to GDC preparation with precipitating agent

Na2CO3 and low grain boundary resistance, which can be

debated in a later section. Moreover, the prepared GDC using

Na2CO3 as a precipitating agent certainly possess the higher

performance due to presence of amorphous layer of Na2CO3

leading to enhance the enhance the ionic conduction through

surface and interface which eventually increased the fuel cell

performance of the prepared device [25,40]. Since we cannot

verify that Na2CO3 completely covers all GDC particle surface,

the characterized “GDC particle/Na2CO3 coating layer” unit is

not referred to as a core-shell structure in this investigation.

Hence, the term “thin coating layer” is more accurate. One

thing that the two usual structures have in common is the

ability to build a continuous GDC/Na2CO3 interface, which has

the potential to generate efficient pathways to endow high

performance and high ionic conduction. The higher OCV of

synthesized and commercial GDC confirms the fuel cell device

free of short-circuiting, as shown in Fig. 5(a and b). The com-

mercial GDC has lower OCV than the synthesized GDC, which

mainly attributed to the Na2CO3 as speculated in previous

reports [41,42]. The high voltage and power output have

proven the GDC as a feasible and competent electrolyte ma-

terial, signifying that GDC grasps excellent potential as an

electrolyte at exceptionally low temperatures. Such low-

temperature performance is also higher than the reported

results of a few m-SOFCs with thin-film electrolytes. For

example, YSZ as an electrolyte exhibit 450mWcm�2 at 500 �C
and 155mWcm�2 at 510 �C [43,44]. According to the obtained

results on one side, the adopted approach has successfully

offered a novel and promising technology for LT-SOFC based

on GDC electrolytes. At the same time, on the other hand,

Fig. 5 e a, b) fuel cell performance of synthesized and commercial GDC at (450-350 �C.
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more efforts like thin-film techniques and engineering of

materials are desperately required to enable it to more

advanced technology, especially for LT-SOFCs. Furthermore,

the detailed XRD refinement was performed using the full-

proof software where the black line signifies the observed

value; red represents the calculated one, green shows the

difference between the calculated and experimental value

and the pink line shows the Bragg position as shown in Fig. SI

3(c). Fig. SI 3(d) shows the comparison graph of the fuel cell

performance of commercial and prepared GDC at different

operational temperatures 450-350 �C in H2/Air environment.

To further understand the underlying conductivity, the

change of commercial and synthesized GDC nanoparticles has

been investigated by employing the impedance spectra of the

commercial and synthesized GDC nanoparticles. The con-

structed fuel cell device was operated under the open-circuit

voltage condition at 450 �C in H2/Air environments, as pre-

sented in Fig. 6(a and b). Fig. 6(a and b) presents impedance

spectra of synthesized and commercial GDC electrolyte at

different operational temperatures of 350e450 �C. The experi-

mental data of EIS were inserted in Z-SIMPWIN software and

fitted using the following circuit LRo(R1Q1) (R2Q2) (insertion in

Fig. 6(a and b) where L, Ro, R1 and R2, represent the inductance,

ohmic, grain boundary and electrode polarization resistance

respectively. In contrast, Q represents the constant phase el-

ements depicting a non-ideal capacitor [35,45,46]. The sum of

R1 and R2 is equal to the polarization resistance (Rp ¼ R1þR2)

where Rp represent the polarization resistance representing

the charge as well as the mass transfer resistance. All the

simulated parameters have been listed in the supplementary

information of Table SI.1. The initial portion at the intercept of

higher frequency on the real axis (Z/) represents the resistance

of grains or bulk resistance Ro. The R1Q1 relates to the charge

transfer (grain boundary resistance) while the R2Q2 relates to

electrodes polarization process. The obtained bulk resistance

for synthesized and commercial GDC are 0.063, 0.084 and

0.12 U-cm2 and 0.156, 0.44 and 0.84 U-cm2 at 450-350 �C
respectively. These lower values of ohmic or bulk resistance

are due to presence of abundant number of O-vacancies which

eventually enhance the ionic conduction in prepared GDC.

Moreover, the obtain resistance of grain boundary (interme-

diate frequency region) are 0.053, 0.119 and 0.16 U-cm2 and

0.33, 0.63 and 2.02 U-cm2 cross-ponds to the synthesized and

commercial GDC at 450-350 �C respectively. The lower value of

grain boundary resistance inculcates the creation of more O-

vacancies and more ionic conductivity at the surface of GDC.

Moreover, the synthesized GDC hasmuch lower ohmic and

grain boundary resistance than the commercial GDC, which

Fig. 6 e aec) EIS and ionic conductivity of synthesized and commercial GDC at different operational temperatures (450-

350 �C) d) shows the cross-sectional view of a cell after fuel cell and EIS measurement.
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can be correlated to the remaining Na2CO3 at the surface of

GDC, which helps in easy transportation of ions, especially

grain boundary conduction of GDC [18,19,25,39]. The appear-

ance of GDC can be confirmed in the above results of TEM.

Additionally, the electrode polarization resistance was

reduced in synthesized GDC and commercial GDC via

increasing the temperature 350e450 �C, which manifests

thermal effects plays a crucial role in enhancing the perfor-

mance of fuel cell device. In other hand, NCAL has been

pointed out as the best symmetrical electrode resulting in

better redox activity even at exceptionally low temperatures

of 450e350 �C [16,17].

The lower resistance of bulk and grain boundary signifies

higher ionic conductivity. So, to determine the ionic conduc-

tivity from the IeV curve, the ohmic resistance was estimated

from the central region of the polarization curve, which is

further used in the following formula s ¼ L/R � A where L is

the thickness of the electrolyte layer, A is the active area of the

pellet [36,38,47e49]. In detail, the total Ohmic polarization

losses (Vohm) of the tested cells can be re-created by looking at

the linear part of the fuel cell's polarization curve at the low-

to-medium current region. This part of the curve is mostly

caused by the Ohmic resistance of the electrode and electro-

lyte. When compared to the ionic resistance of the Prepared

Fig. 7 e a, b) durability operation of synthesized and commercial GDC with a constant current density 110 mA/cm2 at 450 �C,
c-k) the EDS mapping of (cef) commercial and (gek) prepared GDC while l) is the elemental mapping of prepared GDC.
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GDC electrolyte, the NCAL/Ni-foam electrodes don't offer

much in the way of electronic resistance. The total Ohmic

resistance from the polarization curve is probably the same as

the ionic resistance from the GDC electrolyte that has been

made. The ionic conductivity si of synthesized GDC seems fair

at an exceptionally low operating temperature of 450 �C. The
obtained ionic conductivity of 0.08 S/cm of commercial GDC at

450 �C is lower than the synthesized GDC >0.1 S/cm which

might correlate with the Na2CO3 as differentiated in Fig. 6(c).

Also, attained ionic conduction is bizarrely superior to the

reported literature materials SFT, SFT-ZnO, BCFZY-ZnO, SFT-

SDC, LieZnO, and LiTiO3-LSCF at 450 �C [35,36,38,50e54].

Such high ionic conductivity is believed to be due to surface or

grain boundary conduction. Fig. 6(d) shows the cross-sectional

view of the prepared cell where electrolyte GDC is sandwiched

between two symmetrical porous electrodes NCAL signifying

the better OCV and good fuel cell performance, as can be

confirmed from the obtained results. Fig. SI 6(a-c) shows the

EIS analysis of prepared GDC electrolyte at different opera-

tional temperatures 450-350 �C and in different gasses envi-

ronments H2 and Air.

The durability of fuel cell device

Furthermore, the durability of commercial and synthesized

GDC constructed devices has been investigated at a constant

current density of 110 mA/cm2 under an H2/Air environment

at a low operating temperature of 450 �C, as shown in Fig. 7(a

and b). The synthesized GDC stays stable for 150 h. The com-

mercial GDC remains stable for 15 h signifying that the syn-

thesized GDC is more durable than the commercial one. The

extended stability proves GDC's feasibility as a competent

electrolyte at low operational temperatures. Initially, the cell

voltage drops from 1.05 V, which might be due to the activa-

tion of electrodes. Still, after 15 h, it gradually reaches a stable

point of 0.98 V. That might be due to the enhanced concen-

tration of protons on the surface of GDC, triggering the GDC

electrolyte to get themaximum ionic conduction at 450 �C. The
long-term durability is also connected with the migration of

lithium (Liþ) from the electrodes (NCAL) to the electrolyte

layer, which creates a stable structural modification between

the electrode and electrolyte. The initial few hours of deteri-

oration may also be due to Li þ migration toward the elec-

trolyte, until both substances achieve a condition that is

compatible [16,55]. After 140 h, a gradual decrease in stability

starts due to electrode and electrolyte polarization degrada-

tion in synthesized GDC. Also, such long-term stability of the

synthesized GDC is owed to the Na2CO3, which protects the

GDC and helps enable high ionic conductivity. Still, in com-

mercial GDC, continuous degradation phenomena were

noticed, which might reduce GDC particles in the H2 envi-

ronment, producing electronic conduction and leading to

short-circuit as perceived in reported literature [25]. The EDS

analysis of commercial GDC, including reference image and all

elements like Gd, Ce and O, have been shown in Fig. 7(cef).

Furthermore, the EDS reference image of prepared GDC and all

elements such as GD, Ce, O and Na signify that GDC has suc-

cessfully beenpreparedwith the precipitating agent Na2CO3 as

confirmed in Fig. 7(gek). Also, the elemental mapping of pre-

pared GDC has been performed, as shown in Fig. 7(l).

Conclusion

In summary, we designed a GDC-electrolyte with carbonate

using the co-precipitation method for use in a fuel cell at an

exceptionally low temperature of 350e450 �C. The perfor-

mance and ionic conductivity of the synthesized GDC are

higher than that of a commercial GDC,mainly due to the use of

Na2CO3 in the preparation phase. The characterization of GDC

confirms the existence of Na2CO3 in a slight amount on the

surface of the GDC particles. The presence of Na2CO3 on the

surface of GDC reduces the mobility of electrons. It enhances

the ionic conduction at the surface and interface, improving

the performance of the fuel cell device at low operational

temperatures. When the synthesized GDC was applied as an

electrolyte in a fuel cell, it delivered a high-power density of

562mW/cm2 and ahigh ionic conductivity of 0.1 S/cmat 450 �C.
A tentative durability test of 150 h was very positive due to the

inherent protective layer on the GDC. The improvements

described here originate from the Na2CO3 and the fast grain-

boundary ionic conduction on the surface and interfacial

conduction. XPS results proved that Synthesized GDC with

Na2CO3 create more O-vacancy assisting quick kinetics of

charges. These results provide new insight into preparing

doped ceria to enhance the performance and durability of fuel

cell devices at exceptionally low temperatures.
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