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a b s t r a c t 

As one of the most important and advanced technology for carbon-mitigation in the building sector, building 

performance simulation (BPS) has played an increasingly important role with the powerful support of building 

energy modelling (BEM) technology for energy-efficient designs, operations, and retrofitting of buildings. Owing 

to its deep integration of multi-disciplinary approaches, the researchers, as well as tool developers and practi- 

tioners, are facing opportunities and challenges during the application of BEM at multiple scales and stages, e.g., 

building/system/community levels and planning/design/operation stages. By reviewing recent studies, this pa- 

per aims to provide a clear picture of how BEM performs in solving different research questions on varied scales 

of building phase and spatial resolution, with a focus on the objectives and frameworks, modelling methods and 

tools, applicability and transferability. To guide future applications of BEM for performance-driven building en- 

ergy management, we classified the current research trends and future research opportunities into five topics 

that span through different stages and levels: (1) Simulation for performance-driven design for new building 

and retrofit design, (2) Model-based operational performance optimization, (3) Integrated simulation using data 

measurements for digital twin, (4) Building simulation supporting urban energy planning, and (5) Modelling of 

building-to-grid interaction for demand response. Additionally, future research recommendations are discussed, 

covering potential applications of BEM through integration with occupancy and behaviour modelling, integration 

with machine learning, quantification of model uncertainties, and linking to building monitoring systems. 
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. Introduction 

Nowadays, carbon neutrality is a common goal for many countries in

he world as the promising response to global climate change with the

ver-increasing energy demand and carbon emissions. The building sec-

or is key to the achievement of carbon peaking and carbon neutrality

ommitment as it accounts for about 40% of global energy-related car-

on emissions [1] . The energy use of Chinese building sector presently

ccounts for 20% of total energy use in China, one of the world’s largest

mitters [2] . Moreover, the energy use of building sector in China still

as the potential to form a significantly increasing portion of total global

missions by 2050 in the absence of strong policies or effective energy
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aving technologies to reduce these emissions. Rapid and continuing

rowth in the building sector could imperil the Chinese government’s

ommitment for CO 2 emissions to peak around 2030 and to neutrality

round 2060. 

As one of the most important and advanced technology for carbon-

itigation in the building sector, building energy modelling (BEM)

as increasingly become practical and supportive method for energy-

fficient designs [3] , operations [4] , and retrofitting of buildings [5] ,

ith the aim of energy performance improvement and carbon emission

eduction. 

Scientific models can be generally classified in two ways: (1) diagnos-

ic or prognostic models, and (2) physical (forward) or data-driven (in-
pril 2023 
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Table 1 

Questions to be solved by application of BEM on varied scales of building phase and spatial resolution. 

Relevant sections Phase Spatial resolution Key questions to solve 

2 Design Buildings Performance-driven design 

3 Operation Buildings Model-based operational performance optimization 

4 Operation Buildings Integrated simulation using data measurements for digital twin 

5 Operation District/urban Urban models using building simulation methods 

6 Operation Buildings/District/urban Building-to-grid interaction for demand response 
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Fig. 1. Distribution of the selected studies across various application scenarios. 
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erse) models. The common BEM models can be recognized as prognos-

ic physical models due that they predict the behaviour of a complex sys-

em given system properties, conditions and a set of well-defined laws,

uch as energy balance, mass balance, conductivity, heat transfer, etc.

6] . Different from data-driven models that describe a system with few

djustable inputs, the physical models are usually over-parameterised

nd require more inputs, while in that they can model the system be-

aviour with previously unobserved conditions. 

Fuelled by the rapid development of various data sensing, modelling

nd visualizing technologies, BEM has attracted increasingly attention

or application researches for optimizing energy efficiency on multiple

cales, such as different stages during the whole building lifecycle [7] ,

nd different spatial scales (e.g. system level, building level, district or

ommunity level, and building sector level) [8] . During the application

f BEM on different scale, the researchers, as well as tool developers [9] ,

nd practitioners are still facing huge challenges and confusions, owing

o highly complex integration of the possibly involved multi-disciplinary

pproaches [10] . 

Under this circumstance, this paper attempts to provide a clear pic-

ure on the state-of-the-art progress and potential advancement of BEM,

eing a strong and effective guide/reference for the current and future

esearchers in the field of BEM and its application. 

With this aim, our study totally collected 157 publications, which

ere screened for the relevance to the review objective based on

he criteria: (1) the study focused on the application of building en-

rgy/performance simulation for different stages, e.g. building design

nd operation, or on different scales, e.g. building/district/urban lev-

ls; (2) the study contained the case/pilot related to modelling meth-

ds of building energy/performance simulation; (3) the study is not just

 purely case study of the commonly-used modelling method; (4) the

tudy was published after 2011. After reviewing these publications, we

reliminarily classified the existing literature into the following five ap-

lication questions that are probably solved by the comprehensive inte-

ration of BEM on varied scales of building phase and spatial resolution,

s listed in Table 1 . 

As for the building design phase, the BEM technologies are exten-

ively used to optimize the design strategies for low-carbon and net-zero

uildings, namely performance-driven design. As for the building oper-

tion phase, the physics-based energy model can be used to simulate the

perational performance and optimize the control strategies of building

nergy systems. With the development of computer science, the avail-

bility of measured energy use and indoor environment data have pro-

oted the integration of traditional physics-based BEM and advanced

igital twin technologies, making the building information modelling

 helpful solution to prediction and fault diagnosis of building energy

ystems. In addition to the operation of individual buildings, the appli-

ation of BEM has been extended to the district and urban scales. Urban

uilding energy modelling can be used to analyse the operational perfor-

ance of urban energy system, promoting the utilization of renewable

nergy resources for urban sustainable development. Besides, another

ritical application of BEM is to enhance the energy resilience of build-

ngs by integrating the simulation of building energy system and local

rid to balance the energy production and demand at urban scale. 

Fig. 1 shows the distribution of the 157 studies across various ap-

lication scenarios. From the figure, it is apparent that the literatures

elated to each scenario are relatively evenly distributed, with a slightly
2 
igher proportion on performance-driven design and operational opti-

ization, as well as the lower proportion on digital twin. The yearly

rends of the studies on the five application scenarios in Fig. 2 have im-

lied that the scenarios of digital twin, urban modelling, and building-

o-grid interaction get increasingly attention in the recent several years.

his review also classifies the selected literatures into two types: review,

nd research papers. Fig. 3 illustrates the sub-categories of the selected

tudies for each application scenario. It is obvious that the majority of

xisted studies in the field of BEM are classified as research paper, such

s on research framework, simulation methods, case study, etc. 

Even though there have been massive BEM application studies over

he past decade, the majority papers have paid more attention to pro-

ose/utilize a specific modelling framework /methodology for specific

ase buildings. With the generation of considerable interest in advanced

pplication, such as digital twin and urban modelling, the BEM area is

ndergoing a revolution in terms of extrapolating simulation and mod-

lling methodology to the wider scales and levels. In this context, we

elieve that outlining the past-present focuses of the BEM application

tudies is one of the most important issues to be addressed for facing

he upcoming challenges from varying simulation demand in various

cales of energy performance modelling. 

This review could be a good start that aims to enhance the integra-

ion of BEM application in the future researches on improving build-

ng/urban energy efficiency, also assist other related researchers to un-

erstand the state-of-the-art of BEM application studies easily. Our ob-

ectives are to: 

• Categorize relevant BEM application literature into five application

scenarios related to various building stages and research scales. 
• Perform detailed summary of framework, methodology, key cases

and research gap for each application scenario. 
• Provide recommendations on future perspectives and possible chal-

lenges in the field of BEM. 

This review paper has the structure as follows. Sections 2 –6 elab-

rate the review of literatures on the five application scenarios in the

rder of (1) Performance-driven design; (2) Building operational opti-

ization; (3) Digital twin; (4) Urban modelling; and (5) Building-to-grid

nteraction. Section 7 discusses our perspectives on future directions and
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Fig. 2. Yearly trends of literatures for various application scenarios. 

Fig. 3. Sub-categories of literatures on various application scenarios. 
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otential challenges of BEM research and development. Section 8 con-

ludes this review paper. 

. Performance-driven design 

.1. Goals of performance-driven design 

During the building design process, engineers strive to reconcile

ualitative and quantitative approaches to meet the requirements re-

ated to a building’s performance [ 11 , 12 ]. Green building standards and

uidelines have been implemented in many countries [13] , which es-

ablish performance evaluation criteria to guide and optimize building

esign and to promote the evolvement of the performance-driven de-

ign. The building performance-driven design can help to strengthen the
3 
onnections between various stakeholders, such as building decision-

akers, designers, and users, as well as the multiple stages of building

esign, building evaluation, and building decision-making, in order to

mprove efficiency and enable significant improvements in building per-

ormance. Through building performance-driven design, the conditions

nd results of building design are intuitively linked to facilitate the con-

rol of building design results, thus promoting the scientific, accurate

nd efficient development of building design. 

The workflow of performance-driven design is illustrated in Fig. 4 ,

ainly consisting of three parts [ 6 , 14 ]: (1) preliminary design schemes,

ncluding parametric setting and system selection; (2) building mod-

lling and performance simulation, containing modelling and analysis

f various aspects of building performance (e.g., energy analysis, en-

ironmental analysis); (3) optimization, mainly using multi-objective
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Fig. 4. A common workflow of performance-driven design. 
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unctions to improve the building performance. The following sections

resent a literature review on performance-driven building design from

he perspective of approaches and applications. 

.2. Approaches of performance-driven design 

.2.1. Methods for preliminary design 

In the preliminary design stage, the primary purpose is to obtain a

easonable initial design scheme. From the perspective of target build-

ng types, performance-driven design can be divided into new building-

rientated and building retrofit-orientated, each with its applicable

ethods. 

For new building-orientated design, due to the lack of available

ata, it is necessary to select a reference, which is the prototype de-

ign method. According to the source of the prototype, it can also be

ivided into standard prototype and database prototype. The standard

rototype method is based on standards formulated for a specific kind of

uildings (e.g., offices, hotels, dwellings, schools, and hospitals). Some

nternational standards have been embedded in simulation software as

emplates. The database prototype method can be thought to be the re-

erse application of building prototyping. Each geographical region can

ontain one or more typical prototypical buildings representing the lim-

ted building types within that region [15] . Building prototyping is a

ethod to obtain statistically representative prototypes to identify the

ffect of different technology packages and offer guidance for design op-

imization [16] . On the contrary, the database prototype method is to

elect a template scheme that meets the requirements in the database

omposed of these prototypes [17] . 

For building retrofit-orientated design, it can be summarized as a

elf-reference method, which can be interpreted from two aspects: (1)

s the building retrofit aims at the existing buildings, the modelling data

s determined and measurable rather than referring to other prototypes;

2) the performance of the before-retrofit building is considered as a

aseline for evaluating the performance of retrofit technologies. Build-

ng retrofit technologies can be categorized into four groups: heating

nd cooling demand reduction, energy-efficient equipment and low en-

rgy technologies, renewable energy technologies and electrical system

etrofits, and human factors, from which the preliminary design schemes

an be selected [18] . 
4 
.2.2. Methods for performance simulation 

In the design stage, a variety of building performances are consid-

red for different design needs, which can be divided into two groups:

nergy performance (e.g., energy use intensity [19] , heating/cooling

oad [ 20 , 21 ]) and environmental performance (e.g., lighting [22] , in-

oor acoustic environment [23] , ventilation [24] , indoor thermal envi-

onment [25] ). In this section, we summarize the simulation methods

or different aspects of building performance in detail. 

.2.2.1. Methods for building energy performance. Energy modelling for

eating and cooling load estimation and energy use prediction is essen-

ial to achieve the goal of energy saving and emission reduction of build-

ngs. As summarized in Table 2 , the methods of energy modelling gen-

rally fall into three computational categories: (1) simplified evaluation

ethod, (2) detailed physical method, and (3) statistical and regression

ethod, and the first two belong to the forward modelling approach

hile the third is the inverse modelling approach [20] . The simplified

valuation method assumes a steady-state feature of building thermal

ystems to quickly predict energy use and study trends so that the inputs

re more straightforward and the calculation is faster than detailed phys-

cal simulation [21] . The detailed physical method is based on analyti-

al relationships amongst various building components (e.g., envelope,

VAC system, plants, terminal equipment) through physics theories and

umerous formulas. With the development of programming technology,

imulation programs (e.g., EnergyPlus, DOE2, TRNSYS) embedded with

hese physical models have been developed rapidly into visualization

ools with graphical user interfaces (GUI) [ 22 , 26 ]. The statistical and

egression method focuses on correlations between condition paramet-

ic setting and system structure, and historical energy data. Because of

he dependence on historical energy data, this method only applies to

he building retrofit-orientated design. The models established in the

tatistical and regression method are powerfully mathematical with ex-

ellent accuracy but poor physical interpretation [19] . 

.2.2.2. Methods for indoor environmental performance. In addition to

nergy performance in the macro aspect, detailed environmental per-

ormances are in need for occupant health and comfort. Simulation

ethods for three group environmental performances are summarized

n Table 3 , as well as the applicability and typical simulation tools. 
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Table 2 

Summary of three different methods for building energy performance simulation. 

Method Order Advantage Limitation Typical method/Tool 

Simplified evaluation method Forward Simple inputs 

Fast calculation 

Limited applicability Degree-day method 

Bin method 

Detailed physical method Forward Visualization tools 

Good physical interpretation 

Complex inputs EnergyPlus 

DOE2 

TRNSYS 

Statistical and regression method Inverse Accurate prediction 

Fast calculation 

Only for existing 

buildings 

Poor physical 

interpretation 

Multiple linear regression 

Artificial neural network 

Support vector machine 

Table 3 

Summary of simulation methods for environmental performances. 

Environmental 

performance Simulation method Applicability Typical simulation tools 

Lighting & 

Daylighting 

1. Direct calculations 1. Artificial lighting Radiance, Ecotect, Honeybee, 

DElight 2. View-dependent algorithms 3. Image generation 

3. Scene-dependent algorithms 3. Lighting calculations 

Indoor acoustic 

environment 

1. Wave-based method 1. Inhomogeneous media Odeon, Epidaure, Raynoise 

2. Geometrical acoustics method 2. Engineering applications 

3. Hybrid method 3. Combine the above two 

Ventilation and 

indoor thermal 

environment 

1. CFD method 1. Complex air distribution Fluent, Airpack, CONTAM, 

COMIS 2. Multi-zone method 2. Rough and quick simulation 

3. Zonal method 3. Based on prior estimation 
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For lighting/daylighting performance, the lighting simulation algo-

ithms can be classified into direct calculations, view-dependent algo-

ithms, and scene-dependent algorithms [27] . Direct calculations cur-

ently are used for artificial lighting, following local standards. The

iew-dependent algorithms represented by ray tracing are available for

orward and backward ray tracing so that they are applicable for image

eneration. Compared with this, the scene-dependent algorithms repre-

ented by radiosity are used mainly for lighting calculations due to more

igorous and complex formulas. 

For indoor acoustic environment, the acoustic prediction methods in-

lude the wave-based method, and geometrical acoustics method. The

ave-based method can solve the problem of sound propagation in inho-

ogeneous media in the complex environment such as sports halls [24] .

he geometrical acoustics method is widely used in engineering appli-

ations because of its applicability for complex building geometry and

igh computation demand. The hybrid method combines the strengths

f different methods to achieve more accurate results with less compu-

ational cost. 

For ventilation and indoor thermal environment, the physical mod-

lling methods for indoor environment fall into three categories: com-

utational fluid dynamics (CFD) method, zonal method, and multi-zone

ethod [20] . The CFD method can solve complex air distributions and

isualize the quantitative results by integrating fluid mechanics, thermo-

ynamics, numerical analysis, and computer science [28] . To avoid high

omputational costs, the multi-zone method is a good choice for quick

irflow and contaminant distribution simulation. It assumes uniform air

istribution in each zone that is represented simply with one node and

orm a fluid network with doors, windows, and other openings. With the

ame assumption as the multi-zone method, the zonal method divides a

one into several sub-zones. It establishes mass and energy conservation

quations to obtain more detailed air parameter distributions than the

ulti-zone method with less computing time than the CFD method [25] .

.2.3. Performance optimization methods 

For optimal design, optimization is usually necessary for

erformance-driven design in recent studies [29] . In the building

esign, the various performance requirements lead to numerous

ptimization problems, often expressed as multi-objective nonlinear

roblems [30] . In the common workflow of performance optimization,
5 
he program usually couples with the simulation process in each itera-

ion to form a loop [31] , as shown in Fig. 5 . The optimization program

onsists of three necessary items: objective functions, constraints, and

ptimization methods. 

Numerous optimization methods have been developed to deal with

arious types of problems. The mostly-used to building performance

ptimization can be classified into direct search, gradient-based, meta-

euristic, and hybrid methods [14] . Direct search methods are suitable

or discrete variables without the need for derivative information. Hasan

t al. applied the brute-force search (namely exhaustive search) method

o achieve the minimization of the life cycle cost of a detached house

y optimizing two discrete variables ( u -value of the windows and type

f heat recovery) [32] . With fast convergence, gradient-based meth-

ds are sensitive to multi-modal functions and discontinuities in the

ost function [14] . Vakiloroaya et al. solved the minimization of en-

rgy consumption and the optimal set-points of air-cooled central cool-

ng plant systems through a developed gradient projection algorithm

33] . Meta-heuristic methods do not depend too much on the organiza-

ional structure information of the algorithm and can be widely used in

unction combination optimization and function calculation. The non-

ominated sorting genetic algorithm-II (NSGA-II) is one of the most pop-

lar multi-objective meta-heuristic methods [34] . Bre and Fachinotti

dopted NSGA-II in their study and achieved more than 80% improve-

ent both in energy efficiency and thermal comfort in dwellings [35] .

he hybrid methods usually combine multiple approaches to enhance

he strengths and limit the weaknesses. Combining the global features

f the particle swarm optimization (PSO) with the powerful convergence

bility of the Hooke-Jeeves (HJ) algorithm, the hybrid PSO-HJ method

erformed great effectiveness and robustness for the optimized complex

enestration system solutions [36] . 

.3. Application and case summary 

According to the common workflow, building performance-driven

esign consists of three major parts: (1) preliminary design, (2) simula-

ion for energy and environmental performance, and (3) optimization.

he representative studies are summarized in Table 4 . In the following

ubsections, the application scenarios of performance-driven design are

iscussed in detail. 
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Fig. 5. The optimization loop coupling with simulation process. 

Table 4 

Review on the applications of performance-driven design. 

Applications 

Environmental analysis 

Ref. 

Building 

types Simulation tool 

Energy- 

related Thermal Daylighting Air quality Optimization objectives 

[37] Office Rhinoceros; 

Grasshopper; Honeybee 

● UDI, sDA, ASE 

[38] Residential DesignBuilder; 

EnergyPlus 

● Energy consumption, CO2 

emissions 

[39] Hospital CFD ● Average air age 

[40] Office TRNSYS; IBE-e ● Energy consumption 

[41] Education Sketchup; Radiance ● DA, UDI 

[42] Education DesignBuilder; eQUEST; 

EnergyPlus 

● ● CO2 concentration, Indoor air 

temperature 

[43] Education Radiance; EnergyPlus ● ● Daylighting scores, Heating loads 

and cooling loads 

[44] Office & 

Education 

EnergyPlus ● ● Energy use, Non-comfortable 

hours, Exergy destructions 

[45] Office Rhinoceros; DIVA ● UDI 

Notations: UDI = useful daylight illuminance, sDA = spatial daylight autonomy, ASE = annual solar exposure, DA = daylight autonomy. 
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.3.1. Preliminary design 

The first step in developing a performance-driven building design is

reliminary design. As discussed in the previous section, parameter set-

ing and model development are generally based on typical prototype or

n-site measured data. Loche et al. [37] . developed the parametric study

sing a representation of a "typical" mixed-mode office room model as

 base case. They used the plug-in Grasshopper to model the case. The

esults demonstrated that balconies could be an efficient shading device

nd daylight diffuser with proper dimensions. As an example of design

ecisions in the early design phase of residential buildings in Turkey,

ercek and Durmu ş Arsan [38] assessed the impact of climate change

n building energy and environmental performance characteristics and

ynthesized the correlation between building energy and environmen-

al performance criteria and design parameters. Based on a large gen-

ral hospital project, Yao et al. [39] made the field test on the indoor

ir quality of hospital buildings and established the geometric model

ccording to the test data. They employed the CFD software to carry

ut the numerical simulation and study the effects of three different air

istributions. 

.3.2. Simulation for energy and environmental performance 

Currently, performance simulation is mainly focused on energy and

nvironmental analysis. Li et al. [40] proposed a performance-based de-

ign method based on overall energy consumption and progress for the

early zero-energy building. The design process of the actual case was
6 
nalyzed, and the optimal solution for the near-zero energy building was

erived by taking into account the cooling and heating sources, the envi-

onment, and renewable energy.Nocera et al. [41] focused on assessing

he existing lighting conditions of a historical building to define suitable

etrofit solutions for daylighting systems, and the approach was adopted

o assess daylight availability in a representative classroom in an educa-

ional heritage building in Syracuse (Italy). Tam et al. [42] monitored

ndoor air temperature, and CO 2 concentration in multiple lecture halls

n Toronto, and one classroom was chosen as a representative case study

or retrofitting. And the evaluations were conducted using building per-

ormance simulation (BPS) to investigate the causes of discomfort in the

lassroom and to identify methods for regulating temperature and CO 2 

oncentration. 

.3.3. Optimization 

Setting different optimization objectives based on performance re-

uirements to arrive at the optimal building design solution is an im-

ortant performance-driven design process. Futrell et al. [43] used a

ybrid GPS Hooke Jeeves/PSO algorithm in combination with the Ep-

ilon Constraint Method for optimizing building envelope design to find

 Pareto-efficient solution for the thermal and lighting performance op-

imization objectives. García Kerdan et al. [44] presented an exergy-

ased multi-objective optimization tool for assessing the impact of var-

ous retrofitting measures, to determine the optimal retrofitting mea-

ures while minimizing energy use, exergy destructions, and thermal
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iscomfort. Two UK archetype case studies (an office and a primary

chool) were used to test the feasibility of the proposed framework. Lu

t al. [45] investigated the improvements in daylight efficiency of of-

ce buildings by optimizing curved facades. The results of the typical

ffice building demonstrated that the optimized curved facade can sig-

ificantly improve the daylight efficiency. 

Through modelling, simulation, and optimization, performance-

riven building design facilitates the development of design solutions

or buildings that satisfy performance requirements. Currently, building

erformance focuses mainly on enhancing indoor air quality and energy

fficiency. The studies mentioned above demonstrate that performance-

riven design may greatly improve building indoor environmental

erformance, emphasizing its importance in accomplishing building

erformance-related objectives. Consequently, practitioners can opti-

ize building performance in this manner during the design stage. 

Actually, the building design during the scheme phase is closely

elated to the building’s performance in usage and operation.

erformance-driven design is function-driven, particularly as some

uilding design parameters (e.g., window-to-wall ratios, envelope heat

ransfer coefficients, etc.) have a direct impact on daylighting, venti-

ation, and thermal comfort, therefore incorporating performance vari-

bles at the scheme stage can make a difference in the performance of

he building design. Furthermore, since building design is a complex

rocess with many factors to consider, performance-driven building de-

ign will assist to restore the systematic features to the design process

nd enhance efficiency, leading to substantial improvements in building

erformance. Technically, the more mature performance-based build-

ng design methodologies currently evaluate building performance with

imulation techniques. Its computer-automated design optimization pro-

ess enables a large number of design alternatives to be generated and

nalysed in a short period of time to identify the best performing de-

igns. However, the technical knowledge necessary for design optimiza-

ion in this manner is extensive, and the time and effort required by the

ser (e.g., the architect) to set up and operate the design optimization

rocess may be an important concern for future study. 

. Model-based operational performance optimization 

.1. Goals of model-based operational performance optimization 

Operational optimization focuses on optimizing the operational set-

ings of a given system to achieve the desired objective functions

 46 , 47 ]. When it comes to the building systems, those objective func-

ions include reducing building energy costs [48] , emissions [49] , build-

ng energy efficiency [50] while maintaining occupant comfort [51] .

ince those objectives are conflicting, building operational optimization

an be challenging. To make things worse, the building operational op-

imization also needs to handle complicated building systems, which

end to be highly non-linear and stochastic. The system model has been

roved as a useful tool in addressing those difficulties. 

.2. Approaches for optimizing operational performance 

The common workflow of building simulation for operation is shown

n Fig. 6 . Firstly, real-time operation data and geometry data are col-

ected from building energy management systems, building information

odelling (BIM), respectively. Secondly, pre-processing and data anal-

sis are conducted to identify the building operation pattern, which is

sed to establish the system models of the building and the HVAC sys-

em. Then the building and HVAC systems are simulated to validate the

ffectiveness of optimal control strategies. With the objective function,

he optimal settings of decision variables that minimize the system en-

rgy consumption and/or optimize indoor environmental conditions are

btained by optimization algorithms. Thirdly, the optimal operational

ettings of chillers, pumps, and cooling towers will be determined. The

ollowing subsections discuss these steps in depth. 
7 
.2.1. Data acquisition and analysis 

The efficacy of the model depends on the quality and reliability of

he inputs [ 52 , 53 ]. With the development of modern infrastructure and

echnologies, e.g., smart technologies and the Internet of Things (IoT),

assive building operational data can be obtained from building energy

anagement systems. The collected operational data include tempera-

ure, humidity, flow rate, pressure, power of the equipment, on-off states

f equipment and so on. Also, the outside temperature and humidity

ere collected in some studies to determine the impact of disturbances

n weather conditions [54] . These data can be used to identify building

perational patterns, e.g. occupancy and lighting schedules [55] . In the

ast few years, the collecting and processing of occupancy data have be-

ome emerging issues since they can affect, either directly or indirectly,

he operation of buildings. The sensors to collect occupancy data can be

uilt-in temperature sensors in smartphones of the building occupants

56] or the occupancy recognition system based on real-time video [57] .

Besides the operational data for building services systems, the other

ata required for simulation or calibration are building envelope pa-

ameters (e.g., U-values of wall and windows, absorptivity of walls and

-value of windows). These data are needed to describe the building fea-

ures when solar thermal systems, heat pumps and heat recovery tech-

ologies are used as active building technologies. The pre-processing

hase plays a significant role in the success of the optimization to avoid

he risk of over-simplification or delaying the optimization process [14] .

here are several typical pre-processing steps, e.g., data cleaning, nor-

alization [53] , and sensitivity analysis [58] . 

To learn the operation patterns of HVAC systems and the resulting

mpacts on energy efficiency, data mining (DM) techniques are recom-

ended to develop data-driven models that reflect interactions between

tate variables and operation efficiency. Motif and discord detection,

lustering and association rule mining are three main types of unsuper-

ised data mining technologies for knowledge discovery in the building

eld [59] . For example, DM was used to compute the variable impor-

ance in terms of the optimal control reward [60] and displacing groups

f occupants with similar occupancy patterns to the same thermal zone

61] . 

.2.2. Modelling approaches 

A detailed whole building dynamic energy model to simulate the

verall building performance needs to consider various building speci-

cations and characteristics, including internal loads and schedules and

echnical energy system specifications. Due to the functional character-

stics of modular and flexible construction and step-by-step calculation,

imulation tools e.g., EnergyPlus [58] , TRNSYS [62] , DeST [63] , and

odelica [64] are broadly used to depict building performance. The ac-

uracy in using these simulation programs depends on the ability of the

ser to input parameters that result in a good model of actual building

nergy use. Thus, it is necessary that the parameters of the model be fit-

ed to the actual physical system, which is called model calibration. In

eneral, the measured data and weather data might be used to calibrate

r validate the models. For example, Huang et al. tuned the coefficients

f the chiller performance curve, the chilled water temperature, etc. to

inimize the difference between the measured and simulated power of

he chiller using the actual temperatures of the condenser and chilled

ater entering the chillers [65] . Capozzoli et al. implemented an opti-

ized HVAC operation schedule based on a model calibrated with the

ctual weather data and the building energy consumption [61] . 

Regarding the techniques used in the optimization, the genetic al-

orithm (GA) was commonly used [66–68] . Both Functional Mock-up

nterface (FMI) and Building Control Virtual Testbed (BCVTB, LBNL)

ave been widely used to exchange the I/O and data when MATLAB

nd EnergyPlus are co-simulated [ 69 , 70 ]. For example, Wang et al. used

nergyPlus software to determine electricity, heating, and cooling de-

ands, and MATLAB software to investigate the impacts of key cycle

arameters on thermodynamic and economic performance and to model

he optimal design of the CCHP system. After that, an artificial neuron
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Fig. 6. A common workflow of model-based 

operational performance optimization. 
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etwork (ANN) black-box model was trained to replace it with the orig-

nal model by EnergyPlus to make the GA optimization possible and

aster [63] . Gomez-Romero et al. created a grey-box model to optimize

VAC operation in non-residential buildings, which relied on the exist-

ng corpus of expert knowledge to model thermal behaviour by using

ifferential equations encoding the physical principles of mass, energy

nd momentum transfer, and they apply statistical models to tune model

utputs based on historical and live data [71] . Souayfane et al. adopted

eather-clustering technique and coupling TRNSYS and GenOpt to de-

ermine the optimal cooling operation of a single-zone office building

onditioned by an air-source heat pump. The optimal cooling control

peration strategy found for each representative day is then applied for

ll days of the same cluster [72] . 

.2.3. Operational optimization strategies 

In the existing literature, control of HVAC systems typically involves

ptimizing on-off status, operating modes and setpoints (e.g., thermostat

etpoints, HVAC supply airflow rate, supply air temperature, pressure

etpoints) to minimize energy consumption or operating costs for the

verall system while thermal comfort is satisfied. For example, Garnier

t al. considered five non-predictive strategies to optimize the operation

f all the HVAC subsystems in a real non-residential building located in

erpignan (south of France), including four basic scheduling techniques

odelled using the EnergyPlus software and pre-heating or pre-cooling

uring off-peak periods [68] . Papadopoulos et al. fine-tuned the HVAC

ooling and heating setpoints using the simulated-based multi-objective
8 
ramework on typical large office buildings in seven different climate

ones in the US [73] . In terms of equipment, Fan et al. studied the local

ontrol including staging control, speed control, isolation valve control,

nd bypass valve control. Supervisory control strategies were also taken

nto account, including cooling mode control sequences, a chilled water

upply temperature reset control, chilled water loop differential pressure

eset control, and a condenser water supply temperature reset control

64] . 

.3. Applications and case studies 

By reviewing current studies, building simulation for operational op-

imization is mainly applied for three different levels to identify the

ptimal operational settings: (1) system, (2) equipment, and (3) compo-

ents. Table 5 summarizes the findings of several representative studies,

long with their frameworks, approaches, and applications. The follow-

ng subsections discuss the three application levels of HVAC systems in

etail. 

.3.1. System-level optimization 

There are many studies about system-level optimization. For the

odels used to evaluate the energy impact of proposed changes in the

ontrol scheme before implementation, the processes are mainly pure

imulation and generated offline. For instance, Vering et al. used pro-

ess intensification to consider the heat pump system design and opera-

ion simultaneously. After the design is optimized in an annual dynamic
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Table 5 

Review on the applications of building simulation for operation. 

Ref. 

Type of 

buildings Tools 

Application (Case study) 

Optimization Strategy 
System Equipment Component 

[74] non-residential 

building 

Modelica ● · The compressor speed PID-controller parameters, K P and T I 
were optimized. 

[75] educational 

building 

DesignBuilder ● · Heating and cooling setting temperature of air conditioning 

were selected as decision-making parameters. 

[63] hotel DeST ● · The output schemes of the solar CCHP under climate change 

were tackled. 

[57] mosque EnergyPlus ● · The HVAC setpoint schedule is modified subject to the 

thermal-comfort threshold based on the temperature response 

as well as the occupancy prediction. 

[76] educational 

building 

R ● · Identification for flow rates of chilled water and condensing 

water, the supplied chilled water temperature, and the cooling 

tower fan speed. 

[62] metro station TRNSYS ● · The chiller loading was optimized by adjusting the set points 

of the chilled water outlet temperature. 

[77] commercial 

building 

IES-VE ● · The supply temperature of the AHU and the airflow of VAV 

are optimized independently. 

[78] – EnergyPlus, 

CONTAM, and 

Matlab 

● · Optimal trajectories of damper angles and fan pressure were 

determined. 

[79] – Matlab ● · The pressure drops of AHU’s filters due to clogging were 

predict. 

[80] data center TRNSYS ● · The operation mode (mechanical cooling, partial, free cooling, 

and free cooling) that can satisfy the cooling requirement and 

give the best performance was selected. 

[81] office building EnergyPlus ● · Window and ventilation supply air fans were controlled in 

mixed-mode buildings. 
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uilding performance simulation, the system controller is optimized in

he second stage using a GA with the same dynamic simulation models

79] . Wu et al. developed a random forest-nondominated sorting genetic

lgorithm- III (RF-NSGA-III) hybrid intelligent method that can predict

nd optimize multi-dimensional performance. The result indicated that

he optimization of air conditioning setting parameters reduced the life

ycle air conditioning energy consumption by 54% [80] . Wang et al. op-

imized and analyzed the output of the hybrid solar combined cooling,

eating, and power system by establishing the operation optimization

odel. The influence exerted by climate change on the energy load and

olar output was identified with the aid of PRECIS and DeST [67] . The

ollection of operational data remains a challenge due to the complexity

nd dynamic nature of real building systems and equipment, which leads

o a discrepancy between the modelled HVAC system and the actual sys-

em. Some studies used hybrid modelling techniques to extract valuable

nformation for the development of modelling with limited measured

ata. For example, to better simulate the operation energy consumption

f each equipment in the HVAC system, Du et al. use the mathematical

odels of chiller and pump established and combine TRNSYS to estab-

ish actual building equipment modules [87] . 

Additionally, occupant behaviour has been identified as a major fac-

or contributing to the discrepancy between simulation predictions and

eal energy use [88] . To optimize HVAC control, the actual occupant in-

ormation and comprehensive context-aware information of the target

uilding are required, occupant characteristics are then identified and

nput into the control network to make appropriate decisions. For ex-

mple, Aftab et al. deployed and evaluated an automatic HVAC control

ystem for providing automatic HVAC control in the large public in-

oor space of a mosque, featuring real-time occupancy recognition and

imulation-guided model predictive control. The real-time HVAC con-

rol is guided by an onboard EnergyPlus simulator and ported on the

aspberry Pi embedded system platform [58] . 

.3.2. Equipment-level optimization 

Moreover, many researches were reported on optimizing equipment

peration. The models of this part are mainly implemented in the actual

uilding or involved hardware-in-the-loop. Due to the existence of mea-
9 
urement uncertainties and ever-changing operating conditions, optimal

witching points of equipment staging often deviate significantly from

redefined thresholds. To deal with these uncertainties, stochastic ap-

roach is used broadly. In addition, machine learning and advanced data

nalytics are used to extract valuable information of the equipment. For

nstance, Fan et al. proposed a gradual pattern mining method for dis-

overing usage patterns and knowledge from building operational data

s a generic approach and applied this method for chiller and cooling

ower control optimization [81] . Qiu et al. proposed a model-free op-

imized chiller loading method based on Q-learning to optimize chiller

peration. The central chiller of an office building in Shanghai is selected

s a case system, and the energy-saving performance of this method is

tudied through simulation [66] . Zhuang et al. developed a stochastic

ecision-making scheme to evaluate the risks of chillers’ operation and

o optimize chillers’ sequencing strategy. The central cooling system

oncerned in this study is a complex primary-secondary chilled water

ystem and the virtual simulation was constructed using TRNSYS [82] . 

.3.3. Component-level optimization 

Less researches about optimization of HVAC components (e.g., ther-

ostat, air damper, valves, filters, evaporator coil, condenser coil, etc.)

ave been done so far to the best knowledge of the authors. There are

everal studies about the optimization of dampers, filters, pipes, and

umps. The application of optimization in actual components is chal-

enged by the difficulty in handling uncertainties in the implementa-

ion of actual systems and indirect calculations. To address the above

hallenges, researchers model the uncertainties as random but bounded

oise or obtain the input data from BIM or other sources directly. Li

t al. present a tube-based MPC strategy for multi-zone demand-control

entilation systems, and the optimal trajectories of damper angles and

an pressure were determined to minimize energy consumption [83] .

o identify the clog behaviors in HVAC filters, Alimohammadi et al.

rive a grey-box model from the pressure drop signal [84] . Cheung et al.

valuated different piping and pump designs and optimal control algo-

ithms to suggest an optimized design of free cooling systems in data

enters, using a steady-state model of a realistic data center cooling

ystem and compared five different data center cooling systems [85] .
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Fig. 7. Concept of digital twins. 
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ay-Ostendorp et al. examined optimizing control sequences based on

PC for window operation in mixed-mode buildings. The optimal solu-

ion outperforms by controlling ventilation supply air fans and windows

86] . 

. Integrated simulation using data measurements for digital twin

.1. Digital twin and simulation 

The whole life cycle of buildings is inseparable from the exchange of

nformation [82] . In the past two decades, researchers often use known

nd static building information to build virtual models, such as building

nformation modelling (BIM) and building energy modelling (BEM), to

ptimize the design, construction, or operation of buildings [83] . How-

ver, due to the lack of real-time information input, it makes the virtual

odels hard to reflect the changes of the actual buildings over time,

hich limits the use of the models [84] . The emergence of Internet of

hings (IoT) and advance metering infrastructure (AMI) enable the real-

ime interaction between virtual models and actual buildings and the

imeliness and rationality of operation decision and fault diagnosis. 

With the rapid development of sensing technology, the concept of

he digital twin (DT) comes to life through the integration of virtual

uilding models and real-time data from advanced measurement tech-

ologies. Building digital twin is the method that builds accurate digital

irtual entities of physical entities in real time, and uses data analysis

nd integration to control, simulate, verify and predict the whole life

ycle process of physical buildings, so as to realize intelligent decision-

aking and optimization [85] . According to the concept in Fig. 7 , most

f the studies focused on the following 2 key aspects in DTs [85] : 

1) Data interaction: with the help of IoT and data analysis techniques,

the raw data (including measured data from sensors, static design

information from drawings and equipment nameplates) is collected,

cleaned, filtered, and transmitted to create and modify the virtual
10 
building. Then through the dynamic monitoring and simulation by

the virtual model, the future parameter changes of the actual build-

ing can be inferred and fed back, so as to assist the decision-making

during the building construction phase and operation phase. 

2) Building simulation and modeling: comprehensive perception of

building physical system is the premise of the implementation of

DT. In order to realize the efficient interaction between virtual and

physical entities at different phases, it is necessary to use different

types of data and modeling methods to accurately describe the con-

ditions of the buildings. DT has shown promising potential for wide

future uses though it is still in its infancy. To facilitate the under-

standing of the concept of DT, following the order of building main

life phases (construction, and operation phases), this part summa-

rizes the different data and different modelling methods used DTs. 

.2. Data interaction in digital twin 

Correct and useful data is the basis of DT applications in intelligent

uildings [86] . This part mainly describes the methods and types used

n data collection and the possible uses of corresponding models, not

ncluding data cleaning or filtering methods. 

In the construction phase, the information to be collected mainly in-

ludes the following 5 types: workers, materials/structures, machines,

ethods, and environment [87] . Amongst them, the methods (the tech-

ologies adopted in the construction, the method of engineering test,

nd related regulations) are static data, which do not require real-time

onitoring by sensors. The main types of data being collected during

he construction are summarized in the following Table 6 . 

In the operation phase, the information to be collected mostly in-

orporate 4 types: energy consumption, occupancy, device conditions,

uilding structures, and indoor environment. The main types of data be-

ng collected and corresponding sensors during the operation phase are

ummarized in the following Table 7 . 
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Table 6 

Overview of dynamic data collection on the construction site. 

Ref Type Concrete type Sensors Use 

[88] Environment Natural environment and 

operating environment of the 

construction site 

3D-scanning, virtual reality 

(VR) 

Deployment 

[89] Materials/ 

Structures 

The conditions of incomplete 

building entities and 

construction materials 

(degree of completion, crack, 

deformation, temperature, 

et al.) 

3D-scanning, VR, velocity 

sensors, acceleration sensors, 

seismic sensors, temperature 

sensors, optic fibre sensors, 

et al. 

Quality and process 

management 

[90] Workers Locations, behaviour and 

conditions of workers 

Radio frequency 

identification (RFID) 

Safety management and 

schedules deployment 

[91] Machines Performance and efficiency 

of all kinds of mechanical 

equipment used) 

Slewing sensors, cable length 

sensors, boom angle sensors, 

et al. 

Facilities and devices 

management 

Table 7 

Overview of the use of sensors in operation. 

Ref Type Data Sensors Use 

[92] Energy · Energy consumption of lighting, device, 

and HVAC system 

· IoT, smart meter · Energy management and 

monitoring 

[93] Occupancy · Occupancy ratio and occupant behaviour · IoT, Wi-Fi, Bluetooth low energy 

(BLE), AR 

· Energy-saving behaviour and 

strategies 

[94] Devices · Operation data of devices · Temperature sensors, liquid 

sensors, pressure sensors, et al. 

· Fault diagnosis, operation 

monitoring 

[95] Structures · Building envelope status and 

deformation 

· 3D laser scanning · Structural damage monitoring 

and restoration 

[96] Indoor Environment · Indoor temperature, humidity, metabolic 

ratio 

· IoT, temperature, and humidity 

Sensors 

· Thermal comfort evaluation and 

improvement 

[97] Indoor Environment · O 2 , CO 2 , and harmful gases · Gas sensors · Hazards identification, 

evacuation planning 
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.3. Simulation and modelling in digital twins 

.3.1. Simulation and modelling in design and construction phase 

In the early stage of building construction, simulations are widely

pplied to help schedule and optimize the construction process. Based

n the information of construction site, the construction simulation es-

ablishes the model in 4 main parts: geometry, physics, rules, and be-

aviours, as shown in Fig. 8 [89] . 

a) Geometric part refers to the basic information such as the appear-

ance, size, and model of the unfinished buildings, components and

equipment. The establishment of a high-fidelity geometric model can

truly reflect the geometric characteristics of the implementation pro-

cess. 

b) Physical part refers to the material parameters and mechanical prop-

erties of components and devices during the construction process. To

describe and monitor the changes, the physical model is often estab-

lished by finite element analysis software such as Midas and ANSYS

[98] . 

c) Rule part refers to the national standards and regulations. It needs

to model and parameterize the corresponding standards or speci-

fications to ensure the mechanical performance parameters of the

components and the operating status of the equipment during the

hoisting process within limits. 

d) Behaviour part refers to the corresponding changes in material pa-

rameters, mechanical properties, and progress during the hoisting

process in response to the decision changes and system instructions.

.3.2. Simulations and modelling in operation phase 

Fig. 9 shows the workflow of digital twins in buildings operation

hase. For the current energy simulation physics-based methods, the

odels often ignore the specific geometric shape and volume, and only

nput the abstraction of the shape. It cannot simulate the parameters

n different indoor positions. In CFD simulation, the models pay more
11 
ttention to the parameters related to fluid dynamics such as air speed

nd temperature, but ignore the energy consumption. The BEM is a good

oundation for energy simulation and air distribution simulation, be-

ause it can include all the parameters required for the above simula-

ion and coupling the various types of simulation to make the resulting

irtual model more closely fit the actual building. 

Usually based on BIM in DTs, the virtual buildings can provide not

nly geometry information but also physical parameters, such as en-

elope materials, indoor thermal properties, occupant behaviour, and

VAC system. The DT model can not only include the CFD model and

he BEM model, but also with the Virtual Reality (VR) to improve the in-

eractive relationship between architecture and occupancy. Comparing

o separate traditional simulation methods, this method generally leads

o more interactive and more useful simulation. 

.3.3. Applications of AI algorithms 

Virtual models combined with artificial intelligence algorithms can

e applied to a greater extent. For example, BIM model can combine ma-

hine learning algorithms and optimization methods to more accurately

escribe the relationship between energy consumption and physical pa-

ameters, so as to improve building energy utilization efficiency [99] .

our et al. uses the combination of Unity, BIM and machine learning to

utomatically update the three-dimensional view of the construction site

nd monitor the working progress in real time [100] . Ma et al. combined

Ts with artificial neural network to predict indoor thermal comfort un-

er the influence of energy-saving strategies [101] . 

.4. Applications and case studies 

The life cycle of a building includes design, construction, operation,

aintenance and destruction. According to the current study, simula-

ion in DTs is commonly applied in the construction and operational

hases. In the construction process, DT is mainly used for the deploy-
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Fig. 8. Simulations during the construction process. 

Fig. 9. The workflow of digital twins in buildings operation phase. 
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ent and compliance check of materials, worker’ safety management

nd forecast, progress monitoring and control. With the help of DTs,

he information exchange can be greatly improved, the construction ef-

ciency can be strengthened, and the potential risks in the construction

an be reduced. In the process of operation, DTs improves the energy

aving of the building and indoor thermal environment, and also plays

 key role in monitoring the possible damage to the building structure

nd equipment fault. 

The main applications and methods deployed during the building

ifecycle process are listed in the following Table 8 . By reviewing cur-

ent research and use about building digital twin, it is easy to find that

T is not yet fully used in area of buildings on a large scale. True dig-

tal twin buildings are far from being created. Most studies have been

imited to digital description of part of buildings (parts of parameters

r space), but most of the results show that the introduction of DTs

as a positive impact on buildings without considering budget. In fact,

T is built on timely building-related data in high quality and quan-

c  

12 
ity, and requires high intensity and timely transmission of data flow

etween physical and virtual entities. Therefore, to ensure the correct

mplementation of DTs, the requirements for data collection, precision

nd stability of sensor, the capacity of data storage device and the speed

f data transmission are too high to reach in the short time. But DTs still

rovide a promising direction for the future of building system. 

. Urban models using building simulation methods 

.1. Goals of urban building energy modelling 

Rapid urbanization brings increased attention to the role of the city

n energy system planning for its ability to integrate large-scale district

eating/cooling networks and renewable energy utilization toward the

ustainable development of society [102] . Thus, implementing the BEM

n urban scale has shown more and more benefits, promoting the con-

ept of urban building energy modelling (UBEM) [103] . Different from
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Table 8 

Applications of integrated simulation of DTs in the buildings. 

Ref. 

Data type Simulation Applications 

Environment People Materials Devices Energy Structure Energy Environment Construction Operation 

[85] ● ● ● ● (in) ●
[86] ● ● (in) ●
[88] ● ● (out) ●
[89] ● ● ●
[90] ● ● (out) ●
[92] ● ● ●
[93] ● ● ● ●
[94] ● ● ● ●
[95] ● ● ●
[96] ● ● ● ● ● (in) ●
[97] ● ● (in) ●
[100] ● ● ● ● (out) ●
[101] ● ● ● ● (in) ●

Fig. 10. A common workflow of urban building energy modelling. 
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odelling an individual building, UBEM studies the energy performance

f a block, a city, or even the whole country, supporting the urban en-

rgy efficiency and management [104] . Due to the spatial complexity,

BEM often requires more resources and effort to achieve reliable re-

ults [105] . In recent years, a variety of studies have covered this field

rom different perspectives, contributing to both the approaches and ap-

lications of UBEM. 

.2. Approaches of urban building energy modelling 

Following the idea of applying individual building energy simula-

ion to building stock at the urban level, the workflow of UBEM com-

only consists of five steps as shown in Fig. 10 , including data collec-

ion, model generation, simulation, calibration, and application [106] . 

As the basis of the entire workflow, collection and pre-processing of

BEM-relevant data are necessary. The information required to build ur-

an models can be classified into geometric and non-geometric data. Ge-

metric data such as the data extracted from the geographic information

ystem (GIS), which are crucial to describe the spatial and geometrical

eatures of urban buildings [107] . Urban geometric data can also be de-

ived from geographical coordinates and vectors in files like city geogra-

hy markup language (CityGML) [108] or geographic JavaScript object

otation (GeoJSON) [109] . Besides, Wang et al. innovatively proposed

 systematic method to develop 3D urban models, which combines the

uilding footprint from OpenStreetMap, building height measured by

he vertical edges and the window-wall ratio calculated from buildings’

levation images with Artificial Intelligence [110] . 

The other data required for simulation or calibration are categorized

nto non-geometric ones. Energy-related parameters (e.g., U-values of

nvelopes, thermal systems efficiency, operation schedules, and occu-

ancy behaviors) are needed to describe the building features such as

he input IDF files for EnergyPlus [107] . Another important input for
13 
BEM is the weather data, which may either be used in the form of a

ypical meteorological year (TMY) or synthetically generated to involve

he urban microclimate (e.g., urban heat island effects and local wind

atterns) [111] or the long-term climate change [112] . Additionally,

he measured energy bills of building stock are sometimes required for

raining algorithms in data-driven methods or calibrating urban models.

According to the different data inputs, approaches of UBEM can be

undamentally divided into three categories: (1) physics-based methods,

hich explicitly simulate the energy consumption by building geometric

ata and thermal features; (2) data-driven methods, which apply data

ining or machine learning algorithms to reflect the energy profiles;

3) hybrid methods, which combine the elements from both physics-

ased and data-driven methods. Table 9 summarizes the characteristics

f three different approaches and the relevant studies are further re-

iewed in the following sections. 

.2.1. Physics-based methods 

The conventional physics-based methods employ first-principle for

imulating the thermal dynamic of each building, and then add the re-

ults up to generate the urban energy profiles. As an evidence-based ap-

roach, physics-based methods have the advantage to describe the clear

onnection between the urban building features and the energy perfor-

ance. For instance, Prataviera et al. developed an open-source tool for

ity-scale simulation based on the electrical analogy, in which way the

uilding thermal process was modelled with resistance-capacitance net-

orks [113] . The model accurately predicted the urban energy demand

n both a small neighbourhood and a large district. Since the physics-

ased method requires a lot of technical data to describe buildings in

etail, it presents an inherent limitation when applied on urban scale.

o reduce the computing burden for simulation in UBEM, prototypi-

al models are built to simplify the input of building geometries and

ther parameters with prototypical models. Abolhassani et al. further
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Table 9 

Summary of three different approaches used in UBEM. 

Approaches Data inputs Strengths Limitations Applications Refs. 

Physics-based 

methods 

· Building geometry 

· Building parameters 

· Weather data 

· Describe the clear 

thermal dynamic of 

buildings 

· Can be applied without 

measured energy data 

· Require detailed 

building physical data 

· Large computing 

burden on urban scale 

· Mainly applied to 

neighborhoods or districts 

· analyse the energy use in 

different scenarios 

· System planning and 

operational optimization 

[ 109 , 113–116 ] 

Data-driven 

methods 

· Measured energy data 

· Weather data 

· Capture the temporal 

courses of energy data 

· Do not require detailed 

building technical 

information 

· Require a large amount 

of energy data 

· Unable to reveal the 

physical process 

· Limited spatial and 

temporal granularity 

· Can be applied to 

neighborhoods, districts, 

cities, or countries 

· Predict energy profiles once 

physical data are limited 

[ 107 , 117 , 118 ] 

Hybrid methods · Simplified building data 

· Energy use data 

· Weather data 

· Leverage the strengths 

of physics-based and 

data-driven methods 

· Require robust 

modelling design and 

pre-simulation process 

· Can be applied to 

neighborhoods, districts, or 

cities 

[119–122] 
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eveloped the traditional physics-based methods by automatically se-

ecting the building archetypes from open-source data [114] . The se-

ected archetypes, along with other energy-related parameters were fed

nto EnergyPlus for UBEM of downtown Montreal building stock, where

he method performed well calibrated by the measured energy data. 

However, using building archetypes for simplification in UBEM may

educe the results’ accuracy. To figure out the loss, Johari et al. evalu-

ted the urban modelling performance in both complex and simplified

evels of building details, of which results showed a very small difference

around 6%) [115] . Compared to the complex models, the simplified

odels overestimated the energy performance in IDA Indoor Climate

nd Energy (IDA ICE) and underestimated that in EnergyPlus. More-

ver, by conducting the uncertainty and sensitivity analysis, the most

nfluential parameters (e.g., the floor area, set-point temperature, ex-

ernal walls U-values, and thermal system type) explaining the urban

nergy use can be determined to guide the model simplification [116] .

rataviera et al. coupled the physics-based method with uncertainty and

ensitivity analysis and applied the procedure to a district of more than

00 buildings in Milan [109] . Compared to the deterministic archetype-

ased method, the overestimation of residences’ peak load was reduced

rom 80% to 25% by selecting the most sensitive input parameters. 

.2.2. Data-driven methods 

Data-driven methods employ statistical theories to mine the patterns

f historically measured energy data, so as to build the urban energy

odel. The development of intelligent metering devices in recent years

as widely achieved the digitalization of building energy systems, al-

owing the energy data to become more available and promoting the

pplication of data-driven methods [123] . 

With the different functions for various research targets, data-driven

ethods can be classified into regression-based, probability-based, and

lustering-based ones. Regression-based methods are found to be mainly

sed for predicting energy consumption. Kontokosta and Tull used data-

riven methods to predict the energy performance of 1.1 million build-

ngs in New York City with linear regression, random forest, and support

ector regression algorithms trained by energy use data from 23,000

uildings [117] . The results showed that the linear regression model per-

ormed best for the entire city, while support vector regression provided

he lowest mean absolute error for energy use prediction on a smaller

cale. Probability-based methods can be applied to deriving the missing

nformation on urban scale based on the prior empirical data. Na and

ang developed a probability-based data-driven model with the input

nergy data from 2062 heating substations in Beijing [118] . The model

as calibrated by Bayesian inference and Markov chain Monte Carlo

imulation and was successfully applied to studying the urban-scale en-

rgy benchmarks of space heating in Beijing. Clustering-based methods

re able to characterize the spatial and temporal pattern of urban en-

rgy use. Afaifia et al. combined the GIS data, regression analysis, and
14 
ierarchical clustering to model and analyse the energy consumption

rofiles of residential buildings in all provinces of Algeria from 1995 to

018 [107] . 

.2.3. Hybrid methods 

Given the limitations of physics-based and data-driven methods, in-

reasing studies try to combine the two methods to leverage their re-

pective strengths and produce more comprehensive simulation results

n UBEM [119] . For instance, Li and Yao used the Urban Modelling

nterface (UMI) tool for generating physical models and then applied

en machine learning algorithms to the pre-simulated energy use data

or predicting the heating/cooling energy use intensity in Chongqing,

hina [120] . The results showed that the Gaussian radial basis func-

ion kernel support vector regression performs the best on urban scale.

iang et al. proposed a surrogate modelling approach by applying the K-

earest-neighbours algorithm to a pre-simulated building thermal load

atabase [121] . The hybrid methods provide more accurate estimates

f energy performance in building stock lacking exact information than

hysics-based methods, retain the physical description of each building,

nd overcome the gaps of data missing in pure data-driven methods. 

.3. Applications and case summary 

By reviewing current studies, UBEM is mainly applied for four differ-

nt purposes: (1) energy benchmarking, to compare energy use amongst

eers; (2) urban planning, to provide optimal strategies for urban form

nd energy systems; (3) urban renovation, to support energy retrofit

ecisions for city policymakers; (4) urban microclimate, to analyse the

mpact of urban microclimate on energy performance. Table 10 summa-

izes the findings of representative case studies, along with their spatial

cales, approaches, and applications. The following sections discuss the

our application scenarios of UBEM in depth. 

.3.1. Energy benchmarking 

As an overall evaluation of the energy profiles of a city or country

ver different periods, energy benchmarking is a basic application of

BEM. Lien et al. presented a physics-based method to predict the en-

rgy consumption of the Norwegian building stock. They found an ex-

ected decrease in final energy use between − 2 and − 12 TWh towards

050, corresponding to a − 3% to − 14% reduction of that in 2020 [124] .

ohammadiziazi et al. built the urban model for commercial building

tock in Pittsburgh, Pennsylvania by identifying twenty archetypes with

ight commercial use types [125] . The simulation results showed an av-

rage annual energy use intensity between 74 and 1302 kWh/m 
2 for

ifferent use types, which provided the government with scientific sup-

ort to promote building energy efficiency. 
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Table 10 

Summary of the applications of UBEM. 

Ref. 

Spatial Scale Approaches Applications 

Objectives 

Country City Block 

Physics- 

based 

Data- 

driven Hybrid benchmarking planning renovation microclimate 

[112] ● ● ● · Proposed UBEM framework can estimate the energy baseline 

of building stocks considering the impacts of technology 

deployment. 

[124] ● ● ● · Integrated building stock modelling, hourly energy demand 

profiles, and energy system modelling provide the building 

sector with a long-term prediction of both annual and hourly 

energy use for different energy carriers. 

[125] ● ● ● · Developed archetype library and imaging techniques to 

retrieve envelope properties provide a holistic UBEM structure 

for commercial buildings. 

[126] ● ● ● · The shading effect of neighbouring buildings on target 

buildings was calculated by parametric method to examine the 

influence of shading on energy use. 

[127] ● ● ● ● · A GIS-based community-level UBEM was used to identify the 

most influential planning factors on the energy use of urban 

residential sectors (i.e., the floor area ratio and building 

coverage ratio). 

[128] ● ● ● · CityBES was used to model and assess energy conservation 

measures for the renovation of a low-income district in Venice, 

addressing the challenges of a large number of historical 

buildings and insufficient space in the area. 

[129] ● ● ● · An approach based on large building stock energy modelling 

was developed to assess the energy footprint and potential 

savings of railway buildings. 

[130] ● ● ● · An archetype approach was used to obtain the building data 

needed to run UMI to evaluate the effectiveness of community 

energy retrofit policies. 

[131] ● ● ● · This study investigated how the UBEM performance for 

high-density residences in the tropical climate is affected by 

weather datasets, involving the TMY data, suburban 

ground-measured data, and microclimate datasets 

[132] ● ● ● · A validated CFD model was coupled with UBEM to quantify 

the effect of urban surface compositions on urban microclimate 

and building energy demand. 

[133] ● ● ● · Developed UBEM for the Kingdom of Saudi Arabia can assess 

the impact of energy efficiency or demand-side management 

programs for residential sectors. 

Notations: UBEM = Urban Building Energy Modelling; GIS = Geographic Information System; UMI = Urban Modelling Interface; TMY = Typical Meteorological Year; CFD = Computational Fluid Dynamics. 

1
5
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.3.2. Urban planning 

Since urban typology has a significant influence on the energy per-

ormance, policymakers can employ UBEM to gain an effective under-

tanding of the energy use in different urban forms and also the ad-

ice for urban energy system planning. Liu et al. studied the impact of

hading from nearby buildings on thermal energy demands of different

ommunity forms, where 93 114 cases were simulated by Grasshopper

nd EnergyPlus for seven cities in four climate zones in China [126] .

ake the community in Lanzhou as an example, the cooling load can

e overestimated by 45%, and the heating load underestimated by 21%

ue to shading from surrounding buildings, emphasizing the importance

f reasonable community planning. Yu et al. combined the UBEM and

ensitivity analysis to prioritize eight key factors on the energy perfor-

ance of urban planning [127] . Results of 1963 residential communities

n Shanghai revealed that the floor area ratio and building coverage ratio

ere the most sensitive parameters for energy consumption, technically

upporting the urban designer to achieve energy-efficient planning. 

.3.3. Urban renovation 

Urban renovation is a strategic process to improve the poorly de-

eloped areas of a city with energy conservation as one of the purposes.

he energy-saving or carbon-reducing potential for various retrofit mea-

ures (e.g., enhanced lighting, thermal insulation, and upgrades of en-

rgy systems) on urban scale can be estimated by UBEM. Teso et al. used

ity Buildings, Energy, and Sustainability (CityBES) to model and eval-

ate energy conservation measures for renovating a low-income district

n Venice [128] . By four common retrofit measures, the energy-saving

otential at the district level reached 67%, along with the annual car-

on emission reduction of 1.1 MtCO 2 . Barone et al. assessed the energy

erformance and saving potential of the Italian railway building stock

ith a hybrid method [129] . Various energy-saving strategies were sim-

lated, and a comprehensive analysis showed that the most effective

easure was enhancing lighting systems which saved the primary en-

rgy up to 26% with a very low payback time of about 1 year. Buckley

t al. ran the UBEM using UMI to evaluate the performance of energy-

aving measures for an area with 9000 residential buildings in Dublin,

reland [130] . By quantifying the most cost-effective mix of envelope

etrofit and onsite energy production, renovation of this case was ex-

ected to achieve a 60% reduction in greenhouse gas emissions by 2030,

f which the conclusion can contribute to the European Union Green

eal plans for a carbon neutral economy by 2050. 

.3.4. Urban microclimate 

The urban typology and activities usually create a local climate dif-

erent from the surrounding environment, namely the urban microcli-

ate (e.g., the urban heat island effect and the local wind pattern dis-

urbed by buildings). Xu et al. developed the on-site measured micro-

limate data and used them for UBEM of a residential neighbourhood

t Everton Park in Singapore, where the results showed that the least

ean bias error was 6% using microclimate data but was 12% using

MY data [131] . The conclusion indicates that the urban microclimate

ndeed influences energy performance. To better understand the effects,

rozovsky et al. combined the UBEM and the CFD modelling to quantify

he impact of different urban surfaces on the microclimate and energy

emand of office buildings in Trondheim, Norway [132] . The results of

cenario analysis demonstrated a clear benefit from urban greening as it

educed the cooling energy demand by 28.5% than without vegetation.

he findings also help the planners to improve urban climate resilience

n response to climate change. 

By reviewing the current applications, it is found that the UBEM has

een increasingly used to simulate the energy profile of large building

tock considering their diversity in geometry, construction, and uses, as

ell as their interaction to achieve targeted research objectives. In the

ontext of the low-carbon transition of the building sector, the energy

esilience achieved by technologies of demand response in energy com-

unities has paved the way to flexibility for the building operators and
16 
he energy grid. Thus, although the potential of UBEM used for energy

lanning and building decarbonization has been clearly and widely stud-

ed, it is still suggested to incorporate new technologies and the UBEM

o create a mature environment for energy community modelling that

an help the stakeholders implement more advanced energy-efficient

nd environmental-friendly solutions. 

. Modelling of building-to-grid interaction for demand response 

.1. Goals of building to grid (B2G) modelling 

With the increasing penetration of on-site renewable energy re-

ources such as PV panels and wind turbines, buildings can deploy those

esources to offset their onsite grid electricity and even sell excess pro-

uced electricity back to the grid as prosumers [134] . However, renew-

ble energy, such as solar and wind, are inherently intermittent and

ncontrollable. And with its high penetration, it’s urgent to improve the

uildings’ electricity demand flexibility [ 135 , 136 ].Different from tradi-

ional building performance simulation, the simulation of building-to-

rid (B2G) needs to couple with renewable energy generation and utility

rid [134] . In recent years, many scholars have covered this field from

ifferent perspectives, contributing to both the approaches and applica-

ions of simulation for B2G. 

.2. Approaches of building to grid (B2G) modelling 

As mentioned above, the simulation for B2G includes not only the

arts of traditional BPS, but also the renewable energy system, energy

torage system, the unity grid, and more. This section will summarize

he simulation methods of these subsystems, as shown in Fig. 11 . 

.2.1. Renewable energy system 

Currently, the common renewable energy resources used for build-

ng power generation is solar PV and wind [ 137 , 138 ]. And usually, the

odelling of a renewable energy system is to predict its power genera-

ion for sizing, optimization, and control. The methods are divided into

wo categories: 

The first method is the simplified method. Simplified method means

hat the model is established according to the principle of power genera-

ion, using weather parameters combined with the performance param-

ters of PV panel and wind turbine [139] . Fan et al. used the simplified

odel to calculate the PV and wind turbine power output, which in-

lude the weather parameters (like solar irradiance, wind velocity and

ir density) and performance parameters of the device (like overall ef-

ciency, angle, area, capacity and so on) [140] . Similarly, Arabzadeh

t al. also adopted a simplified method to forecast the power genera-

ion, and the difference is only the difficulty and form of the model and

he input parameters [141] . Undoubtedly, this method is simple and

oes not require a large amount of historical data [142] , but the pre-

iction accuracy is dependent on the numerical weather prediction and

he parameters provided by device manufacturers [143] . 

The second is the data-driven method. With the development of

omputer technology, many scholars have introduced data-driven meth-

ds in the renewable energy system. Many data-driven prediction mod-

ls have been investigated for power generation. VanDeventer et al.

roposed a genetic algorithm-based support vector machine (GASVM)

odel for short-term PV power forecasting [144] . Marquez and Coim-

ra developed and validate the solar irradiance forecasting through ANN

odel [145] . Chen et al. adopted a radial basis function network to fore-

ast 24 h ahead of PV power generation [146] . Wang et al. proposed a

ybrid method based on wavelet transform, deep convolutional neural

etwork and ensemble technique for probabilistic wind power forecast-

ng [147] . The input data of these models often contains the meteoro-

ogical data or the historical power data. Compared with a simplified

ethod, this method may achieve higher accuracy [148] , but it needs

xtensive historical data. 
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Fig. 11. A simple system composition of B2G. 
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.2.2. Energy storage system 

In the gird-interactive buildings, there are usually two types of en-

rgy storage systems, one is electrical storage system, the other is ther-

al storage system. Both of them can improve the flexibility of building

nergy consumption by storing and releasing energy. 

The most common electrical storage system in buildings is battery.

here are many kinds of battery systems, but the chemical battery is the

ommonest coupled with renewable energy generation systems [136] .

owever, in the view of simulation for B2G, we focus more on the energy

torage changes than its internal chemical process. Therefore, Chabaud

t al. establish the mathematical model of the system based on the en-

rgy balance: by the power in and out of the battery to establish the

tate of charge (SOC), and at the same time consider its conversion loss

etween the electrical and chemical energy [142] . Besides, due to the

imitation of the charging rate in different states of the battery, they usu-

lly use this as a limitation of the model. Thermal storage tank usually

s used as thermal energy storage device, and the medium is water or

ce. Like the battery system, we pay more attention to the conservation

f heat in and out when building the thermal storage model. Although

 series of simplifications have been made for the energy storage sys-

em in studies, and the focus is more on the change of its energy value,

his simplification is reasonable because the purpose of this field is to

ake buildings have lower energy consumption and more comfortable

nvironment 

.2.3. Utility grid 

Because of the instability of renewable power generation, the

emand-supply mismatch can also be solved by the grid. Therefore, in

any studies of B2G, the utility grid takes on the role of the merchant,

hich means the buildings can buy or sell electricity from it. So many

cholars are concerned more with the price and the amount of electricity

149] , and they built the model on energy balance with other subsys-

ems like the battery and building load [150] . At the same time, the

rid-interactive buildings emphasize their grid-friendliness, which usu-
17 
lly means reducing the fluctuation between grid and buildings to miti-

ate the grid stress in ensuring power balance, and the energy exchange

etween buildings and grid is usually used as an evaluation index [142] .

.2.4. Building system 

There are many contents in building systems which consume en-

rgy, such as HVAC, electrical appliances, lighting, and in residential

uildings, and kitchen utensils. Besides, with a rapid growth market for

lectric vehicles (EVs), many scholars have incorporated EVs into the

uilding system, and their electrical demand should also be taken into

ccount. And in the building system energy simulation, there are three

ain ways: 

(1) White-box method 

The first way is white-box method, which refers to the use of heat

nd mass equations to build building energy models. And many software

roducts such as EnergyPlus, Dymola, TRNSYS, DOE-2, can solve these

quations conveniently. Wang and Wang adopted this method to obtain

he heating and cooling load [151] , and Ran et al. used this method to

alculate the HVAC energy consumption [152] . The advantage of the

hite box model is its strong explanatory power, but it often takes a lot

f time to input all the detailed building parameters. 

(2) Black-box method 

The second way is black-box method, and it often means using the

istorical data to build the model. Therefore, it does not need the build-

ng’s physical information. And based on the data, the complex relation-

hip between the input and output can be found mathematically. Gao

t al. developed a simplified cooling load prediction by calibrating the

eference day’s load profile according to the weather parameters [153] .

esides, many machine learning algorithms are introduced to build the

nergy model [154] . Compared with the white-box model, the black-

ox model is simpler in the development process, but it needs a lot of

istorical data. 

(3) Grey-box method 



Y. Pan, M. Zhu, Y. Lv et al. Advances in Applied Energy 10 (2023) 100135 

Table 11 

Summary of the approaches for different system used in B2G. 

Systems Approaches Strengths Limitations 

Renewable 

energy system 

Physical-based · Simple 

· Can be applied without measured data 

· The accuracy depends on the data given 

by the manufacturer; 

Data-driven · No need to consider complex physical 

processes; 

· Require a large amount of data; 

Battery system Energy balance · Easy to establish · Ignore the internal changes 

Utility grid Energy balance · Easy to establish –

Building system White-box 

method 

· Describe the clear thermal dynamic of 

buildings 

· Can be applied without measured energy 

data 

· Required detailed information of the 

buildings 

Black-box 

method 

· Do not need the physical information of 

the buildings 

· Require a large amount of data; 

· Unable to reveal the physical process; 

Grey-box 

method 

· Leverage the strengths of white-box and 

black-box methods 

· Require robust modelling design 
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What’s more, the third way is the grey-box model. This method

s between the white-box model and the black-box model, and uses

 simplified physical model and easily accessible data to simulate en-

rgy demand. The most commonly used grey-box method is resistance–

apacitance (RC) model. Bay et al. adopted 3-resistance-2-capacitance

3R2C) model to perform the thermal performance of the target build-

ngs [155] , and Dong et al. adopted 2-resistance-1-capacitance (2R1C)

odel to establish it [156] . The grey-box model makes a certain choice

etween the white-box and the black-box model, so when the other two

odels need insufficient information, the grey-box model may be a bet-

er choice. 

Table 11 is a summary of the approaches for different system used

n B2G. 

.3. Applications of building to grid (B2G) modelling 

By reviewing current studies as shown in Table 12 , in the view of

he whole life cycle of the building, B2G modelling is mainly adopted in

he design and operation stage. And the main purpose of these studies

s to make the buildings more grid-friendly and cut down the operation

ost. 

.3.1. Design 

During the design stage, many scholars focus on the combination

f parameters to make the building more grid-friendly, including the

izing factor of the energy storage system, the capacity of the renew-

ble generation system and so on. In addition, due to the interactive

nd complex energy systems and better performance of net zero energy

uilding (NZEB), which need comprehensive evaluation, some studies

ay more attention to the design of NZEBs. Sun et al. adopted a non-

inear heuristic glow-worm swarm optimization (GSO)-based optimiza-

ion to identify all possible local optimums for designs, and compared

ith the default NZEB settings, the optimization settings performed bet-

er grid-independence and lower cost [157] . Zhang et al. compared the

mpacts of 24 influential parameters in over/under voltage, grid depen-

ence and energy loss and identified the key parameters affecting NZEB

rid interactions by global sensitivity analysis [158] . Salvador et al. pro-

osed a sizing methodology to minimize the energy impact of buildings

quipped with energy storage and generation systems on the electricity

rid, and apply it to a single storey house and an industrial building

159] . The simulation results show that, compared with the standard

ize, the right size leads to a better energy impact. In general, if B2G is

ully considered in the design stage, the optimal parameter combination

f all building components can be determined to achieve lower cost and

reate a more comfortable environment 

.3.2. Operation 

In the operation stage, several studies focus on the control strategy

o reduce the impact on the utility grid and the operation cost. 
18 
For different types of single buildings, they are equipped with dif-

erent systems. And it can be categorized into two types: (1) Commer-

ial building: Razmara et al. designed a real-time optimization frame-

ork based on Model Predictive Control (MPC) to control the power

ow of a commercial building equipped with renewable energy and en-

rgy storage system for demand response (DR) and demand flexibility

DF) programs, which significantly reduce the maximum load ramp-rate

f the electric grid [149] . Li et al. proposed an operation strategy to

chedule the overall power flow in real time based on a dynamic pro-

ramming algorithm, in order to minimize the net present value in a

ypical year, and evaluate the strategy in an office building in Beijing,

hina [160] ; (2) Residential building: Arabzadeh et al. integrated the

ata-driven predictive demand response control for residential build-

ngs with heat pump and on-site energy generation and discussed the

mpact of heat demand predictive error on the performance of con-

rol [141] . Pallonetto et al. compared two DR algorithms (rule-based

nd predictive-based approach) under the same DR price scheme in

 typical residential building in Ireland [161] . And the simulation re-

ults showed that the predictive-based algorithm did better in electric-

ty end-use expenditure, utility generation cost and carbon emissions.

oudarzi et al. studied on a five-story residential building, which en-

rgy scheduling performed via GA, to maximize its profit, and the re-

ults show that for a typical day, the profit was about 11.53 $/day

162] . 

However, in multiple buildings, because of the inherent differences

n building usage and system configuration, the buildings often show

arious sufficiency of renewable energy at same moments. In order to

chieve a win-win situation within the buildings and minimize the en-

rgy impact on the grid, many scholars proposed methods to control at

he building group level. Fan et al. proposed a new collaborative con-

rol to realize the renewable energy sharing amongst 3 NZEBs, and com-

ared it with the traditional control in operation cost and grid friendli-

ess [140] . Pinto et al. explored two multi-agent methods (a centralised

ontroller and a decentralized controller) in the energy management

f four buildings equipped with thermal energy storage and PV panels

150] . Zhang et al. introduced several metrics to quantify building-to-

rid DR flexibility from heat pump aggregations and proposed specific

ontrol algorithms for the aggregations [163] . And the results indicated

hat payback behaviour vary widely depending on the type of residential

uildings. Wang et al. introduced a rule-based carbon responsive con-

rol framework to respond the grid’s carbon emission signals in real time,

nd performed simulation study on a residential community in Basalt,

olorado, United States [164] . And the simulation results showed that

he control can reduce home’s annual carbon emission up to 20.5%. Hur-

ado et al. proposed a dual agent-based method to optimize the inter-

peration of the smart grid–building energy management system frame-

ork and tested it through virtual multi-zone buildings [165] . And it

as shown that it can improve the voltage profile of the feeder while

aintaining acceptable comfort. In all, studying the B2G operation strat-
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Table 12 

Review of the applications of B2G. 

Ref. 

Type of buildings Scale Stage 

Findings 

Commercial Residential 

Single 

building 

Multi- 

buildings Design Operation 

[157] ● ● ● · The developed heuristic multiple objectives 

algorithm based on the GSO to refine the 

optimization of the grid-interactive (NZEB) design 

and it performed well. 

[158] ● · For NZEB, in the aspects of overvoltage, grid 

dependence, and energy loss, the key parameters 

optimization can rapidly improve the considered 

performance. 

[159] ● ● · With the design optimization strategy by fussy 

algorithm, the power purchased from the grid is 

reduced while the produced energy is partially 

self-consumed. 

[149] ● ● ● · The proposed optimization and control 

framework of the B2G system can prevent 

duck-curve problems. 

[160] ● ● ● · Electricity price is the most sensitive parameter 

to the system’s economy through sensitivity 

analysis, and compared with other strategies, the 

proposed strategy has greater flexibility and more 

economical. 

[161] ● ● ● · Compared with rule-based approach, the 

predictive-based method was better in electricity 

expenditure, utility energy cost and carbon 

emission. 

[162] ● ● ● · The optimal schedule obtained from this study 

can maximize the building profit. 

[163] ● ● ● · The payback behaviour of heating units following 

a demand response vary with different types of 

dwellings: in high thermal inertia dwellings it can 

be negligible while in dwelling with low it can 

reach 10% − 50%. 
[164] ● ● ● · The carbon responsive controllers can reduce the 

homes’ annual carbon emissions by 6.0% to 

20.5%. 

[165] ● ● ● ● · By an agent-based approach and Particle Swarm 

Optimization, an integrated simulation show that 

the operation of the building can be dynamically 

changed to support the voltage control of the local 

power grid. 

Notations: NZEB = net zero energy building; GSO = glow-worm swarm optimization; B2G = building-to-grid. 
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gy in multiple buildings can not only reduce the operation cost through

he cooperation between different buildings, but also reduce the pres-

ure on the utility grid. 

. Future perspectives and challenges 

Researchers also pointed out the future perspectives and the ques-

ions to be solved in the field of building energy modelling (BEM) based

n the limits of their theoretical or case study results. We summarize

hem into following five research orientations which are corresponding

o Chapter 2 ∼6 in this paper: 
(1) Performance-driven design. 

The future perspectives and challenges of performance-driven design

emain in the generation, simulation, and optimization. The generation

hallenges are about how to encode the design logic, which is the core

dea of the concept of “generative design ”. In the process of genera-

ive design, designers should become the developers of the algorithms

hat can adjust the design parameters automatically to meet the dif-

erent demands of clients. Similarly, the performance-driven methods,

eally shifted from the conventional architectural design, can focus on

he concept generation logic rather than the result of it. The current al-

orithms handle metric variables easily but lack variation in geometric

orms. It is delicate to expand the design space while maintaining ra-

ionality. In practice, architects usually parameterize the massing con-

ept and the façade texture. The extreme freeform as cellular automata

ack architectural interpretation. Apart from the building shell, the inner
19 
pace topology also affects the energy/ventilation performance, which

s rarely studied. 

Although bestowed with the increasing computing power, the simu-

ation may still be time-consuming in each iteration, especially for CFD.

mproving the physical model and the equation solver is challenging.

owever, one can make it scalable with proper space-time resolution to

uit the design problem or use the surrogate model, such as the instant

FD feedback from the neural network. Another challenge is the interop-

rability between the design document and the simulation model, espe-

ially in geometry. For example, the freeform envelope of modern archi-

ecture requires tessellation for energy simulation, and robust meshing

or CFD is a must for automated iteration. 

The optimization steers the design process to the final decision. Fu-

ure research should be orientated towards improving the efficiency of

earch techniques and approximation methods. With presumptive de-

ign inputs, further effort is required to target the sensitive variables

nd quantify the uncertainties of the result. In practice, the integrated

odelling platform such as Rhinoceros may collect the results and guide

he model generation, which also challenges the architects to be versa-

ile at programming and algorithms. 

(2) Model-based operational performance optimization. 

Simulation for optimization is an important step to accomplish en-

rgy saving, carbon emission reduction and thermal comfort during the

peration of buildings. Nowadays, the methodology of building oper-

tional optimization usually refers to model predictive control (MPC),

here the simulation results of the models are the key points that affect
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he optimal performance of MPC. In many recent studies, researchers

ointed out that the efficiency and effectiveness of model simulation

hould be further improved in the future work, which means that the

erformance of building simulation for optimization can be improved

rom two aspects: the computation speed of simulation and the accu-

acy of simulation results. 

For computation speed, there is a requirement that must be met

n engineering practice: the time consumed for one-step optimization

hould be less than the time step applicable for real-time control. In

any application scenarios, the minimum time granularity for analysis

ill reach 10 min. After removing the time from calculation to conver-

ence required by the optimization algorithm, the simulation time left

or the model will be even less than 10 min. It means that the time cost

y computation should also be considered as a constraint of the opti-

ization algorithm applied for operational control. 

On the other hand, the model should not be too simple to reduce too

uch accuracy if only pursuing the computation speed. The similarity

etween the model/predictive results and the reality will directly affect

he effectiveness of MPC. Therefore, how to strike a balance between

he computation speed and accuracy of the model in MPC has become a

ot topic that many scholars and engineers are devoting themselves to.

(3) Integrated simulation using data measurements for digital twin. 

Digital twins are usually considered the inevitable result of the evolu-

ion of BIM concepts combined with the integrated information between

igital and physical buildings. Although on the technical level DT is fea-

ible, the inadequate development of the following aspects the cost still

imits its vigorous development. From another perspective, these chal-

enges can also be understood as the future development direction of

esearch related to the integrated simulation for DT. 

The methodology to keep the integrity and accuracy of data is re-

uired. Enough data with high quality is very important to the inte-

rated simulation for DT. To obtain such data, a large number of differ-

nt types of sensors of high quality will be used in the whole life cycle

f buildings, bringing a large economic burden. The maintenance and

verhaul of sensors also cost a lot. The necessary development trend in

he future is to reduce the cost of sensors and improve the accuracy of

ensors. 

The performance of timely simulations and feedback is another as-

ect to be considered for the integrated simulation for DT. Current sim-

lation is typically based on historical data instead of real-time data,

nd also costs much time to finish. The time lag caused by historical

nput data and the calculation process usually leads to irrelevance be-

ween virtual models and real-time building conditions. So, fast and on-

ine look-ahead simulations should be developed to ensure an accurate

escription of the real-time physical parameters change. 

In addition, the applicable scale range of the methodology of sim-

lation should also be extended with the expansion of the use of DT.

t present, DT is mostly used in single buildings or specific systems,

nd few researchers study its application on an urban scale. On the ur-

an scale, data in more types and quantities are needed to ensure that

he virtual city can describe the real city correctly. For instance, DT on

n urban scale needs to interface with various energy data sources and

onitor the flow of residents. DT on the urban scale can play a signifi-

ant role in achieving smart cities and making future city policies. 

(4) Building simulation supporting urban energy planning. 

The approaches and applications of UBEM indicate that building

rchetype modelling plays a crucial role in predicting urban energy pro-

les. However, it is still possible to improve the accuracy of building

rchetypes by uncertainty analysis and model calibration. As a conse-

uence, the following summarizes the main research gaps to be solved

n UBEM. 

In modelling building archetypes, uncertainty analysis can be used

o assign a probability distribution to uncertain parameters (e.g., indoor

ir temperature and infiltration rate). Future UBEM studies can delve

nto this and determine the building parameter values in a statistically

ccurate way. Moreover, regarding the uncertainty associated with sim-
20 
lified archetypes, the reliability of the UBEM is closely related to the

alibration of models. Through the calibration process, various inputs

o the model are fine-tuned so that the predicted values of the outputs

an be close to those obtained experimentally. 

The influence of occupant behaviour on building energy consump-

ion is one of the most studied topics recently. Different occupants-

elated models are developed, achieving realistic modelling of human

ctivities with existing deterministic and stochastic models on the build-

ng level. However, models accounting for the urban-level occupants’

ehaviour have rarely been considered. As a solution, integrating UBEM

ith urban mobility models, which essentially describe human activities

n both space and time, is likely to improve the model’s accuracy. 

The analysis of the energy generation infrastructure (especially the

ecyclable energy) is also an important topic for the studies on modelling

he energy performance of urban building stock. For example, building-

ntegrated technologies such as photovoltaic systems are particularly

mportant to be included in UBEM. At the design stage of a photovoltaic

ystem, the solar potential analysis such as identifying roof features and

rban-level data on available installed area is meaningful, which can

id energy system modelling. Therefore, it would be helpful in future

tudies to integrate the UBEM with urban energy system models (e.g.,

ocal energy utilities and energy distribution systems). 

(5) Modelling of building-to-grid interaction for demand response. 

With the continuous advancement of building energy conservation

nd carbon reduction, how to better understand and handle the interac-

ion between buildings with the grid has received extensive attention.

hrough the investigation of the literature in this field, we believe that

he following problems still need to be solved urgently. 

The future modelling method should take full advantage of the flexi-

ility of the built environment. Most of the current research is relatively

imple for the model of building systems, and the flexibility of the built

nvironment is underutilized. Besides, due to the rapid changes in grid

rices and photovoltaic power generation conditions, the building en-

rgy consumption simulation need to keep up with them. Thus, how to

ake full use of building flexibility and reflect it in grid interaction is a

ig challenge. 

The large-scale model and control will be required for the simula-

ion. Currently, as in our literature review above, most studies in B2G

ocus on the single building or multiple buildings, and few studies ad-

ress larger scales. However, looking at the larger urban scale, how to

ffectively control and cooperate between different types of buildings,

etween different micro-grids is still unknown. 

The new B2G modelling method should fill the missing of the impact

f occupancy. As we all know, occupancy has a great impact on build-

ng energy consumption, and many studies focus on it. However, in the

odelling of B2G, few scholars took occupancy into account, which also

eads to the lack of the occupancy influence on the thermal comfort and

nergy consumption in this field. Therefore, how the occupancy affects

he optimization of the B2G operation is still not addressed. 

. Conclusions 

The literature reviewed in this paper describes the scope and state

f building performance simulation and its application in multiple sce-

arios during the life cycle of buildings. In general, this review sum-

arized and sorted out the relevant principles/methods/tools that are

ost suitable for engineers and researchers, as well as some case studies

hat are of academic or practical interests. In particular, this review was

resented as five individual parts according to the objectives of build-

ng performance simulation in application: performance-driven design,

odel-based operational performance optimization, integrated simula-

ion using data measurements for digital twin, building simulation sup-

orting urban energy planning, and modelling of building-to-grid inter-

ction for demand response. 

The current observations on the research activities in this paper in-

icate that solutions through building performance simulation includ-
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ng automated building design, establishment of building energy model,

odel predictive control for optimization, digital twins and demand re-

ponse are continuously emerging. For the construction industry, these

evelopments can lead to an overall improvement in building perfor-

ance, such as emission reduction of CO 2 related to buildings, using

r living experience in buildings with high quality, or productivity in-

rease of building design and maintenance personnel. This also shows

hat building performance simulation will play a key role in the future

evelopment of the architectural industry. 

Building performance simulation is really a big theme. It is obviously

nrealistic to complete a detailed introduction of all aspects covered in

nly one review paper. Therefore, in this paper, we mainly introduce

he research direction and the status of BEM that most researchers con-

erned in the past decade. In addition, we also concluded various kinds

f questions to be solved in the future in such research directions that

re still in the initial stage of development as the future prospects of rele-

ant fields based on the literature review. In sum, the future perspectives

nd challenges of building performance simulation can be summarized

s the following four aspects: acquiring high quality data by new hard-

are or software technologies, fast and effective algorithm for modelling

nd optimization, improvement of intelligence during the workflow in

uilding design and operation, modelling method on a large scale such

s urban simulation. In different application scenarios of BEM, the the-

retical or engineering problems due to the above challenges will be

ncountered more or less. The future goal of academic researchers and

ngineers in industry is to find or further optimize the solutions to such

roblems. 
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