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a b s t r a c t 

As one of the most important and advanced technology for carbon-mitigation in the building sector, building 

performance simulation (BPS) has played an increasingly important role with the powerful support of building 

energy modelling (BEM) technology for energy-efficient designs, operations, and retrofitting of buildings. Owing 

to its deep integration of multi-disciplinary approaches, the researchers, as well as tool developers and practi- 

tioners, are facing opportunities and challenges during the application of BEM at multiple scales and stages, e.g., 

building/system/community levels and planning/design/operation stages. By reviewing recent studies, this pa- 

per aims to provide a clear picture of how BEM performs in solving different research questions on varied scales 

of building phase and spatial resolution, with a focus on the objectives and frameworks, modelling methods and 

tools, applicability and transferability. To guide future applications of BEM for performance-driven building en- 

ergy management, we classified the current research trends and future research opportunities into five topics 

that span through different stages and levels: (1) Simulation for performance-driven design for new building 

and retrofit design, (2) Model-based operational performance optimization, (3) Integrated simulation using data 

measurements for digital twin, (4) Building simulation supporting urban energy planning, and (5) Modelling of 

building-to-grid interaction for demand response. Additionally, future research recommendations are discussed, 

covering potential applications of BEM through integration with occupancy and behaviour modelling, integration 

with machine learning, quantification of model uncertainties, and linking to building monitoring systems. 

1. Introduction 

Nowadays, carbon neutrality is a common goal for many countries in 

the world as the promising response to global climate change with the 

ever-increasing energy demand and carbon emissions. The building sec- 

tor is key to the achievement of carbon peaking and carbon neutrality 

commitment as it accounts for about 40% of global energy-related car- 

bon emissions [1] . The energy use of Chinese building sector presently 

accounts for 20% of total energy use in China, one of the world’s largest 

emitters [2] . Moreover, the energy use of building sector in China still 

has the potential to form a significantly increasing portion of total global 

emissions by 2050 in the absence of strong policies or effective energy 
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saving technologies to reduce these emissions. Rapid and continuing 

growth in the building sector could imperil the Chinese government’s 

commitment for CO 2 emissions to peak around 2030 and to neutrality 

around 2060. 

As one of the most important and advanced technology for carbon- 

mitigation in the building sector, building energy modelling (BEM) 

has increasingly become practical and supportive method for energy- 

efficient designs [3] , operations [4] , and retrofitting of buildings [5] , 

with the aim of energy performance improvement and carbon emission 

reduction. 

Scientific models can be generally classified in two ways: (1) diagnos- 

tic or prognostic models, and (2) physical (forward) or data-driven (in- 
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Table 1 

Questions to be solved by application of BEM on varied scales of building phase and spatial resolution. 

Relevant sections Phase Spatial resolution Key questions to solve 

2 Design Buildings Performance-driven design 

3 Operation Buildings Model-based operational performance optimization 

4 Operation Buildings Integrated simulation using data measurements for digital twin 

5 Operation District/urban Urban models using building simulation methods 

6 Operation Buildings/District/urban Building-to-grid interaction for demand response 

verse) models. The common BEM models can be recognized as prognos- 

tic physical models due that they predict the behaviour of a complex sys- 

tem given system properties, conditions and a set of well-defined laws, 

such as energy balance, mass balance, conductivity, heat transfer, etc. 

[6] . Different from data-driven models that describe a system with few 

adjustable inputs, the physical models are usually over-parameterised 

and require more inputs, while in that they can model the system be- 

haviour with previously unobserved conditions. 

Fuelled by the rapid development of various data sensing, modelling 

and visualizing technologies, BEM has attracted increasingly attention 

for application researches for optimizing energy efficiency on multiple 

scales, such as different stages during the whole building lifecycle [7] , 

and different spatial scales (e.g. system level, building level, district or 

community level, and building sector level) [8] . During the application 

of BEM on different scale, the researchers, as well as tool developers [9] , 

and practitioners are still facing huge challenges and confusions, owing 

to highly complex integration of the possibly involved multi-disciplinary 

approaches [10] . 

Under this circumstance, this paper attempts to provide a clear pic- 

ture on the state-of-the-art progress and potential advancement of BEM, 

being a strong and effective guide/reference for the current and future 

researchers in the field of BEM and its application. 

With this aim, our study totally collected 157 publications, which 

were screened for the relevance to the review objective based on 

the criteria: (1) the study focused on the application of building en- 

ergy/performance simulation for different stages, e.g. building design 

and operation, or on different scales, e.g. building/district/urban lev- 

els; (2) the study contained the case/pilot related to modelling meth- 

ods of building energy/performance simulation; (3) the study is not just 

a purely case study of the commonly-used modelling method; (4) the 

study was published after 2011. After reviewing these publications, we 

preliminarily classified the existing literature into the following five ap- 

plication questions that are probably solved by the comprehensive inte- 

gration of BEM on varied scales of building phase and spatial resolution, 

as listed in Table 1 . 

As for the building design phase, the BEM technologies are exten- 

sively used to optimize the design strategies for low-carbon and net-zero 

buildings, namely performance-driven design. As for the building oper- 

ation phase, the physics-based energy model can be used to simulate the 

operational performance and optimize the control strategies of building 

energy systems. With the development of computer science, the avail- 

ability of measured energy use and indoor environment data have pro- 

moted the integration of traditional physics-based BEM and advanced 

digital twin technologies, making the building information modelling 

a helpful solution to prediction and fault diagnosis of building energy 

systems. In addition to the operation of individual buildings, the appli- 

cation of BEM has been extended to the district and urban scales. Urban 

building energy modelling can be used to analyse the operational perfor- 

mance of urban energy system, promoting the utilization of renewable 

energy resources for urban sustainable development. Besides, another 

critical application of BEM is to enhance the energy resilience of build- 

ings by integrating the simulation of building energy system and local 

grid to balance the energy production and demand at urban scale. 

Fig. 1 shows the distribution of the 157 studies across various ap- 

plication scenarios. From the figure, it is apparent that the literatures 

related to each scenario are relatively evenly distributed, with a slightly 

Fig. 1. Distribution of the selected studies across various application scenarios. 

higher proportion on performance-driven design and operational opti- 

mization, as well as the lower proportion on digital twin. The yearly 

trends of the studies on the five application scenarios in Fig. 2 have im- 

plied that the scenarios of digital twin, urban modelling, and building- 

to-grid interaction get increasingly attention in the recent several years. 

This review also classifies the selected literatures into two types: review, 

and research papers. Fig. 3 illustrates the sub-categories of the selected 

studies for each application scenario. It is obvious that the majority of 

existed studies in the field of BEM are classified as research paper, such 

as on research framework, simulation methods, case study, etc. 

Even though there have been massive BEM application studies over 

the past decade, the majority papers have paid more attention to pro- 

pose/utilize a specific modelling framework /methodology for specific 

case buildings. With the generation of considerable interest in advanced 

application, such as digital twin and urban modelling, the BEM area is 

undergoing a revolution in terms of extrapolating simulation and mod- 

elling methodology to the wider scales and levels. In this context, we 

believe that outlining the past-present focuses of the BEM application 

studies is one of the most important issues to be addressed for facing 

the upcoming challenges from varying simulation demand in various 

scales of energy performance modelling. 

This review could be a good start that aims to enhance the integra- 

tion of BEM application in the future researches on improving build- 

ing/urban energy efficiency, also assist other related researchers to un- 

derstand the state-of-the-art of BEM application studies easily. Our ob- 

jectives are to: 

• Categorize relevant BEM application literature into five application 

scenarios related to various building stages and research scales. 
• Perform detailed summary of framework, methodology, key cases 

and research gap for each application scenario. 
• Provide recommendations on future perspectives and possible chal- 

lenges in the field of BEM. 

This review paper has the structure as follows. Sections 2 –6 elab- 

orate the review of literatures on the five application scenarios in the 

order of (1) Performance-driven design; (2) Building operational opti- 

mization; (3) Digital twin; (4) Urban modelling; and (5) Building-to-grid 

interaction. Section 7 discusses our perspectives on future directions and 

2 



Y. Pan, M. Zhu, Y. Lv et al. Advances in Applied Energy 10 (2023) 100135 

Fig. 2. Yearly trends of literatures for various application scenarios. 

Fig. 3. Sub-categories of literatures on various application scenarios. 

potential challenges of BEM research and development. Section 8 con- 

cludes this review paper. 

2. Performance-driven design 

2.1. Goals of performance-driven design 

During the building design process, engineers strive to reconcile 

qualitative and quantitative approaches to meet the requirements re- 

lated to a building’s performance [ 11 , 12 ]. Green building standards and 

guidelines have been implemented in many countries [13] , which es- 

tablish performance evaluation criteria to guide and optimize building 

design and to promote the evolvement of the performance-driven de- 

sign. The building performance-driven design can help to strengthen the 

connections between various stakeholders, such as building decision- 

makers, designers, and users, as well as the multiple stages of building 

design, building evaluation, and building decision-making, in order to 

improve efficiency and enable significant improvements in building per- 

formance. Through building performance-driven design, the conditions 

and results of building design are intuitively linked to facilitate the con- 

trol of building design results, thus promoting the scientific, accurate 

and efficient development of building design. 

The workflow of performance-driven design is illustrated in Fig. 4 , 

mainly consisting of three parts [ 6 , 14 ]: (1) preliminary design schemes, 

including parametric setting and system selection; (2) building mod- 

elling and performance simulation, containing modelling and analysis 

of various aspects of building performance (e.g., energy analysis, en- 

vironmental analysis); (3) optimization, mainly using multi-objective 
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Fig. 4. A common workflow of performance-driven design. 

functions to improve the building performance. The following sections 

present a literature review on performance-driven building design from 

the perspective of approaches and applications. 

2.2. Approaches of performance-driven design 

2.2.1. Methods for preliminary design 

In the preliminary design stage, the primary purpose is to obtain a 

reasonable initial design scheme. From the perspective of target build- 

ing types, performance-driven design can be divided into new building- 

orientated and building retrofit-orientated, each with its applicable 

methods. 

For new building-orientated design, due to the lack of available 

data, it is necessary to select a reference, which is the prototype de- 

sign method. According to the source of the prototype, it can also be 

divided into standard prototype and database prototype. The standard 

prototype method is based on standards formulated for a specific kind of 

buildings (e.g., offices, hotels, dwellings, schools, and hospitals). Some 

international standards have been embedded in simulation software as 

templates. The database prototype method can be thought to be the re- 

verse application of building prototyping. Each geographical region can 

contain one or more typical prototypical buildings representing the lim- 

ited building types within that region [15] . Building prototyping is a 

method to obtain statistically representative prototypes to identify the 

effect of different technology packages and offer guidance for design op- 

timization [16] . On the contrary, the database prototype method is to 

select a template scheme that meets the requirements in the database 

composed of these prototypes [17] . 

For building retrofit-orientated design, it can be summarized as a 

self-reference method, which can be interpreted from two aspects: (1) 

as the building retrofit aims at the existing buildings, the modelling data 

is determined and measurable rather than referring to other prototypes; 

(2) the performance of the before-retrofit building is considered as a 

baseline for evaluating the performance of retrofit technologies. Build- 

ing retrofit technologies can be categorized into four groups: heating 

and cooling demand reduction, energy-efficient equipment and low en- 

ergy technologies, renewable energy technologies and electrical system 

retrofits, and human factors, from which the preliminary design schemes 

can be selected [18] . 

2.2.2. Methods for performance simulation 

In the design stage, a variety of building performances are consid- 

ered for different design needs, which can be divided into two groups: 

energy performance (e.g., energy use intensity [19] , heating/cooling 

load [ 20 , 21 ]) and environmental performance (e.g., lighting [22] , in- 

door acoustic environment [23] , ventilation [24] , indoor thermal envi- 

ronment [25] ). In this section, we summarize the simulation methods 

for different aspects of building performance in detail. 

2.2.2.1. Methods for building energy performance. Energy modelling for 

heating and cooling load estimation and energy use prediction is essen- 

tial to achieve the goal of energy saving and emission reduction of build- 

ings. As summarized in Table 2 , the methods of energy modelling gen- 

erally fall into three computational categories: (1) simplified evaluation 

method, (2) detailed physical method, and (3) statistical and regression 

method, and the first two belong to the forward modelling approach 

while the third is the inverse modelling approach [20] . The simplified 

evaluation method assumes a steady-state feature of building thermal 

systems to quickly predict energy use and study trends so that the inputs 

are more straightforward and the calculation is faster than detailed phys- 

ical simulation [21] . The detailed physical method is based on analyti- 

cal relationships amongst various building components (e.g., envelope, 

HVAC system, plants, terminal equipment) through physics theories and 

numerous formulas. With the development of programming technology, 

simulation programs (e.g., EnergyPlus, DOE2, TRNSYS) embedded with 

these physical models have been developed rapidly into visualization 

tools with graphical user interfaces (GUI) [ 22 , 26 ]. The statistical and 

regression method focuses on correlations between condition paramet- 

ric setting and system structure, and historical energy data. Because of 

the dependence on historical energy data, this method only applies to 

the building retrofit-orientated design. The models established in the 

statistical and regression method are powerfully mathematical with ex- 

cellent accuracy but poor physical interpretation [19] . 

2.2.2.2. Methods for indoor environmental performance. In addition to 

energy performance in the macro aspect, detailed environmental per- 

formances are in need for occupant health and comfort. Simulation 

methods for three group environmental performances are summarized 

in Table 3 , as well as the applicability and typical simulation tools. 
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Table 2 

Summary of three different methods for building energy performance simulation. 

Method Order Advantage Limitation Typical method/Tool 

Simplified evaluation method Forward Simple inputs 

Fast calculation 

Limited applicability Degree-day method 

Bin method 

Detailed physical method Forward Visualization tools 

Good physical interpretation 

Complex inputs EnergyPlus 

DOE2 

TRNSYS 

Statistical and regression method Inverse Accurate prediction 

Fast calculation 

Only for existing 

buildings 

Poor physical 

interpretation 

Multiple linear regression 

Artificial neural network 

Support vector machine 

Table 3 

Summary of simulation methods for environmental performances. 

Environmental 

performance Simulation method Applicability Typical simulation tools 

Lighting & 

Daylighting 

1. Direct calculations 1. Artificial lighting Radiance, Ecotect, Honeybee, 

DElight 2. View-dependent algorithms 3. Image generation 

3. Scene-dependent algorithms 3. Lighting calculations 

Indoor acoustic 

environment 

1. Wave-based method 1. Inhomogeneous media Odeon, Epidaure, Raynoise 

2. Geometrical acoustics method 2. Engineering applications 

3. Hybrid method 3. Combine the above two 

Ventilation and 

indoor thermal 

environment 

1. CFD method 1. Complex air distribution Fluent, Airpack, CONTAM, 

COMIS 2. Multi-zone method 2. Rough and quick simulation 

3. Zonal method 3. Based on prior estimation 

For lighting/daylighting performance, the lighting simulation algo- 

rithms can be classified into direct calculations, view-dependent algo- 

rithms, and scene-dependent algorithms [27] . Direct calculations cur- 

rently are used for artificial lighting, following local standards. The 

view-dependent algorithms represented by ray tracing are available for 

forward and backward ray tracing so that they are applicable for image 

generation. Compared with this, the scene-dependent algorithms repre- 

sented by radiosity are used mainly for lighting calculations due to more 

rigorous and complex formulas. 

For indoor acoustic environment, the acoustic prediction methods in- 

clude the wave-based method, and geometrical acoustics method. The 

wave-based method can solve the problem of sound propagation in inho- 

mogeneous media in the complex environment such as sports halls [24] . 

The geometrical acoustics method is widely used in engineering appli- 

cations because of its applicability for complex building geometry and 

high computation demand. The hybrid method combines the strengths 

of different methods to achieve more accurate results with less compu- 

tational cost. 

For ventilation and indoor thermal environment, the physical mod- 

elling methods for indoor environment fall into three categories: com- 

putational fluid dynamics (CFD) method, zonal method, and multi-zone 

method [20] . The CFD method can solve complex air distributions and 

visualize the quantitative results by integrating fluid mechanics, thermo- 

dynamics, numerical analysis, and computer science [28] . To avoid high 

computational costs, the multi-zone method is a good choice for quick 

airflow and contaminant distribution simulation. It assumes uniform air 

distribution in each zone that is represented simply with one node and 

form a fluid network with doors, windows, and other openings. With the 

same assumption as the multi-zone method, the zonal method divides a 

zone into several sub-zones. It establishes mass and energy conservation 

equations to obtain more detailed air parameter distributions than the 

multi-zone method with less computing time than the CFD method [25] . 

2.2.3. Performance optimization methods 

For optimal design, optimization is usually necessary for 

performance-driven design in recent studies [29] . In the building 

design, the various performance requirements lead to numerous 

optimization problems, often expressed as multi-objective nonlinear 

problems [30] . In the common workflow of performance optimization, 

the program usually couples with the simulation process in each itera- 

tion to form a loop [31] , as shown in Fig. 5 . The optimization program 

consists of three necessary items: objective functions, constraints, and 

optimization methods. 

Numerous optimization methods have been developed to deal with 

various types of problems. The mostly-used to building performance 

optimization can be classified into direct search, gradient-based, meta- 

heuristic, and hybrid methods [14] . Direct search methods are suitable 

for discrete variables without the need for derivative information. Hasan 

et al. applied the brute-force search (namely exhaustive search) method 

to achieve the minimization of the life cycle cost of a detached house 

by optimizing two discrete variables ( u -value of the windows and type 

of heat recovery) [32] . With fast convergence, gradient-based meth- 

ods are sensitive to multi-modal functions and discontinuities in the 

cost function [14] . Vakiloroaya et al. solved the minimization of en- 

ergy consumption and the optimal set-points of air-cooled central cool- 

ing plant systems through a developed gradient projection algorithm 

[33] . Meta-heuristic methods do not depend too much on the organiza- 

tional structure information of the algorithm and can be widely used in 

function combination optimization and function calculation. The non- 

dominated sorting genetic algorithm-II (NSGA-II) is one of the most pop- 

ular multi-objective meta-heuristic methods [34] . Bre and Fachinotti 

adopted NSGA-II in their study and achieved more than 80% improve- 

ment both in energy efficiency and thermal comfort in dwellings [35] . 

The hybrid methods usually combine multiple approaches to enhance 

the strengths and limit the weaknesses. Combining the global features 

of the particle swarm optimization (PSO) with the powerful convergence 

ability of the Hooke-Jeeves (HJ) algorithm, the hybrid PSO-HJ method 

performed great effectiveness and robustness for the optimized complex 

fenestration system solutions [36] . 

2.3. Application and case summary 

According to the common workflow, building performance-driven 

design consists of three major parts: (1) preliminary design, (2) simula- 

tion for energy and environmental performance, and (3) optimization. 

The representative studies are summarized in Table 4 . In the following 

subsections, the application scenarios of performance-driven design are 

discussed in detail. 
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Fig. 5. The optimization loop coupling with simulation process. 

Table 4 

Review on the applications of performance-driven design. 

Applications 

Environmental analysis 

Ref. 

Building 

types Simulation tool 

Energy- 

related Thermal Daylighting Air quality Optimization objectives 

[37] Office Rhinoceros; 

Grasshopper; Honeybee 

● UDI, sDA, ASE 

[38] Residential DesignBuilder; 

EnergyPlus 

● Energy consumption, CO2 

emissions 

[39] Hospital CFD ● Average air age 

[40] Office TRNSYS; IBE-e ● Energy consumption 

[41] Education Sketchup; Radiance ● DA, UDI 

[42] Education DesignBuilder; eQUEST; 

EnergyPlus 

● ● CO2 concentration, Indoor air 

temperature 

[43] Education Radiance; EnergyPlus ● ● Daylighting scores, Heating loads 

and cooling loads 

[44] Office & 

Education 

EnergyPlus ● ● Energy use, Non-comfortable 

hours, Exergy destructions 

[45] Office Rhinoceros; DIVA ● UDI 

Notations: UDI = useful daylight illuminance, sDA = spatial daylight autonomy, ASE = annual solar exposure, DA = daylight autonomy. 

2.3.1. Preliminary design 

The first step in developing a performance-driven building design is 

preliminary design. As discussed in the previous section, parameter set- 

ting and model development are generally based on typical prototype or 

on-site measured data. Loche et al. [37] . developed the parametric study 

using a representation of a "typical" mixed-mode office room model as 

a base case. They used the plug-in Grasshopper to model the case. The 

results demonstrated that balconies could be an efficient shading device 

and daylight diffuser with proper dimensions. As an example of design 

decisions in the early design phase of residential buildings in Turkey, 

Gercek and Durmu ş Arsan [38] assessed the impact of climate change 

on building energy and environmental performance characteristics and 

synthesized the correlation between building energy and environmen- 

tal performance criteria and design parameters. Based on a large gen- 

eral hospital project, Yao et al. [39] made the field test on the indoor 

air quality of hospital buildings and established the geometric model 

according to the test data. They employed the CFD software to carry 

out the numerical simulation and study the effects of three different air 

distributions. 

2.3.2. Simulation for energy and environmental performance 

Currently, performance simulation is mainly focused on energy and 

environmental analysis. Li et al. [40] proposed a performance-based de- 

sign method based on overall energy consumption and progress for the 

nearly zero-energy building. The design process of the actual case was 

analyzed, and the optimal solution for the near-zero energy building was 

derived by taking into account the cooling and heating sources, the envi- 

ronment, and renewable energy.Nocera et al. [41] focused on assessing 

the existing lighting conditions of a historical building to define suitable 

retrofit solutions for daylighting systems, and the approach was adopted 

to assess daylight availability in a representative classroom in an educa- 

tional heritage building in Syracuse (Italy). Tam et al. [42] monitored 

indoor air temperature, and CO 2 concentration in multiple lecture halls 

in Toronto, and one classroom was chosen as a representative case study 

for retrofitting. And the evaluations were conducted using building per- 

formance simulation (BPS) to investigate the causes of discomfort in the 

classroom and to identify methods for regulating temperature and CO 2 

concentration. 

2.3.3. Optimization 

Setting different optimization objectives based on performance re- 

quirements to arrive at the optimal building design solution is an im- 

portant performance-driven design process. Futrell et al. [43] used a 

hybrid GPS Hooke Jeeves/PSO algorithm in combination with the Ep- 

silon Constraint Method for optimizing building envelope design to find 

a Pareto-efficient solution for the thermal and lighting performance op- 

timization objectives. García Kerdan et al. [44] presented an exergy- 

based multi-objective optimization tool for assessing the impact of var- 

ious retrofitting measures, to determine the optimal retrofitting mea- 

sures while minimizing energy use, exergy destructions, and thermal 
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discomfort. Two UK archetype case studies (an office and a primary 

school) were used to test the feasibility of the proposed framework. Lu 

et al. [45] investigated the improvements in daylight efficiency of of- 

fice buildings by optimizing curved facades. The results of the typical 

office building demonstrated that the optimized curved facade can sig- 

nificantly improve the daylight efficiency. 

Through modelling, simulation, and optimization, performance- 

driven building design facilitates the development of design solutions 

for buildings that satisfy performance requirements. Currently, building 

performance focuses mainly on enhancing indoor air quality and energy 

efficiency. The studies mentioned above demonstrate that performance- 

driven design may greatly improve building indoor environmental 

performance, emphasizing its importance in accomplishing building 

performance-related objectives. Consequently, practitioners can opti- 

mize building performance in this manner during the design stage. 

Actually, the building design during the scheme phase is closely 

related to the building’s performance in usage and operation. 

Performance-driven design is function-driven, particularly as some 

building design parameters (e.g., window-to-wall ratios, envelope heat 

transfer coefficients, etc.) have a direct impact on daylighting, venti- 

lation, and thermal comfort, therefore incorporating performance vari- 

ables at the scheme stage can make a difference in the performance of 

the building design. Furthermore, since building design is a complex 

process with many factors to consider, performance-driven building de- 

sign will assist to restore the systematic features to the design process 

and enhance efficiency, leading to substantial improvements in building 

performance. Technically, the more mature performance-based build- 

ing design methodologies currently evaluate building performance with 

simulation techniques. Its computer-automated design optimization pro- 

cess enables a large number of design alternatives to be generated and 

analysed in a short period of time to identify the best performing de- 

signs. However, the technical knowledge necessary for design optimiza- 

tion in this manner is extensive, and the time and effort required by the 

user (e.g., the architect) to set up and operate the design optimization 

process may be an important concern for future study. 

3. Model-based operational performance optimization 

3.1. Goals of model-based operational performance optimization 

Operational optimization focuses on optimizing the operational set- 

tings of a given system to achieve the desired objective functions 

[ 46 , 47 ]. When it comes to the building systems, those objective func- 

tions include reducing building energy costs [48] , emissions [49] , build- 

ing energy efficiency [50] while maintaining occupant comfort [51] . 

Since those objectives are conflicting, building operational optimization 

can be challenging. To make things worse, the building operational op- 

timization also needs to handle complicated building systems, which 

tend to be highly non-linear and stochastic. The system model has been 

proved as a useful tool in addressing those difficulties. 

3.2. Approaches for optimizing operational performance 

The common workflow of building simulation for operation is shown 

in Fig. 6 . Firstly, real-time operation data and geometry data are col- 

lected from building energy management systems, building information 

modelling (BIM), respectively. Secondly, pre-processing and data anal- 

ysis are conducted to identify the building operation pattern, which is 

used to establish the system models of the building and the HVAC sys- 

tem. Then the building and HVAC systems are simulated to validate the 

effectiveness of optimal control strategies. With the objective function, 

the optimal settings of decision variables that minimize the system en- 

ergy consumption and/or optimize indoor environmental conditions are 

obtained by optimization algorithms. Thirdly, the optimal operational 

settings of chillers, pumps, and cooling towers will be determined. The 

following subsections discuss these steps in depth. 

3.2.1. Data acquisition and analysis 

The efficacy of the model depends on the quality and reliability of 

the inputs [ 52 , 53 ]. With the development of modern infrastructure and 

technologies, e.g., smart technologies and the Internet of Things (IoT), 

massive building operational data can be obtained from building energy 

management systems. The collected operational data include tempera- 

ture, humidity, flow rate, pressure, power of the equipment, on-off states 

of equipment and so on. Also, the outside temperature and humidity 

were collected in some studies to determine the impact of disturbances 

in weather conditions [54] . These data can be used to identify building 

operational patterns, e.g. occupancy and lighting schedules [55] . In the 

last few years, the collecting and processing of occupancy data have be- 

come emerging issues since they can affect, either directly or indirectly, 

the operation of buildings. The sensors to collect occupancy data can be 

built-in temperature sensors in smartphones of the building occupants 

[56] or the occupancy recognition system based on real-time video [57] . 

Besides the operational data for building services systems, the other 

data required for simulation or calibration are building envelope pa- 

rameters (e.g., U-values of wall and windows, absorptivity of walls and 

G-value of windows). These data are needed to describe the building fea- 

tures when solar thermal systems, heat pumps and heat recovery tech- 

nologies are used as active building technologies. The pre-processing 

phase plays a significant role in the success of the optimization to avoid 

the risk of over-simplification or delaying the optimization process [14] . 

There are several typical pre-processing steps, e.g., data cleaning, nor- 

malization [53] , and sensitivity analysis [58] . 

To learn the operation patterns of HVAC systems and the resulting 

impacts on energy efficiency, data mining (DM) techniques are recom- 

mended to develop data-driven models that reflect interactions between 

state variables and operation efficiency. Motif and discord detection, 

clustering and association rule mining are three main types of unsuper- 

vised data mining technologies for knowledge discovery in the building 

field [59] . For example, DM was used to compute the variable impor- 

tance in terms of the optimal control reward [60] and displacing groups 

of occupants with similar occupancy patterns to the same thermal zone 

[61] . 

3.2.2. Modelling approaches 

A detailed whole building dynamic energy model to simulate the 

overall building performance needs to consider various building speci- 

fications and characteristics, including internal loads and schedules and 

technical energy system specifications. Due to the functional character- 

istics of modular and flexible construction and step-by-step calculation, 

simulation tools e.g., EnergyPlus [58] , TRNSYS [62] , DeST [63] , and 

Modelica [64] are broadly used to depict building performance. The ac- 

curacy in using these simulation programs depends on the ability of the 

user to input parameters that result in a good model of actual building 

energy use. Thus, it is necessary that the parameters of the model be fit- 

ted to the actual physical system, which is called model calibration. In 

general, the measured data and weather data might be used to calibrate 

or validate the models. For example, Huang et al. tuned the coefficients 

of the chiller performance curve, the chilled water temperature, etc. to 

minimize the difference between the measured and simulated power of 

the chiller using the actual temperatures of the condenser and chilled 

water entering the chillers [65] . Capozzoli et al. implemented an opti- 

mized HVAC operation schedule based on a model calibrated with the 

actual weather data and the building energy consumption [61] . 

Regarding the techniques used in the optimization, the genetic al- 

gorithm (GA) was commonly used [66–68] . Both Functional Mock-up 

Interface (FMI) and Building Control Virtual Testbed (BCVTB, LBNL) 

have been widely used to exchange the I/O and data when MATLAB 

and EnergyPlus are co-simulated [ 69 , 70 ]. For example, Wang et al. used 

EnergyPlus software to determine electricity, heating, and cooling de- 

mands, and MATLAB software to investigate the impacts of key cycle 

parameters on thermodynamic and economic performance and to model 

the optimal design of the CCHP system. After that, an artificial neuron 
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Fig. 6. A common workflow of model-based 

operational performance optimization. 

network (ANN) black-box model was trained to replace it with the orig- 

inal model by EnergyPlus to make the GA optimization possible and 

faster [63] . Gomez-Romero et al. created a grey-box model to optimize 

HVAC operation in non-residential buildings, which relied on the exist- 

ing corpus of expert knowledge to model thermal behaviour by using 

differential equations encoding the physical principles of mass, energy 

and momentum transfer, and they apply statistical models to tune model 

outputs based on historical and live data [71] . Souayfane et al. adopted 

weather-clustering technique and coupling TRNSYS and GenOpt to de- 

termine the optimal cooling operation of a single-zone office building 

conditioned by an air-source heat pump. The optimal cooling control 

operation strategy found for each representative day is then applied for 

all days of the same cluster [72] . 

3.2.3. Operational optimization strategies 

In the existing literature, control of HVAC systems typically involves 

optimizing on-off status, operating modes and setpoints (e.g., thermostat 

setpoints, HVAC supply airflow rate, supply air temperature, pressure 

setpoints) to minimize energy consumption or operating costs for the 

overall system while thermal comfort is satisfied. For example, Garnier 

et al. considered five non-predictive strategies to optimize the operation 

of all the HVAC subsystems in a real non-residential building located in 

Perpignan (south of France), including four basic scheduling techniques 

modelled using the EnergyPlus software and pre-heating or pre-cooling 

during off-peak periods [68] . Papadopoulos et al. fine-tuned the HVAC 

cooling and heating setpoints using the simulated-based multi-objective 

framework on typical large office buildings in seven different climate 

zones in the US [73] . In terms of equipment, Fan et al. studied the local 

control including staging control, speed control, isolation valve control, 

and bypass valve control. Supervisory control strategies were also taken 

into account, including cooling mode control sequences, a chilled water 

supply temperature reset control, chilled water loop differential pressure 

reset control, and a condenser water supply temperature reset control 

[64] . 

3.3. Applications and case studies 

By reviewing current studies, building simulation for operational op- 

timization is mainly applied for three different levels to identify the 

optimal operational settings: (1) system, (2) equipment, and (3) compo- 

nents. Table 5 summarizes the findings of several representative studies, 

along with their frameworks, approaches, and applications. The follow- 

ing subsections discuss the three application levels of HVAC systems in 

detail. 

3.3.1. System-level optimization 

There are many studies about system-level optimization. For the 

models used to evaluate the energy impact of proposed changes in the 

control scheme before implementation, the processes are mainly pure 

simulation and generated offline. For instance, Vering et al. used pro- 

cess intensification to consider the heat pump system design and opera- 

tion simultaneously. After the design is optimized in an annual dynamic 
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Table 5 

Review on the applications of building simulation for operation. 

Ref. 

Type of 

buildings Tools 

Application (Case study) 

Optimization Strategy 
System Equipment Component 

[74] non-residential 

building 

Modelica ● · The compressor speed PID-controller parameters, K P and T I 
were optimized. 

[75] educational 

building 

DesignBuilder ● · Heating and cooling setting temperature of air conditioning 

were selected as decision-making parameters. 

[63] hotel DeST ● · The output schemes of the solar CCHP under climate change 

were tackled. 

[57] mosque EnergyPlus ● · The HVAC setpoint schedule is modified subject to the 

thermal-comfort threshold based on the temperature response 

as well as the occupancy prediction. 

[76] educational 

building 

R ● · Identification for flow rates of chilled water and condensing 

water, the supplied chilled water temperature, and the cooling 

tower fan speed. 

[62] metro station TRNSYS ● · The chiller loading was optimized by adjusting the set points 

of the chilled water outlet temperature. 

[77] commercial 

building 

IES-VE ● · The supply temperature of the AHU and the airflow of VAV 

are optimized independently. 

[78] – EnergyPlus, 

CONTAM, and 

Matlab 

● · Optimal trajectories of damper angles and fan pressure were 

determined. 

[79] – Matlab ● · The pressure drops of AHU’s filters due to clogging were 

predict. 

[80] data center TRNSYS ● · The operation mode (mechanical cooling, partial, free cooling, 

and free cooling) that can satisfy the cooling requirement and 

give the best performance was selected. 

[81] office building EnergyPlus ● · Window and ventilation supply air fans were controlled in 

mixed-mode buildings. 

building performance simulation, the system controller is optimized in 

the second stage using a GA with the same dynamic simulation models 

[79] . Wu et al. developed a random forest-nondominated sorting genetic 

algorithm- III (RF-NSGA-III) hybrid intelligent method that can predict 

and optimize multi-dimensional performance. The result indicated that 

the optimization of air conditioning setting parameters reduced the life 

cycle air conditioning energy consumption by 54% [80] . Wang et al. op- 

timized and analyzed the output of the hybrid solar combined cooling, 

heating, and power system by establishing the operation optimization 

model. The influence exerted by climate change on the energy load and 

solar output was identified with the aid of PRECIS and DeST [67] . The 

collection of operational data remains a challenge due to the complexity 

and dynamic nature of real building systems and equipment, which leads 

to a discrepancy between the modelled HVAC system and the actual sys- 

tem. Some studies used hybrid modelling techniques to extract valuable 

information for the development of modelling with limited measured 

data. For example, to better simulate the operation energy consumption 

of each equipment in the HVAC system, Du et al. use the mathematical 

models of chiller and pump established and combine TRNSYS to estab- 

lish actual building equipment modules [87] . 

Additionally, occupant behaviour has been identified as a major fac- 

tor contributing to the discrepancy between simulation predictions and 

real energy use [88] . To optimize HVAC control, the actual occupant in- 

formation and comprehensive context-aware information of the target 

building are required, occupant characteristics are then identified and 

input into the control network to make appropriate decisions. For ex- 

ample, Aftab et al. deployed and evaluated an automatic HVAC control 

system for providing automatic HVAC control in the large public in- 

door space of a mosque, featuring real-time occupancy recognition and 

simulation-guided model predictive control. The real-time HVAC con- 

trol is guided by an onboard EnergyPlus simulator and ported on the 

Raspberry Pi embedded system platform [58] . 

3.3.2. Equipment-level optimization 

Moreover, many researches were reported on optimizing equipment 

operation. The models of this part are mainly implemented in the actual 

building or involved hardware-in-the-loop. Due to the existence of mea- 

surement uncertainties and ever-changing operating conditions, optimal 

switching points of equipment staging often deviate significantly from 

predefined thresholds. To deal with these uncertainties, stochastic ap- 

proach is used broadly. In addition, machine learning and advanced data 

analytics are used to extract valuable information of the equipment. For 

instance, Fan et al. proposed a gradual pattern mining method for dis- 

covering usage patterns and knowledge from building operational data 

as a generic approach and applied this method for chiller and cooling 

tower control optimization [81] . Qiu et al. proposed a model-free op- 

timized chiller loading method based on Q-learning to optimize chiller 

operation. The central chiller of an office building in Shanghai is selected 

as a case system, and the energy-saving performance of this method is 

studied through simulation [66] . Zhuang et al. developed a stochastic 

decision-making scheme to evaluate the risks of chillers’ operation and 

to optimize chillers’ sequencing strategy. The central cooling system 

concerned in this study is a complex primary-secondary chilled water 

system and the virtual simulation was constructed using TRNSYS [82] . 

3.3.3. Component-level optimization 

Less researches about optimization of HVAC components (e.g., ther- 

mostat, air damper, valves, filters, evaporator coil, condenser coil, etc.) 

have been done so far to the best knowledge of the authors. There are 

several studies about the optimization of dampers, filters, pipes, and 

pumps. The application of optimization in actual components is chal- 

lenged by the difficulty in handling uncertainties in the implementa- 

tion of actual systems and indirect calculations. To address the above 

challenges, researchers model the uncertainties as random but bounded 

noise or obtain the input data from BIM or other sources directly. Li 

et al. present a tube-based MPC strategy for multi-zone demand-control 

ventilation systems, and the optimal trajectories of damper angles and 

fan pressure were determined to minimize energy consumption [83] . 

To identify the clog behaviors in HVAC filters, Alimohammadi et al. 

drive a grey-box model from the pressure drop signal [84] . Cheung et al. 

evaluated different piping and pump designs and optimal control algo- 

rithms to suggest an optimized design of free cooling systems in data 

centers, using a steady-state model of a realistic data center cooling 

system and compared five different data center cooling systems [85] . 
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Fig. 7. Concept of digital twins. 

May-Ostendorp et al. examined optimizing control sequences based on 

MPC for window operation in mixed-mode buildings. The optimal solu- 

tion outperforms by controlling ventilation supply air fans and windows 

[86] . 

4. Integrated simulation using data measurements for digital twin 

4.1. Digital twin and simulation 

The whole life cycle of buildings is inseparable from the exchange of 

information [82] . In the past two decades, researchers often use known 

and static building information to build virtual models, such as building 

information modelling (BIM) and building energy modelling (BEM), to 

optimize the design, construction, or operation of buildings [83] . How- 

ever, due to the lack of real-time information input, it makes the virtual 

models hard to reflect the changes of the actual buildings over time, 

which limits the use of the models [84] . The emergence of Internet of 

Things (IoT) and advance metering infrastructure (AMI) enable the real- 

time interaction between virtual models and actual buildings and the 

timeliness and rationality of operation decision and fault diagnosis. 

With the rapid development of sensing technology, the concept of 

the digital twin (DT) comes to life through the integration of virtual 

building models and real-time data from advanced measurement tech- 

nologies. Building digital twin is the method that builds accurate digital 

virtual entities of physical entities in real time, and uses data analysis 

and integration to control, simulate, verify and predict the whole life 

cycle process of physical buildings, so as to realize intelligent decision- 

making and optimization [85] . According to the concept in Fig. 7 , most 

of the studies focused on the following 2 key aspects in DTs [85] : 

(1) Data interaction: with the help of IoT and data analysis techniques, 

the raw data (including measured data from sensors, static design 

information from drawings and equipment nameplates) is collected, 

cleaned, filtered, and transmitted to create and modify the virtual 

building. Then through the dynamic monitoring and simulation by 

the virtual model, the future parameter changes of the actual build- 

ing can be inferred and fed back, so as to assist the decision-making 

during the building construction phase and operation phase. 

(2) Building simulation and modeling: comprehensive perception of 

building physical system is the premise of the implementation of 

DT. In order to realize the efficient interaction between virtual and 

physical entities at different phases, it is necessary to use different 

types of data and modeling methods to accurately describe the con- 

ditions of the buildings. DT has shown promising potential for wide 

future uses though it is still in its infancy. To facilitate the under- 

standing of the concept of DT, following the order of building main 

life phases (construction, and operation phases), this part summa- 

rizes the different data and different modelling methods used DTs. 

4.2. Data interaction in digital twin 

Correct and useful data is the basis of DT applications in intelligent 

buildings [86] . This part mainly describes the methods and types used 

in data collection and the possible uses of corresponding models, not 

including data cleaning or filtering methods. 

In the construction phase, the information to be collected mainly in- 

cludes the following 5 types: workers, materials/structures, machines, 

methods, and environment [87] . Amongst them, the methods (the tech- 

nologies adopted in the construction, the method of engineering test, 

and related regulations) are static data, which do not require real-time 

monitoring by sensors. The main types of data being collected during 

the construction are summarized in the following Table 6 . 

In the operation phase, the information to be collected mostly in- 

corporate 4 types: energy consumption, occupancy, device conditions, 

building structures, and indoor environment. The main types of data be- 

ing collected and corresponding sensors during the operation phase are 

summarized in the following Table 7 . 

10 



Y. Pan, M. Zhu, Y. Lv et al. Advances in Applied Energy 10 (2023) 100135 

Table 6 

Overview of dynamic data collection on the construction site. 

Ref Type Concrete type Sensors Use 

[88] Environment Natural environment and 

operating environment of the 

construction site 

3D-scanning, virtual reality 

(VR) 

Deployment 

[89] Materials/ 

Structures 

The conditions of incomplete 

building entities and 

construction materials 

(degree of completion, crack, 

deformation, temperature, 

et al.) 

3D-scanning, VR, velocity 

sensors, acceleration sensors, 

seismic sensors, temperature 

sensors, optic fibre sensors, 

et al. 

Quality and process 

management 

[90] Workers Locations, behaviour and 

conditions of workers 

Radio frequency 

identification (RFID) 

Safety management and 

schedules deployment 

[91] Machines Performance and efficiency 

of all kinds of mechanical 

equipment used) 

Slewing sensors, cable length 

sensors, boom angle sensors, 

et al. 

Facilities and devices 

management 

Table 7 

Overview of the use of sensors in operation. 

Ref Type Data Sensors Use 

[92] Energy · Energy consumption of lighting, device, 

and HVAC system 

· IoT, smart meter · Energy management and 

monitoring 

[93] Occupancy · Occupancy ratio and occupant behaviour · IoT, Wi-Fi, Bluetooth low energy 

(BLE), AR 

· Energy-saving behaviour and 

strategies 

[94] Devices · Operation data of devices · Temperature sensors, liquid 

sensors, pressure sensors, et al. 

· Fault diagnosis, operation 

monitoring 

[95] Structures · Building envelope status and 

deformation 

· 3D laser scanning · Structural damage monitoring 

and restoration 

[96] Indoor Environment · Indoor temperature, humidity, metabolic 

ratio 

· IoT, temperature, and humidity 

Sensors 

· Thermal comfort evaluation and 

improvement 

[97] Indoor Environment · O 2 , CO 2 , and harmful gases · Gas sensors · Hazards identification, 

evacuation planning 

4.3. Simulation and modelling in digital twins 

4.3.1. Simulation and modelling in design and construction phase 

In the early stage of building construction, simulations are widely 

applied to help schedule and optimize the construction process. Based 

on the information of construction site, the construction simulation es- 

tablishes the model in 4 main parts: geometry, physics, rules, and be- 

haviours, as shown in Fig. 8 [89] . 

a) Geometric part refers to the basic information such as the appear- 

ance, size, and model of the unfinished buildings, components and 

equipment. The establishment of a high-fidelity geometric model can 

truly reflect the geometric characteristics of the implementation pro- 

cess. 

b) Physical part refers to the material parameters and mechanical prop- 

erties of components and devices during the construction process. To 

describe and monitor the changes, the physical model is often estab- 

lished by finite element analysis software such as Midas and ANSYS 

[98] . 

c) Rule part refers to the national standards and regulations. It needs 

to model and parameterize the corresponding standards or speci- 

fications to ensure the mechanical performance parameters of the 

components and the operating status of the equipment during the 

hoisting process within limits. 

d) Behaviour part refers to the corresponding changes in material pa- 

rameters, mechanical properties, and progress during the hoisting 

process in response to the decision changes and system instructions. 

4.3.2. Simulations and modelling in operation phase 

Fig. 9 shows the workflow of digital twins in buildings operation 

phase. For the current energy simulation physics-based methods, the 

models often ignore the specific geometric shape and volume, and only 

input the abstraction of the shape. It cannot simulate the parameters 

in different indoor positions. In CFD simulation, the models pay more 

attention to the parameters related to fluid dynamics such as air speed 

and temperature, but ignore the energy consumption. The BEM is a good 

foundation for energy simulation and air distribution simulation, be- 

cause it can include all the parameters required for the above simula- 

tion and coupling the various types of simulation to make the resulting 

virtual model more closely fit the actual building. 

Usually based on BIM in DTs, the virtual buildings can provide not 

only geometry information but also physical parameters, such as en- 

velope materials, indoor thermal properties, occupant behaviour, and 

HVAC system. The DT model can not only include the CFD model and 

the BEM model, but also with the Virtual Reality (VR) to improve the in- 

teractive relationship between architecture and occupancy. Comparing 

to separate traditional simulation methods, this method generally leads 

to more interactive and more useful simulation. 

4.3.3. Applications of AI algorithms 

Virtual models combined with artificial intelligence algorithms can 

be applied to a greater extent. For example, BIM model can combine ma- 

chine learning algorithms and optimization methods to more accurately 

describe the relationship between energy consumption and physical pa- 

rameters, so as to improve building energy utilization efficiency [99] . 

Pour et al. uses the combination of Unity, BIM and machine learning to 

automatically update the three-dimensional view of the construction site 

and monitor the working progress in real time [100] . Ma et al. combined 

DTs with artificial neural network to predict indoor thermal comfort un- 

der the influence of energy-saving strategies [101] . 

4.4. Applications and case studies 

The life cycle of a building includes design, construction, operation, 

maintenance and destruction. According to the current study, simula- 

tion in DTs is commonly applied in the construction and operational 

phases. In the construction process, DT is mainly used for the deploy- 
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Fig. 8. Simulations during the construction process. 

Fig. 9. The workflow of digital twins in buildings operation phase. 

ment and compliance check of materials, worker’ safety management 

and forecast, progress monitoring and control. With the help of DTs, 

the information exchange can be greatly improved, the construction ef- 

ficiency can be strengthened, and the potential risks in the construction 

can be reduced. In the process of operation, DTs improves the energy 

saving of the building and indoor thermal environment, and also plays 

a key role in monitoring the possible damage to the building structure 

and equipment fault. 

The main applications and methods deployed during the building 

lifecycle process are listed in the following Table 8 . By reviewing cur- 

rent research and use about building digital twin, it is easy to find that 

DT is not yet fully used in area of buildings on a large scale. True dig- 

ital twin buildings are far from being created. Most studies have been 

limited to digital description of part of buildings (parts of parameters 

or space), but most of the results show that the introduction of DTs 

has a positive impact on buildings without considering budget. In fact, 

DT is built on timely building-related data in high quality and quan- 

tity, and requires high intensity and timely transmission of data flow 

between physical and virtual entities. Therefore, to ensure the correct 

implementation of DTs, the requirements for data collection, precision 

and stability of sensor, the capacity of data storage device and the speed 

of data transmission are too high to reach in the short time. But DTs still 

provide a promising direction for the future of building system. 

5. Urban models using building simulation methods 

5.1. Goals of urban building energy modelling 

Rapid urbanization brings increased attention to the role of the city 

in energy system planning for its ability to integrate large-scale district 

heating/cooling networks and renewable energy utilization toward the 

sustainable development of society [102] . Thus, implementing the BEM 

on urban scale has shown more and more benefits, promoting the con- 

cept of urban building energy modelling (UBEM) [103] . Different from 
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Table 8 

Applications of integrated simulation of DTs in the buildings. 

Ref. 

Data type Simulation Applications 

Environment People Materials Devices Energy Structure Energy Environment Construction Operation 

[85] ● ● ● ● (in) ●
[86] ● ● (in) ●
[88] ● ● (out) ●
[89] ● ● ●
[90] ● ● (out) ●
[92] ● ● ●
[93] ● ● ● ●
[94] ● ● ● ●
[95] ● ● ●
[96] ● ● ● ● ● (in) ●
[97] ● ● (in) ●
[100] ● ● ● ● (out) ●
[101] ● ● ● ● (in) ●

Fig. 10. A common workflow of urban building energy modelling. 

modelling an individual building, UBEM studies the energy performance 

of a block, a city, or even the whole country, supporting the urban en- 

ergy efficiency and management [104] . Due to the spatial complexity, 

UBEM often requires more resources and effort to achieve reliable re- 

sults [105] . In recent years, a variety of studies have covered this field 

from different perspectives, contributing to both the approaches and ap- 

plications of UBEM. 

5.2. Approaches of urban building energy modelling 

Following the idea of applying individual building energy simula- 

tion to building stock at the urban level, the workflow of UBEM com- 

monly consists of five steps as shown in Fig. 10 , including data collec- 

tion, model generation, simulation, calibration, and application [106] . 

As the basis of the entire workflow, collection and pre-processing of 

UBEM-relevant data are necessary. The information required to build ur- 

ban models can be classified into geometric and non-geometric data. Ge- 

ometric data such as the data extracted from the geographic information 

system (GIS), which are crucial to describe the spatial and geometrical 

features of urban buildings [107] . Urban geometric data can also be de- 

rived from geographical coordinates and vectors in files like city geogra- 

phy markup language (CityGML) [108] or geographic JavaScript object 

notation (GeoJSON) [109] . Besides, Wang et al. innovatively proposed 

a systematic method to develop 3D urban models, which combines the 

building footprint from OpenStreetMap, building height measured by 

the vertical edges and the window-wall ratio calculated from buildings’ 

elevation images with Artificial Intelligence [110] . 

The other data required for simulation or calibration are categorized 

into non-geometric ones. Energy-related parameters (e.g., U-values of 

envelopes, thermal systems efficiency, operation schedules, and occu- 

pancy behaviors) are needed to describe the building features such as 

the input IDF files for EnergyPlus [107] . Another important input for 

UBEM is the weather data, which may either be used in the form of a 

typical meteorological year (TMY) or synthetically generated to involve 

the urban microclimate (e.g., urban heat island effects and local wind 

patterns) [111] or the long-term climate change [112] . Additionally, 

the measured energy bills of building stock are sometimes required for 

training algorithms in data-driven methods or calibrating urban models. 

According to the different data inputs, approaches of UBEM can be 

fundamentally divided into three categories: (1) physics-based methods, 

which explicitly simulate the energy consumption by building geometric 

data and thermal features; (2) data-driven methods, which apply data 

mining or machine learning algorithms to reflect the energy profiles; 

(3) hybrid methods, which combine the elements from both physics- 

based and data-driven methods. Table 9 summarizes the characteristics 

of three different approaches and the relevant studies are further re- 

viewed in the following sections. 

5.2.1. Physics-based methods 

The conventional physics-based methods employ first-principle for 

simulating the thermal dynamic of each building, and then add the re- 

sults up to generate the urban energy profiles. As an evidence-based ap- 

proach, physics-based methods have the advantage to describe the clear 

connection between the urban building features and the energy perfor- 

mance. For instance, Prataviera et al. developed an open-source tool for 

city-scale simulation based on the electrical analogy, in which way the 

building thermal process was modelled with resistance-capacitance net- 

works [113] . The model accurately predicted the urban energy demand 

in both a small neighbourhood and a large district. Since the physics- 

based method requires a lot of technical data to describe buildings in 

detail, it presents an inherent limitation when applied on urban scale. 

To reduce the computing burden for simulation in UBEM, prototypi- 

cal models are built to simplify the input of building geometries and 

other parameters with prototypical models. Abolhassani et al. further 
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Table 9 

Summary of three different approaches used in UBEM. 

Approaches Data inputs Strengths Limitations Applications Refs. 

Physics-based 

methods 

· Building geometry 

· Building parameters 

· Weather data 

· Describe the clear 

thermal dynamic of 

buildings 

· Can be applied without 

measured energy data 

· Require detailed 

building physical data 

· Large computing 

burden on urban scale 

· Mainly applied to 

neighborhoods or districts 

· analyse the energy use in 

different scenarios 

· System planning and 

operational optimization 

[ 109 , 113–116 ] 

Data-driven 

methods 

· Measured energy data 

· Weather data 

· Capture the temporal 

courses of energy data 

· Do not require detailed 

building technical 

information 

· Require a large amount 

of energy data 

· Unable to reveal the 

physical process 

· Limited spatial and 

temporal granularity 

· Can be applied to 

neighborhoods, districts, 

cities, or countries 

· Predict energy profiles once 

physical data are limited 

[ 107 , 117 , 118 ] 

Hybrid methods · Simplified building data 

· Energy use data 

· Weather data 

· Leverage the strengths 

of physics-based and 

data-driven methods 

· Require robust 

modelling design and 

pre-simulation process 

· Can be applied to 

neighborhoods, districts, or 

cities 

[119–122] 

developed the traditional physics-based methods by automatically se- 

lecting the building archetypes from open-source data [114] . The se- 

lected archetypes, along with other energy-related parameters were fed 

into EnergyPlus for UBEM of downtown Montreal building stock, where 

the method performed well calibrated by the measured energy data. 

However, using building archetypes for simplification in UBEM may 

reduce the results’ accuracy. To figure out the loss, Johari et al. evalu- 

ated the urban modelling performance in both complex and simplified 

levels of building details, of which results showed a very small difference 

(around 6%) [115] . Compared to the complex models, the simplified 

models overestimated the energy performance in IDA Indoor Climate 

and Energy (IDA ICE) and underestimated that in EnergyPlus. More- 

over, by conducting the uncertainty and sensitivity analysis, the most 

influential parameters (e.g., the floor area, set-point temperature, ex- 

ternal walls U-values, and thermal system type) explaining the urban 

energy use can be determined to guide the model simplification [116] . 

Prataviera et al. coupled the physics-based method with uncertainty and 

sensitivity analysis and applied the procedure to a district of more than 

600 buildings in Milan [109] . Compared to the deterministic archetype- 

based method, the overestimation of residences’ peak load was reduced 

from 80% to 25% by selecting the most sensitive input parameters. 

5.2.2. Data-driven methods 

Data-driven methods employ statistical theories to mine the patterns 

of historically measured energy data, so as to build the urban energy 

model. The development of intelligent metering devices in recent years 

has widely achieved the digitalization of building energy systems, al- 

lowing the energy data to become more available and promoting the 

application of data-driven methods [123] . 

With the different functions for various research targets, data-driven 

methods can be classified into regression-based, probability-based, and 

clustering-based ones. Regression-based methods are found to be mainly 

used for predicting energy consumption. Kontokosta and Tull used data- 

driven methods to predict the energy performance of 1.1 million build- 

ings in New York City with linear regression, random forest, and support 

vector regression algorithms trained by energy use data from 23,000 

buildings [117] . The results showed that the linear regression model per- 

formed best for the entire city, while support vector regression provided 

the lowest mean absolute error for energy use prediction on a smaller 

scale. Probability-based methods can be applied to deriving the missing 

information on urban scale based on the prior empirical data. Na and 

Wang developed a probability-based data-driven model with the input 

energy data from 2062 heating substations in Beijing [118] . The model 

was calibrated by Bayesian inference and Markov chain Monte Carlo 

simulation and was successfully applied to studying the urban-scale en- 

ergy benchmarks of space heating in Beijing. Clustering-based methods 

are able to characterize the spatial and temporal pattern of urban en- 

ergy use. Afaifia et al. combined the GIS data, regression analysis, and 

hierarchical clustering to model and analyse the energy consumption 

profiles of residential buildings in all provinces of Algeria from 1995 to 

2018 [107] . 

5.2.3. Hybrid methods 

Given the limitations of physics-based and data-driven methods, in- 

creasing studies try to combine the two methods to leverage their re- 

spective strengths and produce more comprehensive simulation results 

in UBEM [119] . For instance, Li and Yao used the Urban Modelling 

Interface (UMI) tool for generating physical models and then applied 

ten machine learning algorithms to the pre-simulated energy use data 

for predicting the heating/cooling energy use intensity in Chongqing, 

China [120] . The results showed that the Gaussian radial basis func- 

tion kernel support vector regression performs the best on urban scale. 

Liang et al. proposed a surrogate modelling approach by applying the K- 

nearest-neighbours algorithm to a pre-simulated building thermal load 

database [121] . The hybrid methods provide more accurate estimates 

of energy performance in building stock lacking exact information than 

physics-based methods, retain the physical description of each building, 

and overcome the gaps of data missing in pure data-driven methods. 

5.3. Applications and case summary 

By reviewing current studies, UBEM is mainly applied for four differ- 

ent purposes: (1) energy benchmarking, to compare energy use amongst 

peers; (2) urban planning, to provide optimal strategies for urban form 

and energy systems; (3) urban renovation, to support energy retrofit 

decisions for city policymakers; (4) urban microclimate, to analyse the 

impact of urban microclimate on energy performance. Table 10 summa- 

rizes the findings of representative case studies, along with their spatial 

scales, approaches, and applications. The following sections discuss the 

four application scenarios of UBEM in depth. 

5.3.1. Energy benchmarking 

As an overall evaluation of the energy profiles of a city or country 

over different periods, energy benchmarking is a basic application of 

UBEM. Lien et al. presented a physics-based method to predict the en- 

ergy consumption of the Norwegian building stock. They found an ex- 

pected decrease in final energy use between − 2 and − 12 TWh towards 

2050, corresponding to a − 3% to − 14% reduction of that in 2020 [124] . 

Mohammadiziazi et al. built the urban model for commercial building 

stock in Pittsburgh, Pennsylvania by identifying twenty archetypes with 

eight commercial use types [125] . The simulation results showed an av- 

erage annual energy use intensity between 74 and 1302 kWh/m 
2 for 

different use types, which provided the government with scientific sup- 

port to promote building energy efficiency. 
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Table 10 

Summary of the applications of UBEM. 

Ref. 

Spatial Scale Approaches Applications 

Objectives 

Country City Block 

Physics- 

based 

Data- 

driven Hybrid benchmarking planning renovation microclimate 

[112] ● ● ● · Proposed UBEM framework can estimate the energy baseline 

of building stocks considering the impacts of technology 

deployment. 

[124] ● ● ● · Integrated building stock modelling, hourly energy demand 

profiles, and energy system modelling provide the building 

sector with a long-term prediction of both annual and hourly 

energy use for different energy carriers. 

[125] ● ● ● · Developed archetype library and imaging techniques to 

retrieve envelope properties provide a holistic UBEM structure 

for commercial buildings. 

[126] ● ● ● · The shading effect of neighbouring buildings on target 

buildings was calculated by parametric method to examine the 

influence of shading on energy use. 

[127] ● ● ● ● · A GIS-based community-level UBEM was used to identify the 

most influential planning factors on the energy use of urban 

residential sectors (i.e., the floor area ratio and building 

coverage ratio). 

[128] ● ● ● · CityBES was used to model and assess energy conservation 

measures for the renovation of a low-income district in Venice, 

addressing the challenges of a large number of historical 

buildings and insufficient space in the area. 

[129] ● ● ● · An approach based on large building stock energy modelling 

was developed to assess the energy footprint and potential 

savings of railway buildings. 

[130] ● ● ● · An archetype approach was used to obtain the building data 

needed to run UMI to evaluate the effectiveness of community 

energy retrofit policies. 

[131] ● ● ● · This study investigated how the UBEM performance for 

high-density residences in the tropical climate is affected by 

weather datasets, involving the TMY data, suburban 

ground-measured data, and microclimate datasets 

[132] ● ● ● · A validated CFD model was coupled with UBEM to quantify 

the effect of urban surface compositions on urban microclimate 

and building energy demand. 

[133] ● ● ● · Developed UBEM for the Kingdom of Saudi Arabia can assess 

the impact of energy efficiency or demand-side management 

programs for residential sectors. 

Notations: UBEM = Urban Building Energy Modelling; GIS = Geographic Information System; UMI = Urban Modelling Interface; TMY = Typical Meteorological Year; CFD = Computational Fluid Dynamics. 
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5.3.2. Urban planning 

Since urban typology has a significant influence on the energy per- 

formance, policymakers can employ UBEM to gain an effective under- 

standing of the energy use in different urban forms and also the ad- 

vice for urban energy system planning. Liu et al. studied the impact of 

shading from nearby buildings on thermal energy demands of different 

community forms, where 93 114 cases were simulated by Grasshopper 

and EnergyPlus for seven cities in four climate zones in China [126] . 

Take the community in Lanzhou as an example, the cooling load can 

be overestimated by 45%, and the heating load underestimated by 21% 

due to shading from surrounding buildings, emphasizing the importance 

of reasonable community planning. Yu et al. combined the UBEM and 

sensitivity analysis to prioritize eight key factors on the energy perfor- 

mance of urban planning [127] . Results of 1963 residential communities 

in Shanghai revealed that the floor area ratio and building coverage ratio 

were the most sensitive parameters for energy consumption, technically 

supporting the urban designer to achieve energy-efficient planning. 

5.3.3. Urban renovation 

Urban renovation is a strategic process to improve the poorly de- 

veloped areas of a city with energy conservation as one of the purposes. 

The energy-saving or carbon-reducing potential for various retrofit mea- 

sures (e.g., enhanced lighting, thermal insulation, and upgrades of en- 

ergy systems) on urban scale can be estimated by UBEM. Teso et al. used 

City Buildings, Energy, and Sustainability (CityBES) to model and eval- 

uate energy conservation measures for renovating a low-income district 

in Venice [128] . By four common retrofit measures, the energy-saving 

potential at the district level reached 67%, along with the annual car- 

bon emission reduction of 1.1 MtCO 2 . Barone et al. assessed the energy 

performance and saving potential of the Italian railway building stock 

with a hybrid method [129] . Various energy-saving strategies were sim- 

ulated, and a comprehensive analysis showed that the most effective 

measure was enhancing lighting systems which saved the primary en- 

ergy up to 26% with a very low payback time of about 1 year. Buckley 

et al. ran the UBEM using UMI to evaluate the performance of energy- 

saving measures for an area with 9000 residential buildings in Dublin, 

Ireland [130] . By quantifying the most cost-effective mix of envelope 

retrofit and onsite energy production, renovation of this case was ex- 

pected to achieve a 60% reduction in greenhouse gas emissions by 2030, 

of which the conclusion can contribute to the European Union Green 

Deal plans for a carbon neutral economy by 2050. 

5.3.4. Urban microclimate 

The urban typology and activities usually create a local climate dif- 

ferent from the surrounding environment, namely the urban microcli- 

mate (e.g., the urban heat island effect and the local wind pattern dis- 

turbed by buildings). Xu et al. developed the on-site measured micro- 

climate data and used them for UBEM of a residential neighbourhood 

at Everton Park in Singapore, where the results showed that the least 

mean bias error was 6% using microclimate data but was 12% using 

TMY data [131] . The conclusion indicates that the urban microclimate 

indeed influences energy performance. To better understand the effects, 

Brozovsky et al. combined the UBEM and the CFD modelling to quantify 

the impact of different urban surfaces on the microclimate and energy 

demand of office buildings in Trondheim, Norway [132] . The results of 

scenario analysis demonstrated a clear benefit from urban greening as it 

reduced the cooling energy demand by 28.5% than without vegetation. 

The findings also help the planners to improve urban climate resilience 

in response to climate change. 

By reviewing the current applications, it is found that the UBEM has 

been increasingly used to simulate the energy profile of large building 

stock considering their diversity in geometry, construction, and uses, as 

well as their interaction to achieve targeted research objectives. In the 

context of the low-carbon transition of the building sector, the energy 

resilience achieved by technologies of demand response in energy com- 

munities has paved the way to flexibility for the building operators and 

the energy grid. Thus, although the potential of UBEM used for energy 

planning and building decarbonization has been clearly and widely stud- 

ied, it is still suggested to incorporate new technologies and the UBEM 

to create a mature environment for energy community modelling that 

can help the stakeholders implement more advanced energy-efficient 

and environmental-friendly solutions. 

6. Modelling of building-to-grid interaction for demand response 

6.1. Goals of building to grid (B2G) modelling 

With the increasing penetration of on-site renewable energy re- 

sources such as PV panels and wind turbines, buildings can deploy those 

resources to offset their onsite grid electricity and even sell excess pro- 

duced electricity back to the grid as prosumers [134] . However, renew- 

able energy, such as solar and wind, are inherently intermittent and 

uncontrollable. And with its high penetration, it’s urgent to improve the 

buildings’ electricity demand flexibility [ 135 , 136 ].Different from tradi- 

tional building performance simulation, the simulation of building-to- 

grid (B2G) needs to couple with renewable energy generation and utility 

grid [134] . In recent years, many scholars have covered this field from 

different perspectives, contributing to both the approaches and applica- 

tions of simulation for B2G. 

6.2. Approaches of building to grid (B2G) modelling 

As mentioned above, the simulation for B2G includes not only the 

parts of traditional BPS, but also the renewable energy system, energy 

storage system, the unity grid, and more. This section will summarize 

the simulation methods of these subsystems, as shown in Fig. 11 . 

6.2.1. Renewable energy system 

Currently, the common renewable energy resources used for build- 

ing power generation is solar PV and wind [ 137 , 138 ]. And usually, the 

modelling of a renewable energy system is to predict its power genera- 

tion for sizing, optimization, and control. The methods are divided into 

two categories: 

The first method is the simplified method. Simplified method means 

that the model is established according to the principle of power genera- 

tion, using weather parameters combined with the performance param- 

eters of PV panel and wind turbine [139] . Fan et al. used the simplified 

model to calculate the PV and wind turbine power output, which in- 

clude the weather parameters (like solar irradiance, wind velocity and 

air density) and performance parameters of the device (like overall ef- 

ficiency, angle, area, capacity and so on) [140] . Similarly, Arabzadeh 

et al. also adopted a simplified method to forecast the power genera- 

tion, and the difference is only the difficulty and form of the model and 

the input parameters [141] . Undoubtedly, this method is simple and 

does not require a large amount of historical data [142] , but the pre- 

diction accuracy is dependent on the numerical weather prediction and 

the parameters provided by device manufacturers [143] . 

The second is the data-driven method. With the development of 

computer technology, many scholars have introduced data-driven meth- 

ods in the renewable energy system. Many data-driven prediction mod- 

els have been investigated for power generation. VanDeventer et al. 

proposed a genetic algorithm-based support vector machine (GASVM) 

model for short-term PV power forecasting [144] . Marquez and Coim- 

bra developed and validate the solar irradiance forecasting through ANN 

model [145] . Chen et al. adopted a radial basis function network to fore- 

cast 24 h ahead of PV power generation [146] . Wang et al. proposed a 

hybrid method based on wavelet transform, deep convolutional neural 

network and ensemble technique for probabilistic wind power forecast- 

ing [147] . The input data of these models often contains the meteoro- 

logical data or the historical power data. Compared with a simplified 

method, this method may achieve higher accuracy [148] , but it needs 

extensive historical data. 
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Fig. 11. A simple system composition of B2G. 

6.2.2. Energy storage system 

In the gird-interactive buildings, there are usually two types of en- 

ergy storage systems, one is electrical storage system, the other is ther- 

mal storage system. Both of them can improve the flexibility of building 

energy consumption by storing and releasing energy. 

The most common electrical storage system in buildings is battery. 

There are many kinds of battery systems, but the chemical battery is the 

commonest coupled with renewable energy generation systems [136] . 

However, in the view of simulation for B2G, we focus more on the energy 

storage changes than its internal chemical process. Therefore, Chabaud 

et al. establish the mathematical model of the system based on the en- 

ergy balance: by the power in and out of the battery to establish the 

state of charge (SOC), and at the same time consider its conversion loss 

between the electrical and chemical energy [142] . Besides, due to the 

limitation of the charging rate in different states of the battery, they usu- 

ally use this as a limitation of the model. Thermal storage tank usually 

is used as thermal energy storage device, and the medium is water or 

ice. Like the battery system, we pay more attention to the conservation 

of heat in and out when building the thermal storage model. Although 

a series of simplifications have been made for the energy storage sys- 

tem in studies, and the focus is more on the change of its energy value, 

this simplification is reasonable because the purpose of this field is to 

make buildings have lower energy consumption and more comfortable 

environment 

6.2.3. Utility grid 

Because of the instability of renewable power generation, the 

demand-supply mismatch can also be solved by the grid. Therefore, in 

many studies of B2G, the utility grid takes on the role of the merchant, 

which means the buildings can buy or sell electricity from it. So many 

scholars are concerned more with the price and the amount of electricity 

[149] , and they built the model on energy balance with other subsys- 

tems like the battery and building load [150] . At the same time, the 

grid-interactive buildings emphasize their grid-friendliness, which usu- 

ally means reducing the fluctuation between grid and buildings to miti- 

gate the grid stress in ensuring power balance, and the energy exchange 

between buildings and grid is usually used as an evaluation index [142] . 

6.2.4. Building system 

There are many contents in building systems which consume en- 

ergy, such as HVAC, electrical appliances, lighting, and in residential 

buildings, and kitchen utensils. Besides, with a rapid growth market for 

electric vehicles (EVs), many scholars have incorporated EVs into the 

building system, and their electrical demand should also be taken into 

account. And in the building system energy simulation, there are three 

main ways: 

(1) White-box method 

The first way is white-box method, which refers to the use of heat 

and mass equations to build building energy models. And many software 

products such as EnergyPlus, Dymola, TRNSYS, DOE-2, can solve these 

equations conveniently. Wang and Wang adopted this method to obtain 

the heating and cooling load [151] , and Ran et al. used this method to 

calculate the HVAC energy consumption [152] . The advantage of the 

white box model is its strong explanatory power, but it often takes a lot 

of time to input all the detailed building parameters. 

(2) Black-box method 

The second way is black-box method, and it often means using the 

historical data to build the model. Therefore, it does not need the build- 

ing’s physical information. And based on the data, the complex relation- 

ship between the input and output can be found mathematically. Gao 

et al. developed a simplified cooling load prediction by calibrating the 

reference day’s load profile according to the weather parameters [153] . 

Besides, many machine learning algorithms are introduced to build the 

energy model [154] . Compared with the white-box model, the black- 

box model is simpler in the development process, but it needs a lot of 

historical data. 

(3) Grey-box method 
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Table 11 

Summary of the approaches for different system used in B2G. 

Systems Approaches Strengths Limitations 

Renewable 

energy system 

Physical-based · Simple 

· Can be applied without measured data 

· The accuracy depends on the data given 

by the manufacturer; 

Data-driven · No need to consider complex physical 

processes; 

· Require a large amount of data; 

Battery system Energy balance · Easy to establish · Ignore the internal changes 

Utility grid Energy balance · Easy to establish –

Building system White-box 

method 

· Describe the clear thermal dynamic of 

buildings 

· Can be applied without measured energy 

data 

· Required detailed information of the 

buildings 

Black-box 

method 

· Do not need the physical information of 

the buildings 

· Require a large amount of data; 

· Unable to reveal the physical process; 

Grey-box 

method 

· Leverage the strengths of white-box and 

black-box methods 

· Require robust modelling design 

What’s more, the third way is the grey-box model. This method 

is between the white-box model and the black-box model, and uses 

a simplified physical model and easily accessible data to simulate en- 

ergy demand. The most commonly used grey-box method is resistance–

capacitance (RC) model. Bay et al. adopted 3-resistance-2-capacitance 

(3R2C) model to perform the thermal performance of the target build- 

ings [155] , and Dong et al. adopted 2-resistance-1-capacitance (2R1C) 

model to establish it [156] . The grey-box model makes a certain choice 

between the white-box and the black-box model, so when the other two 

models need insufficient information, the grey-box model may be a bet- 

ter choice. 

Table 11 is a summary of the approaches for different system used 

in B2G. 

6.3. Applications of building to grid (B2G) modelling 

By reviewing current studies as shown in Table 12 , in the view of 

the whole life cycle of the building, B2G modelling is mainly adopted in 

the design and operation stage. And the main purpose of these studies 

is to make the buildings more grid-friendly and cut down the operation 

cost. 

6.3.1. Design 

During the design stage, many scholars focus on the combination 

of parameters to make the building more grid-friendly, including the 

sizing factor of the energy storage system, the capacity of the renew- 

able generation system and so on. In addition, due to the interactive 

and complex energy systems and better performance of net zero energy 

building (NZEB), which need comprehensive evaluation, some studies 

pay more attention to the design of NZEBs. Sun et al. adopted a non- 

linear heuristic glow-worm swarm optimization (GSO)-based optimiza- 

tion to identify all possible local optimums for designs, and compared 

with the default NZEB settings, the optimization settings performed bet- 

ter grid-independence and lower cost [157] . Zhang et al. compared the 

impacts of 24 influential parameters in over/under voltage, grid depen- 

dence and energy loss and identified the key parameters affecting NZEB 

grid interactions by global sensitivity analysis [158] . Salvador et al. pro- 

posed a sizing methodology to minimize the energy impact of buildings 

equipped with energy storage and generation systems on the electricity 

grid, and apply it to a single storey house and an industrial building 

[159] . The simulation results show that, compared with the standard 

size, the right size leads to a better energy impact. In general, if B2G is 

fully considered in the design stage, the optimal parameter combination 

of all building components can be determined to achieve lower cost and 

create a more comfortable environment 

6.3.2. Operation 

In the operation stage, several studies focus on the control strategy 

to reduce the impact on the utility grid and the operation cost. 

For different types of single buildings, they are equipped with dif- 

ferent systems. And it can be categorized into two types: (1) Commer- 

cial building: Razmara et al. designed a real-time optimization frame- 

work based on Model Predictive Control (MPC) to control the power 

flow of a commercial building equipped with renewable energy and en- 

ergy storage system for demand response (DR) and demand flexibility 

(DF) programs, which significantly reduce the maximum load ramp-rate 

of the electric grid [149] . Li et al. proposed an operation strategy to 

schedule the overall power flow in real time based on a dynamic pro- 

gramming algorithm, in order to minimize the net present value in a 

typical year, and evaluate the strategy in an office building in Beijing, 

China [160] ; (2) Residential building: Arabzadeh et al. integrated the 

data-driven predictive demand response control for residential build- 

ings with heat pump and on-site energy generation and discussed the 

impact of heat demand predictive error on the performance of con- 

trol [141] . Pallonetto et al. compared two DR algorithms (rule-based 

and predictive-based approach) under the same DR price scheme in 

a typical residential building in Ireland [161] . And the simulation re- 

sults showed that the predictive-based algorithm did better in electric- 

ity end-use expenditure, utility generation cost and carbon emissions. 

Goudarzi et al. studied on a five-story residential building, which en- 

ergy scheduling performed via GA, to maximize its profit, and the re- 

sults show that for a typical day, the profit was about 11.53 $/day 

[162] . 

However, in multiple buildings, because of the inherent differences 

in building usage and system configuration, the buildings often show 

various sufficiency of renewable energy at same moments. In order to 

achieve a win-win situation within the buildings and minimize the en- 

ergy impact on the grid, many scholars proposed methods to control at 

the building group level. Fan et al. proposed a new collaborative con- 

trol to realize the renewable energy sharing amongst 3 NZEBs, and com- 

pared it with the traditional control in operation cost and grid friendli- 

ness [140] . Pinto et al. explored two multi-agent methods (a centralised 

controller and a decentralized controller) in the energy management 

of four buildings equipped with thermal energy storage and PV panels 

[150] . Zhang et al. introduced several metrics to quantify building-to- 

grid DR flexibility from heat pump aggregations and proposed specific 

control algorithms for the aggregations [163] . And the results indicated 

that payback behaviour vary widely depending on the type of residential 

buildings. Wang et al. introduced a rule-based carbon responsive con- 

trol framework to respond the grid’s carbon emission signals in real time, 

and performed simulation study on a residential community in Basalt, 

Colorado, United States [164] . And the simulation results showed that 

the control can reduce home’s annual carbon emission up to 20.5%. Hur- 

tado et al. proposed a dual agent-based method to optimize the inter- 

operation of the smart grid–building energy management system frame- 

work and tested it through virtual multi-zone buildings [165] . And it 

was shown that it can improve the voltage profile of the feeder while 

maintaining acceptable comfort. In all, studying the B2G operation strat- 

18 



Y. Pan, M. Zhu, Y. Lv et al. Advances in Applied Energy 10 (2023) 100135 

Table 12 

Review of the applications of B2G. 

Ref. 

Type of buildings Scale Stage 

Findings 

Commercial Residential 

Single 

building 

Multi- 

buildings Design Operation 

[157] ● ● ● · The developed heuristic multiple objectives 

algorithm based on the GSO to refine the 

optimization of the grid-interactive (NZEB) design 

and it performed well. 

[158] ● · For NZEB, in the aspects of overvoltage, grid 

dependence, and energy loss, the key parameters 

optimization can rapidly improve the considered 

performance. 

[159] ● ● · With the design optimization strategy by fussy 

algorithm, the power purchased from the grid is 

reduced while the produced energy is partially 

self-consumed. 

[149] ● ● ● · The proposed optimization and control 

framework of the B2G system can prevent 

duck-curve problems. 

[160] ● ● ● · Electricity price is the most sensitive parameter 

to the system’s economy through sensitivity 

analysis, and compared with other strategies, the 

proposed strategy has greater flexibility and more 

economical. 

[161] ● ● ● · Compared with rule-based approach, the 

predictive-based method was better in electricity 

expenditure, utility energy cost and carbon 

emission. 

[162] ● ● ● · The optimal schedule obtained from this study 

can maximize the building profit. 

[163] ● ● ● · The payback behaviour of heating units following 

a demand response vary with different types of 

dwellings: in high thermal inertia dwellings it can 

be negligible while in dwelling with low it can 

reach 10% − 50%. 
[164] ● ● ● · The carbon responsive controllers can reduce the 

homes’ annual carbon emissions by 6.0% to 

20.5%. 

[165] ● ● ● ● · By an agent-based approach and Particle Swarm 

Optimization, an integrated simulation show that 

the operation of the building can be dynamically 

changed to support the voltage control of the local 

power grid. 

Notations: NZEB = net zero energy building; GSO = glow-worm swarm optimization; B2G = building-to-grid. 

egy in multiple buildings can not only reduce the operation cost through 

the cooperation between different buildings, but also reduce the pres- 

sure on the utility grid. 

7. Future perspectives and challenges 

Researchers also pointed out the future perspectives and the ques- 

tions to be solved in the field of building energy modelling (BEM) based 

on the limits of their theoretical or case study results. We summarize 

them into following five research orientations which are corresponding 

to Chapter 2 ∼6 in this paper: 
(1) Performance-driven design. 

The future perspectives and challenges of performance-driven design 

remain in the generation, simulation, and optimization. The generation 

challenges are about how to encode the design logic, which is the core 

idea of the concept of “generative design ”. In the process of genera- 

tive design, designers should become the developers of the algorithms 

that can adjust the design parameters automatically to meet the dif- 

ferent demands of clients. Similarly, the performance-driven methods, 

really shifted from the conventional architectural design, can focus on 

the concept generation logic rather than the result of it. The current al- 

gorithms handle metric variables easily but lack variation in geometric 

forms. It is delicate to expand the design space while maintaining ra- 

tionality. In practice, architects usually parameterize the massing con- 

cept and the façade texture. The extreme freeform as cellular automata 

lack architectural interpretation. Apart from the building shell, the inner 

space topology also affects the energy/ventilation performance, which 

is rarely studied. 

Although bestowed with the increasing computing power, the simu- 

lation may still be time-consuming in each iteration, especially for CFD. 

Improving the physical model and the equation solver is challenging. 

However, one can make it scalable with proper space-time resolution to 

suit the design problem or use the surrogate model, such as the instant 

CFD feedback from the neural network. Another challenge is the interop- 

erability between the design document and the simulation model, espe- 

cially in geometry. For example, the freeform envelope of modern archi- 

tecture requires tessellation for energy simulation, and robust meshing 

for CFD is a must for automated iteration. 

The optimization steers the design process to the final decision. Fu- 

ture research should be orientated towards improving the efficiency of 

search techniques and approximation methods. With presumptive de- 

sign inputs, further effort is required to target the sensitive variables 

and quantify the uncertainties of the result. In practice, the integrated 

modelling platform such as Rhinoceros may collect the results and guide 

the model generation, which also challenges the architects to be versa- 

tile at programming and algorithms. 

(2) Model-based operational performance optimization. 

Simulation for optimization is an important step to accomplish en- 

ergy saving, carbon emission reduction and thermal comfort during the 

operation of buildings. Nowadays, the methodology of building oper- 

ational optimization usually refers to model predictive control (MPC), 

where the simulation results of the models are the key points that affect 
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the optimal performance of MPC. In many recent studies, researchers 

pointed out that the efficiency and effectiveness of model simulation 

should be further improved in the future work, which means that the 

performance of building simulation for optimization can be improved 

from two aspects: the computation speed of simulation and the accu- 

racy of simulation results. 

For computation speed, there is a requirement that must be met 

in engineering practice: the time consumed for one-step optimization 

should be less than the time step applicable for real-time control. In 

many application scenarios, the minimum time granularity for analysis 

will reach 10 min. After removing the time from calculation to conver- 

gence required by the optimization algorithm, the simulation time left 

for the model will be even less than 10 min. It means that the time cost 

by computation should also be considered as a constraint of the opti- 

mization algorithm applied for operational control. 

On the other hand, the model should not be too simple to reduce too 

much accuracy if only pursuing the computation speed. The similarity 

between the model/predictive results and the reality will directly affect 

the effectiveness of MPC. Therefore, how to strike a balance between 

the computation speed and accuracy of the model in MPC has become a 

hot topic that many scholars and engineers are devoting themselves to. 

(3) Integrated simulation using data measurements for digital twin. 

Digital twins are usually considered the inevitable result of the evolu- 

tion of BIM concepts combined with the integrated information between 

digital and physical buildings. Although on the technical level DT is fea- 

sible, the inadequate development of the following aspects the cost still 

limits its vigorous development. From another perspective, these chal- 

lenges can also be understood as the future development direction of 

research related to the integrated simulation for DT. 

The methodology to keep the integrity and accuracy of data is re- 

quired. Enough data with high quality is very important to the inte- 

grated simulation for DT. To obtain such data, a large number of differ- 

ent types of sensors of high quality will be used in the whole life cycle 

of buildings, bringing a large economic burden. The maintenance and 

overhaul of sensors also cost a lot. The necessary development trend in 

the future is to reduce the cost of sensors and improve the accuracy of 

sensors. 

The performance of timely simulations and feedback is another as- 

pect to be considered for the integrated simulation for DT. Current sim- 

ulation is typically based on historical data instead of real-time data, 

and also costs much time to finish. The time lag caused by historical 

input data and the calculation process usually leads to irrelevance be- 

tween virtual models and real-time building conditions. So, fast and on- 

line look-ahead simulations should be developed to ensure an accurate 

description of the real-time physical parameters change. 

In addition, the applicable scale range of the methodology of sim- 

ulation should also be extended with the expansion of the use of DT. 

At present, DT is mostly used in single buildings or specific systems, 

and few researchers study its application on an urban scale. On the ur- 

ban scale, data in more types and quantities are needed to ensure that 

the virtual city can describe the real city correctly. For instance, DT on 

an urban scale needs to interface with various energy data sources and 

monitor the flow of residents. DT on the urban scale can play a signifi- 

cant role in achieving smart cities and making future city policies. 

(4) Building simulation supporting urban energy planning. 

The approaches and applications of UBEM indicate that building 

archetype modelling plays a crucial role in predicting urban energy pro- 

files. However, it is still possible to improve the accuracy of building 

archetypes by uncertainty analysis and model calibration. As a conse- 

quence, the following summarizes the main research gaps to be solved 

in UBEM. 

In modelling building archetypes, uncertainty analysis can be used 

to assign a probability distribution to uncertain parameters (e.g., indoor 

air temperature and infiltration rate). Future UBEM studies can delve 

into this and determine the building parameter values in a statistically 

accurate way. Moreover, regarding the uncertainty associated with sim- 

plified archetypes, the reliability of the UBEM is closely related to the 

calibration of models. Through the calibration process, various inputs 

to the model are fine-tuned so that the predicted values of the outputs 

can be close to those obtained experimentally. 

The influence of occupant behaviour on building energy consump- 

tion is one of the most studied topics recently. Different occupants- 

related models are developed, achieving realistic modelling of human 

activities with existing deterministic and stochastic models on the build- 

ing level. However, models accounting for the urban-level occupants’ 

behaviour have rarely been considered. As a solution, integrating UBEM 

with urban mobility models, which essentially describe human activities 

in both space and time, is likely to improve the model’s accuracy. 

The analysis of the energy generation infrastructure (especially the 

recyclable energy) is also an important topic for the studies on modelling 

the energy performance of urban building stock. For example, building- 

integrated technologies such as photovoltaic systems are particularly 

important to be included in UBEM. At the design stage of a photovoltaic 

system, the solar potential analysis such as identifying roof features and 

urban-level data on available installed area is meaningful, which can 

aid energy system modelling. Therefore, it would be helpful in future 

studies to integrate the UBEM with urban energy system models (e.g., 

local energy utilities and energy distribution systems). 

(5) Modelling of building-to-grid interaction for demand response. 

With the continuous advancement of building energy conservation 

and carbon reduction, how to better understand and handle the interac- 

tion between buildings with the grid has received extensive attention. 

Through the investigation of the literature in this field, we believe that 

the following problems still need to be solved urgently. 

The future modelling method should take full advantage of the flexi- 

bility of the built environment. Most of the current research is relatively 

simple for the model of building systems, and the flexibility of the built 

environment is underutilized. Besides, due to the rapid changes in grid 

prices and photovoltaic power generation conditions, the building en- 

ergy consumption simulation need to keep up with them. Thus, how to 

make full use of building flexibility and reflect it in grid interaction is a 

big challenge. 

The large-scale model and control will be required for the simula- 

tion. Currently, as in our literature review above, most studies in B2G 

focus on the single building or multiple buildings, and few studies ad- 

dress larger scales. However, looking at the larger urban scale, how to 

effectively control and cooperate between different types of buildings, 

between different micro-grids is still unknown. 

The new B2G modelling method should fill the missing of the impact 

of occupancy. As we all know, occupancy has a great impact on build- 

ing energy consumption, and many studies focus on it. However, in the 

modelling of B2G, few scholars took occupancy into account, which also 

leads to the lack of the occupancy influence on the thermal comfort and 

energy consumption in this field. Therefore, how the occupancy affects 

the optimization of the B2G operation is still not addressed. 

8. Conclusions 

The literature reviewed in this paper describes the scope and state 

of building performance simulation and its application in multiple sce- 

narios during the life cycle of buildings. In general, this review sum- 

marized and sorted out the relevant principles/methods/tools that are 

most suitable for engineers and researchers, as well as some case studies 

that are of academic or practical interests. In particular, this review was 

presented as five individual parts according to the objectives of build- 

ing performance simulation in application: performance-driven design, 

model-based operational performance optimization, integrated simula- 

tion using data measurements for digital twin, building simulation sup- 

porting urban energy planning, and modelling of building-to-grid inter- 

action for demand response. 

The current observations on the research activities in this paper in- 

dicate that solutions through building performance simulation includ- 
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ing automated building design, establishment of building energy model, 

model predictive control for optimization, digital twins and demand re- 

sponse are continuously emerging. For the construction industry, these 

developments can lead to an overall improvement in building perfor- 

mance, such as emission reduction of CO 2 related to buildings, using 

or living experience in buildings with high quality, or productivity in- 

crease of building design and maintenance personnel. This also shows 

that building performance simulation will play a key role in the future 

development of the architectural industry. 

Building performance simulation is really a big theme. It is obviously 

unrealistic to complete a detailed introduction of all aspects covered in 

only one review paper. Therefore, in this paper, we mainly introduce 

the research direction and the status of BEM that most researchers con- 

cerned in the past decade. In addition, we also concluded various kinds 

of questions to be solved in the future in such research directions that 

are still in the initial stage of development as the future prospects of rele- 

vant fields based on the literature review. In sum, the future perspectives 

and challenges of building performance simulation can be summarized 

as the following four aspects: acquiring high quality data by new hard- 

ware or software technologies, fast and effective algorithm for modelling 

and optimization, improvement of intelligence during the workflow in 

building design and operation, modelling method on a large scale such 

as urban simulation. In different application scenarios of BEM, the the- 

oretical or engineering problems due to the above challenges will be 

encountered more or less. The future goal of academic researchers and 

engineers in industry is to find or further optimize the solutions to such 

problems. 
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