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ABSTRACT In singing, the perceptual term ‘‘voice quality’’ is used to describe expressed emotions and
singing styles. In voice physiology research, specific voice qualities are discussed using the term phonation
modes and are directly related to the voicing produced by the vocal folds. The control and awareness of
phonation modes is vital for professional singers to maintain a healthy voice. Most studies on phonation
modes have investigated speech and have used glottal inverse filtering to compute features from an estimated
excitation signal. The performance of this method is reported to decrease at high pitches, which limits
its usability for the singing voice. To overcome this, this study proposes to use features derived from the
modulation power spectrum for phonation mode classification in the singing voice. The exploration of
the modulation power spectrum is motivated by the fact that, in singing, temporal modulations (known as
vocal vibrato) and spectral modulations hold information of the vocal fold tension. Since there exists no
large publicly available dataset of phonation modes in singing, we created a new dataset consisting of six
female and four male classical singers, who sang five vowels at different pitches in three phonation modes
(breathy, modal, and pressed). Experimental results with a support vector machine classifier reveal that the
proposed features show better classification performance compared to state-of-the-art reference features.
The performance for the current dataset is at least 10% higher compared to the performance of the reference
features (such as glottal source features and MFCCs) in the case of target labels and around 6% higher in
the case of perceptually assessed labels.

INDEX TERMS Modulation power spectrum, phonation modes, singing voice analysis, voice qualities.

I. INTRODUCTION
The classification of phonation modes as a computerised aid
in classical singing voice training seems vital. Maintaining
a healthy voice is an important component of professional
singing and is essential for students during the course of their
studies. The analysis and classification of phonation modes
in classical singing might give a singer valuable insights into

The associate editor coordinating the review of this manuscript and

approving it for publication was Filbert Juwono .

their voice production, and in the best case, prevent voice
production problems. As voice production problems often
occur throughout the course of voice studies, self-monitoring
during vocal training and vocal warm-up could be beneficial
to prevent more serious problems, which usually entail a
longer rest period.

The phonation modes studied in classical singing are not
pathological. The transition from one to the other is more
tenuous than the pathological phonation modes investigated
in clinical studies. Different phonation modes mean different
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vibration patterns of the vocal folds, and in classical singing
four main phonation modes can be distinguished. They are:
breathy, flow (also referred to as resonant in [1]), modal
and pressed phonation. Breathy phonation is characterized
in [2] by minimal adductive tension, causing the vocal folds
to reside in a Y-shaped state which leaves an opening at the
top of the vocal folds, even during the closure phase of one
glottal cycle. This constant opening lets the turbulent tracheal
airflow enter the vocal tract at any time causing a breathy
voice perception, which is also referred to as aspiration
noise [3]. Physiologically, modal phonation in singing voice
is defined by a full-length vibration of the vocal folds caused
by moderate tension and compression, which implicitly leads
to a full glottal closure of the vocal folds during vibration [2],
[4]. The opposite end of the phonatory dimension described
in [2] is given with pressed voice, which is defined by strong
subglottic pressure and adduction caused by tense muscles
surrounding the vocal folds.

The differences between the phonation modes have been
studied for speech, using features derived by signal process-
ing methods that attempt to separate vocal fold movement
information (excitation signal or glottal source waveform)
from the vocal tract contribution (filter). A common approach
of calculating glottal waveform characteristics is by using
a glottal inverse filtering method (GIF) (based on source-
filter deconvolution) [5], [6], [7], [8], [9]. An overview of
glottal source processing is given in [10]. Although speech
and singing share similar basic concepts of voice production,
the analysis of singing voices is far more difficult from a
signal processing point of view, especially due to higher and
rapid variations in pitch. As the pitch increases, the analyzed
signal in the frequency domain exhibits an increased sparsity,
especially for sustained vowels due to its harmonic structure,
which leads to an ill-posed mathematical condition for GIF
methods. Automated inverse filtering usually fails at higher
pitches and some implementations are reported to be already
erroneous at above ca. 300 Hz [11]. Features used for phona-
tion mode classification, which are derived from an estimated
glottal waveform using a GIF-method are commonly denoted
as voice quality features (VQ-features) [12], [13].

Another common parametric method for separating the
vocal tract contribution and calculating glottal source char-
acteristics is cepstral analysis [14], which was initially intro-
duced in [15] for seismic analysis in order to find echo
components. The difference between cepstral analysis and
glottal inverse filtering lies in the fact that the information of
both the source and the filter are found in the same resulting
cepstral domain signal, but at different locations along the
so-called quefrency axis. The magnitude of the first peak
along the quefrency axis has been found to be well suited to
determine the breathiness of the voice [16] and, when used as
a feature, is called cepstral peak prominence (CPP). In [17],
it is concluded that CPP is similar to the first rahmonic and
gives meaningful results to detect breathiness. In [18] CPP
was reported to separate neutral, breathy, and pressed phona-
tion from each other, but not flow from the other phonation

modes. Also, breathy phonation was shown to have high
level of turbulent noise and is reported to have a large har-
monic to noise ratio (HNR) [19]. Modal phonation in singing
results in rich harmonics and pressed phonation is reported to
typically show a weaker fundamental and more dominating
higher harmonics [20]. Mel-frequency cepstral coefficients
(MFCCs) [21] serve as a descriptive representation of the
magnitude spectrum and are frequently used for classification
of phonation modes in [13] and [18].

Unlike the cepstral analysis, themodulation spectrum com-
prises temporal information and results from an analysis
along the temporal axis and not along the frequency axis.
In [22], the significance of low-frequency modulations is
discussed along with how to use the modulation spectrum to
analyze sound in accordancewith the human auditory system.
Studies in [23] and [24] showed that temporal modulations
influence speech intelligibility. However, the extraction of
characteristics from the modulation spectrum is not trivial,
due to its high dimensionality. This is why in [25], [26],
and [27] it is proposed to apply a Higher Order Singular Value
Decomposition (HOSVD) on the modulation spectrum in
combination with a feature selection algorithm based on the
mutual information. The results for their approach for voice
pathology detection achieves a detection rate of around 94%
and to classify hoarseness, a global classification rate of 74%
is reported. However, they did not use the modulation power
spectrum as originally presented in [28] and [29], which
combines the advantages of cepstral analysis and the mod-
ulation spectrum by extracting both temporal and spectral
modulations. Moreover, they limited their investigations to a
single vowel (/a/). Themost comparative studies investigating
phonation modes in classical singing have been [13], [18],
and [1], but unfortunately all studies used a small dataset
with data of only two singers. According to the authors’
knowledge, there are no studies on classification of phonation
modes in classical singing using characteristics extracted
from the modulation power spectrum and no previous work
has investigated phonation modes on a larger dataset consist-
ing of data from more than two classical singers.

II. GOALS OF THE CURRENT STUDY
In classical singing, vocal vibrato is a temporal modulation
which lies at 4 to 8 Hz [30], [31] and spectral modula-
tions depend on the spectral composition of a sung vowel,
which provide information on the harmonic structure of a
sound. The spectral composition can show how breathy or
strained the voice sounds, which depends on the singer’s
physical effort on the vocal folds and the amount of used
airflow [32]. In order to investigate both the temporal and
spectral modulations of sung vowels, we propose the inves-
tigation of novel features extracted from the modulation
power spectrum (MPS) [28], [29]. This method combines
the benefits of the discussed parametric and non-parametric
approaches. We investigate a peak-picking technique similar
to CPP, where we additionally include higher harmonics
along the temporal and spectral modulation axes, as opposed
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to an algebraic approach like the HOSVD utilized in [25],
[26], and [27]. As of now, the data made public in [1] and [20]
are the only two openly accessible datasets of professional
singers, singing with different phonation modes. However,
both of them have severe restrictions regarding the number
of singers and ratings. Thus, we have created a new dataset
including ten singers singing five vowels in three phona-
tion modes (breathy, modal, and pressed) over a large pitch
range. We propose two novel feature sets derived from the
modulation power spectrum and one feature set derived from
an averaged cepstrum over consecutive time frames for the
classification of the phonation modes breathy, modal and
pressed. The proposed feature sets are compared to three
state-of-the-art reference feature sets. The feature sets are
compared by means of their classification performance using
a support vector machine (SVM) classifier (see section V).
The highlights and novelties of the current study are:
• Investigation of temporal and spectral characteristics
extracted from the modulation power spectrum.

• Investigation of automatic classification of phonation
modes (breathy, modal, and pressed) on a newly created
classical singer dataset.

• Investigation of a feature reduction by using the aver-
aged MPS along the temporal axis.

• Study of the performance of features derived from the
averaged cepstrum over consecutive time frames com-
pared to MPS features.

• Comparison of the proposed features with state-of-the-
art reference features, which are: voice quality features
(VQ-features), cepstral features (MFCCs), and features
derived after zero frequency filtering (ZFF features).

The organization of the paper is as follows: Section III
describes the data collection including measurements and
labelling. The extraction of features and calculation of the
modulation power spectrum are described in section IV.
The experimental protocol is described in section V, which
gives a general overview of the classification framework,
the reference features, the classifier, and the evaluation met-
rics. Results of the classification experiments are presented
in section VI. In section VII the results are discussed and
section VIII summarizes the study.

III. DATA COLLECTION
For the present work, we created a new dataset of audio
recordings of sustained vowels sung at various pitches with
three different phonation modes. Furthermore, we conducted
a listening assessment in order to obtain the perceived phona-
tion modes of the recorded vowels. Although datasets on
phonation modes in singing exist, the current dataset is
much larger compared to existing datasets [1], [20]. The
already available datasets hold recordings of only two classi-
cal singers, whereas the proposed dataset contains recordings
of ten classical singers. In contrast to the already available
data, where the labels of phonation modes are based solely
on the judgements of a single expert, a perceptual assessment
was performed for the presented dataset, resulting in 6 ratings

per recording. This allows for a statistical analysis of the
perceived phonation mode labels. The dataset is named as
Voice Qualities in Singing (VQS) and is publicly available
at: https://phaidra.kug.ac.at/o:126552.

A. MEASUREMENTS
The measurements were recorded with a microphone (omni-
directional pattern, NTI M2230, Schaan, Liechtenstein) at
a distance of 1 m in front of the singer. For the acoustic
analysis, dry signals measured in an anechoic environment
are ideal. However, in singing, room acoustics support the
voice, which is a necessity in a longer recording session.
Therefore, we used an augmented acoustic system with zero
latency [33], [34], which only gives the singer natural room
acoustics via transparent headphones [35] while creating no
reverberation on the microphone signals. The augmented
acoustic system is fed with the signal of the microphone
placed in front of the singer and employs a static, however
frequency-dependent directivity to excite the virtual room.
The virtual room simulates a shoe-box-like concert hall with
a size of roughly 30m×24m×20m and reverberation time
of 2.2 s. Typical reverberation times of concert halls are in
the range between 1.5 s and 3 s [36], [37].

1) ROOM CONDITIONS
Measurements were carried out in a sound treated measure-
ment room with absorptive material on the walls and floor at
the Institute of Electronic Music and Acoustics in Graz. The
frequency-dependent room reverberation in the measurement
room is less than 75 ms between 400 Hz and 1 kHz, and
less than 50 ms above 1 kHz. The volume of the room is
approximately 50 m3 with a floor space of 22.50 m2.

B. AUDIO RECORDINGS
Four male singers (3 tenors and 1 baritone) were instructed to
sing 5 sustained German vowels (/a:/, /e:/, /i:/, /o:/, and /u:/)
over the pitch range from H/B2/123 Hz to a1/A4/440 Hz on a
whole-tone scale, except for the baritone, who only sang up
to e1/E4/330 Hz. Furthermore, six female singers (3 sopranos
and 3 mezzo-sopranos) sang the vowels from a/A3/220 Hz to
a2/A5/880 Hz. The singers were asked to sing the vowels,
starting on the consonant /m/ and sustaining the vowel for
2 seconds. The vowels were repeated three times each with
different provoked voice phonation modes (modal, breathy,
and pressed). This results in a total number of 2145 audio
samples. The dataset was then reduced to a total number of
1140 samples to ensure a listening assessment of reasonable
duration (see section III-C). This reduced dataset is conse-
quently used in the classification experiments presented in
section V.
All singers were trained classical singers except for the

baritone (studied jazz vocals), who said to have the ability
to mimic the classical singing technique due to his teach-
ing experience at the music conservatory. The average age
was 29.6 years (the youngest was 24 years and the oldest
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FIGURE 1. Histogram of perceptually assessed median phonation mode
ratings along with the cluster limits (which are used to derive the
perceptually assessed labels).

was 34 years). The classically trained singers were 4 grad-
uate students (at the end of their current master studies),
5 post-graduate students (with one master’s degree or more),
and 1 undergraduate student (bachelor’s degree). Six of the
singers were also teaching at the time. The singers were asked
to sing at a comfortable loudness level (mezzo-forte). All
the participants were well-trained for the task due to their
extensive practice during their classical vocal studies.

a: NOTE ON THE PHONATION MODES
We chose to study three phonation modes: breathy, modal,
and pressed, as most singers were unfamiliar with the term
‘‘flow’’ phonation. In this sense, the term ‘‘modal’’ in our
study and in the dataset defines the optimal singing voice
phonation, and the other two phonation modes ‘‘breathy’’ and
‘‘pressed’’ are deviations from this optimal state.

C. TARGET AND PERCEPTUALLY ASSESSED LABELS
The instructions given to the singers during the course of
the recordings are used as target labels in this work. Due to
the time-consuming nature of a listening assessment, only
a portion of the recordings were chosen to be perceptually
assessed. This resulted in the selection of 1140 samples. The
pitches of these samples are listed in Table 1. The samples
were randomly grouped into ten subsets, which each were
independently rated by 6 listeners, resulting in six indepen-
dent ratings per sample. A total of 20 listeners participated in
the assessment. As a starting point for the current investiga-
tion, a k-mediods clustering algorithm is used to categorize
the median of the six independent ratings for each sample.
The distributions of the three phonationmode clusters derived
using the k-mediods algorithm are visualized in Fig. 1 as his-
tograms. The cluster boundaries are chosen as the upper and
lower boundary of the modal cluster, which provides one pos-
sible straight-forward approach for the assignment of a fixed
label to each recording. Fig. 1 also shows a smaller distance
between the cluster medians of the modal and pressed cluster
compared to the distance between the modal and breathy
cluster. From the resulting 1140 samples, 297 samples were
rated as breathy, 516 as modal, and 327 as pressed. The
amount of data for target labels and perceptually assessed

labels are listed in Table 2 along with information of gender,
vowels, and pitch range. The confusion matrix in Table 3
presents the differences between the perceptually assessed
and the target labels. When comparing the different labels of
phonation mode classification, it can be seen that pressed and
modal phonation consistently cause the greatest uncertainty,
suggesting that performance differences in classifications are
to be expected. However, it is also reasonable to anticipate
that there will be some uncertainty in the data, if only target
labels (instructions to the singers) are looked into.

IV. FEATURE EXTRACTION
In this section, newly developed features, based on the mod-
ulation power spectrum (MPS) including their underlying
theory, are discussed along with the features derived from the
averaged cepstrum over consecutive time frames. In order to
calculate the MPS-based features, a peak-picking procedure
is applied, which uses the knowledge of the fundamental
frequency. Three sets of features are proposed, one set is
based on the two-dimensional MPS-representation, leading
to a larger dimension feature set (MPSpeaks), the second set
builds on a compact, summed version of the MPS resulting
in a smaller dimension feature set (MPSsum), and the third set
is derived based on cepstral peaks (Cepspeaks), as there exists
a strong relation between the cepstrum and the spectral mod-
ulation dimension of the MPS. A schematic block diagram
describing the steps involved in the computation of the three
feature sets is shown in Fig. 2.

A. MODULATION POWER SPECTRUM
The origin of the modulation power spectrum (MPS) can be
traced back to the field of neuroscience, where it was used to
better understand human auditory processing [28]. Temporal
modulations which constitute the modulation spectrum along
the time axis, have been studied for different tasks such as
audio coding, modification, and automatic classification [22].
Subsequently, temporal modulations have also been exten-
sively investigated for pathological voices [25], [26], [27].
The MPS combines the information of temporal modulations
and the approach of cepstral analysis, which aims at a sepa-
ration of vocal tract and voice source information [14]. The
MPS is calculated by applying a two-dimensional Fourier
transform on the squared and logarithmized amplitude values
of a short-time Fourier transform (STFT) (X (m, k)), com-
puted with the block-length L and hop-size R. The STFT
consists of N positive frequencies andM time-frames, where
the current time-block is denoted using the index m and k
denotes the discrete frequency indices. Note that instead of
using the natural logarithm as mentioned in [28], we use the
logarithm with base 10, and represent the spectro-temporal
modulation amplitudes S(kf , kt ) in decibels.

S(kf , kt ) =
1

√
MN

M−1∑
m=0

N−1∑
k=0

10 log10(∥X (m, k)∥2)e−j2πU ,

(1)
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TABLE 1. Pitches of the data selected from the full dataset which were perceptually assessed. Frequency differences in Hz between the pitches (delta)
are also listed to show the almost linear spacing.

TABLE 2. Overview of the analyzed dataset∗ with information on gender, vowels, pitch range, and the number of target and perceptually assessed
phonation mode labels.

TABLE 3. Percentage of confusions: target labels (rows) vs. perceptually
assessed labels (columns). The perceptual listening assessment’s results
are compared with the reference number of target labels per class (380).

whereU =

(
mkt
M +

kf k
N

)
. The indices kf = −

⌊N
2

⌉
, . . . ,

⌊N
2

⌉
and kt = −

⌊M
2

⌉
, . . . ,−

⌊M
2

⌉
1 are the corresponding dis-

crete spectral and temporal modulation frequency bins in the
joint modulation frequency domain after the two-dimensional
Fourier transform. In our implementations, a Blackman-
Harris window with a block-length of 80 ms, a hop-size of
2.5 ms, and a 4096-point fast Fourier transform at a sampling
frequency of 16 kHz are used. The block length is longer than
commonly used in speech signal processing (25 to 50 ms)
to accommodate the nature of the singing voice. The most
important aspect is the choice of a block length and a hop size
that allow to study the vibrato characteristics of the classical
singing voice, which has a vibrato frequency around 4 to
8 Hz [30].

B. EXTRACTION OF MODULATION POWER SPECTRAL
FEATURES
The MPS represents a high dimensional feature space and
exhibits pitch-dependent regions of high and low spectro-
temporal energy, especially in the case of sustained vowels.
Therefore, we propose a pitch-normalized peak-picking strat-
egy to extract only the high energy components of the MPS.
Fig. 3 shows illustrations of modulation power spectra for
three phonation modes (breathy, modal, and pressed). The
search regions depicted in Fig. 3 on the spectral modulation
axis (y-axis) with a width of ±

1
3τ0 are centered around nf ·τ0,

with nf = {1, 2, . . . ,Nf = 8} being positive multiples of
the fundamental period τ0 =

1
f0
. The fundamental periods

1
⌊·⌉ denotes a rounding operation.

are determined using the reference pitches listed in Table 1.
The search regions on the temporal modulation axis are fixed
around Nt = 5 multiples, centered at nt = {−2,−1, 0, 1, 2},
times a pre-selected vibrato frequency of fvib = 6Hz.2 The
search region width along the x-axis is chosen to be ±

1
3 fvib.

The boundaries of the spectral and temporal search regions
are formulated in (2) and (3).

τi = nf,i · τ0 ±
1
3
τ0 (2)

ftmod,i = nt,i · fvib ±
1
3
fvib (3)

The modulation frequencies ftmod and τ denote the tem-
poral and spectral frequencies used in the modulation power
spectrum. They can be calculated using the linear relationship
between the discrete modulation frequency bins kt and kf and
the spectral modulation frequency resolution 1τ and tempo-
ral modulation frequency resolution 1ftmod

(see (4) and (5)).

τ = 1τ · kf (4)

ftmod = 1ftmod
· kt (5)

These modulation frequencies are used below to describe the
process of calculating the newly proposed features from the
modulation power spectrum.

MPSpeaks :The full set of peak amplitudes derived as in (6)
is denoted asMPSpeaks.

MPSpeaks = max{S(τi, ftmod,i)} (6)

The dimension of this feature set is: Nt · Nf = 5 · 8 =

40 peak amplitudes.
MPSsum : In order to further reduce the dimensionality of

the full set of peak values MPSpeaks, the MPS is summed
along the temporal modulation axis, see (7).

S6(kf ) =

∑
kt

S(kt , kf ) (7)

2fvib is chosen as the mean value of the vibrato range 4 to 8 Hz reported
in [30].
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FIGURE 2. Schematic block diagram for the extraction of features from the modulation power spectrum (MPSpeaks and MPSsum) and the averaged
cepstrum (Cepspeaks).

FIGURE 3. Illustrations of modulation power spectra for the three phonation modes. Shown are the extracted peak amplitudes within a search grid
referenced to the fundamental frequency (τ0 =

1
f0

) and the average temporal modulation frequency for vibrato fvib = 6Hz along both the temporal and

spectral axes. The search grid regions along the spectral axis lie within nf · τ0 ±
1
3 τ0 with nf ∈

{
1, 2, . . . , 8

}
, and along the temporal axis within

nt · fvib ±
1
3 fvib with nt ∈

{
−2, −1, 0, 1, 2

}
.

Again, 8 peaks along the spectral modulation axis are picked
(see (8)), which is the dimension of theMPSsum feature set.

MPSsum = max{S6(τi)} (8)

Fig. 3 shows the modulation power spectra for the breathy,
modal, and pressed phonation modes. The MPS for breathy
phonation shown in Fig. 3(a), is characterized by low energy
along the temporal modulation axis, and evenly distributed
energy along the spectral modulation axis around ftmod =

0 Hz. Fig. 3(b) shows the illustration of the MPS for modal
phonation, exhibiting strong temporal modulation compo-
nents, but also a substantial energy decrease along the spec-
tral modulation axis. The MPS for pressed phonation shown
in Fig. 3(c) shows more energy at higher spectral mod-
ulation frequencies. Fig. 4 shows the illustrations of the
summed modulation power spectra for the three phona-
tion modes. From the illustrations of the modulation power
spectra (shown in Fig. 3 and Fig. 4), it is clearly evi-
dent that temporal modulation components and spec-
tral harmonic structures vary among the three phonation
modes.

C. EXTRACTION OF FEATURES FROM THE AVERAGED
CEPSTRUM
There exists a strong relationship between the spectral mod-
ulation dimension of the MPS and the cepstrum. There-
fore, peak values extracted from the averaged cepstrum over
consecutive time frames are also considered as possible
features. The calculation of the cepstrum is presented in
Fig. 2, whereas the features extracted from it are denoted
as Cepspeaks. We extracted the peak amplitudes within the
averaged cepstrum using the same search regions as for the
spectral modulation axis in the MPS (see Sec. IV-B).

V. EXPERIMENTAL PROTOCOL
In order to investigate the phonation mode classification per-
formance of the newly proposed modulation power spectral
features we set up a classification problem. The newly devel-
oped features are compared with state-of-the-art reference
features that are commonly used and have been employed
in previous comparative work [1], [13], [18]. In the current
study, we use a support vector machine (SVM) including
a hyperparameter optimization, and a leave-one-singer-out

29154 VOLUME 11, 2023



M. Brandner et al.: Classification of Phonation Modes in Classical Singing

FIGURE 4. Illustrations of the summed modulation power spectra for the
three phonation modes. The circular markers indicate the peak extraction
for the corresponding MPSsum feature. The summed modulation power
spectra are detrended by subtracting a fitted first-order polynomial for
better visualization.

(LOSO) cross-validation technique. This may reduce overall
performance accuracy, but should increase the generalizabil-
ity of the current results. The basic processing and classifica-
tion framework is shown as a block diagram in Fig. 5. The
feature extraction block is preceded by the pre-processing
steps, which includes segmenting the audio samples to the
sustained part of the vowels and excluding the consonant /m/
at the beginning. The feature extraction block summarizes the
computation of the reference features, as well as the steps for
calculating the newly developed features based on the MPS
and the averaged cepstrum (averaged over consecutive time
frames, see section IV). The last block indicates the classifi-
cation process with the SVM, which predicts one of the three
phonation modes for each audio sample after the classifier
has been trained according to the LOSO cross-validation
and hyperparameter optimization technique. The following
sections present the reference features, the details of the clas-
sifier and the evaluation metrics along with the classification
framework.

A. REFERENCE FEATURES
The proposed features extracted from the modulation power
spectrum are compared to three state-of-the-art reference
feature sets (see Fig. 5), which are briefly described in the
following paragraphs.

1) VOICE QUALITY FEATURES (VQ)
The VQ feature set consists of six features, derived from
a glottal waveform estimate, which is calculated using a
GIF-method [12], [13]. The six features are: (1) normal-
ized amplitude quotient (NAQ) [38], (2) quasi-open quo-
tient (QOQ) [10], [39], (3) amplitude difference between
fundamental and first harmonic (H1-H2) [39], (4) parabolic
spectral parameter (PSP) [40], (5) harmonic richness fac-
tor (HRF) [39] and (6) maximum dispersion quotient
(MDQ) [12]. The literature shows that voice quality features
work well for speech, but their applicability to singing is
known to be limited at high pitches, due to erroneous glottal
inverse filtering [11]. Nevertheless, we use these features as
reference features in the current study.

2) ZERO FREQUENCY FILTERING (ZFF)
The ZFF method provides an approximate voice source
waveform without explicitly using the source-filter model
of speech production. The ZFF feature set consists of four
features, which are: the strength of excitation (SoE), the
energy of excitation (EoE), the loudness measure and the ZFF
signal energy. These features were shown to be useful for
discriminating phonation types in speech and singing [13],
[41], [42]. SoE was shown to be proportional to the rate of
glottal closure, the EoE feature was shown to capture the
vocal effort, and the loudness measure was shown to capture
the abruptness of the glottal closure [43], [44]. The energy
of the ZFF signal at glottal closure is also used as a feature
which was shown to capture low frequency energy [13]. Zero
frequency filtering features have been designed to overcome
the problem of the classical voice quality features and have
been extensively investigated in [13], but it has been shown
that the performance for singing voices could still not be
improved significantly.

3) MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCCs)
MFCCs are popular features used in many tasks, such as
automatic speech recognition [45], [46], music information
retrieval [47], [48], including phonation modes classification
in speech and singing [18]. The MFCCs are derived using
the same parameters as for the MPS (Blackman-Harris win-
dow, 80 ms window length and 2.5 ms hop-size). From the
mel-cepstrum, the first 36 cepstral coefficients are derived.
The 0th coefficient is not considered, which results in a 35-
dimensional feature vector. MFCCs have been shown to be
versatile descriptors for speech recognition tasks and phona-
tion mode classification in several previous works [13], [18].
In comparison to other features, MFCCs are harder to inter-
pret and their descriptive quality usually depends largely on
the number of used coefficients.

B. FEATURE SET COMBINATIONS
Additionally, the reference and proposed features described
above were combined in order to study the complementary
information among the features. In total, 9 combinations of
feature sets (FSCs) were created in addition to the single fea-
ture sets and their corresponding performances are discussed
in subsection VI-C.

C. CLASSIFIER
We use a SVM with a radial basis function kernel as a
classifier [49], because it is reported to perform well even
on a smaller number of training data. We perform a hyper-
parameter tuning with GridSearchCV [49] within a LOSO
cross-validation strategy to avoid over-fitting and increase the
generalizability of the model. For our phonation modes clas-
sification task, we use two types of labels: (i) the instructed
phonation modes given to the singers during recordings
(target labels) and (ii) the perceptually asssessed phona-
tion mode labels from the listening assessment (perceptually
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FIGURE 5. Block diagram of the basic processing and classification framework including the pre-processing stage, the feature extraction
for the reference and proposed features, and the classification using a support vector machine to predict one of the three phonation
modes for an audio sample. The depicted framework indicates the processing after the SVM classifier has been trained according to the
LOSO cross-validation and hyperparameter optimization technique.

assessed labels). Experiments are conducted by considering
both genders (including both male and female singers, totally
10 singers) and only female singers (6 singers).

D. EVALUATION METRICS
Performancemeasures are themean and standard deviation of
the test accuracy over the runs of the LOSO cross-validation
(for the whole dataset and the female-only dataset). We omit
the male-only dataset due to its small sample size. We have
computed the standard deviation of the accuracy for each
feature set to see the reliability of the features across vary-
ing singers. As an additional metric, we provide confusion
matrices for the test sets averaged over all runs of the LOSO
cross-validation to examine the confusions among phonation
modes.

VI. RESULTS
In this section, the results of the classification problem
described in section V are presented for the target and per-
ceptually assessed labels, in terms of accuracy and confu-
sion matrices (see sections VI-A and VI-B). In each of the
subsections, we present the results (for both the reference
and proposed features) for the whole dataset, i.e., combi-
nation of male and female singers (see Table 2 for an
overview of the data and labels) and the female-only dataset.
Finally, the results of the feature set combinations are listed
in section VI-C.

A. CLASSIFICATION RESULTS FOR TARGET LABELS
This section presents the classification results (in terms of
mean and standard deviation of accuracies) obtained for the
target labels. The classification accuracies for the whole data
are given in Table 4. From the table, it is observed that
the proposed feature sets (MPSpeaks,MPSsum, and Cepspeaks)
perform better than the reference features. All the proposed
features show a mean accuracy which is around 10% higher
than the mean accuracy of the reference features. However,
the standard deviations of the accuracies are all larger for the
proposed features. The most striking aspect in Table 4 is the
similar performance of the 40-dimensional MPSpeaks feature

TABLE 4. Phonation mode classification accuracies (mean and standard
deviation (Std.)) for the classical singers (female+male) using the target
labels.

TABLE 5. Confusion matrix in % for the MPSsum feature set of the whole
dataset using the target labels.

TABLE 6. Confusion matrix in % for the VQ feature set of the whole
dataset using the target labels.

set and the 8-dimensionalMPSsum and Cepspeaks feature sets.
In order to gain more information on the misclassifications,
confusion matrices are given in Table 5 and Table 6 for
one proposed feature set (MPSsum) and one reference feature
set (VQ-features). The confusion matrices clearly show that
there exists greater confusion between pressed and modal,
and between breathy and modal phonation modes in the VQ
feature set, compared to the proposedMPSsum feature set.

The results for the female-only data are given in Table 7.
It is expected that the female-only data, still consisting of
810 samples, will be more homogeneous because all singers
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TABLE 7. Phonation mode classification accuracies (mean and standard
deviation (Std.)) for the female classical singers using the target labels.

TABLE 8. Confusion matrix in % for the MPSsum feature set of the
female-only dataset using the target labels.

TABLE 9. Confusion matrix in % for the ZFF feature set of the
female-only dataset using the target labels.

sang the same pitches. Similar to the results of the whole
dataset, it can also be observed that the proposed feature sets
(MPSpeaks, MPSsum, and Cepspeaks) perform better than the
reference features. Moreover, it can be seen that the results
show lower standard deviations compared to the results for
the whole dataset, except for the MFCCs. The classifica-
tion accuracies are also increased for all the feature sets by
4-8% for the female-only data, where the MPSsum feature
set showed the highest accuracy among all features, and the
lowest standard deviation among the proposed feature sets.
The confusion matrix shown in Table 8 demonstrates the
increased performance for theMPSsum feature set, concerning
less confusion between breathy and pressed phonation modes
compared to the results for the whole dataset, but no per-
formance increase for the classification of modal phonation.
On the other hand, the confusion matrix for the ZFF feature
set given in Table 9 indicates that there exists greater con-
fusion with modal for breathy and pressed phonation modes
compared to theMPSsum feature set in the female-only data.

B. CLASSIFICATION RESULTS FOR PERCEPTUALLY
ASSESSED LABELS
This section gives the classification results obtained for the
perceptually assessed labels. The classification accuracies for
the whole data are given in Table 10. The table, shows that
the proposed feature sets (MPSpeaks,MPSsum, and Cepspeaks)
again perform better than the reference features. In general,
the performance differences between the feature sets decrease
when perceptually assessed labels are used.

The results for the female-only data evaluated for the
perceptually assessed labels are given in Table 11. Again,

TABLE 10. Phonation mode classification accuracies (mean and standard
deviation (Std.)) for the classical singers (female+male) using the
perceptually assessed labels.

TABLE 11. Phonation mode classification accuracies (mean and standard
deviation (Std.)) for the female classical singers using the perceptually
assessed labels.

the highest mean accuracies are obtained for the MPSsum,
followed by theMPSpeaks, Cepspeaks and MFCC feature set.

Overall, the results in the classification experiments (both
for target and perceptually assessed labels) show that the
features extracted from the modulation power spectrum
(MPSpeaks, andMPSsum), and the cepstral features (Cepspeaks)
perform better than the reference features.Most striking is the
performance of the MPSsum feature set, which only consists
of 8 features. This suggests that including modulation charac-
teristics in phonation mode analysis is beneficial, especially
in the analysis of classical singing.

C. CLASSIFICATION RESULTS FOR COMBINATIONS OF
FEATURE SETS
This section reports the results for the combination of the
proposed and the reference features on the whole dataset for
the target and perceptually assessed labels. The feature sets
are combined to investigate the complementary information
among the feature sets. In total, 9 feature set combinations
(FSC) for each label group (target and perceptually assessed
labels) were created as listed in Table 12. FSC1 and FSC2
include combinations of the reference feature sets. FSC3 to
FSC5 combine the best reference feature set combination
with the proposed feature sets. FSC6 to FSC8 combines the
proposed feature sets to investigate their corresponding com-
plementary information. FSC9 combines the best performing
feature sets of the reference feature set combinations and the
proposed feature set combinations. The feature set combina-
tion FSC8 produces the highest mean accuracies for the target
labels and FSC9 for the assessed labels. Interestingly, the
combination of the newly proposed features FSC8 (MPSpeaks
and Cepspeaks) and FSC7 (MPSsum and Cepspeaks) perform
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TABLE 12. Feature set combinations FSC1 to FSC9 and their corresponding accuracies (mean and standard deviation in percent) for the target and
perceptually assessed labels.

TABLE 13. Confusion matrices for all the reference features (MFCC, VQ, and ZFF) and proposed features (MPSpeaks, MPSsum, and Cepspeaks) of the
whole dataset (combination of female and male data) and the female-only dataset using the target labels and perceptually assessed labels. Here B, M
and P refer to breathy, modal, and pressed phonation modes, respectively.

better or nearly similarly to FSC9, for both target and per-
ceptually assessed labels, even though FSC9 holds some or
all reference features. Note that the feature set combinations
for each corresponding set of labels (target and perceptually
assessed) include the best performing feature sets of the ref-
erence features and the proposed features. Thus, the feature
set combinations vary for the different set of labels.

VII. DISCUSSION
From the results in Tables 4, 7, 10, and 11, it is clearly evident
that the performance for the MPSsum (8-dimensional) fea-
tures is similar or better than the MPSpeaks (40-dimensional)
features.

This is explainable by the summation included in calcu-
lating the MPSsum features. The summed modulation power
spectrum is calculated by summing all the energy along
the temporal axis for each spectral modulation frequency
τ , whereas the MPSpeaks features only hold information
on the peak amplitudes within the search regions. The
extracted modulation information contained in the MPSpeaks
and MPSsum features seems to increase the capability of
distinguishing modal from the other phonation modes. The

peaks extracted from the cepstrum, averaged over consec-
utive time frames, contain similar information as the peaks
extracted from the summed MPS, but without the temporal
modulation information (i.e., vocal vibrato), which decreases
the performance compared to the MPSsum and MPSpeaks
features.

The confusion matrices for all the features (reference and
proposed) with the target and perceptually assessed labels
in the whole dataset and in the female-only dataset scenario
are given in Table 13. These confusion matrices show that
the proposed MPS feature sets and the MFCCs exhibit the
best performance in classifying breathy phonation, while the
MPSpeaks feature set performs best over the whole dataset for
both the target and the perceptually assessed labels.

The pronounced difference between breathy and other
phonation modes can be visualized in the averaged
modulation power spectra (averaged over all singers for
each corresponding phonation mode), depicted in Fig. 6.3

Breathy phonation shows the lowest values for the temporal

3We subtracted a fitted first order polynomial to detrend the MPS data for
better visualization.
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FIGURE 6. Averaged modulation power spectra of all singers (whole dataset) for breathy, modal, and pressed phonation. The modulation power
spectrum for each sample is detrended by subtracting a fitted a first-order polynomial before averaging in order to highlight the differences between
the phonation modes.

modulation components. Regarding the classification of
pressed phonation, the confusion matrices of Table 13 over-
whelmingly show a reduced performance for all investigated
feature sets. The less distinct difference between modal
and pressed phonation is also visible in the averaged MPS
illustrated in Fig. 6. Nonetheless, slight differences between
modal and pressed phonation modes are still detectable,
especially at higher spectral modulation frequencies starting
at τ = 3 cycles/f0, but they are less pronounced than in the
visualizations presented in Fig. 3.
Additionally, Fig. 73 shows the summed MPS averaged

over all singers for each corresponding phonation mode.
Again, the discussed reduced differences between modal
and pressed are visible. A decreased amplitude at τ =

1 cycles/f0, as seen in Fig. 4 for pressed phonation, dimin-
ishes in the averaged data.

The classification experiments with the perceptually
assessed labels show a slightly lower performance com-
pared to target labels for almost all feature sets. How-
ever, an approach other than using the median rating in
combination with k-mediods clustering could lead to better
performance, offering potential for future research. Overall,
the results of the classification experiments show a higher
mean accuracy for the novel MPS features when using the
target labels. This suggests that the target labels, in combina-
tion with the new features, provide a better discrimination of
phonation modes for the present dataset.

The variance of the classification accuracy is strongly
influenced by the underlying data and the labels. The lowest
standard deviations for all feature sets are present when the
data is reduced to the female-only data and by using the labels
from the perceptual listening assessment (see Table 11). This
reduced variance is generally noticeable for the perceptually
assessed labels, most likely due to the involved strategy,
which entails categorizing these labels with the median value
of six ratings. The variance seen for the target labels may

FIGURE 7. Averaged summed modulation power spectra of all singers for
each phonation mode (breathy, normal, and pressed). The summed
modulation power spectrum is detrended for each sample by subtracting
a fitted first order polynomial for better visualisation.

be explained by the leave-one-singer-out strategy. A greater
variance is to be anticipated if one ormore singers perform the
instructed phonation modes (target labels) with more consis-
tency than the others. This is also evident in the experiments
of the combined feature sets (for both target and perceptually
assessed labels). Furthermore, the results demonstrate that
there exists a weaker complementary information between
the various feature sets.

In addition, a comparison between target labels and labels
from the perceptual listening assessment (see Table 3) shows
similar confusions (i.e., between modal and pressed phona-
tions). This implies that either the singers were unable to fully
reproduce the target phonation modes in the recordings or it
was too challenging for listeners to distinguish the phonation
modes. Most likely, both of these factors are at play. This lim-
its, to some extent, the discussion on the performance of the
current feature sets for classifying pressed phonation, and the
comparison of performance between target or perceptually
assessed labels. However, to the authors’ knowledge, the data
investigated in this work is currently the largest publicly
available annotated dataset for phonation modes in singing
and further investigations on the dataset should follow.

VOLUME 11, 2023 29159



M. Brandner et al.: Classification of Phonation Modes in Classical Singing

VIII. CONCLUSION
In this article, we have proposed three new feature sets based
on themodulation power spectrum and the averaged cepstrum
for the classification of phonation modes (breathy, modal,
pressed) in classical singing. We have also presented a newly
collected phonationmodes dataset, which consists of ten clas-
sical singers singing several vowels at several pitches, which
is publicly available at: https://phaidra.kug.ac.at/o:126552.
Experiments were carried out on the whole (combination of
female and male data) and the female-only data using target
labels (instructed phonation modes during the recordings) as
well as perceptually assessed labels (derived from a percep-
tual listening assessment). We have compared the proposed
three features (MPSpeaks, MPSsum, and Cepspeaks) with state-
of-the-art reference features (VQ, ZFF, and MFCCs) in a
phonationmode classification task. The results of the classifi-
cation experiments reveal that the proposed features based on
the MPS have a slightly better ability to accurately assess the
phonation modes. In terms of performance and most striking
in number of features,MPSsum is the best performing feature
set compared to other feature sets, which by itself produces a
similar classification accuracy as the best performing feature
set combination. Additionally, it has been found that the target
labels result in a better performance than using the labels
derived from the perceptually assessed ratings. It was found
that the influence of the underlying data and the correspond-
ing labelling play an important role in the classification. This
should be taken into account in future approaches. Further
research is still needed on deriving phonation mode specific
features without using the fundamental frequency, as well as
on thoroughly examining the listening assessment data.

IX. ETHICS AND CONSENT
This work involved human subjects or animals in its research.
Ethical and experimental procedures and protocols were
designed to comply with the proposal reviewed by the ethics
advisory board of the University of Music and Performing
Arts, Graz, and performed in line with the Helsinki decla-
ration. All participants were informed that their participa-
tion was voluntary and could be withdrawn any time. Par-
ticipants received an expense allowance for their voluntary
participation.
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