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Neural mechanisms of expert
persuasion on willingness to pay
for sugar
Ioannis Ntoumanis 1*, Alina Davydova 1†, Julia Sheronova 1†,
Ksenia Panidi 1, Vladimir Kosonogov 1, Anna N. Shestakova 1,
Iiro P. Jääskeläinen 1,2 and Vasily Klucharev 1

1International Laboratory of Social Neurobiology, Institute for Cognitive Neuroscience, HSE University,
Moscow, Russia, 2Brain and Mind Laboratory, Department of Neuroscience and Biomedical
Engineering, Aalto University School of Science, Espoo, Finland

Introduction: Sugar consumption is associated with many negative health

consequences. It is, therefore, important to understand what can effectively

influence individuals to consume less sugar. We recently showed that a healthy

eating call by a health expert can significantly decrease the willingness to pay

(WTP) for sugar-containing food. Here, we investigate which aspects of neural

responses to the same healthy eating call can predict the efficacy of expert

persuasion.

Methods: Forty-five healthy participants performed two blocks of a bidding

task, in which they had to bid on sugar-containing, sugar-free and non-edible

products, while their electroencephalography (EEG) was recorded. In between

the two blocks, they listened to a healthy eating call by a nutritionist emphasizing

the risks of sugar consumption.

Results: We found that after listening to the healthy eating call, participants

significantly decreased their WTP for sugar-containing products. Moreover,

a higher intersubject correlation of EEG (a measure of engagement) during

listening to the healthy eating call resulted in a larger decrease in WTP for sugar-

containing food. Whether or not a participant’s valuation of a product was highly

influenced by the healthy eating call could also be predicted by spatiotemporal

patterns of EEG responses to the healthy eating call, using a machine learning

classification model. Finally, the healthy eating call increased the amplitude of

the P300 component of the visual event-related potential in response to sugar-

containing food.

Disussion: Overall, our results shed light on the neural basis of expert persuasion

and demonstrate that EEG is a powerful tool to design and assess health-related

advertisements before they are released to the public.

KEYWORDS

expert persuasion, sugar, EEG, healthy eating, machine learning, intersubject correlation,
willingness to pay, social influence

1. Introduction

The obesogenic environment in which consumers make food choices makes it difficult
for them to maintain their healthy eating goals (de Ridder et al., 2017). Public health
measures have failed to provide such support, since obesity rates are rising rapidly with
far-reaching health consequences (Kelly et al., 2008; Dixon, 2010). Although sugar is a key
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cause of obesity (Yu et al., 2022), there is limited research exploring
what can influence individuals to consume less sugar. We have
recently demonstrated that a healthy eating call by an expert can
significantly decrease the willingness to pay (WTP) for sugar-
containing food (Ntoumanis et al., 2022). Here, we expand this
line of research by investigating the neural correlates of this
phenomenon, that is, which aspects of neural responses to the same
healthy eating call can predict the efficacy of expert persuasion.

Despite the rapid growth of understanding of what can help
consumers to make healthier food choices (Higgs, 2015; Leng
et al., 2017; Cadario and Chandon, 2020), little is known about
how nudge interventions can affect sugar consumption. Previous
studies on this topic have mainly examined such eating nudges as
health-related labels and visibility enhancements, with the results
being inconsistent (Mai and Hoffmann, 2015; Bialkova et al., 2016;
Romagny et al., 2017; Donnelly et al., 2018; Thiene et al., 2018;
Drugova et al., 2020; Potthoff et al., 2020; Schubert et al., 2021).
Critically, the types of nudges mentioned above are, in general, half
as effective as healthy eating calls, i.e., written or oral injunctions
aiming at changing unhealthy food choices (Cadario and Chandon,
2020). Indeed, healthy eating calls have successfully been used to
reduce unhealthy food choices both in laboratory-based studies
(Binder et al., 2020; Ha et al., 2020) and in field experiments (Mollen
et al., 2013; van Kleef et al., 2015). However, only recently this
type of intervention was applied for the first time against sugar
consumption in laboratory settings (Ntoumanis et al., 2022) and
its effectiveness was significant. In fact, the results suggested that
a healthy eating call (first-person narrative) by a health expert
decreased the WTP for sugar-containing food. Here, by using the
same healthy eating call in a slightly different experimental design,
we hypothesized that (H1) the healthy eating call would decrease
individuals’ WTP for sugar-containing products.

Recently, electroencephalography (EEG) is used more and more
to predict consumers’ preferences and choices (e.g., Hakim et al.,
2021; Mashrur et al., 2022; Raiesdana and Mousakhani, 2022).
EEG offers an opportunity to overcome the biases inherent in self-
reports, such as dishonesty (Tourangeau and Smith, 1996), while
at the same time, it allows to investigate the neural mechanisms
underlying consumer behavior (Lin et al., 2018). An EEG-derived
measure that is being increasingly used in this research area
is the similarity of individuals’ neural activity, or intersubject
correlation (ISC). As a marker of engagement and attention
(Hasson et al., 2004; Dmochowski et al., 2012; Ki et al., 2016),
ISC has successfully been used to predict population-wide music
popularity (Leeuwis et al., 2021), movies’ box-office performance
(Christoforou et al., 2017) and individual preferences for television
ads (Dmochowski et al., 2014). Given these findings, ISC is
considered to be a promising neurophysiological measure of
advertising effectiveness in social contexts (Pozharliev et al.,
2017), especially when the study designs include long-duration
stimuli (Hakim and Levy, 2019). Here, we used EEG ISC to
predict the efficacy of expert persuasion reflected in the change
of the WTP following the intervention. In fact, we hypothesized
that (H2) high ISC during listening to the healthy eating
call would result in a large decrease in the WTP for sugar-
containing products.

In addition to the similarity of neural responses to the
healthy eating call, we also examined whether spatiotemporal

patterns of EEG signals are predictive of expert persuasion, via a
multivariate pattern analysis (MVPA). MVPA is typically used to
decode the difference between conditions or groups of subjects,
based on the observed spatiotemporal patterns of brain responses
(Fahrenfort et al., 2018). Therefore, it allows quantification of
experimental effects without a priori electrode selection. Previous
EEG studies have used this methodology to successfully predict
subsequent ratings of stimulus attributes (Bode et al., 2014; Turner
et al., 2017), as well as decision-making related to the stimulus
(Bode et al., 2012; Charles et al., 2014). Despite the increasing
popularity of MVPA in EEG event-related studies (e.g., Turner
et al., 2017) and fMRI studies using naturalistic stimuli (e.g.,
Saarimäki et al., 2016), it has not yet been applied to EEG
studies using naturalistic stimuli. Given the multivariate nature of
EEG (Peters et al., 1998), we consider this an important gap in
the field.

Thus, the goals of conducting an MVPA were two-fold. First,
we aimed to demonstrate a classification pipeline as a proof-of-
concept for studying the EEG activity underlying the consumers’
acceptance of persuasion. Second, given that previous studies have
successfully applied MVPA of EEG signals to predict decision-
making related to non-naturalistic stimuli (e.g., Turner et al., 2017),
we tested whether (H3) MVPA of EEG signals can also predict
decision-making related to naturalistic stimuli. To reach these goals,
we trained a machine learning classification model to predict the
decrease in the WTP for sugar-containing products from patterns of
EEG responses to the healthy eating call. Such a multivariate pattern
analysis (MVPA) is usually performed in distinct time windows
(Bode et al., 2014; King and Dehaene, 2014; Turner et al., 2017). If
there is a statistically significant association between the variable of
interest and the EEG patterns in a particular time window, then this
time window is considered to contain the respective information of
interest (Turner et al., 2017).

In order to better understand the neural mechanisms
underlying expert persuasion, we also investigated how the healthy
eating call affects particular event-related potentials (ERPs) elicited
by viewing sugar-containing products that may prompt WTP
decisions. ERP analysis has widely been used to discern the
neural correlates of consumer behavior (for a review, see Lin
et al., 2018). Of particular interest are long-lasting positive waves,
such as the P300 component, which is known to reflect the
allocation and maintenance of attentional resources (Polich, 2007)
and was repeatedly recorded during product evaluation (Ryu et al.,
2010; Wang and Han, 2014; Cai et al., 2021). Previous studies
have disclosed that the P300 amplitude is increased, when seeing
products that fit one’s preferences (Wang and Han, 2014), products
that are recommended by others (Guo et al., 2016), products one
craves (Svaldi et al., 2015; Biehl et al., 2020), and products that
one is willing to buy (Jones et al., 2012; Lin et al., 2018). Since
our healthy eating call aims to influence participants against sugar-
containing products, we hypothesized that (H4) the P300 amplitude
in response to sugar-containing food would decrease after listening
to the healthy eating call. Moreover, earlier studies have speculated
that P300 could predict WTP (Schaefer et al., 2016), while also
being involved in social conformity (Guo et al., 2016). Therefore,
we also hypothesized that (H5) the expected decrease in the
WTP for sugar-containing food and the expected decrease in
the P300 amplitude in response to sugar-containing food after
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the healthy eating call would be positively correlated with each
other.

2. Materials and methods

2.1. Participants

Forty-nine participants (29 females, aged 18–40 years, mean
age = 22.50) were recruited via online advertisements. These
participants were different from those who participated in our
previous work (Ntoumanis et al., 2022). All of them reported that
they were right-handed, healthy, had a normal or corrected-to-
normal vision, had no history of psychiatric diagnoses or eating
disorders, no neurological or metabolic illnesses, and were not
taking any prescribed medication. Eating sweets, in general, was
also an inclusion criterion, so that we filter out potential participants
who might already dislike sugar altogether. The sample size was
similar to or larger than previous studies exploring the relationship
between WTP for products and EEG indices (Ramsøy et al., 2018;
Liao et al., 2019). Four participants were excluded from all analyses
for having excessively noisy EEG data. Excluding them from both
the behavioral and the EEG analyses ensured that the results were
based on the same consistent sample. The final sample consisted of
45 participants (27 females, aged 18–40 years, mean age = 22.51).
All participants received a flat fee of 600 monetary units (MU)
equivalent to ∼21.95, with the correction for purchasing power

parities (OECD, 2021). Additionally, they received a reward based
on their decisions in the experimental task. The mechanism of how
this reward was determined was explained to them in detail in the
instructions prior to the experiment.

2.2. Stimuli

Ninety full-colored photographic pictures (200 dpi) of sweets
and everyday products were used. The pictures represented
products without packaging (Figure 1A) to avoid any confounding
effect of the package (Motoki and Suzuki, 2020). All products
existed in the market during the period of data collection. One-third
of the products were labeled as “sugar-free”, another third were
labeled as “sugar-containing” and the remaining were labeled as
“non-edible” (the latter served as the control condition). The
labels were not deceptive (e.g., the products labeled as “sugar-
free” were indeed sugar-free) and were presented in different colors
(blue, pink, and yellow), so that the participants could better
distinguish the three conditions. The colors were randomized
between participants. Since the meaning of the “sugar-free” label
might not be clear to all participants, we pointed out that the
“sugar-free” label indicates that the product does not contain
sugar, as in Ntoumanis et al. (2022). The pictures of the “sugar-
containing” and the “sugar-free” products were the same as in
Ntoumanis et al. (2022) and they have previously been pre-tested
so that the perceived sweetness, tastefulness and healthfulness of

FIGURE 1

Trial structure and study design. (A) Sample trial of the bidding task with a product labeled as “sugar-containing”. In the beginning, the product was
presented for 4 s (“early evaluation phase”). Next, a message was displayed at the top of the screen “How much are you ready to pay for this product?”.
Participants had 10 s to indicate their willingness to pay (WTP) for this product. Last, a fixation cross was shown (2–6 s) and the next trial began. The
trials of the other two conditions differed only in the label and in the presented product. (B) Experimental procedure. Participants first performed a
block of the bidding task, then they listened to the healthy eating call and finally, they performed a second block of the bidding task. Here, the face
of the doctor has been blurred due to copyright and ethical reasons.
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“sugar-containing” products do not differ from that of “sugar-free”
products (Ntoumanis et al., 2022).

2.3. Bidding task

Figure 1A illustrates the procedure in the bidding task, which
was similar to that in Ntoumanis et al. (2022). At the beginning of
each trial, a product was displayed for 4 s (“early evaluation stage”,
Hutcherson et al., 2012). Afterward, participants had 10 s to indicate
their WTP (“How much are you ready to pay for this product?”),
in order to purchase this product at the end of the experiment
(Plassmann et al., 2007; Hutcherson et al., 2012; Schmidt et al.,
2018). The participants of the behavioral pilot study reported that
10 s was enough time for them to make a decision. The initial
position of the marker on the WTP slider was randomized across
trials (Martinez-Saito et al., 2019). The left and right keyboard keys
allowed the participants to change the initial value of the slider to
the value they wished, before pressing Enter key to confirm the bid.
No response within the time limit resulted in a WTP of 0 MU,
following previous studies (Hutcherson et al., 2012; Ntoumanis
et al., 2022). The values of the slider ranged from 0 to 150 MU, with
an increment of 10 MU, since this is the range of the actual prices of
the products in the market. Each block contained the same amount
of “sugar-free”, “sugar-containing” and “non-edible” products, with
the order of the items being randomized across participants and
blocks. Finally, a fixation cross was shown and the next trial began.
The duration of the fixation cross was 2–6 s in order to prevent
anticipation (Hutcherson et al., 2012; Schmidt et al., 2018).

At the beginning of the experiment, participants received
150 MU in cash as an endowment to use in the bidding task
for purchasing products, since bidding decisions have been found
to be sensitive to whether or not they are hypothetical (Lusk
and Schroeder, 2006). The Becker-DeGroot-Marschak auction was
employed in order to measure individual preferences and each
participant’s exact WTP for every product (Becker et al., 1964;
Plassmann et al., 2007). According to this auction, one trial was
randomly selected at the end of the experiment. Let b denote the
bid made by the participant in that trial. A random number n was
also drawn from a known distribution (in our case, 0, 10,..., 150 MU
was chosen with equal probability). If b≥ n, the participant received
the product corresponding to that trial and paid a price equal to
n. Otherwise, the participant did not receive the product but also
did not pay anything (for a similar design, see Plassmann et al.,
2007). The endowment was equal to the maximum WTP, so that
participants do not have to worry about distributing their 150 MU
over different products and they can treat each trial as if it were the
only decision that counted (Plassmann et al., 2007; Ntoumanis et al.,
2022).

2.4. Healthy eating call

The healthy eating call was the same as in Ntoumanis
et al. (2022): an audio first-person narrative by a nutritionist
emphasizing the health risks of sugar consumption. It started
with an introduction of the narrator, then 13 arguments were
expressed sequentially, and finally, there were some closing

remarks. The arguments against sugar consumption expressed in
the narrative were retrieved from scientific sources (e.g., Lenoir
et al., 2007). The narrative also contained clear evidence about
the nutritionist’s positive view towards sugar-free products. The
narrator was introduced to the participants as a nutritionist
because communicators with high expertise have been found to
be particularly persuasive (Deutsch and Gerard, 1955; Binder
et al., 2020; Hang et al., 2020; Ntoumanis et al., 2022). The
audio version of the healthy eating call was recorded by a
professional male narrator in order to maximize participants’
engagement (duration = 7 min). The healthy eating call was
written and presented to the participants in their native language.
The English translation can be found here: https://osf.io/894mk/.
While the narrative was being played, the static image of a doctor
was displayed on the screen to maximize participants’ attention
(Figure 1B). The narrative we used has been shown to not induce
any of the basic emotions at a considerably high level (the average
rating of each emotion was lower than 2.8 on a 5-point scale, see
Ntoumanis et al., 2022).

2.5. Questionnaires

To explore the influence of consumer heterogeneity on
the efficacy of expert persuasion, participants completed four
questionnaires not earlier than 2 days prior to attending
the experiment. The first questionnaire assessed demographic
information, including gender, age, weight, height [for the
calculation of the Body Mass Index (BMI)], and level of education
(four levels: incomplete secondary education, secondary education,
incomplete higher education, higher education). In addition,
participants completed the Conformity scale (Mehrabian and Stefl,
1995; Keller, 2019; the internal consistency in the current study,
α = 0.747), the Consumer susceptibility to interpersonal influence
scale (Bearden et al., 1989, translated by us; the internal consistency
in the current study, α = 0.701), as well as the Big 5 Personality
traits questionnaire (Khromov, 2000; the internal consistency in the
current study, α = 0.776). The latter was included because previous
studies have revealed a relationship between personality traits and
sugar consumption, as well as social conformity (Keller and Siegrist,
2015; Intiful et al., 2019; Parsad et al., 2019).

2.6. Procedure

Participants were told that the goal of the experiment was
to study food preferences. They were asked to not eat anything
for at least 3 h prior to the experiment (Hutcherson et al., 2012;
Ntoumanis et al., 2022). This also limited the variability of their
hunger level, which is a factor that has been shown to affect
the amplitude of certain ERPs in response to food stimuli (Nijs
et al., 2010b). Upon arrival at the laboratory, participants saw
the real food products to be assured about the validity of the
procedure. Then, they performed a practice session, where they
had to bid on six of the products under the same conditions
as in the subsequent experimental task. At the beginning of the
experiment, participants performed a bidding task consisting of
90 trials (30 per condition). Next, they listened to the healthy
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eating call and afterward, they performed a second block of the
bidding task. Figure 1B illustrates the experimental procedure. The
stimulus presentation and response recording were controlled by
PsychoPy (v2022.2.1; Peirce et al., 2019). On average, participants
took approximately 1.5 h to complete the experiment, including the
EEG setup.

2.7. Behavioral data analysis

The hypothesis that the healthy eating call would decrease
the WTP for sugar-containing food, but would not change the
WTP for sugar-free and non-edible products was specified prior
to data collection, based on the results of Ntoumanis et al. (2022).
To test this hypothesis, a one-way, repeated-measures ANOVA
taking Condition (three levels: sugar-containing, sugar-free, non-
edible) as a within-subjects factor and the ∆WTP (i.e., the WTP
for each product in the second block subtracted by the WTP
for the same product in the first block) as a dependent variable
was conducted. A significant interaction was further assessed
by post hoc tests. Specifically, given the normal distribution of
the data (as assessed by a Shapiro-Wilk test, p > 0.05), we
conducted pairwise paired-samples t-tests, and p-values were
corrected for multiple comparisons using the Benjamini-Hochberg
false discovery rate (FDR) correction (Benjamini and Hochberg,
1995). Adjusted p-values below 0.05 were considered statistically
significant. Moreover, in order to investigate the efficacy of expert
persuasion separately for each condition, we conducted one-sample
t-tests to determine whether the delta of WTP for each condition
was significantly different from 0 (two-tailed). The above analyses
allowed us to test the hypothesis (H1).

To explore the relationship between consumer characteristics
and the efficacy of expert persuasion, a series of correlation analyses
was conducted. For this, we examined whether participants’ delta
of WTP for each condition was significantly correlated with their
questionnaire data using the Spearman’s correlation coefficient
(due to the non-normal distribution of the questionnaire scores).
This analysis was exploratory and no hypotheses were specified in
advance.

2.8. EEG data recording and pre-processing

The EEG activity was recorded continuously with a BioSemi
Active Two system at a sampling frequency of 500 Hz. Subjects were
fitted with a standard, 64-electrode cap following the international
10–10 system, with linked mastoids as a reference electrode.
To subsequently remove eye-movement artifacts, the vertical
and horizontal electrooculogram (VEOG and HEOG) were also
recorded with two auxiliary electrodes (one located ventrally to
one eye and one located laterally to the other eye). In order to
achieve a precise time alignment of all the stimuli presentations
(including pictures and the healthy eating call), the stimulus
presentation software sent triggers to a parallel port simultaneously
with the presentation of stimuli. The timing of these triggers was
set to be synchronized with screen refresh so that it captures the
actual instead of the expected onsets. All offline signal processing

and artifact correction was performed in MNE Python (v1.0.3;
Gramfort et al., 2013).

For the ISC analysis, the data were preprocessed following the
procedure described in Dmochowski et al. (2012) and Ntoumanis
et al. (2023). First, data were re-referenced to average reference
(Shtyrov et al., 2013). Next, the segment of the EEG/EOG signal
corresponding to the duration of the healthy eating call was
extracted based on the triggers sent by the stimulus presentation
software to a parallel port at the onset and offset of the stimulus.
We further excluded the first 15 and the last 5 s of this
segment, as it is recommended in Nastase et al. (2019), to avoid
including in the analysis changes in the signal driven by the
onset and offset of the stimulus. Data were downsampled at
250 Hz, high-pass filtered at 0.5 Hz, and notch-filtered at 50 Hz
and 100 Hz, in order to remove drift and power line noise,
respectively. Afterward, noisy channels were detected by visual
inspection and the samples of these channels were interpolated
based on the signals of the good sensors around them (Ki et al.,
2016; on average 4.5 channels in one recording). Eye-movement
artifacts were removed by Independent Component Analysis (ICA)
using the infomax algorithm (Bell and Sejnowski, 1995). Samples
exceeding 3 SDs of the mean of their respective channel were
replaced with 0, and so were the samples 40 ms around such
outliers (i.e., before and after; Cohen and Parra, 2016; Ntoumanis
et al., 2023). For the ERP analysis, we preprocessed the data
in the same way except that a different band-pass filter was
applied: 0.1 Hz and 40 Hz cut-off frequencies, following previous
ERP studies (Bredikhin et al., 2022). Also, the outliers in the
ERP signals were detected based on the interquartile interval
(IQR) instead of the SD, as in Rappaport et al. (2019). In
fact, epochs containing samples beyond the range [Q1−1.5×IQR,
Q3+1.5×IQR], where Q1 and Q3 denote the 25th and the 75th
percentiles, were rejected.

2.9. Intersubject correlation analysis

The ISC of EEG responses to the healthy eating call was
estimated via a correlated components analysis (CorrCA;
Dmochowski et al., 2012; Cohen and Parra, 2016). Briefly,
this analysis finds components of the EEG data that are
maximally correlated among subjects. Following previous
studies, we estimated the ISC as the sum of the three most
correlated components, in order to account for the overall neural
synchronization regardless of the anatomical origin of each
component (Cohen and Parra, 2016; Cohen et al., 2018; Ntoumanis
et al., 2023). However, we also computed the forward model for
each of the three strongest components to visualize the spatial
distribution of the component activity (Cohen and Parra, 2016).
The ISC was calculated in a leave-one-out approach, i.e., for each
participant, there was one value denoting how correlated this
participant’s brain activity was to the brain activity of all other
participants during listening to the healthy eating call (Cohen and
Parra, 2016; Ntoumanis et al., 2023). Taking into account the long
duration of the narrative (7 min), we computed the ISC in sliding
time windows of 10 s size and 8 s overlap (196 time windows in
total). We selected this size based on a recent study which showed
that the ISC can be most reliably measured on a time scale of 10 s
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(Madsen and Parra, 2022). The ISC analysis was performed in
Matlab (release 2017b; MathWorks Inc, USA) using an adjusted
version of the code shared by Cohen and Parra (2016)1. After
calculating the leave-one-out ISC, we examined whether it was
significantly correlated with the delta of WTP for each condition,
using the Spearman’s correlation coefficient. This allowed us to test
the hypothesis (H2).

2.10. Multivariate pattern analysis

An MVPA was conducted to investigate whether distributed
patterns of EEG responses to the healthy eating call were predictive
of the efficacy of expert persuasion (H3). Our analysis was similar
to that conducted in Turner et al. (2017). First, we converted the
delta of WTP for sugar-containing products to a binary variable:
“highly-influenced” if the delta of WTP for sugar-containing food
was less than the median score (22 participants) and “not highly-
influenced”, otherwise (23 participants). A machine learning logistic
regression classification model was then trained to predict, based
on distributed patterns of EEG activity evoked by the healthy
eating call, whether or not a participant was highly influenced
by the narrative. This was done repeatedly in time windows of
1 s length, taking into account the long duration of the healthy
eating call (7 min originally, 6 min 50 s after the removal
of onset/offset; see EEG data recording and pre-processing).
Specifically, the features/input of this classifier were the mean EEG
signal of each channel within the corresponding time window. To
avoid overfitting, a 5-fold cross-validation was performed, and the
classification accuracy for each time window was calculated as the
average percentage of correct guesses across all the cross-validation
runs in the corresponding time window (Saarimäki et al., 2022).

Statistical testing was performed by comparing the classification
accuracy to an empirical chance distribution instead of the
theoretical chance level (in our case, 50%), because the latter is
considered too lenient (Combrisson and Jerbi, 2015). In order to
obtain an empirical chance distribution, we repeated the analysis
described above 1,000 times, but each time with the labels
(“highly-influenced”, “not highly-influenced”) randomly shuffled
before classification (Turner et al., 2017). To correct for multiple
comparisons, we used a cluster-based correction. Specifically, we
clustered the windows with a statistically significant classification
accuracy on the basis of temporal adjacency and finally, we took
the largest of these clusters (Maris and Oostenveld, 2007). This
approach allowed us to explore sustained information in the
EEG signals that were predictive of the delta of WTP for sugar-
containing food.

As a control analysis, we examined whether the spatiotemporal
patterns of EEG responses to the healthy eating call could
also predict the delta of WTP for non-edible and sugar-free
products. To that end, we first classified individuals based on
the median scores and we repeated the same machine learning
analysis. Then, we compared the proportion of significant windows
(i.e., windows where the classification accuracy was statistically

1 https://www.parralab.org/isc/

significant) between conditions, using a standard hypothesis test
of proportions, as in Dmochowski et al. (2012). We conducted
this control analysis before correcting for multiple comparisons,
because our cluster-based correction results by definition in only
one significant cluster (Maris and Oostenveld, 2007), which makes
further statistical testing difficult.

Finally, the feature weights were extracted for each time window
with above chance classification accuracy and assigned to each
channel. This provided us with a representation of the importance
of each channel for the classification. Additionally, we repeated the
same procedure outlined above with a different classifier (Support
Vector Machine with linear kernel), but since it did not improve
the classification results, it is not reported here. The MVPA analysis
was performed in Python 3.10, using the Scikit learn package
(Pedregosa et al., 2011).

2.11. ERP analysis

Based on the picture presentation at 0 ms (Figure 1A; “early
evaluation phase”), grand average ERP epochs were selected from
−100 to 1,000 ms. Baseline (from −S100 to 0 ms) correction was
applied in each epoch. The P300 amplitude was calculated using the
mean voltage of midline parietal electrodes (CPz, Pz, Oz) between
250 and 450 ms relative to the stimulus onset (Schubert et al., 2021).
First, we examined whether the P300 amplitude in response to
different product categories is modulated by the healthy eating call.
To that end, we conducted a two-way repeated-measures ANOVA
taking Condition (three levels: sugar-containing, non-edible, sugar-
free) and Block (two levels: Block 1, Block 2) as within-subjects
factors and the WTP as the dependent variable. This analysis
allowed us to test our prespecified hypothesis (H4), but also to
exploratorily investigate whether different product categories elicit
different amplitudes of P300 in the first block (i.e., without any
intervention). Next, we tested our prespecified hypothesis (H5)
by calculating the Spearman’s correlation coefficient between the
delta of WTP for sugar-containing products and the delta of
P300 amplitude in response to sugar-containing products.

Moreover, we calculated the mean amplitude of one additional
ERP component, the Late Positive Potential (LPP; Schubert et al.,
2021), which was found to be elicited by viewing the products.
This was calculated using the mean voltage of the same electrodes
(CPz, Pz, Oz) between 450 and 750 ms relative to the stimulus
onset, in line with previous studies (Schubert et al., 2021). Then,
we conducted the same two-way repeated-measures ANOVA, as
for the P300 amplitude, in order to examine whether the healthy
eating call modulated the LPP in response to some products.
This analysis was exploratory and no hypotheses were specified
in advance.

3. Results

3.1. Descriptive statistics

The average bid was 47.39 MU (SD = 23.83 MU). Overall,
83.65% of all bids were higher than zero. One-sample Wilcoxon
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signed rank test showed that the median bid was significantly
greater than zero (W = 22, 784, 625, p < 0.0001, effect
size = 0.85), suggesting that most products were rewarding
for the participants. The mean reaction time (RT) was 2.92 s
(SD = 1.53), while participants failed to bid within the 5 s time
limit only in 1.09% of the trials. As data from the first block
showed, participants did not bid differently for sugar-containing,
sugar-free and non-edible products (F = 0.033, p = 0.97, generalized
eta-squared = 0.001).

The BMI of the participants ranged from 16.96 to 32.45, with
the mean BMI being equal to 22.10. Four participants scored
lower than 18.5 (underweight), eight participants scored above 25
(overweight) and 33 scored in between (normal). The majority
of the participants had a complete (N = 19) or incomplete
(N = 18) higher education, while the remaining participants
(n = 8) had a complete secondary education. Finally, the scores in
the personality questionnaires are summarized in Supplementary
Table 1.

3.2. The healthy eating call decreased WTP
for sugar-containing food

First, we investigated the influence of the healthy eating call
on the WTP for sugar-containing, sugar-free and non-edible
products. A repeated-measures ANOVA revealed a statistically
significant effect of Condition on the delta of WTP (F(2,88) = 6.876,
p = 0.002, generalized eta-squared = 0.09). Subsequent paired t-
tests showed that the delta of WTP for sugar-containing products
was significantly lower than the delta of WTP for sugar-free
(t(44) = −3.24, p = 0.002, Cohen’s d = 0.48) and non-edible products
(t(44) = −2.19, p = 0.034, d = 0.33), while the delta of WTP for
sugar-free food was not significantly different from the delta of
WTP for non-edible products (t(44) = 1.85, p = 0.070, d = 0.28). This
demonstrates that the healthy eating call influenced participants’
WTP decisions for sugar-containing, but not for sugar-free food
products, relative to the control condition of non-edible products.

Apart from comparing the delta of WTP between conditions,
we also examined whether this measure is significantly different
from 0 for each condition separately. Independent one-sample t-
tests showed that the delta of WTP for sugar-containing food
products was significantly lower than 0 (t(44) = −3.73, p = 0.0005,
d = 0.56), unlike the delta of WTP for sugar-free and non-edible
products (t(44) = 0.82, p = 0.42, d = 0.12 and t(44) = −1.78, p = 0.08,
d = 0.27, respectively). Figure 2 illustrates these findings, which
support our hypothesis (H1) that the healthy eating call would
decrease individuals’ WTP for sugar-containing products.

3.3. The efficacy of expert persuasion was
not moderated by participant demographic
characteristics

An exploratory correlation analysis was conducted to examine
whether the efficacy of expert persuasion is significantly moderated
by participant’s demographic characteristics and personality traits.
Due to the non-normal distribution of most variables, a Spearman’s

FIGURE 2

Changes in participants’ WTP for sugar-containing, sugar-free and
non-edible products after listening to the healthy eating call. A
dashed horizontal line at 0 indicates no change in WTP. Dots
represent individual subjects. Statistically significant differences are
denoted with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). The
“ns” denotes that the delta of WTP for neither the sugar-free nor the
non-edible products was significantly different from 0.

correlation coefficient was used. A negative correlation was found
between the delta of WTP for sugar-containing food and scores in
the Conformity scale (r = −0.30, p = 0.049). This indicates that
the healthy eating call was particularly influential on participants
who are, in general, prone to social influence. Also, we found a
significantly negative correlation between the delta of WTP for
non-edible products and scores in the Neuroticism scale of the
Big 5 Personality traits questionnaire (r = −0.51, p = 0.0004). No
other significant correlation was found between the delta of WTP
and any other participant characteristic (Supplementary Table
2). Moreover, we compared the delta of WTP for each condition
between males and females, with the results, however, not reaching
statistical significance (two-samples t-tests; t(43) = 0.68, p = 0.51;
t(43) = 1.68, p = 0.104; t(43) = 0.71, p = 0.48, for sugar-containing,
non-edible and sugar-free, respectively).

3.4. ISC and efficacy of expert persuasion

First, we estimated the three most correlated components using
EEG data corresponding to the whole duration of the narrative
(Figure 3A). These correlated components were found to be similar
to previous studies (e.g., Dmochowski et al., 2012; Cohen and
Parra, 2016). Specifically, the first component revealed a strong
positivity at occipital sites, probably because all participants were
looking at the same picture while listening to the narrative (see
Figure 2). The second component revealed a symmetric positivity
at temporal sites, consistent with the auditory processing of
the narrative.

Then, we calculated the leave-one-out ISC during listening to
the healthy eating call. Considering the long duration of the healthy
eating call, the ISC was calculated in sliding time windows and then
it was averaged across all the time windows for each participant.
Next, we calculated the Spearman’s correlation coefficient between
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FIGURE 3

The results of the intersubject correlation (ISC) analysis. (A) Scalp projections of the three strongest correlated components. (B) The relationship
between the ISC during listening to the healthy eating call and the delta of WTP for different product categories. For the category of sugar-containing
products, the correlation was r = −0.29, with a one-tailed p-value = 0.027.

these ISC values and the delta of WTP for each product category,
separately. The results showed that the ISC during listening to
the healthy eating call was negatively correlated with the delta of
WTP for sugar-containing food (r = −0.29, p = 0.027; Figure 3B),
supporting our hypothesis (H2). Notably, this significant p-value
was obtained from a one-tailed hypothesis test (i.e., H0: r < 0), since
our hypothesis (H2) was directional. In addition, the correlation
between the ISC and the delta of WTP for the other two product
categories was not found statistically significant (r = −0.03 and
p = 0.87 for sugar-free, r = −0.10 and p = 0.50 for non-edible).

3.5. MVPA

A machine learning classification analysis was conducted to
investigate whether spatiotemporal patterns of the EEG responses
to the healthy eating call could predict the efficacy of expert
persuasion (that is, the delta of WTP for sugar-containing food).
To that end, we first labeled half of the participants as “highly-
influenced” and the other half, “not highly-influenced” by the
healthy eating call, based on the median delta of WTP for sugar-
containing products. Then, we conducted the MVPA in 1-s time
windows.

The classification accuracy was statistically significant in
22.25% of the time windows (87 significant windows out of

400). After applying a cluster-based correction for multiple
comparisons, there were two clusters whose classification accuracy
remained statistically significant: one between the 165th and
the 168th second of the healthy eating call and one between
the 200th and the 203th. In other words, whether or not a
participant was highly influenced by the healthy eating call
could be best predicted by their EEG signal during these
two periods. Specifically, in the first cluster (i.e., 165–168 s)
the average classification accuracy was 65%, while the average
accuracy of the empirical chance distribution was 49.5%. In the
second cluster (i.e., 200–203 s) the average accuracy was 69%,
while the average accuracy of the empirical chance distribution
was 49.9%.

To better understand what was in the healthy eating call during
these periods that evoked distinct neural responses between the
participants who were highly influenced by it and those who were
not, we extracted the corresponding text from the narrative. At
the 160th second of the narrative, the following phrase was said:
“Your skin will look younger. A study in the American Journal
of Clinical Nutrition suggests that giving up sugar may result in
your acne disappearing”, which finished at the 172th second. At
the 198th second of the narrative, the following phrase was said:
“Your blood pressure will also decrease, which means that your
heart and your vessels will have less work to do”, which finished at
the 204th second.
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FIGURE 4

Spatio-temporal decoding of the delta of WTP for sugar-containing food. A machine learning logistic regression was used to predict the delta of
WTP for sugar-containing products (binary variable) based on distributed patterns of EEG responses to the healthy eating call. The blue line denotes
the classification accuracy for each time window. A horizontal dashed line has been added at 50% as a reference, although statistical testing was
performed based on permutations. The red bars indicate the clusters where the classification accuracy was statistically significant after a cluster-
based correction for multiple comparisons. The feature weights of the classifiers in the significant cluster windows have been added at the top of the
plot. These are the standardized activation patterns.

Finally, we extracted the feature weights of the machine
learning algorithm for the two significant clusters of time windows.
Although these maps cannot determine the sources of predictive
information (Haufe et al., 2014), they provide a representation of
the importance of each channel for the classification (Figure 4).
This revealed that electrodes at the temporal sites were the
main contributors to the significant classification accuracy that
was observed between the 165 and 168 seconds of the healthy
eating call. For the second significant cluster, it appears that the
signal of frontal electrodes provided sufficient information to
the classifier.

As a control analysis, we repeated exactly the same MVPA for
non-edible and sugar-free products. That is, we examined whether
the EEG responses to the healthy eating call could also predict the
delta of WTP for these two product categories. The classification
accuracy was significant only in 27 time windows for non-edible
products and in 16 time windows for sugar-free products. We
employed a standard hypothesis test of proportions to test whether
the observed ratios are drawn from disparate distributions, as in

Dmochowski et al. (2012). This showed that the proportion of
significant windows was significantly higher in the sugar-containing
condition than in the other two conditions (both p-values < 0.0001;
Supplementary Figure 1).

3.6. The healthy eating call did not
modulate the P300 and LPP amplitudes in
response to any of the products

First, we conducted a series of ANOVAs to investigate whether
the healthy eating call modulated the neural responses to sugar-
containing, sugar-free and non-edible products, irrespective of
WTP decisions. In these analyses, the dependent variable was the
amplitude of the ERP component of interest (P300 or LPP) and
the within-subjects factors were always the Condition (three levels:
sugar-containing, sugar-free, non-edible) and the Block (two levels:
Block 1, Block 2).

Frontiers in Behavioral Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1147140
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Ntoumanis et al. 10.3389/fnbeh.2023.1147140

FIGURE 5

P300 and LPP components shaded in gray in two consecutive time windows (earlier and later, correspondingly) in response to each product category,
in the first (left) and the second (right) block of the bidding task. In both blocks, the mean P300 amplitude and the mean Late Positive Potential (LPP)
amplitude were found to be significantly lower for non-edible products compared to sugar-containing and sugar-free products. The gray areas
indicate the time window in which the P300 and the LPP were measured, based on previous literature.

There was a significant main effect of Condition on the
P300 amplitude [F(2,88) = 11.028, p < 0.0001, generalized
eta-squared (ges) = 0.028] and a significant main effect of Block
(F(1,44) = 9.59, p = 0.003, ges = 0.012). However, the interaction
between Condition and Block was not statistically significant
(F(2,88) = 0.34, p = 0.71, ges = 0.001). To better understand the
significant main effects of Condition and Block, we conducted
pairwise one-sample t-tests. These revealed that regardless of the
Block, the P300 amplitude was weaker (less positive-going) for
non-edible products compared to sugar-containing (t(89) = 3.60,
p = 0.001, d = 0.38) and sugar-free products (t(89) = 4.96, p< 0.0001,
d = 0.52), but there was no significant difference between the latter
two conditions (t(89) = 1.33, p = 0.19, d = 0.14). Also, regardless
of the Condition, the P300 amplitude was stronger (more positive-
going) in the second block of the bidding task compared to the
second (t(134) = 3.59, p < 0.001, d = 0.32). Finally, contrary to
our hypothesis (H4), the P300 amplitude in response to sugar-
containing food was significantly stronger (more positive-going)
in the second block of the bidding task compared to the first
(t(44) = 2.65, p = 0.011).

Similar results were found in terms of the LPP amplitude.
Specifically, there was a significant main effect of Condition on the
LPP amplitude (F(2,88) = 7.11, p = 0.001, generalized eta-squared
(ges) = 0.021) and a significant main effect of Block (F(1,44) = 24.55,
p < 0.0001, ges = 0.07). However, the interaction between
Condition and Block was not statistically significant (F(2,88) = 0.04,
p = 0.96, ges < 0.0001). To better understand the significant
main effects of Condition and Block, we conducted pairwise
one-sample t-tests. These revealed that regardless of the Block,
the LPP amplitude was weaker (less positive-going) for non-edible

products compared to sugar-containing (t = 3.42, p = 0.001) and
sugar-free products (t = 3.54, p = 0.001), but there was no significant
difference between the latter two conditions (t = 0.27, p = 0.79).
Also, regardless of the Condition, the LPP amplitude was stronger
(more positive-going) in the second block of the bidding task
compared to the second (t = 6.74, p < 0.0001). Figure 5 illustrates
the differences between the P300 and LPP amplitudes between
conditions and blocks.

Finally, we tested our hypothesis (H5) by calculating the
Spearman’s correlation coefficient between the delta of the
P300 amplitude and the delta of WTP for each product category.
However, no significant correlation was found: r = 0.10, p = 0.51 for
sugar-containing, r = 0.1, p = 0.520 for non-edible, and r = −0.045,
p = 0.77 for sugar-free products.

4. Discussion

This study presents a first attempt to link, on the one hand,
the behavioral effect of healthy eating by an expert on the WTP
for sugar-containing food and, on the other hand, the neural
responses to this healthy eating call with the use of EEG. At
the behavioral level, the results illustrated a successful persuasion
by the health expert. This behavioral effect was associated with
two neurophysiological indices, namely, (i) the group-level ISC of
EEG responses to the healthy eating call and (ii) the subject-level
spatiotemporal patterns of EEG responses to the healthy eating call.
Below, we further consider these findings in more detail.

The analysis of the behavioral data showed that the healthy
eating call significantly decreased participants’ WTP for sugar-

Frontiers in Behavioral Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnbeh.2023.1147140
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#articles
https://www.frontiersin.org


Ntoumanis et al. 10.3389/fnbeh.2023.1147140

containing food. This result is consistent with our hypothesis (H1)
and replicates the recent findings of Ntoumanis et al. (2022). It also
supports earlier research showing that healthy eating calls can, in
general, be effective at reducing unhealthy eating (Mollen et al.,
2013; van Kleef et al., 2015). In fact, our healthy eating call was a
first-person narrative by an expert, which is a type of intervention
that has been found to be effective in children populations, too
(Binder et al., 2020). We speculate that an advantage of using
first-person narratives, over such types of nudging as labeling,
is their potential to change consumers’ underlying perception of
unhealthy food instead of targeting individual decisions. Narratives
can shape social norms, injunctive or descriptive, which can support
their effectiveness (Robinson et al., 2013; Higgs, 2015; Higgs and
Thomas, 2016).

In addition, the healthy eating call did not increase the WTP
for sugar-free food (relative to the control condition of non-edible
products). That the healthy eating call was more effective at
reducing the WTP for sugar-containing food than at increasing the
WTP for sugar-free food is supported by previous studies showing
that nudge interventions are, in general, more efficient at reducing
unhealthy eating than increasing healthy eating (Zlatevska et al.,
2014; Cadario and Chandon, 2020), as well as by the concept of
negativity bias (Baumeister et al., 2001).

It is worth mentioning that the current study included a
control condition (non-edible products) and not a control group of
subjects. However, our previous work showed that a control group
of subjects, who listened to a control message unrelated to food,
did not change their WTP for sugar-containing or sugar-free food
(Ntoumanis et al., 2022).

Interestingly, we found that the delta of WTP for sugar-
containing food was negatively correlated with the Conformity scale
scores. The Conformity scale measures the reliance on others for
decision-making, in a variety of social contexts (Mehrabian and
Stefl, 1995). Thus, healthy eating calls may be particularly effective
on consumers who are, in general, susceptible to social conformity.
Our study is not the first to show that conformity moderates
consumers’ decision-making. For instance, Martinelli and De Canio
(2021) illustrate the moderating role of conformity in inducing
non-vegan consumers to buy vegan food. Therefore, we encourage
future studies to sample personality-related information from the
participants, to account for the intersubject variability in consumer
behavior (for a review, see Kassarjian, 1971).

Furthermore, we found a significant one-tailed correlation
between the ISC during listening to the healthy eating call and
the efficacy of expert persuasion. In fact, participants, whose
neural responses to the expert’s narrative correlated more strongly
with others, demonstrated superior compliance with the healthy
eating call. Although this result has to be considered with caution
due to the statistical insignificance of the two-tailed correlation
(p = 0.054), it is consistent with our hypothesis (H2). ISC of EEG has
previously been found to be positively correlated with subsequent
memorization of audio narratives (Cohen and Parra, 2016). In
our study, participants who exhibited high ISC during listening to
the healthy eating call might have memorized more information
contained in it, which might have increased their compliance
with the expert. Overall, neural synchrony is a promising tool in
neuroforecasting for movie and music popularity (Christoforou
et al., 2017; Leeuwis et al., 2021), as well as for television ads

(Dmochowski et al., 2014). Here, we show that neural synchrony
may, in addition, be a promising tool in neuroforecasting of healthy
eating advertisements.

Moreover, distributed patterns of brain activity during listening
to the healthy eating call were found to contain predictive
information about whether or not a participant was highly
influenced by the healthy eating call. Although not all, several
arguments in the narrative elicited divergent neural responses
to participants who were highly influenced by them. Training a
machine learning classifier with EEG data corresponding to those
arguments significantly predicted whether or not a participant was
highly influenced by the healthy eating call. Previous works have
successfully predicted consumer decision-making based on EEG
responses to non-naturalistic stimuli (Bode et al., 2014; Turner
et al., 2017). Our proof-of-concept MVPA shows that it is also
possible to predict consumer decision-making based on EEG
responses to naturalistic stimuli, supporting our hypothesis (H3).

It is interesting to speculate what are the cognitive mechanisms
that highly-influenced participants employed while listening to
those arguments, which resulted in their neural activity being
discernible. Information encoding is a possible such mechanism.
That is, while listening to the health risks of sugar, highly-influenced
participants might have encoded this information differently from
not highly-influenced participants. Another interpretation could
be that the information contained in the narrative activated some
other related cognitive processes (e.g., knowledge retrieval) only
in highly-influenced participants. Determining which of these two
possible interpretations is true is a well-known challenge in MVPA
(Weaverdyck et al., 2020). Despite the low spatial resolution of
EEG, we can speculate which interpretation is the most likely,
based on the scalp representation of the feature weights of the
classifier (Figure 4). The electrodes that contributed the most in
the classification process were located in temporal and frontal
sites, supporting the information encoding interpretation. In fact,
previous studies have reported that these brain areas show increased
activity when one is feeling persuaded (Falk et al., 2010).

Furthermore, contrary to our hypothesis (H4), the healthy
eating call did not decrease the P300 amplitude in response to
sugar-containing food. In fact, the P300 elicited by sugar-containing
products was even more positive going in the second vs. the first
block of the bidding task. Our hypothesis was based on previous
studies showing that the more we want a product, the stronger
the P300 we exhibit when viewing it. However, the P300 can be
elicited by stimuli of negative valence, as well (Conroy and Polich,
2007; Schienle et al., 2008). In our study, we speculate that pictures
of sugar-containing food might induce higher levels of fear after
the healthy eating call compared to the first session of the bidding
task. This is supported by Schienle et al. (2008) who showed that
fearful pictures elicit stringer P300 compared to neutral pictures.
Consequently, our hypothesis (H5) was not supported, either.

Moreover, although not related to our main hypotheses,
we found that both before and after the healthy eating call,
non-edible products elicited weaker (less positive-going) P300 and
LPP responses compared to edible products (sugar-containing or
sugar-free). Earlier research using EEG to derive attention-related
neural responses to food vs. non-food has revealed similar results
(Nijs et al., 2008, 2009, 2010a,b). This phenomenon has been
explained on an evolutionary basis, that is, selective attention to
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food is an important characteristic of humans and animals (Nijs
et al., 2010b).

Our study design has several advantages. First, the within-
subjects design allowed us to measure the effect of the healthy eating
call while minimizing the noise of intersubject variability. Second,
participants made real choices—they were told that they would
receive a product at the end of the experiment, which is considered
to encourage sincere WTP ratings (Plassmann et al., 2007; Schubert
et al., 2021). Third, the incorporation of EEG provided us with the
opportunity to investigate potential neural signatures of the healthy
eating call’s behavioral effect.

Also, our study has several limitations. For example, as in
Ntoumanis et al. (2022), we used a sugar-containing label to ensure
a clear discrimination between the conditions of our experiment.
However, labels highlighting the content of sugar in products are
not common in the country where the experiment was conducted.
Thus, even if marketing companies, inspired by our healthy eating
call, manage to successfully incorporate a similar narrative in
advertisements to influence consumers against sugar, it would be
more difficult for the consumers, than it was for our participants,
to later spot and avoid sugar-containing food. In addition, unlike
in the real market, the products were presented in our experiment
without packaging. An attractive packaging, which is an important
factor underlying food valuation (Motoki and Suzuki, 2020), may
override the effects of a healthy eating call. Another limitation is the
low spatial resolution of EEG, which does not allow for accurate
localization of the effects. For instance, we found a relationship
between the whole-brain ISC and the efficacy of expert persuasion,
but using the ISC in specific brain regions might improve the
significance of this result. To address this, future fMRI studies
could conduct an intersubject representational similarity analysis
(IS-RSA; Finn et al., 2020). Finally, we did not ask the participants
to rate how impactful each argument presented in the healthy eating
call is to them. This additional data would allow us to assess whether
the MVPA classification accuracy co-varies with the importance of
the arguments.

Taken together, our work contributes to our understanding of
how healthy eating calls can reduce the WTP for sugar-containing
food, which is important considering that sugar is the key cause
of the growing obesity rates (Yu et al., 2022). By using EEG, we
elucidated the neural mechanisms by which the brain responds to
persuasive messages by experts. From a broader perspective, our
results demonstrate that EEG is a powerful tool that can be used to
predict the efficacy of health-related advertisements before they are
released to the public.
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