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ABSTRACT 
Although menu selection has been extensively studied in HCI, most 
existing studies have focused on sighted users, leaving blind users’ 
menu selection under-studied. In this paper, we propose a com-
putational model that can simulate blind users’ menu selection 
performance and strategies, including the way they use techniques 
like swiping, gliding, and direct touch. We assume that selection 
behavior emerges as an adaptation to the user’s memory of item 
positions based on experience and feedback from the screen reader. 
A key aspect of our model is a model of long-term memory, predict-
ing how a user recalls and forgets item position based on previous 
menu selections. We compare simulation results predicted by our 
model against data obtained in an empirical study with ten blind 
users. The model correctly simulated the efect of the menu length 
and menu arrangement on selection time, the action composition, 
and the menu selection strategy of the users. 

CCS CONCEPTS 
• Human-centered computing → Accessibility theory, con-
cepts and paradigms; Empirical studies in accessibility; HCI 
theory, concepts and models; User models. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specifc permission 
and/or a fee. Request permissions from permissions@acm.org. 
CHI ’23, April 23–28, 2023, Hamburg, Germany 
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00 
https://doi.org/10.1145/3544548.3580640 

KEYWORDS 
accessibility, menu selection, computational rationality, boundedly 
optimal control, deep reinforcement learning 

ACM Reference Format: 
Zhi Li, Yu-Jung Ko, Aini Putkonen, Shirin Feiz, Vikas Ashok, IV Ramakrish-
nan, Antti Oulasvirta, and Xiaojun Bi. 2023. Modeling Touch-based Menu 
Selection Performance of Blind Users via Reinforcement Learning. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems 
(CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 
18 pages. https://doi.org/10.1145/3544548.3580640 

1 INTRODUCTION 
Smartphones have become the go-to device for many blind users 
to access information and communicate with others [1, 57]. Menu 
selection (i.e., selecting items on a menu) is one of the most basic 
and common tasks that blind users perform on smartphones [30, 
40]. A computational model that can simulate blind users’ menu 
selection behavior would be a valuable tool for designing, adapting, 
and evaluating accessible user interfaces (e.g. SUPPLE [20]). For 
example, by simulating user’s menu selection behavior, a model can 
serve as a basis for testing a menu design even before releasing it 
to end users. Similarly, using a computational model in an inverse 
manner (i.e., ftting a model to empirical data) allows inferring user-
specifc characteristics that can be used to adapt a menu system to 
individual preferences [38]. It is critical that the needs of diferent 
groups, like those of visually impaired users, are taken into account 
when building menu systems. 

Although menu selection may appear rather easy for sighted 
users, it involves rather a complex behavior for blind users. To 
select a menu item, a blind user frst navigates to the item with 
the auditory feedback [63] from a screen reader (e.g., VoiceOver in 
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(a) The proposed computational model 

(b) Swiping action (c) Gliding action (d) Direct touch action (e) Selection action 

Figure 1: We develop a computational model for predicting both performance and strategies of non-sighted users using screen 
readers for menu selection. A reinforcement learning (RL) agent simulates how blind users perform menu selection task. The 
agent frst partially observes the menu selection environment based on auditory feedback. It then utilizes a memory model, 
which considers long-term interaction history, to maintain the menu item position and updates belief of menu item position 
based on the memory. After that, the agent uses a Deep-Q Network to map the position belief to the optimal action (one of the 
swiping, gliding, direct touch and selection actions) that leads to the highest expected reward, i.e. shortest selection time. 

iPhone [4] or TalkBack in Android [25]), and then selects the item 
by double tapping (Fig. 1e). The current smartphone (e.g., iPhone or 
Android) typically provides the following three navigation actions 
and each has its own strengths and weaknesses: 

• Swiping (Fig. 1b): a quick fnger fick on screen which will 
move the selection focus by one item. It is easy to perform 
but it only supports sequentially navigating the menu. 

• Gliding (Fig. 1c): gliding the input fnger on the screen to 
explore. It allows a user to check the item the fnger passes 
through during exploration, but the fnger has to stay on the 
screen during the entire process. 

• Direct touch (Fig. 1d): directly moving the fnger over the 
air to land on an item in the menu. It enables quick access 
to a particular item but controlling the landing position of 
the fnger can be difcult without visual feedback. 

Given a menu design, a blind user may choose any of the three 
navigation actions, or combination of them to search for and then 
select the menu item. Their selection strategy depends on a complex 
way on their familiarity with the menu design, memory strength 
for item positions, capability of executing actions, and their habits. 
For example, some menu layouts contain information that may help 
memorize and locate menu items such as the alphabetic arrange-
ment where menu items are ordered alphabetically and grouped 
arrangement where similar items are grouped together [63]. A blind 
user may develop diferent memory strength of items in diferent 

layouts, which afect their interaction behaviors. Having a computa-
tional model that can simulate how a blind user selects menu items 
on diferent layouts would not only advance our understanding on 
user’s interaction behaviors on this important interaction task but 
also serve as a useful tool in menu design. 

In this paper, we research and develop a computational model 
that simulates how blind users select items in a linear menu with 
fnger touch. Our model is based on the assumption that the blind 
user’s menu selection behavior is boundedly optimal [22, 29, 43, 52, 
54, 55]. Users try to pick the best interaction strategy but they are 
limited by their capabilities. More technically, users are assumed 
to try to pick the best action based on a reward estimate that is 
jointly shaped by their preferences and bounds, where these bounds 
arise from cognition, physiological capabilities, and the designed 
interaction environment [52]. More specifcally, we assume that a 
blind user chooses the best action (e.g., swiping, gliding, or direct 
touch) in a menu selection task (control problem) to minimize 
selection time (preference) in light of their perceptual limits and 
memory (bounds) on a vertical menu (interaction environment). We 
also assume that blind users’ observations are limited to auditory 
feedback only [63], and that they could learn the positions of the 
items with sufcient iterations of the task [26, 28]. 

In the rest of the paper, we develop and evaluate an RL (rein-
forcement learning) -based predictive model for blind users’ menu 
selection behavior (Fig. 1). We formulate the menu selection as 
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a stochastic sequential decision problem [8] where the agent (the 
user) performs one action (swiping, gliding, direct touch and se-
lection) at each time step and fnally selects the intended menu 
item. We particularly model the menu selection process as a Par-
tially Observable Markov Decision Process (POMDP) [36, 60] as 
the agent (simulating a blind user) only has partial access to its 
environment via auditory, rather than visual feedback. Based on 
so-far experienced feedbacks, the agent holds a belief about the 
position of each menu item, which comes from the memory model. 
The memory model, rooted on prior HCI work, probabilistically 
describes how the blind user memorizes and recalls the menu item 
position, and updates upon each action taken. Based on the belief, 
the agent chooses from available actions that maximizes the total 
expected rewards: negative value of the time cost. Under this setup, 
we train an optimal policy (i.e., menu selection strategy) for select-
ing a menu item in a given layout via Deep Q-Network (DQN) [49]. 
The obtained optimal policy mimics blind users’ menu selection 
behaviors. To sum up, the technical contribution of this paper is an 
extension of generative POMDP-based user modeling to the case 
of menu selection by blind users. 

We evaluate the model by comparing the simulated selection 
time and action composition to empirical results in a user study. 
Evaluation results show that the proposed model can successfully 
simulate the blind users’ menu selection behavior. Specifcally, the 
model can simulate the selection time with a mean absolute error 
0.39 s (mean absolute percentage error: 6.71%) as well as simulate 
the learning efect during the menu selection, i.e. the selection time 
decreases as the user study proceeds. It can simulate the efect 
of menu length on the selection time, i.e. 10-item menus have 
longer selection time than 6-item menus. For the 10-item menu, 
it can also simulate the efect of menu arrangement (alphabetic, 
grouped, random) on the selection time, i.e. random menu has the 
longest selection time and grouped menu has the shortest selection 
time. Besides the selection time, our model can simulate action 
composition that were used for the menu selection task at a small 
mean absolute error, which is 3.89%, and it can also predict the 
menu selection strategies used by the users. At the end of the paper, 
we discuss potential applications and needs for further development 
of the model. 

2 RELATED WORK 
This work is positioned at the intersection of three research areas: 
1) accessibility for touchscreens, 2) models of menu selection, and 3) 
modeling human interactive behavior with reinforcement learning. 

2.1 Accessibility for Touchscreens 
Touch screens are widely used in diferent devices, including smart 
phones, tablets, laptops, GPS devices and smart watches. To make 
these devices accessible for users who are visually impaired, assis-
tive technologies such as screen readers, voice control and captions 
are widely available across diferent operating systems [4, 24]. Pre-
vious research has addressed the need to develop these features 
by exploring various alternative interaction techniques. Following 
the increase in prevalence of touch screen devices in the 2000s, 
Kane et al. [37] presented the Slide Rule: a multi-touch interac-
tion technique using audio output only and diferent gestures as 

inputs. Other similar techniques relying on diferent gestures as 
input modalities include the MessageEase [51] (combining sliding 
and tapping) and NavTouch [27] (using directional gestures). 

Despite the improvements in the understanding of interaction 
techniques for visually impaired users, a problem remains that in 
order to access features on a device visually impaired users need to 
navigate through, sometimes, complex user interfaces. For instance, 
Khan and Khusro [39] addressed this issue by presenting a user-
adaptive framework for generating accessible user interfaces, taking 
advantage of information related to the context, screen layout and 
interaction pattern of the user. To this end, user modeling can help 
improve accessibility of diferent layouts. To the best of our knowl-
edge, user models capturing interaction behavior of users who are 
blind in realistic applications is less explored in the literature. 

2.2 Modeling Menu Selection 
Modeling target selection behavior on menus and estimation of 
selection time with sighted users have been well-studied [2, 5, 6, 
13, 15]. Fitts’ law [19, 48], one of the well-known pointing model, 
is suitable to describe the behavior of target selection with gliding. 
However, it assumes that the user is fully aware of the position of 
the target before gliding. It was not designed to model people with 
vision impairment. There were some existing works that tried to 
model the target selection time of blind users based on Fitts’ Law [16, 
17]. Ko et al. [41] presented a mixture model for gliding strategies 
blind users employ when interacting with touchscreens. However, 
the more generic problem of how blind users make decisions on 
menu selection strategies is still an open research problem. 

Some works viewed the menu selection task as a stochastic 
sequential decision problem and used reinforcement learning to 
estimate user’s behavior [13, 61]. Chen et al. [13] modeled the menu 
selection behavior of sighted people as a Markov Decision Process 
and trained the policy with a model-free algorithm. Todi et al. [61] 
proposed a model-free based reinforcement learning method to 
select the optimal adaptation of the layout given the specifed de-
sign. However, as far as we know, little existing work modeled how 
blind users perform menu selection task given diferent navigation 
methods: gliding, swiping, and direct touch. We follow the rein-
forcement learning routine to design an adaptive model for menu 
selection behavior of blind users. 

2.3 Modeling Interactive Behavior with 
Reinforcement Learning 

During the last ten years, there has been a surge in research ap-
plying reinforcement learning (RL) to model human interactive 
behavior. This line of research is usually based on the theory of 
computational rationality [22, 29, 43, 52, 54, 55]. A core assump-
tion is that the user makes their behavioral choices governed by 
an attempt to optimize performance of interaction which is opti-
mally bounded by the user’s ability and the environment, known 
as bounded optimal control [52]. The interaction problem is usu-
ally modeled as a Partially Observable Markov Decision Process 
(POMDP) [36, 60]. The RL is a solver to the POMDP estimating 
users’ behavior with bounded optimality. This theory was success-
fully applied in recent research works, e.g. menu selection [13, 38], 
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visual search [14, 35, 62], multitasking [10, 33, 34], typing [32, 56], 
pointing [7, 11], decision making [42, 53] and drawing [58]. 

In the only RL-based model of menu selection behavior so far, 
Chen et al. [13] modelled menu selection strategies of sighted people 
as optimal adaptation to perceptual bounds, assuming that visual 
primitives – like shape and word content – can be sampled at 
diferent rates and accuracy by the visual system depending on 
their eccentricity. They showed that the search strategy depends, 
in complex way, on menu length and its organization. This paper 
presents a model for menu selection behavior of blind users, which 
assumes that recognition (of auditory feedback) and recall (of item 
positions) play a crucial role in determining a search policy. 

3 MODELING MENU SELECTION AS 
BOUNDEDLY OPTIMAL CONTROL 

We frst formally describe the problem of selecting one item in a 
vertical linear menu with touch input, using auditory feedback only, 
as follows: 

Given a menu with � items, denoted by M = {�1,�2, 
· · · ,�� }, and a target menu item �� , select the item 
�� from M as quickly and accurately as possible using 
swiping (Fig. 1b), gliding (Fig. 1c), direct touch (Fig. 1d) 
and selection (Fig. 1e) actions. 

We assume that the blind user chooses actions from (1) swiping, 
(2) gliding, (3) direct touch, and (4) double tapping to confrm the 
selection, to optimize the menu selection time under the constraint 
of the memory about the menu layout and the uncertainty presents 
in actions, especially in direct touch. 

We further assume that menu selection is a sequential decision 
problem [8] where the agent (blind user) performs one action at a 
time to select the intended menu item and earlier actions infuence 
how quickly a user can fnd the target item. Since the blind user 
only use auditory feedback, they have an incomplete access to the 
item positions on the layout. Hence, we model the menu selec-
tion problem as a Partially Observable Markov Decision Process 
(POMDP) [36, 60]. The agent maintains a memory of item positions 
and updates a belief of the position, an estimation of the state, at 
every time step. It makes a decision of which action to use based 
on the belief. We use the Deep-Q Network (DQN) [49] to learn an 
optimal policy, to fnd an optimal sequence of actions to reach a 
menu item. We assume this optimal policy would mimic the blind 
user’s menu selection behavior. 

In the following sections, we frst formulate the menu selection 
as a POMDP and then introduce models describing users’ memory 
of item positions and uncertainty in actions (especially in direct 
touch). 

3.1 Modeling Menu Selection as Partially 
Observable Markov Decision Process 

We model how a blind user selects a menu item as a POMDP (Fig. 2). 
Below is the model setup: 

State (�): At each time step � , the environment is in a state 
�� = {�target, �fnger, �focus}, where �target is the position of the target 
menu item, �fnger is the fnger position in the menu, and �focus is 
the focused menu item position in the menu. 

Observation (�): At every time step, the agent cannot directly 
observe the target item position �target. We assume that the agent 
(simulating the blind user) can estimate the �fnger and �focus by 
estimating the relative position of fnger on the phone-screen.The 
rationale is that as the user holds the phone with one hand, the 
user will likely be able to sense the phone frame with the holding 
hand and thus estimate the fnger position relative to the phone. 

Belief update. As the agent does not observe �target directly, it 
maintains a position memory (introduced in Section 3.2). Instead of 
assuming a Kalman flter as a state estimator [12], we assume that 
the position memory should consider the time of visits and amount 
of visits to menu items. When the agent makes a new observation, 
it adds a visit of the menu item at �focus to the position memory. The 
agent then updates the position memory following Section 3.2. It 
represents the belief of �target by a probability vector pi, indicating 
the probability that the target menu item is at each position in the 
menu layout, based on the position memory. 

Action (�): After making an observation, the agent guesses a 
target position based on the belief (by sampling a position in the 
menu based on pi). It then takes an action �� to move toward the 
sampled target position or select the current focused item. The 
available actions are: 

• Swiping (Fig. 1b): Moving the selection focus by one item 
towards the sampled target position. 

• Gliding (Fig. 1c): Gliding the fnger to the sampled position. 
In one gliding action, we assumed that the user would glide 
continuously to the intended position and would not pause 
in the middle of the gliding. If the user paused in the middle 
of gliding to perceive an item, and then resumed gliding after 
obtaining information about the item, it will be modeled as 
two gliding actions: one before, and one after the pause. 

• Direct touch (Fig. 1d): Directly touching the sampled target 
position. Due to uncertainty [44], the real landing position 
is modeled by a Gaussian distribution (Section 3.3). 

• Selection (Fig. 1e): Selecting the focused menu item with 
double tapping. 

At the end of swiping, gliding and direct touch, if �focus reaches the 
sampled target position, but the item is not the target item (based on 
the auditory feedback), the agent samples another diferent target 
position based on pi. 

After taking an action, the environment enters a new state. For 
gliding and direct touch, we assume the �focus is the same as �fnger
because both actions will move the input focus to the item under-
neath the fnger. For swiping and selection actions, we assume that 
�fnger stays unchanged. In other words we assume a user swiped 
and double tapped on the similar region of the screen. Therefore, 
after these two actions, the �focus and �fnger could be diferent. For 
example, �fnger could be at the top of the screen (i.e., the user al-
ways swiped at the top of the screen), and �focus could be at an item 
in the center of the screen. 

Reward (�): The agent receives an immediate reward from the 
environment once it takes an action. We defne the reward of an 
action as the negative value of its time cost. We estimate the time 
cost MT based on empirical fndings in a menu selection user study 
(see Section 5.1 and Table 2). In addition, for the selection action, 
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Figure 2: The reinforcement learning framework for the menu selection problem. We model the time cost MT for each action 
in Section 5.1 based on empirical results from a menu selection user study. 

if the agent selects the correct menu item, there is an extra +100 
reward, otherwise -100 reward. The ±100 reward values provide 
enough incentives to guide the agent for successful selections and 
to prevent it from attempting the selection action all the time. 

Discount Rate 0 ≤ � < 1: The agent receives a scalar reward 
after taking each action. By maximizing the expected total rewardÍ∞� [ =0 �

� � (�� , �� )], the optimal policy can be found. � 
Based on the above formulation, at each time step, we represent 

the belief of the agent by a vector [���, �fnger, �focus, pi], where 
��� is the similarity between the current focused item and the 
target item, i.e. ��� = 1 if they are the same, otherwise ��� = 0. 
We normalize the �fnger and the �focus to [0, 1] range for better 
training performance based on the menu length. As the state space is 
continuous and the action is discrete, we use a model-free algorithm 
DQN [49] to learn the optimal policy. We choose DQN because it 
can handle well the reinforcement learning problems where the 
state space is continuous and the action space is discrete [46]. 

3.2 Memory Model 
As the blind users’ menu selection is guided by the memory of menu 
item positions [26, 28], it is important to develop a model describing 
the memory strength of item position based on visiting history. To 
this end, we propose a Gaussian position memory model. 

Given the long-term memory of interaction, we assume that the 
recalled position of an item �� follows a Gaussian distribution [5], 
i.e. �� ∼ N(�� , �� ), where �� is the actual position of the item and 
�� is a standard deviation related to the total memory �(�� ) that 
the user has about the item. We calculate �� as follows 

��� 
�� = , (1)

1 + �(�� )
where ��� is a parameter representing the initial standard devia-
tion. We use the learning component from [61] to compute �(�� ), 
which considers all the visiting history to �� : 

�∑ 
�(�� ) = (� − � � )−� (2)

� 
�=1 

� where � is the current time, � is the time of the �-th visit to the 
� 

item, and � is a decay parameter and we also set it as 0.5. With 

this formulation, the recalled item position becomes more accurate 
with every visit as �(�� ) increases. That is, the more a menu item 
has been visited, and the visit is more recent, it is more likely for 
the user to accurately recall the position of the item. 

We use the position memory in the proposed model as follows. 
We represent the probability of the recalled position of �� at each 
position in the menu as pi = {�1, �

� 
2 , · · · , �� }, where � is the menu 

� � 
length, �� means the normalized probability that �� is the �-th

�
item in the menu layout based on the Gaussian distribution andÍ 
� ��

� = 1. 
Menu Arrangement. We also assume that some menu arrange-

ments could help the blind user memorize item positions [59]. For 
example, for alphabetic arrangement, if the current item starts with 
letter “C" and the target menu item starts with letter “K", the user 
may determine the target menu item is below the current item. 
Similarly, for the grouped arrangement, the user may determine in 
which group the menu item is. Based on the menu arrangement, 
we apply a mask vector ���� = {��1,��2, · · · ,��� } to the pi, 
where the mask ��� is set to 1 if it is a possible position, otherwise 
0. Then the updated vector will be pi = {� × ��1 × �1, � × ��2 ×� 
�
� 
2 , · · · , � × ��� × �� }, where � is a normalization term. 

� 

3.3 Direct Touch Uncertainty Model 
The direct touch action – directly moving the fnger over the air 
to land on an item in the menu, is an action that could result in 
uncertainty due to the lack of visual feedback and uncertainty 
in fnger touch [44]. We propose an action uncertainty model to 
describe the uncertainty of the menu item that the fnger lands on. 
Specifcally, we assume the real landing item can be modeled by a 
Gaussian distribution as it is usually a good candidate as the least-
informative default [31]. The mean of the distribution is the position 
of the intended item, and the standard deviation is controlled by a 
parameter ���� . 

4 MENU SELECTION USER STUDY 
We conducted a user study to understand how blind users perform 
menu selection in linear menus. The purpose of the study is two-
fold. First, we aimed to empirically determine the parameter values 
for the proposed model (e.g., duration for a swiping action). These 
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parameters are crucial for the model to generate interaction be-
haviors via reinforcement learning. Second, we can evaluate the 
performance of our model by comparing the generated with the ob-
served interaction behaviors, and by examining whether the model 
can predict the menu selection time and actions from real users. 

4.1 Participants and Apparatus 
We recruited 10 legally blind participants (4 females, 6 males) who 
age between 34 and 60 and are unable to perceive any visual feed-
back useful to the menu selection task. Table 1 shows the demo-
graphic information of the participants in the user study. The study 
was IRB-approved and all the participants participated under in-
formed consent. They were recruited through a non-proft organi-
zation that provides rehabilitation services for people with vision 
impairments. All the recruited participants are daily mobile phone 
and screen reader users. The participants were asked to perform 
the menu selection tasks on a Google Pixel phone with 1080×1920 
pixels and 441 PPI. The experiment APP ran on Android API 29. 
The modifed TalkBack was based on version 8.1. The navigation 
scaling (the option to navigate via heading, links or other level of 
components) was turned of. 

ID Age Gender Legally Blind? Diagnosis 

1 38 Female Yes Congenital glaucoma 
2 41 Male Yes Congenital glaucoma 
3 55 Male Yes Optic atrophy 
4 36 Female Yes Congenital glaucoma 
5 46 Male Yes NA 
6 34 Male Yes Born with no vision 
7 48 Female Yes Leber congenital amaurosis 
8 59 Female Yes Congenital cataract 
9 60 Male Yes Detached retina 
10 56 Male Yes Retinal degeneration 

Table 1: Demographic information of our participants. All of 
them are legally blind and daily phone users. (“NA” means 
the participant was not willing to share the information.) 

4.2 Experiment Design 
We used a [2×3] within-subject design. The two independent vari-
ables were: (1) menu length with 2 levels (6-item and 10-item lin-
ear menu), and (2) menu arrangement with 3 levels (Alphabetic, 
Grouped and Random). The grouped arrangement is based on the 
menu attribute (i.e. animals and fruits). In each group, the items 
are in alphabetic order. We adopted the alphabetic and grouped 
arrangements because they are commonly used [63]. 

We picked two diferent types of item labels for the participants 
to select: animals and fruits, each made up half of the menu. For 
6-item menu, the item labels were apple, cherry, eagle, jaguar, or-
ange, penguin. For 10-item menu, the item labels were apple, bear, 
cherry, eagle, jaguar, lemon, orange, peach, penguin, zebra. Instead 
of adopting practical menu items such as “Personal Hotspot” in 
phone settings, the names of animals and fruits are easier for the 
participants to recognize and distinguish from other items. Follow-
ing previous works in menu selection [15, 47], smartphone APP 

launching [50], and target selection [3, 18, 45, 64], we generated 
number of occurrences of each item from the Zipf distribution: 

1/�� 
� (� ; �, � ) = (3)Í 

�
� 
=1 (1/�� ) 

where � is the number of menu items, � ∈ {1, 2, · · · , � } is the rank 
of each menu item, and � is the value of the exponent characterizing 
the distribution and is set � to 1 in this paper. Among 60 trials within 
a condition, the number of occurrences for each item in a 6-item 
menu would be 24, 12, 8, 6, 5, 5 and the occurrences for each item in 
a 10-item menu would be 20, 10, 7, 5, 4, 3, 3, 3, 3, 2. The frequencies 
were randomly assigned to each menu item, and the order of the 
60 trials were randomized. We counter-balanced the user study 
by using random orders of the 6 conditions for each user (2 menu 
lengths × 3 menu arrangements). In the user study, we set the 
height of each menu item as 10 mm based on the material design 
guideline [23]. 

In total, there were 3,600 trials (2 menu lengths × 3 menu arrange-
ments × 60 trials in each condition × 10 participants). During the 
user study, the swiping, gliding, direct touch, and double-tapping 
actions could be recognized as accessibility events1. Every accessi-
bility event and its timestamp were recorded for further analysis. 

4.3 Procedure 
At the beginning of the study, we let the participant sit in a chair 
near a table in a comfortable position, and hold the phone with one 
hand and use the other to interact with the phone. We verifed if the 
participant knew the actions that the system supported – swiping, 
gliding, direct touch, and selection (illustrated in Fig. 1), by asking 
the participant to perform several trials in a warm-up session. The 
item labels in the warm-up session were popular cities around the 
world. 

After the warm-up session, the participants were asked to per-
form 6 diferent conditions (2 menu lengths × 3 menu arrange-
ments). At the beginning of each trial, the screen reader would 
read out “Next Target”, followed by three time of the target item 
to inform the participant which menu item she should select. For 
example, if the target item is “Apple”, the screen reader would read 
out “Next target, apple, apple, apple”. 

After learning the label name of the target, the trail began. The 
participant could use gliding, swiping, or touch touch to navigate 
to the target item, relying the audio feedback from TalkBack in 
Android. After the target item was reached, the participant could 
double-tap the screen to select the target. If it was a correct se-
lection, the screen reader would hint “Next target”, followed by 
reading out what the next target was repetitively. If it was an in-
correct selection, the screen reader would speak “Wrong selection”, 
followed by indicating what the correct target should be. Besides 
the auditory feedback, haptic feedback was also enabled to indi-
cated the number of the tapping (for selection action). After all the 
required trials were completed successfully within a condition, the 
screen reader would say “Task fnished, thank you”. Fig. 3 shows a 
participant during the study. 

1https://developer.android.com/reference/android/view/accessibility/ 
AccessibilityEvent 

https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
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Figure 3: One participant was selecting a menu item. 

4.4 Results 
We analyzed the selection time and the action used in the user 
study. The selection time is defned as the duration starting from 
the beginning of a trial to the moment that the target menu item is 
selected by the participant. 

4.4.1 Data Cleaning. We frst cleaned the data by removing out-
liers, which happened when users forgot the target name or inter-
rupted by unexpected events, e.g. resting in the middle of a trial. 
Specifcally, for each condition, we removed the trials whose selec-
tion time is outside of 3 standard deviations of the mean value. In 
total, we removed 77 trials (out of 3,600 trials), which is 2.14% of 
the data collected. We used the cleaned dataset for further analysis. 

4.4.2 Selection Time. Fig. 7a shows the selection time (standard 
deviation in parentheses) for each condition in the experiment. The 
selection time for 10-item menus was longer than that of 6-item 
menus. For 6-item menus, the selection time for diferent menu 
arrangements were similar. While for 10-item menus, the grouped 
layout had the shortest selection time, and the selection time for 
the random menu layout was higher than that of the others. 

We ft a linear mixed efects model [21] with the menu length 
and menu arrangement as fxed efects, and the participants’ ID and 
trials as random efects. The type III ANOVA results showed sig-
nifcant main efect for menu length (�1, 3450 = 91.51, � < 0.001), 
menu arrangement (�2, 3450 = 7.27, � < 0.001), and one signif-
cant interaction efect: menu length×menu arrangement (�2, 3450 = 
13.60, � < 0.001) on selection time (The degree of freedom is 
large as all trials were included in the analysis, which is typical for 
mixed efect model.). Post-hoc tests with Holm adjustment showed 
that for 10-item menus, the diference was statistically signifcant 
for alphabetic vs. random (� < 0.001) and grouped vs. random 
(� < 0.001), and no signifcant diference between alphabetic vs. 
grouped (� = 0.25). For 6-item menus, there was no signifcant dif-
ference for alphabetic vs. grouped (� = 0.42), alphabetic vs. random 
(� = 0.81), and grouped vs. random (� = 0.43). 

To analyze how the search time varies as the experiments pro-
ceed, we manually divided the 60 trials in each condition into 6 
blocks, i.e. 10 trials per block. Fig. 8a shows the selection time in 
6 blocks for the 6 conditions. We can observe that for almost all 
conditions, the selection time had a decreasing trend when the 
experiments proceed. As users were becoming more experienced, 

they could use fewer actions to select the menu item, e.g. the gliding 
action in all 6 conditions dropped by 7.25% in block 6 (537 times) 
compared with block 1 (579 times), resulting in this decreasing 
trend. We ft a linear mixed efects model with the menu length, 
menu arrangement and block as fxed efects, and the participants’ 
ID and trials as random efects. The type III ANOVA results showed 
main signifcant efect for the block (�5, 54 = 15.29, � < 0.001) on 
selection time. 

4.4.3 Selection Accuracy. Fig. 4 shows the accuracy of menu selec-
tion across conditions. The overall selection action accuracy was 
96.02% (3523 out of 3669 selections were successful). As shown in 
the Fig. 4, the selection accuracy across conditions was close to 
each other. A repeated measures ANOVA did not show a signifcant 
main efect of the menu arrangement (�2, 18 = 0.29, � = 0.75) or 
menu length (�1, 9 = 0.26, � = 0.62) on selection accuracy. It did 
not show a signifcant interaction efect between menu length and 
menu arrangement either (�2, 18 = 1.45, � = 0.26). 
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Figure 4: The mean selection accuracy (95% confdence inter-
val) by condition. The overall selection accuracy was 96.02% 
(3523 out of 3669 selections were successful). 

4.4.4 Actions. In this part, we analyzed the action used by the 10 
participants. The actions were extracted based on the accessibility 
events in the cleaned dataset. In total, there were 13,856 actions 
in the cleaned dataset: 4,627 swiping actions, 3,250 gliding actions, 
2,310 direct touch actions and 3,669 selection actions. 

We frst plotted the matrix of consecutive occurrence of actions 
in Fig. 5 to see the relative order of actions. In the fgure, the action 
on the Y axis happens before that on the X axis, the numbers mean 
occurrences, and the BoT means beginning of a trial. We can see 
that the direct touch action always happened before the gliding 
action (as shown by cell 2310). That means the participant frst used 
direct touch action to quickly move to an item that is close to the 
target and then used gliding to search for the target. We refected 
this fnding when building the model in Section 5. 

We then plotted the overall compositions of the four actions in 
diferent conditions in Fig. 9a to show the relative amount of each 
action was used in the study. We can see that the action composi-
tion was stable across diferent conditions. However, we noticed in 
the user study that each individual participant had diferent prefer-
ence over the available actions. We plotted the action composition 
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BoT Swiping
Direct to

uch

Gliding
Selection

BoT

Swiping

Direct touch

Gliding

Selection

0 880 1627 419 597

0 3309 191 116 1010

0 0 0 2310 0

0 407 445 378 2020

0 31 47 27 42

Figure 5: Matrix of consecutive occurrence of actions, where 
the action on the Y axis happened frst, the numbers means 
the occurrences, and BoT means "Beginning of Trial". We can 
see that direct touch action always happened before gliding 
action. 

of each participant across the 6 conditions in Fig. 6. We can see 
that participant 2, 6, 7 almost never used the swiping action, and 
the other participants used all the four actions available but with 
diferent amount (which might be caused by diferent search strat-
egy). Based on the preference of the participants, we could divide 
the participants into two subgroups: (A) Participant 1, 3, 4, 5, 8, 
9, 10: They used all available actions, (B) Participant 2, 6, 7: They 
did not use swiping action. We refected this fnding during model 
evaluation by considering two training strategies (Section 5.1). 
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Figure 6: Action composition of each of the 10 participants. 
The results indicated that diferent participant has diferent 
menu selection strategy. That is, participant 2, 6, 7 (marked 
by *) did not use the swiping action, and others used all the 
four actions. 

5 MODEL IMPLEMENTATION 
In this section, we describe how we obtained the parameters of the 
model. The process consisted of two phases. First, we obtained the 
parameters of the input action and the memory models, including 
both � and � of six models in Table 2, and ���� and ��� introduced 

in Section 3.2. This was done by ftting their empirical parameters 
to the user study data, which is similar to the ftting of empirical 
parameters of Fitts’ law. Second, we trained the reinforcement 
learning model’s policy, which predicts what action to take given 
an observation, in a simulated menu environment (see Fig. 2). This 
environment mimics a menu and allows the model to learn via trial 
and error, and it was built based on the input action and memory 
models learned in the frst phase. To sum up, in no part of this 
parameter ftting process did our model have access to users’ action 
sequences. 

5.1 Parameters of Input Action and Memory 
Models 

In this section, we describe how to obtain the parameters of input 
action and memory models from the data collected in the user study. 
We assumed the time cost for executing a swiping, gliding, direct 
touch, and selection action followed a Gaussian distribution. Recall 
that the direct touch uncertainty model and the position memory 
model were also modeled by a Gaussian distribution (Section 3.2 
and Section 3.3). The means and standard deviations were obtained 
based on the data from the user study using the following method: 

• Swiping action. We estimated the mean and standard devia-
tion of its time cost from the user study data. 

• Selection action. A user performed a double tap to commit 
the selection of a menu item. Similar to swiping action, we 
estimated its mean and standard deviation of time cost from 
the data collected in the user study. 

• Gliding action. A user moves the fnger from one to another 
location on the screen while keeping the fnger in contact 
with the screen in the entire course of gliding. We adopted 
the gliding-based pointing model for blind users proposed by 
Ko et al. [41] to estimate the mean of time cost for a gliding 
action. The gliding-based pointing model (Equation 4) [41] 
states that the mean selection time (�� ) for gliding is linearly 
related to both fnger travel distance � and index of difculty 
of the task �� = log2 (�/� + 1) where � is the width of a 
target: 

� 
�� = � + �� + � log2 ( + 1) . (4)

� 

We empirically determine the parameters �, �, and � from 
gliding data collected in the user study. We used the ob-
served standard deviation for a particular �� as the standard 
deviation for �� for the same �� . 

• Direct touch action. Direct touch is an action where the user 
takes the fnger of the screen, travels in the air, and lands 
it on a location on the screen. We adopted the Fitts’ law 
(Equation 5) [19, 48] to estimate the mean of time cost for 
the direct touch action. 

� 
�� = � + � log2 ( + 1) . (5)

� 

We empirically determine the parameters � and � from the 
direct touch action data collected in the user study. Similar to 
the gliding action, we used the observed standard deviation 
for a particular �� as the standard deviation for time cost 
under the same �� . 
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• Direct touch uncertainty model. The mean of the direct touch 
uncertainty model ���� was set to the center of the intended 
menu item. We used grid search to determine standard de-
viations: (1) ���� in the direct touch uncertainty model 
(Section 3.3) which was searched in the range [0.25, 2] with 
a step size 0.25. 

• Position memory model. The mean of the position memory 
��� was set to the center of the target menu item. We also 
used grid search to determine the standard deviation ��� 
(Equation 1) which was searched in the range [0.5, 5] with a 
step size 0.5. 

We optimized the ���� and ��� together based on the selection 
time (Fig. 7a) and action composition (Fig. 9a) in the user study. The 
optimal parameters were determined by minimizing the sum of the 
mean absolute percentage error (MAPE) for selection time across 
conditions and the MAPE for action composition across action × 
condition. 

Two Training Strategies. We adopted two strategies to obtain the 
parameters: 

• One-group parameters: We assumed all the participants in 
the study were from the same pool and obtained one set of 
parameters for all the users. In other words, there was only 
one set of parameters for all users. 

• Two-subgroup parameters: To refect the observation that 
some users used all four types of actions (i.e., swiping, se-
lection, gliding, and direct touch) for menu selection, and 
some users never used the swiping action. We obtained two 
sets of parameters for two subgroups of users introduced in 
Section 4.4.4 based on their corresponding user study data 
separately. More specifcally, one set of parameters was for 
subgroup A with participants 1, 3, 4, 5, 8, 9, 10 who used all 
4 types of actions, and the other set of parameters was for 
subgroup B with participants 2, 6, and 7 who never used the 
swiping action. We expected the model created from these 
two sets of parameters (called two-subgroup model) would 
better capture the diference between these two types of 
users. 

The procedures of obtaining both one-group and two-subgroup 
parameters were identical. 

We summarized the optimized parameters learned from all user 
data for the input actions and memory model in Table 2, and the 
standard deviations of the gliding action and direct touch action 
were summarized in Table 4 in the Appendix. 

5.2 Implementing and Training Menu Selection 
Models 

After obtaining parameters for input action and memory models, 
we could implement a simulated menu selection environment. We 
trained our reinforcement learning based menu selection model 
based on simulated interactions following the reinforcement frame-
work described in Section 3 (Fig. 2). As we adopted two strategies 
for obtaining the parameters, we created two models for the two 
strategies accordingly. The frst one is called one-group model, 
which was created based on the one-group parameters, and the 
second one is called two-subgroup model, which was created based 
on the two-subgroup parameters. The two-subgroup model consists 

of two models, for Subgroup A and B, respectively. The procedures 
of creating each of these models were identical, as described below. 

We implemented a menu selection environment simulating real-
world menu selection scenario using OpenAI Gym [9]. The environ-
ment simulates interactions between the agent and the environment. 
In the environment, each menu item has the same height as in the 
real study, i.e. 10mm. The occurrences of the menu items were 
controlled by a Zipf distribution (Equation 3) with � = 1 same as the 
user study. Because in the user study, the participants completed 60 
trials on each menu layout, the agent did the same in the training. 
After every 60 trials, we randomly reset the menu layout to one in 
the user study, and reset the position memory, and reset the fnger 
and focus position to the top of the menu. 

We then used the DQN to learn the optimal policy for the agent, 
and used the implementation of the DQN algorithm in the Stable-
Baselines3 library2. We trained one policy network for the 6 con-
ditions (2 menu length × 3 menu arrangements) for all users. For 
the 6-item menu length condition, we padded 4 zeros to the end of 
the feature vector to make the feature vector the same for diferent 
menu length. The DQN was trained with the following hyper-
parameters: MlpPolicy (3-layer neural network, hidden size: 64, 
activation function: ReLU) as the policy network, learning_rate = 
0.001, learning_starts=0, batch_size=256. The other hyperparam-
eters were the default ones: exploration_fraction=0.1, optimizer: 
Adam, gamma=0.99. For reproducibility, we used 20 diferent ran-
dom seeds to train 20 models and average their results at trial 
level, while the optimal ��� and ���� were found using a specifc 
random seed. 

6 MODEL EVALUATION 
To understand whether the reinforcement learning framework de-
scribed in Section 3 can truthfully simulate menu selection behavior 
of blind users, based on the basic action and memory models, we 
compared the simulated menu selection behaviors and predicted 
menu selection performance (i.e., menu selection time) from the 
menu selection model with the observed data in the user study. 
To further evaluate the generability of the menu selection models, 
we performed more strict tests: we split the user study data into 
training and testing datasets, and perform leave-trial-out and leave-
user-out validations in which the data in the testing dataset were 
not used in parameter estimation and completely unseen by the 
models. Such validations further test the generability of the menu 
selection models. 

6.1 Simulating Menu Selection Behaviors 
We frst simulated menu selection behaviors using both one-group 
and two-subgroup models, separately. For the one-group model, 
we simulated menu selection for 10 users and 6 conditions × 60 
trials for each user, to match the user study setting where 10 users 
participated in the study and each performed 6 conditions × 60 trials. 
The menu layouts in the simulation also matched the layouts in the 
user study. For the two-subgroup model, we used the subgroup A 
model to simulate trials for 7 users and the subgroup B model to 
simulate trials for 3 users, each user with 6 conditions × 60 trials. 
This setup matched the user study in which 7 users belonged to 

2https://github.com/DLR-RM/stable-baselines3 

https://github.com/DLR-RM/stable-baselines3
https://gamma=0.99
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Action and Memory Model One-group model Two-subgroup model (Subgroup A) Two-subgroup model (Subgroup B) 
� � � � � � 

Swiping MT∼ N(�SP, �SP)
Selection MT∼ N(�ST, �ST)
Gliding MT∼ N(�G, �G)

Direct touch MT∼ N(�D, �D)
Direct touch uncertainty �� ∼ N(�DTU, �DTU)

Position memory �� ∼ N(�PM, �PM) 

1.11 
1.13 

0.9 + 0.13� + 0.97�� , �2 : 0.98 
2.09 + 0.21�� , �2 : 0.49 

Center of intended menu item 
Center of target menu item 

0.99 
0.93 
AP 
AP 
0.5 
4.5 

1.11 
1.19 

0.86 + 0.02� + 1.30�� , �2 : 0.91 
2.09 + 0.18�� , �2 : 0.22 

Center of intended menu item 
Center of target menu item 

0.99 
0.89 
AP 
AP 
0.25 
4.5 

/ / 
0.98 0.99 

0.88 + 0.29� + 0.57�� , �2 : 0.94 AP 
1.88 + 0.39�� , �2 : 0.65 AP 

Center of intended menu item 0.5 
Center of target menu item 1.5 

Table 2: Parameters of input action, direct touch uncertainty, and position memory models. �� is the movement time of each 
action. �� = log2 (�/� + 1) where � is the absolute moving distance and � =1 cm is the menu item height. �2 is the coefcient of 
determination measuring the ftness of the model. AP means the standard deviation which is an empirically determined value 
from the user study and is further explained in Table 4 in the Appendix. �� refers to the fnger landing position for the direct 
touch uncertainty model, and the recalled position of the target menu item in the position memory model. 

subgroup A and 3 users belonged to subgroup B. We then aggregated 
simulated trials from subgroups A and B for analysis. 

6.2 Simulated vs. Observed Selection Time 
Fig. 7b and Fig. 7c shows the simulated selection time by conditions 
for the one-group model and two-subgroup model respectively. 
The mean absolute error (MAE) across condition was 0.61 s (mean 
absolute percentage error(MAPE): 10.44%) and 0.39 s (MAPE: 6.71%) 
respectively. The results showed that our model can simulate the 
efect of menu length on the selection time, i.e. the selection time 
for 10-item menu was longer than 6-item menu. We ft linear mixed-
efect models on the results simulated by the one-group model and 
two-subgroup model separately with menu length and menu ar-
rangement as fxed efects and the participants’ ID and trials as 
random efects. The ANOVA results showed that the menu length 
has a signifcant main efect on menu selection time, for both the 
one-group model (�1, 3526 = 265.80, � < 0.001) and two-subgroup 
model (�1, 3526 = 201.31, � < 0.001), which refects the main ef-
fect of menu length on selection time in observed user study data 
(�1, 3450 = 91.51, � < 0.001). Meanwhile, our model can also simu-
late the efect of diferent menu arrangements on selection time for 
10-item menus. That is, the random arrangement has the longest 
selection time, and the grouped arrangement has the shortest selec-
tion time. For the 6-item menus, our model overestimated the efect 
of menu arrangements. Our model simulated that the random layout 
has the longest selection time and the grouped layout has the short-
est selection time, which is similar to the 10-item case. While in the 
user study, for 6-item menu, the selection time of the three arrange-
ments were close to each other. The ANOVA results showed that the 
menu arrangement has a signifcant main efect on menu selection 
time, for both the one-group model (�2, 3526 = 25.05, � < 0.001) 
and two-subgroup model (�2, 3526 = 21.42, � < 0.001), and that is 
the same as the user study data (�2, 3450 = 7.27, � < 0.001). 

We also plotted the simulated selection time for the 6 conditions 
in each block in Fig. 8b and Fig. 8c for the one-group model and two-
subgroup model respectively. Compared with that in the real user 
study (Fig. 8a), we can see that our model simulated the learning 
efect during the menu selection task. That is, the selection time 
decreases as the menu selection task proceeds. The reason behind 
this phenomenon is that with more interaction experience, the 
agent would have stronger memory of menu item positions, so 
that it can recall the item position more accurately which leads to 

less selection time (see the position memory model in Section 3.2). 
We ft a linear mixed efects model with the menu length, menu 
arrangement and block as fxed efects, and the participants’ ID 
and trials as random efects. The ANOVA results showed main 
signifcant efect for the block on selection time, for both the one-
group model (�5, 54 = 5.92, � < 0.001) and the two-subgroup 
model (�5, 54 = 4.72, � < 0.01), which is identical with the user 
study (�5, 54 = 15.29, � < 0.001). 

6.3 Comparison with Input Action Model based 
Methods 

A previous approach for modeling menu selection is to use the 
input action models (e.g., Fitts’ law) to predict the item selection 
time (e.g., [15]). One advantage of our reinforcement learning based 
model is that it is able to predict the selection behaviours, while 
existing approaches cannot (e.g., a Fitts’ law based model predicts 
the selection time only). Additionally, we expect our model would 
outperform the previous input action model based methods in pre-
diction accuracy as our model more accurately refects the menu 
selection behaviors. To evaluate our expectation, we compared our 
model with the following three input action model based methods 
in predicting the menu selection time: 

• Fitts’ law based method: We used the Fitts’ law to model 
menu selection time. More specifcally, we assumed that a 
user would travel the fnger in the middle of air and land it 
on the screen and then double tap to select a menu item. We 
used Fitts’ law to model each fnger traveling action. 

• Gliding model based method: We used the mixture gliding 
model for blind users [41] to predict the menu selection time. 
We assumed that the users would glide the fnger on screen 
to reach the intended menu item, and double tap to confrm 
the selection. 

• Swiping model based method: We assumed that a user would 
perform a sequence of swiping actions to reach the intended 
menu item, and double tap to confrm the selection. 

We also made the following assumptions in order to apply the 
input action model based methods. In Fitts’ law based method, we 
assumed the user knew the approximate location of the target so 
that he/she could land the fnger to select the target, and in Gliding 
and Swiping model based methods, we assumed the user knew 
the gliding and swiping directions. Although these assumptions 

https://��2:0.65
https://��2:0.94
https://��2:0.22
https://��2:0.91
https://��2:0.49
https://��2:0.98
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Figure 7: The mean selection time (95% confdence interval) by condition. The MAE between the selection time simulated by 
the model and that in the user study is 0.61 s for one-group model, and 0.39 s for the two-subgroup model. 
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Figure 8: The mean selection time by block. We manually divided the 60 trials into 6 blocks, i.e. each 10 trials a block. 
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refected only the expert users’ performance, they were necessary 
for applying the input action models. The parameters of the Fitts’ 
law, gliding model [41], swiping model were the same with the 
direct touch action model, the gliding action model, and the swiping 
action model respectively in Table 2 for the one-group model. 

The evaluation results (Table 3) showed that the reinforcement 
learning (RL) based model outperformed all the three input action 
model based methods in modeling menu selection times on all trials. 
Also, a closer look at the results (Fig. 16 in the Appendix) showed 
that the input action model based methods failed to refect the efect 
of menu arrangement on selection time. 

Method 

RL based model (One-group) 
RL based model (Two-subgroup) 

Fitts’ law based method 
Gliding model based method 
Swiping model based method 

MAE (MAPE) 
for Selection Time 

0.61 s (10.44%) 
0.39 s (6.71%) 

2.55 s (42.73%) 
1.51 s (25.15%) 
1.80 s (30.65%) 

Table 3: The MAE (MAPE) of selection time for our reinforce-
ment learning (RL) based model and the three input action 
model based methods. 

6.4 Simulated vs. Observed Action Composition 
We plotted the simulated action composition in Fig. 9b and Fig. 9c 
for the one-group model and two-subgroup model respectively. 
Compared to the results in the user study (Fig. 9a), the MAE (across 
action × condition) of action composition for the one-group model 
was 3.78% (MAPE: 15.67%), and 3.89% (MAPE: 14.47%) for the two-
subgroup model. Considering only the swiping, gliding and di-
rect touch actions, the MAE for the one-group model was 3.98% 
(MAPE: 17.04%), and the MAE for the two-subgroup model was 
3.48% (MAPE: 12.97%). Our model accurately predicts the percent-
ages of actions but underestimates the numbers of actions. For 
example, one-group and two-subgroup models predicted that the 
total numbers of swiping actions were 4560 and 3243, while the 
actual swiping actions was 4627. One reason is that users’ input 
behavior could deviate from the prediction made by the model. For 
example, our model predicts that it would take 4 swiping actions 
from item #1 to #5 in a linear menu, while some users may perform 
6 swiping actions because they overshoot by one item and then 
correct it. Our model refects the optimal input behaviors of users, 
while some users’ input actions may deviate from such prediction. 

Our model predicted 100% selection accuracy, and the selection 
accuracy in the user study was 96.02%. There is a small discrepancy 
between observed selection accuracy and model prediction. We 
observed that blind users occasionally made selection errors as 
they might forget the target name or mistakenly execute a double 
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Figure 9: The action composition (occurrences) by action × condition. The MAE across action × condition between the action 
composition simulated by the model and that in the user study is 3.78% for the one-group model, and 3.89% for the two-subgroup 
model. 

tapping. These types of mental errors/mistakes are not captured by 
the reinforcement learning model. 

Overall, the small diferences between the observed action com-
position and model prediction showed that our model can accu-
rately simulate the relative amount of action used by the users, 
refecting the menu selection behavior and preference. Addition-
ally, the results showed that the two-subgroup model achieved 
higher performance than the one-group model. It confrms the 
efectiveness of considering the choice of actions in the model. 

6.5 Simulated vs. Observed Menu Selection 
Strategy 

In addition to the selection time and action composition, we also an-
alyzed the selection strategies. We observed that there existed three 
strategies for menu selection: (1) Swiping only: the user swipes 
to a menu item and selects it, (2) Gliding only: the user lands the 
fnger to a specifc item (optional), glides to the target item, and 
selects it, and (3) Swiping and Gliding: the user uses both strategy 
(1) and (2) to select a target item. As shown in Fig. 10, our model was 
able to predict the composition of strategies observed in the user 
study. In the user study, there were 19.33% of trials for swiping only, 
53.25% for gliding only, and 11.07% for swiping and gliding. The 
predictions by the two-subgroup model were 22.16% for swiping 
only, 41.86% for gliding only, and 15.5% for swiping and gliding, 
which were close to the observed data. 

6.6 Train-Test Split Evaluation 
To further evaluate the generability of the model, we estimated 
the parameters for action and memory models with 80% of data, 
and held 20% data for testing. This is a more strict validation as 
the 20% data were completely unseen by the model: the testing 
data were not even used to estimate the parameters for action or 
memory models. We performed two types validations following this 
scheme: (1) leave-trial-out validation, (2) leave-user-out validation. 
We performed train-test split evaluation on the one-group model 
only, as there was not sufcient data for such tests for the the two-
subgroup model (e.g., there were only three users in total for the 
subgroup B). We performed this evaluation with 10 repetitions. 
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Figure 10: Observed selection strategies (blue) vs. predicted 
selection strategies by the two-subgroup model (green). 

6.6.1 Leave-trial-out Validation. We randomly sampled 80% of tri-
als as the training dataset which were used to estimate the pa-
rameters for action and memory models, following the procedure 
described in Section 5.1, and the remaining 20% data as the testing 
dataset. We then built a menu selection model based on the esti-
mated parameters following the procedure described in Section 5.2, 
simulated the menu selection behaviors, and compared the simu-
lated with testing data. We repeated the same procedure 10 times. 
In each repetition, we simulated 6 conditions × 60 trials for each of 
the 10 users. As we have only 20% of data withheld in the testing 
dataset, we identifed the matching trials of these 20% of data in 
the simulated trials, and compared them against the testing data. 

Fig. 11 shows the averaged mean selection time of the 10 repeti-
tions in the testing dataset and predicted by the one-group model. 
The model was able to predict the efects of menu length on selec-
tion time: both simulated results and the testing data showed that 
the menu selection time on the 10-item menus were longer than 
that on the 6-item menus. Across all 10 repetitions, the mean (SD) 
of MAE for menu selection time was 0.58 s (±0.09 s), and the mean 
(SD) of MAPE was 9.71% (±1.54%). 
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Figure 11: The averaged mean selection time (95% confdence interval) by condition of the 10 repetitions of the leave-trial-out 
validation. The mean MAE (SD) across the 10 repetitions was 0.58 s (±0.09 s). 

The analysis on the action composition (Fig. 12) also showed 
that our model can predict the action composition. The mean (SD) 
of MAE for the action composition prediction was 5.32% (±1.00%), 
and the mean (SD) of MAPE was 21.44% (±4.37%). Considering only 
the swiping, gliding and direct touch actions, the mean (SD) of 
MAE was 5.04% (±1.14%), and the mean (SD) of MAPE was 20.85% 
(±5.09%). 

6.6.2 Leave-user-out Validation. We used 8 random user’s data as 
the training dataset which were used to estimate the parameters 
for action and memory models, and held the remaining 2 user’s 
data as testing dataset. Similar to the leave-trial-out validation, we 
then built a menu selection model based on the estimated parame-
ters following the procedure described in Section 5, simulated the 
menu selection behaviors for the two users with 6 conditions × 60 
trials, and compared the simulated with testing data. Similarly, we 
repeated the same procedure 10 times. 

Fig. 13 shows the averaged mean selection time of the 10 repeti-
tions in the testing dataset and predicted by the one-group model. 
The analysis on testing data showed that the mean of menu selec-
tion time on the 10-item menu was longer than that on the 6-item 
menu. Across all 10 repetitions, the mean (SD) of MAE for menu 
selection time was 0.93 s (±0.54 s), and mean (SD) of MAPE was 
15.37% (±7.80%). 

Regarding the action composition (Fig. 14), the mean (SD) of 
MAE for action composition was 9.04% (±2.38%), and the mean 
(SD) of MAPE was 63.91% (±31.29%). Considering only the swiping, 
gliding and direct touch actions, the mean (SD) of MAE was 10.17% 
(±3.27%), and the mean (SD) of MAPE was 77.64% (±40.48%). 

In sum, the leave-trial-out validation showed that our model 
can predict the selection time and the efect of menu length, as 
well as the action composition. The MAEs were close to the the 
results presented in previous sections (Section 6.2 and Section 6.4). 
For the leave-user-out validations, our model also captured the 
efect of menu length. The prediction error was higher than that 
of the leave-trial-out validation. It was probably because the menu 
selection behavior of the user in the testing dataset was diferent 
with that of the user in the training dataset. 

7 DISCUSSION AND FUTURE WORK 
Even though menu selection for sighted users has received a lot 
of attention in the literature [2, 5, 6, 13, 15, 16, 41], understanding 
of blind users’ behavior in the same task is limited. In this paper, 
we developed a computational model of how users who are blind 
perform menu selection. Our results suggest that modeling how 
users remember menu item positions is the key to understand menu 
selection in the absence of visual feedback. This paper also extends 
the existing literature on models of users who are blind [17, 41] 
to considering multiple actions (swiping, gliding, direct touch and 
selection), instead of just one. 

7.1 Efects Captured by the Model 
The proposed model can successfully simulate the following efects 
observed in the user study: 

• Longer menus have longer selection times. 
• Selection time decreases after some iterations of the menu 
selection task have been performed. 

• The action composition: the percentages of swiping, gliding, 
direct touch and selection actions. 

• The menu selection strategies used by the users. 

Compared with input action model based methods (Section 6.3), 
our reinforcement learning based model achieved lower errors on 
the selection time prediction. More importantly, our model is able 
to predict the menu selection strategies and action composition, 
while the input action model based methods (e.g., Fitts’ law based 
method) predict the menu selection time only. 

The key to modeling the blind user’s menu selection behavior 
is the position memory model, which describes how the user re-
members/recalls the menu item position. Introducing the memory 
model enables our model to account for the learning efects, and to 
predict how the selection strategies change as the user gets more 
familiar with the menu layout. 
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(a) Action composition in the testing dataset (b) Simulated action composition by the one-group model 

Figure 12: The averaged action composition (occurrences) by action × condition across the 10 repetitions in the leave-trial-out 
validation. The mean MAE (SD) across the 10 repetitions was 5.32% (±1.00%). 
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Figure 13: The averaged mean selection time (95% confdence interval) by condition of the 10 repetitions of the leave-user-out 
validation. The mean MAE (SD) across the 10 repetitions was 0.93 s (±0.54 s). 
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Figure 14: The averaged action composition (occurrences) by action × condition across 10 repetitions in the leave-user-out 
validation. The mean MAE (SD) across the 10 repetitions was 9.04% (±2.38%). 



Modeling Touch-based Menu Selection Performance of Blind Users via Reinforcement Learning CHI ’23, April 23–28, 2023, Hamburg, Germany 

7.2 Applications of the Model 
Understanding menu selection behavior of users who are blind is 
critical for designing functional user-adaptive systems. The pro-
posed model could serve as a useful tool in interface design, op-
timization and evaluation, since it can be used to simulate user 
behavior in place of running an expensive user study. 

For example, as the model can simulate the learning efect on a 
menu layout, it could provide a quantitative understanding of the 
performance of menus with diferent lengths for both novice and 
expert users. Fig. 15 shows the predicted menu selection time by 
menu length and practice block for an alphabetically ordered menu. 
It shows that short menus (e.g., 4-item menu) require little learning 
while long menus (e.g., 10-item menu) require a certain amount of 
learning to reach optimal performance. Fig. 15 further shows the 
time cost for menus with diferent lengths and practice trials. Such 
an understanding would guide a designer in choosing appropriate 
menu lengths when designing interfaces. 
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Figure 15: The predicted mean selection time by block of 4 
to 10-item alphabetically ordered menus. 

Additionally, we could use the model to decide the menu arrange-
ment (Fig. 7). For example, both the study data and our model show 
that a grouped menu layout with 10 items resulted in a shorter com-
pletion time than both alphabetic and random layouts, indicating 
that a grouped layout is favorable for long menus (e.g., 10 items). 
We would also like to point out that the benefts of a grouped lay-
out may not be generalizable to short menus (e.g., 6-item layout). 
The user study did not show a signifcant diference in selection 
time across diferent layouts for 6-item menus. The model could 
overestimate the benefts of grouped layouts for short menus (e.g., 
6-item menus). 

7.3 Limitations and Future Work 
The presented computational model could be extended in future 
work. In the proposed model, we used the mixture pointing model [41] 
for the gliding action and the Fitts’ Law [16] for direct touch action 
to estimate the mean time cost at diferent �� . Our results suggest 
that while the mixture pointing model fts the data well, Fitts’ law 
does not. This could partly be explained by the fact that the mixture 
pointing model is designed for blind users, while Fitts’ law is not.
How to best estimate moving times of users who are blind remains 
an open research question. 

In the future, it is interesting to investigate how the model would 
behave if certain assumptions are altered. For example, we assumed 
that the focused menu item position �focus is fully observable to 
the agent. The �focus is an important parameter for updating the 
position memory. However, due to the possible estimation noise 
from a user, the agent’s knowledge on this parameter might come 
from partial observability. One interesting future direction is to in-
vestigate if introducing the probability distributions for parameters 
(e.g., �focus) would improve the model performance. 

8 CONCLUSION 
We have proposed a computational model that simulates how blind 
users perform menu selection using swiping, gliding, direct touch 
and selection action in a linear menu using a screen reader. The 
model builds upon the theory of boundedly optimal control, which 
assumes the users’ behavior emerge as an attempt to minimize the 
selection time in light of perceptual limits and memory of menu 
item positions. We formally modeled the menu selection problem 
as a stochastic sequential decision problem (Partially Observable 
Markov Decision Process). Partial observability stems from the re-
liance on limited memory and auditory feedback. The agent main-
tains a belief about the position of menu items, where the belief was 
computed based on a Gaussian position memory that we proposed, 
which considers the long-term interaction history. To then make 
predictions for a practical design-plus-user scenario, we trained 
a DQN in a simulated environment. We evaluated the model by 
comparing simulation results against empirical fndings obtained in 
an IRB-approved user study with 10 legally blind users. The model 
correctly simulated the efect of menu length and menu arrange-
ment on selection time as well as the percentage of action used 
by the users, and it also predicted the menu selection strategies of 
the users. This model advances our understanding of menu selec-
tion behavior for blind users, and could serve as a useful tool for 
accessible interface design, optimization, and evaluation. 
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A APPENDIX 

Action Parameter Training strategy 
Absolute moving distance (cm) 

0 1 2 3 4 5 6 7 8 9 

Gliding �G 

One-group model 
Two-subgroup model (Subgroup A) 
Two-subgroup model (Subgroup B) 

1.19 
1.32 
0.88 

1.78 
1.94 
1.50 

2.13 
2.26 
1.83 

2.33 
2.54 
1.90 

2.38 
2.10 
2.02 

2.31 
2.14 
2.49 

2.25 
2.23 
2.35 

2.31 
2.57 
1.90 

2.06 
2.16 
1.79 

1.98 
1.74 
1.79 

Direct touch �D 

One-group model 
Two-subgroup model (Subgroup A) 
Two-subgroup model (Subgroup B) 

NA 
NA 
NA 

1.16 
1.23 
1.02 

1.21 
1.35 
0.85 

1.07 
1.03 
1.08 

1.13 
1.17 
0.98 

1.06 
1.16 
0.88 

1.08 
1.15 
0.90 

1.03 
1.10 
0.60 

1.26 
1.25 
1.22 

1.12 
1.15 
0.70 

Table 4: The observed standard deviation of the time cost (MT) of the gliding action and direct touch action at diferent absolute 
moving distance. The absolute moving distance 0 means that the user started the action and ended it at the same menu item. 
The “NA" means no user direct touched the current focused item. 
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Figure 16: The mean selection time (95% confdence interval) by condition predicted by the input action model based methods. 
The dashed bars are the means of the observed selection time in the user study. 


