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Exemplar-Based Sparse Representations for
Detection of Parkinson’s Disease From Speech

Mittapalle Kiran Reddy and Paavo Alku , Fellow, IEEE

Abstract—Parkinson’s disease (PD) is a progressive neurological
disorder which affects the motor system. The automatic detection
of PD improves the diagnosis of the disease, and it can be done in a
non-invasive manner from speech. In this paper, we investigate the
use of an exemplar-based sparse representation (SR) classification
approach for detecting PD from speech. Exemplars are speech
feature vectors extracted from the training data. The idea is to for-
mulate the detection task as a problem of finding sparse represen-
tations of test speech feature vectors with respect to training speech
exemplars. The main advantage of using the SR approach instead
of conventional machine learning (ML)-based approaches is that
the training step–which is time-consuming and sometimes requires
unorganized hyper-parameter tuning–is not needed. Furthermore,
SRs are more robust to redundancy and noise in the data. In this
work, we study SR classification approaches based on two sparse
coding models, namely, l1-regularized least squares (l1LS) and
non-negative least squares (NNLS). We propose a strategy based on
class-specific dictionaries for improving performance of the l1LS-
and NNLS-based SR classification. To investigate the detection
performance, the l1LS- and NNLS-based approaches are applied
and compared with the traditional PD detection approach based
on ML classification algorithms using the PC-GITA PD dataset
and an openly available dataset consisting of mobile device voice
recordings from healthy and PD patients. The results indicate that
the proposed NNLS-based SR classification approach performs
better than the traditional ML-based methods in discriminating
PD patients from healthy subjects.

Index Terms—Exemplar-based, glottal features, Parkinson’s
disease, non-negative least squares, random forest, sparse
representation, SVM.

I. INTRODUCTION

PARKINSON’S disease (PD), initially called shaking palsy,
is a neuro-degenerative disease caused by damage to the

dopaminergic neurons in the mid-brain region [1], [2], [3]. The
dopaminergic neurons play an important role in controlling
multiple brain functions in voluntary movements of the muscles
in the face and mouth to generate speech [2], [3]. The lower the
level of dopamine, the higher the probability of being affected
by PD [2]. Studies have shown that PD primarily causes speech
deficits at the early stages of the disease. Speech disorders
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caused by PD can be characterized by symptoms such as re-
duced tongue flexibility and reduced vocal tract volume, reduced
speech intensity and pitch range, impairments in speech quality,
and inappropriate pauses [4]. Therefore, the detection of PD,
particularly in its incipient stages, from the speech signal is a
justified and an important topic [4], [5].

In the literature of automatic PD detection, most of the works
make use of the classical pipeline approach, which consists of
two separate stages (feature extraction and classification). As an
alternative to the classical pipeline approach, some studies have
recently investigated the PD detection task using the end-to-end
deep learning framework consisting of convolutional neural
networks (CNNs) and multilayer perceptrons (MLPs) [26], [27],
[30]. End-to-end systems are completely data-driven and do
not require any domain expertise in PD [26]. However, large
amounts of data are required to properly train deep learning
models. Collecting large amounts of training data is, however,
difficult from PD patients because they might not bear long
recordings. Due to this data sparsity issue, classical pipeline
systems are still a justified choice for automatic detection of PD
from speech and therefore the focus of the current study is also on
these systems. A summary of previous studies in the detection of
PD from speech signals based on the classical pipeline approach
is provided in the following section. For a complete review on
speech signal processing algorithms for PD detection, the reader
is referred to [6], [9].

A. Related Works

In the classical pipeline approach, a machine learning (ML)
classifier is trained with a discriminative set of hand-crafted
speech features to identify individuals with PD. The features are
mainly used to model the two main aspects of speech signals:
articulation and phonation. As described in [6], the commonly
used phonation features include, for instance, jitter, shimmer,
harmonic-to-noise ratio (HNR), noise-to-harmonic ratio (NHR),
pitch, and Mel-frequency cepstral coefficients (MFCCs). The
most popular articulation features include MFCCs, features
based on linear predictive coding (LPC), and perceptual linear
prediction (PLP). In [12], a support vector machine (SVM)
classifier was trained using a set of selected traditional phonation
measures (such as jitter and shimmer) and pitch period en-
tropy extracted from sustained phonations for the discrimination
of PD from healthy subjects. In [13], the authors compared
the performance of the k-nearest neighbors (k-NN) and SVM
methods in classifying subjects with PD. The classifiers were
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trained using a group of 26 linear and time-frequency-based
speech features. The results showed that the SVM provided more
stable results compared to the k-NN classifier. A method based
on 132 dysphonia measures computed from sustained vowels
was proposed for PD detection in [14]. In their study, subsets
of dysphonia measures obtained via feature selection were used
to train SVM and random forest (RF) classifiers, and SVM was
shown to perform better than RF in detecting speakers with PD.
In [15], the authors proposed an approach based on a genetic
algorithm (GA) and SVM for the discrimination of PD patients
from healthy controls. The GA was used to select optimal speech
features from a set of 22 linear and non-linear features. The
selected features were used to train the SVM classifier for the
PD detection task. In [18], a decision-tree-based ensemble ML
algorithm was studied to predict the progress of PD based on
phonatory features. The use of the integrated chaotic bacterial
foraging optimization (CBFO) with an improved fuzzy k-NN
classifier was studied in early diagnosis of PD using 22 vocal
features in [19]. The authors reported that the CBFO-FKNN
approach performed better than SVM in the diagnosis of PD
using sustained vowels.

MFCCs have been widely used as robust articulation features
in PD classfication [6], [7], [9]. In [8], MFCCs were applied in
the classification of speech by PD patients and healthy controls
(HCs) using the Spanish PC-GITA database [50]. The authors
trained SVMs with statistical functionals of MFCCs, which were
computed on the Bark bands from speech that was collected
using different speech tasks (reading individual sentences, text
reading, the diadochokinetic (DDK) task, and monologue). As
a result, an accuracy of 73.7% was reported based on K-fold
(K = 10) cross-validation [8]. In [20], MFCCs were used in
analysis of continuous speech produced by speakers with PD
by studying recordings made in different languages (Spanish,
German, and Czech). In [22], MFCCs along with other cepstral
features such as PLP features were analyzed in the discrim-
ination of healthy individuals from PD patients using voice
recordings of the vowel /a/. The method in [20] was based on
modeling the energy content of unvoiced sounds using MFCCs
and Bark bands energies that were extracted from speech pro-
duced in various speech tasks (isolated words and sentences,
the DDK and text reading tasks). In [9], MFCCs were shown
to perform comparably to or better than many other features
such as perturbation measures [6], complexity measures [7] or
measures based on the tunable Q-factor wavelet transform, for
utterances of the vowel /a/. Recently, in [21], SVMs trained with
cepstral coefficients derived using the single frequency filtering
(SFF)-based instantaneous spectral representation was studied
for PD detection. The authors conducted a comparative study
on the PD detection task using sustained vowels and reported
that SFF-based features perform better than MFCCs. However,
the major disadvantage of the SFF-based features is the high
complexity involved in the extraction of these features. In [23],
the authors trained an SVM classifier by combining formant
features extracted with Hilbert-Huang Transform and MFCCs.
It was observed that the combination improved the PD detection
performance for the vowels of the PC-GITA database. In [7],
diagnosis of PD from speech was performed using articulation

and perturbation measures based on regularization techniques.
In [25], a larger feature set consisting of articulation, phonation
and prosody features extracted from monologue sentences of
the PC-GITA dataset was employed to develop an SVM model
for classification of patients with PD. The authors observed that
the combined features provided better performance compared
to the individual features alone. In [26], an improvement in PD
detection performance was observed when glottal source fea-
tures were further combined with the larger feature set described
in [25].

B. Scope of the Study

In classical pipeline systems, a learning-based classifier (such
as SVM) is first trained using the extracted features in the training
stage and then evaluated in a separate testing stage [31]. The
performance of the ML classifier evaluated in the testing stage,
however, depends significantly on how the hyper-parameters of
the classifier are adjusted in the training stage, and the detection
performance is sensitive to redundancy in the data [31], [32].
As an alternative to the widely used ML-based approaches,
exemplar − based sparse representations (SRs) have been used
for improving the classification performance in some fields
such as bio-informatics [31], face recognition [34], music genre
classification [36] and speech recognition [35]. In the exemplar-
based approach, speech exemplars from the training set are first
collected into a dictionary. Then the sparse coefficient vector
corresponding to a test instance is obtained using the dictio-
nary [31], [32]. Finally, a class label can be predicted from the
estimated sparse vector using a sparse interpreter [31], [32], [35].
The main advantage of the SR approach is that the classification
can be performed directly by representing the test sample as a
sparse linear combination of the labeled training samples [31],
[32]. Hence, the tedious training step, which includes unor-
ganized hyper-parameter tuning, can be avoided. Furthermore,
SR offers other advantages, such as strong robustness and less
sensitivity to the selected features. Motivated by these issues,
the current study will investigate SR in classification of speech
either as parkinsonian or healthy and compare the performance
of SR with reference ML-based approaches. To the best of
our knowledge, the exemplar-based SR approach has not yet
been considered for PD (or any other pathology) detection from
speech signals.

Although several studies have investigated the use of phona-
tion and articulation information in detection of parkinsonian
speech demonstrating the relevance of both aspects (see [6] for
a review), only a few studies have investigated the joint use of
both aspects ([7], [25], [26]). These studies have demonstrated
that the ML models developed with the combined features (ar-
ticulation and phonation) provide better discrimination between
healthy and PD speech. However, in examining the joint use
of articulation and phonation features for PD detection, these
studies have either considered data from only one speech task
(e.g., vowels [7], monologue sentences [25]) or used data from
different speech tasks together in building the classification mod-
els (eg., [26]). Furthermore, the effectiveness of the joint features
in the automatic detection of PD using speech recorded by
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mobile devices–data which is more suitable for telemonitoring
applications–has not been studied much previously. Therefore,
by combining our motivation to study the examplar-based SR
approaches in PD detection with the above-described issues, the
goal of the current study is summarized as follows: We com-
pare exemplar-based SR approaches to traditional ML-based
approaches in the automatic detection of PD from speech by
using combined phonation and articulation features, by using
different speech tasks, and by using speech datasets recorded in
different conditions.

The organization of this paper is as follows. The exemplar-
based SR approaches for classification of healthy and PD pa-
tients are described in Section II. The databases, experimental
setup, and evaluation metrics are discussed in Section III. The
experimental results are presented in Section IV. Finally, the
conclusions are presented in Section V.

II. EXEMPLAR-BASED SPARSE REPRESENTATION

CLASSIFICATION

SR is a parsimonious principle according to which a sample
can be sparsely represented with a redundant dictionary of non-
orthogonal basis vectors [31]. Given ann-dimensional input data
y, the SR problem is formulated as y≈Dx, where D= [d1, d2,...,
dk] is known as the dictionary and dk is a dictionary atom (basis
vector) and x is the sparse coefficient vector. Here, n denotes the
dimension of the input test vector and k denotes the number of
atoms in the dictionary. Sparse representation includes sparse
coding and dictionary learning [32]. Given a new data and
the dictionary D, learning the sparse coefficient vector x is a
procedure of sparse coding. Given training data, learning the
dictionary from data is called dictionary learning. An exemplar-
based SR approach falls under the category of sparse coding as it
uses a fixed dictionary consisting of exemplars from the training
set as basis vectors to determine x. The sparse coefficient vector
x can be obtained by solving the following problem

x = min
x′

‖x′‖0 s.t y = Dx. (1)

Equation (1) is not convex and is also a non-deterministic
polynomial (NP)-hard problem [41]. An NP-hard problem can-
not be solved in polynomial time on a standard computer.
Alternatively, the sparse coefficient vector x can be obtained by
solving the following l1-regularized least squares problem [31]

J (x, λ) = minx
1

2
‖y −Dx‖22 + λ ‖x‖1 . (2)

Here, λ > 0 is the scalar regularization parameter that balances
the trade-off between reconstruction error and sparsity. (2) is
known as the l1-least squares (l1-LS) sparse coding model which
can be solved efficiently using techniques like the truncated
Newton interior-point method (TNIPM) proposed in [33]. The
l1-norm minimization can efficiently recover sparse signals [33]
and is robust with respect to outliers. However, there are two
major drawbacks with the l1-LS model. First, it is a parametric
approach, in which the value of λ needs to be properly chosen
depending upon the application. Second, it results in a sparse

Algorithm 1: l1-LS or NNLS sparse coding-based classifi-
cation.

Input: DN×M : training data including N -dimensional
feature vectors and M samples, c: class labels of the
training samples, YN×p: p new samples (i.e. test samples)
Output: p: predicted class labels of the p test samples

1) Learn the sparse coefficient vector x, of each test
sample by solving (3) or (4);
2) Predict the class labels of the test feature vector by
using a sparse interpreter (or rule).

coefficient vector consisting of mixed signs which are hard to
interpret [32].

Instead of l1-LS, the non-negative least-squares (NNLS)
sparse coding model has been used for deriving sparse represen-
tations in [32], [40]. In the NNLS approach, the sparse vector x
is obtained by solving the following equation

min
x

1

2
‖y −Dx‖22 s.t x ≥ 0. (3)

The active-set NNLS sparse coding algorithm [32], [42] is
used for solving (4). There are three advantages of NNLS over
l1-LS. First, NNLS is a non-parametric model, which is more
convenient in practice. Second, unlike in l1-LS, the vector x is not
allowed to contain negative values (as can be seen from (5)) with
the NNLS model. In classification task, sparse interpreters (like
the nearest-subspace (NS) rule discussed later in the paper) have
been observed to work well with a non-negative sparse vector
compared to mixed-sign vector [32], [40]. Third, unlike l1-LS,
the NNLS problems can be solved in batch, which makes the
NNLS approach run much faster than its l1-LS counterpart [32].

The sparse vector x generated with a sparse coding model
can be interpreted directly to determine the class label, which
is known as SR classification [31], [32]. The general steps in
the exemplar-based SR classification approach using either the
l1-LS- or NNLS-based sparse coding model are detailed in
Algorithm 1 [31], [32], [40]. First, the N -dimensional feature
vectors extracted from the training samples are arranged as
columns in dictionary D. Then, either (3) or (4) is solved to
derive sparse coefficient vector x corresponding to test feature
vector y. Finally, the class label of each new sample is predicted
using a sparse interpreter. The MAX rule and nearest-subspace
(NS) rule are the two popular sparse interpreters [34], [40].
However, when the sparsity decreases in signals either due to
their inherent nature (like in the case of speech signals) or due
to the presence of noise, the MAX rule may deliver incorrect
decisions [40]. Therefore, in this work, we employed the nearest-
subspace (NS) rule [34], which is more robust than the MAX
rule when signals are less sparse. In the NS rule, suppose there
are C classes with labels l1, ..., lC , after obtaining non-negative
coefficient vector x corresponding to new sample y, first the
regression residual corresponding to the ith class is computed
as

ri(y) =
1

2
‖y −Dδi(x)‖22 (4)
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Fig. 1. Illustration of (a) existing and (b) proposed approach for binary classification. Di is a dictionary consisting of training speech vectors from the ith class,
Ni represent regression residual computed for the ith class. The predicted label of y corresponds to the class of dictionary which yields the minimum residual
value.

where δi(x) : Rn → Rn returns the coefficients for class i. Its
jth element is defined by

(δi(x))j =

{
xj if dj in class i

0 otherwise
(5)

Finally, a class label p is assigned to y, where

p = argmin
0≤i≤C−1

(ri(y)) (6)

The SR classification approaches based on the l1LS and NNLS
sparse coding models will be shortly referred to as the l1LS
classification (LSRC) and NNLS classification (NSRC), respec-
tively. While LSRC has been previously used in music genre
classification [36] and speech recognition [35], the NNLS-based
classifier has not been previously utilized in any speech-related
tasks.

Both LSRC and NSRC use a single dictionary which con-
sists of training exemplars from all the classes, as illustrated
in Fig. 1(a). Compared to using exemplars stored in a single
dictionary, using separate dictionaries for each class results in
test exemplar being approximated as a linear combination of
exemplars belonging to the same class only [38]. Also, in [37],
the authors showed that solving a sparse coding problem sepa-
rately by decomposing a large dictionary into multiple smaller
dictionaries can reduce the computational burden. Therefore,
in this work, we propose to organize the exemplars in separate
dictionaries based on the class (healthy and PD) as shown in Fig.
1(b). Then, the test vectors are approximated as a non-negative
linear combination of the exemplars in each of these dictionaries.
Finally, the classification is performed by comparing the quality
of reconstruction for different classes quantified by the regres-
sion residual and choosing the class which yields the minimum
residual value as shown in Fig. 1(b). The LSRC and NSRC
approach that utilize class-specific dictionaries are referred to
in this study as Proposed-LSRC and Proposed-NSRC, respec-
tively. Through experimental evaluation, we show that the use
of separate class-specific dictionaries improves the overall PD
detection performance.

III. EXPERIMENTAL SETUP

A. Database Description

Two databases containing healthy and PD speech are used
in this study. These databases are the widely used PC-GITA

database [50], which represents a repository that has been
recorded in a clinic under noise-controlled conditions using a
professional microphone and audio card, and the MDVR-KCL
database [51] that includes speech recorded by mobile devices.
The details of these two databases are described below.

1) PC-GITA: This corpus contains speech signals collected
using a variety of speech tasks by 50 PD patients (25 female and
25 male) and 50 control speakers (25 female and 25 male) whose
native language is Colombian Spanish [50]. The PD patients
have been diagnosed by neurologists. The healthy controls are
free of any reported PD symptoms or other neuro-degenerative
disease. The speaker age varies from 31 years old to 86 years
old. The data was recorded in noise-controlled conditions in
a sound proof booth using a dynamic omni-directional mi-
crophone (Shure, SM 63L) and sampled at 44.1 kHz with a
resolution of 16 bits. The database includes speech collected
using various speech tasks. The complete details of the database
are available in [50]. In this study, we considered signals repre-
senting three speech tasks: (i) vowels (/a/, /e/, /i/, /o/, /u/), (ii)
reading sentences aloud (six simple and complex sentences),
and (iii) diadochokinetic (DDK) exercises (repetition of the
sequence of syllables: /pa-ta-ka/, /pe-ta-ka/, /pa-ka-ta/, /pa/, /ka/,
/ta/) from the database. Each speaker had uttered each vowel
three times and uttered each DDK syllable and sentence one
time. The speech signals were down-sampled to 16 kHz in order
to be used in the experiments of the present study.

2) MDVR-KCL: The database consists of speech recordings
from both early and advanced PD patients and HCs [51]. The
corpus was collected using the Motorola Moto G4 Smartphone
for two speech tasks (text reading and spontaneous dialogue) by
16 PD patients and 21 control speakers (except that the database
available at [51] lacks the spontaneous dialogue sample of one
of the PD patients). To perform the voice recordings on the
device, a “Toggle Recording App” was developed, which uses
the same functionalities as the voice recording module used
within the i-PROGNOSIS Smartphone application, but works
as a standalone Android application [51]. The voice capturing
service runs as a standalone background service on the recording
device and triggers voice recordings via on- and off-hook signals
of the smartphone. The microphone signal is directly recorded
(i.e. speech is not transmitted and therefore no low-bit-rate
speech compression takes place) and high-quality recordings
with a sample rate of 44.1 kHz and a bit depth of 16 bits are
obtained [51]. The raw, uncompressed data is directly written
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Fig. 2. The PD detection system based on the traditional machine learning
approach consisting of two stages (the training phase and the testing phase).

to the external storage of the smartphone (SD-card) using the
well-known WAVE file format (.wav). The speech signals were
down-sampled to 16 kHz in order to be used in the experiments
of the present study. For each speaker there is only one recording
available for each speech task in the database. The length of the
recording varies from approx. 1.2 min to 3.6 min. Most of the
files contain long unnecessary pauses, unwanted sounds such
as the mobile phone ringing and investigator’s speech. These
sections were manually removed with the help of the Audacity
audio editor software. Furthermore, the cleaned signals were
chopped into 3 s non-overlapping chunks to increase the size of
the database. Altogether, for the text reading task, we obtained
534 speech segments from 21 healthy speakers and 423 speech
segments from 16 PD patients. Similarly, we obtained 439 and
332 speech segments from 21 healthy and 15 PD patients for the
spontaneous dialogue task, respectively.

B. Baseline Traditional ML-Based PD Detection Systems

In this work, we compare the performance of the SR classi-
fication approaches with traditional pipeline systems based on
ML methods. The steps in developing a PD detection system
based on the traditional ML pipeline approach are shown in Fig.
2. The system consists of two main parts: feature extraction and
classifier.

1) Feature Extraction: In the feature extraction stage, se-
lected features are extracted from the input speech signals. A
wide variety of features have been proposed in the literature
on PD detection [16], [17], [18], [19], [20], [21], [22]. In this
study, we considered the INTERSPEECH 2010 paralinguistic
challenge (IS10) feature set [43], which consists of various
low-level descriptors (LLDs) characterizing three aspects of
speech, namely, articulation, phonation, and prosody. The main
reason for using features characterizing these three issues is that
they are widely used in PD detection tasks [6], [23], [25], [26],
and are also used as baselines in comparing various PD detection
systems [6], [23], [26]. The feature set consists of 34 LLDs (such
as MFCC, line spectral pair frequencies, fundamental frequency
envelope) with 34 corresponding delta coefficients appended. 21
statistical functionals are applied to each of these 68 LLD con-
tours. In addition, 19 functionals are applied to the 4 pitch-based
LLD (such as jitter local, shimmer local) and their four delta

coefficient contours. Finally the number of pitch onsets (pseudo
syllables) and the total duration of the input are appended. In
total, 1582 features are extracted from each speech file using
the openSMILE toolkit [39]. The IS10 feature set consists of
a combination of commonly used articulation, phonation and
prosody features in speech-based PD detection studies. Hence
these features are considered as “baseline features” in this study.

A few recent studies have analyzed the effectiveness of glottal
source signals in PD detection [17], [24], [26]. These studies
show that the glottal source waveform carries complementary
PD-related information, and therefore combining the features
derived from the glottal source with other features (articulation,
phonation and prosody) can improve the PD detection perfor-
mance. In this work, we propose to combine the baseline IS10
features with the MFCCs derived from the glottal source wave-
form to further enhance the performance of the PD detection
systems. The computation of MFCCs from the glottal source is
similar to that of the MFCC computation from speech, except
that the input is the estimated glottal source waveform instead
of the microphone speech signal. The glottal source waveforms
were estimated using the quasi-closed phase (QCP) glottal
inverse filtering method [44], [45]. 13-dimensional MFCCs
(including the 0-th coefficient) were computed using 30 ms
Hamming-windowed frames with a 5 ms shift. The MFCCs
were computed from all the voiced frames of the glottal source
signal form the MFCC parameter vector of the utterance. Four
statistical measures were computed from the MFCC parameter
vector: mean, standard deviation, kurtosis, and skewness. This
results in 13× 4= 52 parameters representing the glottal MFCC
feature set (gMFS). The glottal MFCCs can effectively capture
glottal source variations in pathological speech signals.

2) Classifier: After feature extraction, an ML classifier is
trained to distinguish PD speech from healthy speech. As men-
tioned earlier, several ML approaches have been studied for PD
detection. For the purpose of this study, we chose two popular
classifiers (SVM and RF), which are briefly described below.
� SVM [55] is the benchmark classifier employed in the

automatic detection of diseases such as PD. The popularity
of SVM is explained by the fact that speech databases
recorded from patients usually contain little data, and SVM
is very effective in classification tasks with limited training
data [21], [47], [49]. In this work, we employed a non-linear
SVM algorithm with a radial basis function (RBF) kernel.
The kernel equation is given by

K(x, y) = exp(−γ||x− y||2), γ > 0, (7)

where x and y are training samples and labels, respectively,
and γ is the kernel parameter. In addition to γ, regulariza-
tion was used in the SVM with a regularization parameter
C.

� RF [56] A random forest is an ensemble learning method
that fits a number of decision tree classifiers to various
sub-samples of the dataset and uses averaging to control
over-fitting and provide stable predictions. The RF clas-
sifier contains a set of decision trees from a randomly
selected subset of the training set. During testing, the votes
from different decision trees are aggregated to determine
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the final class of the test object. RF is one of the most used
algorithms, because of its simplicity and diversity.

In the testing stage, as shown in Fig. 2, the trained ML models
can be used to detect the presence of PD from speech signals.
The same set of speech features that were used during training
are extracted from test speech utterances. The extracted features
are given as input to the classifiers, and the classifier predicts
the labels (healthy vs. PD). The baseline systems (shown in
Fig. 2) developed with the RF and SVM classifiers are simply
referred to as RF and SVM, respectively.

C. Evaluation Metrics

In this work, we consider five metrics, namely, recall, preci-
sion, F1-score, accuracy, and Matthews Correlation Coefficient
metric (MCC), to evaluate the classification models. Recall is
the ratio of the true positives to all (actual) positives in the
data. Precision is the ratio of the correctly predicted positive
examples divided by the total number of positive examples that
were predicted. The F1-score combines the precision and recall
of a classifier into a single metric by taking their harmonic
mean. A high F1-score represents a model that classifies well
each observation into the correct class, indicating that the model
will perform well on both precision and recall. Accuracy is
the ratio of correct predictions to all predictions. The MCC
metric is a contingency matrix method of calculating the Pearson
product-moment correlation coefficient [53] between actual and
predicted values. The range of values of MCC lies between −1
to +1. An MCC score of +1 and−1 indicates a perfect model and
a poor model, respectively. A detailed description of considered
metrics is available in [53], [54].

IV. RESULTS

PD detection experiments were carried out using the proposed
SR approaches (Proposed-NSRC and Proposed-LSRC), base-
line SR approaches (LSRC and NSRC) and baseline ML systems
(SVM and RF) with the IS10 feature set and the combined
feature set (IS10+gMFS) described in Section III-B1. Distinct
sets of SR, SVM, and RF classifiers were developed for each
speech tasks of both the PC-GITA and MDVR-KCL databases.
A 5-fold cross-validation (CV) strategy was followed, i.e., the
speech data of 80% speakers was used for training and the data
of the remaining 20% speakers was used for testing. There was
no overlap of speakers used in training and testing, which guar-
antees speaker independence in the evaluation. The training data
were z-score-normalized and the testing data were normalized
by subtracting the mean and dividing by the standard deviation of
the training sets for each feature. The optimal parameter values
for the ML classifiers were derived using the Bayesian hyper-
parameter optimization algorithm [52]. The optimization was
performed following a 10-fold cross-validation strategy using
the training data from the first fold. For SVM, the radial basis
function kernel was used and the optimal values of box constraint
and kernel scale were obtained using the optimization algorithm.
In the case of RF, the optimization algorithm finds the optimal
values for the three most important hyper-parameters: the num-
ber of trees in the forest, the maximum number of levels allowed

in each tree, and the minimum number of samples required to be
at a leaf node. Bayesian optimization takes an intelligent guess
about the next combination to be tried by looking at the results
of previous combinations. Whichever set of hyper-parameter
produced better results, it will move towards those values. The
best hyper-parameters obtained (based on accuracy) for each
classifier following the optimization procedure were selected
to be used for subsequent folds. The evaluation metrics were
averaged over the 5 folds for evaluation. Note that the training
data in each fold was exclusively used for training the ML
classifiers. On the other hand, the data was simply pooled in
the dictionary as column vectors for the SR classifiers, as they
do not have separate training and testing steps.

A. Comparison of PD Detection Performances

Tables I–V show the results obtained for the PC-GITA and
MDVR-KCL databases1. Table I shows the results obtained
for the vowels of the PC-GITA database with the individual
feature set (IS10) and combined feature set (IS10 + gMFS).
From the table, it can be observed that in the case of the IS10
feature set, Proposed-NSRC provided the best performance in
terms of recall (77.07%) accuracy (73.52%) and MCC (0.45).
The SVM provided the best performance in terms of precision
(72.19%). In terms of accuracy and MCC, the next best per-
forming system was SVM. LSRC provided the lowest detection
performance in terms of recall, precision, F1-score, accuracy
and MCC. The same can be observed even with the combined
feature set. The SR approaches based on NNLS (NSRC and
Proposed-NSRC) performed better than their l1LS counterparts
(LSRC and Proposed-LSRC). With the combined feature set
(IS10+gMFS), it can be clearly seen that there exists an im-
provement in performance for all the systems. This indicates
the presence of complementary information among these two
feature sets. Overall, the best performance in terms of preci-
sion (77.08%), F1-score (75.51%), accuracy (76%) and MCC
(0.52) was obtained with Proposed-NSRC developed using the
combined feature set.

Tables II and III show the results obtained for the DDK and
sentence reading tasks of the PC-GITA database with the IS10
and the combined feature sets. With the DDK task, Proposed-
NSRC gave the overall highest recall of 86.67%, F1-score
of 83.20%, accuracy of 82.50% and MCC of 0.63, with the
combined feature set. SVM was the second best performing
system in terms of accuracy, F1-score and MCC. In case of the
sentence reading task, Proposed-NSRC provided the overall best
performance in terms of precision (84.51%), F1-score (83.17%),
accuracy (82.84%) and MCC (0.64). As in the case of vowels,
the combination of features further enhanced the performance of
the individual detection systems. The performance of NSRC was
close to that of the RF and SVM. For PC-GITA, it should be noted
that all the systems provided better results for continuous speech
(the DDK and sentence reading tasks) compared to vowels.

1The results obtained with glottal source features alone are not reported in
the tables as these were inferior to those obtained with the openSMILE features
alone or with the combination of the openSMILE and glottal features. Similar
results have also been observed in previous studies [26], [47], [49].
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TABLE I
RESULTS FOR THE VOWELS IN THE PC-GITA DATABASE WITH THE INDIVIDUAL CLASSIFIERS AND FEATURE SETS

TABLE II
RESULTS FOR THE DDK UTTERANCES IN THE PC-GITA DATABASE WITH THE INDIVIDUAL CLASSIFIERS AND FEATURE SETS

TABLE III
RESULTS FOR THE SENTENCES IN THE PC-GITA DATABASE WITH THE INDIVIDUAL CLASSIFIERS AND FEATURE SETS

TABLE IV
RESULTS FOR THE UTTERANCES FROM THE TEXT READING TASK IN THE MDVR-KCL DATABASE WITH THE INDIVIDUAL CLASSIFIERS AND FEATURE SETS

TABLE V
RESULTS FOR THE UTTERANCES FROM THE SPONTANEOUS DIALOGUE TASK IN THE MDVR-KCL DATABASE WITH THE INDIVIDUAL CLASSIFIERS AND FEATURE

SETS
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Compared to vowels, continuous speech contains richer dynamic
information about prosody, articulation of various phonemes,
and transitions between different linguistic units, which helps
in better characterization of PD. The DDK and sentence tasks
achieved a similar performance in the automatic detection of
PD. It should be noted, however, that the DDK tasks followed in
the collection of the syllable-rhythmic Spanish PC-GITA dataset
include continuous repetitions of syllable sequences (/pa-ta-ka/,
/pe-ta-ka/, /pa-ka-ta/, /pa/, /ka/, /ta/). For languages, which are
not strongly syllable-rhythmic, certain DDK tasks may not be
well suited to differentiate PD from HC [26]. Therefore, it might
be that the current results related to the DDK task cannot be fully
generalised to other languages.

In the literature, several PD detection studies have reported
results based on the PC-GITA database. However, the classifica-
tion results (e.g. accuracy) are not consistent between individual
investigations. This is due to differences in, for example, the
considered speech tasks and experimental setups. For the vowels
of PC-GITA, a few recent studies reported accuracies around
90% [60], [61], [62]. However, these studies considered each
vowel of PC-GITA separately in training and testing the classifi-
cation models. For example, in [60], the highest accuracy of 91%
was achieved with the model which was trained and tested using
only the vowel /a/. It should be noted that in the current study all
the vowels were considered together in building a classification
model. Therefore, a direct comparison of the present results with
those reported, for example, in [60] is not justified as it can
potentially mislead the reader to understand that the results of
the present study are worse than in previously reported similar
studies. In a recent study [21], SVM classifiers were trained by
considering all the vowels of PC-GITA together as in the current
study, and the authors reported the best accuracy of 76% using
SFF-based features. The best accuracy (76%) obtained in this
study for the vowel production task with the proposed-NSRC
approach is the same as the one reported in [21]. Furthermore,
the best accuracy (82.5%) obtained with the proposed-NSRC
approach for the DDK task is better than the accuracy of 76%
reported in [29]. Note that the authors of [21] have not evaluated
their models using the DDK task, and the authors of [29] have
not evaluated their models using the vowel production task.
Therefore, in comparison with [21], [29], the proposed-NSRC
approach provides comparable or better performance in discrim-
inating healthy speakers from PD patients.

Furthermore, we conducted post analysis of the accuracies
received for all CV folds with the proposed-NSRC approach in
case of DDK and sentence tasks, in order to preliminarily assess
the clinical utility of the proposed-NSRC approach as an early
PD screening tool. In the PC-GITA database, the speech signals
of each PD patient are assigned with an Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) speech score varying between 0 and
3 according to the level of speech impairment. For post analysis,
we grouped the PD patients into three classes: 0-patients with
mildly affected speech (UPDRS speech score = 0), 1-patients
with moderately affected speech (UPDRS speech score=1), and
2-patients with severe speech deficits (UPDRS speech score >
1). The analysis results indicated that the PD detection accuracy
varied between 67%–74% for mild cases, between 83%–88% for
moderate cases and between 85%–92% for severe cases. This

indicates that the proposed approach has better identification
accuracy for moderate and severe PD cases compared to mild
case. In mild cases, the speech of PD patients is only slightly
impaired which posses difficulty in distinguishing PD patients
from healthy individuals. We argue, however, that the obtained
identification accuracies for mild case can be considered good
enough for the potential use of the proposed-NSRC approach
even in early detection of PD.

Tables IV and V show the results obtained for the text reading
and spontaneous speech tasks of the MDVR-KCL database.
Note that the MDVR-KCL database is moderately imbalanced
in terms of the number of speakers and utterances for each class.
Furthermore, the demographic information is unfortunately not
available for the MDVR-KCL database. Hence, we would like
to remind the reader that the possibility that gender or age might
have influenced the results obtained with this database cannot
be completely ruled out. Results similar to PC-GITA are also
observed for the MDVR-KCL database. From Table IV, it can be
observed that in the case of the IS10 feature set, Proposed-NSRC
provided the best performance in terms of precision (81.00%),
F1-score (83.71%), MCC (0.47) and accuracy (78.88%). RF pro-
vided the next best performance in terms of precision (77.720%),
F1-score (82.81%), MCC (0.46%), accuracy (77.48%). The
recall values provided by RF and Proposed-NSRC are close to
each other. With the combined feature set, Proposed-NSRC pro-
vided the overall best performance yielding a recall of 89.84%,
F1-score of 86.14%, accuracy of 82.46% and MCC of 0.53. From
Table V, it can be seen that as in the results obtained for the text
reading task, Proposed-NSRC provided the best overall result
with an F1-score of 81.03%, precision of 79.66%, accuracy of
83.08% and MCC of 0.57 for the spontaneous speech task. It can
be seen that the performance of the detection systems improves
when the glottal features are combined with the IS10 feature
set due to the complementary information among the feature
sets. An important observation is that none of the considered
classification approaches were able to show the best recall or
precision value consistently for all speech tasks, feature sets
and databases. If a model of either high recall or high precision
is to be used, for example, as a PD screening tool in clinical
diagnosis, it is not straightforward to chose the best one among
the considered classification frameworks. However, we argue
that Proposed-NSRC is a better choice as a screening tool since
it consistently provided either the best recall or precision, and
also strikes the best balance between precision and recall as
indicated by its higher F1-scores for all cases.

It is worth noting that SVM performed better than RF in
terms of F1-score and accuracy for the balanced PC-GITA
database, but RF provided better performance than SVM for the
imbalanced MDVR-KCL database. However, Proposed-NSRC
achieved better performance than RF and SVM for both
of the databases in terms of F1-score and accuracy. For
imbalanced/balanced datasets, the MCC metric is considered
more reliable than accuracy and F1-score [54] because MCC
produces a high score only if the prediction shows good results
in all of the four confusion matrix categories (true positives, false
negatives, true negatives, and false positives), proportionally
to the size of both classes in the dataset [54]. From Tables I,
II, III, IV, and V, it can be seen that Proposed-NSRC achieved
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better MCC values than the other systems. This indicates
the effectiveness of Proposed-NSRC for balanced as well as
moderately imbalanced datasets.

The common trends in the results obtained for both databases
can be summarized as follows. First, for all speech tasks, there is
an improvement in the performance for all the detection systems
when the combined feature set is used. This is because the
MFFCs computed from the glottal source signal carry effec-
tive information about phonation. Hence, combining the glottal
MFCCs with IS10 (which contain information about articula-
tion, prosody and phonation) can better characterize speech of
PD patients. Second, the SR approaches using class-specific
dictionaries (Proposed-LSRC and Proposed-NSRC) gave bet-
ter detection performance than the SR approaches that use a
single dictionary (LSRC and NSRC). Third, the NNLS ap-
proaches (NSRC and Proposed-NSRC) achieved much better
detection performance compared to the l1LS approaches (LSRC
and Proposed-LSRC). Overall, the PD detection performance
achieved with Proposed-NSRC is better than that of all other
compared systems, for both of the considered databases. More-
over, the best PD detection performance for the PC-GITA
database was achieved (F1-score of 83.17%, accuracy of 82.84%
and MCC of 0.64) when the combined feature set extracted
from the sentence utterances was used with Proposed-NSRC.
Similarly, in case of the MDVR-KCL database, the highest
values (accuracy of 83.08% and MCC of 0.57) were given
by Proposed-NSRC which was developed using the combined
feature set computed from the utterances of the spontaneous
dialogue task.

V. CONCLUSION

People with PD commonly suffer from speech disorders and
communication problems. Detection of PD at an early stage of
the disease is essential and can be approached using automatic
speech-based classification. In this work, we investigated the
use of the SR classification approaches based on the NNLS and
l1LS sparse coding models to identify people with PD using
speech signals. In the SR approach, the sparse vector obtained
for the test feature vector is interpreted to predict the class label.
Unlike in the existing SR approaches (LSRC and NSRC), in
this work, we organized the exemplars in separate dictionaries
based on the class (the associated health status) and used them
to approximate test exemplar as a linear combination of the
exemplars in each of these dictionaries. The exemplars were
the feature sets (IS10/IS10+gMFS) derived from speech signals.
Finally, classification (healthy vs. PD) was performed by finding
the class sequence yielding the minimum reconstruction error
between the test exemplar and its estimate.

The experiments were conducted using two databases (PC-
GITA and MDVR-KCL) and using two features sets (IS10
and IS10+gMFS). It was observed that the NNLS approaches
were better than the l1LS approaches in the detection of PD.
The results showed that using class-specific dictionaries results
in improvement of detection performance, and that Proposed-
NSRC outperformed the other SR approaches. Furthermore,
Proposed-NSRC delivered consistently better overall perfor-
mance compared to the baseline systems in discriminating PD

speech from healthy speech for both databases. The overall
results suggest that the usage of Proposed-NSRC can be consid-
ered beneficial and promising as it avoids the tedious training
phase and hyper-parameter tuning, but still better discriminates
healthy and PD speech from both clean as well as mobile device
recordings. The current study can be viewed as a reference point
to carry out further research in PD detection, or in general for
voice pathology detection, using SR techniques, particular those
based on the NNLS sparse coding model. In the future, SR-based
techniques can be used to predict the dysarthria level of patients
with PD. The Proposed-NSRC approach in its current form is
not suitable for regression task. Hence, future investigations may
focus on how it can be adopted for regression problems such as
predicting the unified Parkinson disease rating scale (UPDRS) to
monitor the disease progression. Furthermore, the performance
of SR-based techniques can be investigated in the detection of
other speech disorders such as dysphonia and can be used in
multi-class classification.
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