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a b s t r a c t 

Modules in brain functional connectomes are essential to balancing segregation and integration of neuronal ac- 

tivity. Connectomes are the complete set of pairwise connections between brain regions. Non-invasive Electroen- 

cephalography (EEG) and Magnetoencephalography (MEG) have been used to identify modules in connectomes 

of phase-synchronization. However, their resolution is suboptimal because of spurious phase-synchronization due 

to EEG volume conduction or MEG field spread. Here, we used invasive, intracerebral recordings from stereo- 

electroencephalography (SEEG, N = 67), to identify modules in connectomes of phase-synchronization. To gener- 

ate SEEG-based group-level connectomes affected only minimally by volume conduction, we used submillimeter 

accurate localization of SEEG contacts and referenced electrode contacts in cortical gray matter to their closest 

contacts in white matter. Combining community detection methods with consensus clustering, we found that 

the connectomes of phase-synchronization were characterized by distinct and stable modules at multiple spatial 

scales, across frequencies from 3 to 320 Hz. These modules were highly similar within canonical frequency bands. 

Unlike the distributed brain systems identified with functional Magnetic Resonance Imaging (fMRI), modules up 

to the high-gamma frequency band comprised only anatomically contiguous regions. Notably, the identified mod- 

ules comprised cortical regions involved in shared repertoires of sensorimotor and cognitive functions including 

memory, language and attention. These results suggest that the identified modules represent functionally spe- 

cialised brain systems, which only partially overlap with the brain systems reported with fMRI. Hence, these 

modules might regulate the balance between functional segregation and functional integration through phase- 

synchronization. 

1. Introduction 

Structural and functional connectomes obtained from Magnetic Res- 

onance Imaging (MRI) possess a modular organization ( Meunier et al., 

2009 ; Power et al., 2011 ; Doucet et al., 2011 ). Connectomes are the 

complete set of connections between brain regions. Modules are sets 

of strongly interconnected brain regions. Modules identified in resting- 

state fMRI comprise regions that have also been observed to be con- 

currently active during task processing and have been found to de- 

lineate functional systems for executive, attentional, sensory, and mo- 
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tor processing ( Beckmann et al., 2005 ; Smith et al., 2009 ; Yeo et al., 

2011 ; Cole et al., 2014 ). The anatomical structure of resting-state 

modules in fMRI connectomes has been found to be reproducible 

and similarly observable with different approaches such as commu- 

nity detection ( Valencia et al., 2009 ; Power et al., 2011 ) and cluster- 

ing ( Benjaminsson et al., 2010 ; Yeo et al., 2011 ; Lee et al., 2012 ). 

Moreover, the balance between segregated information processing in 

modules ( Wig, 2017 ) and integrated information processing via inter- 

modular connections, is essential to brain functioning ( Tononi et al., 

1994 ; Tononi et al., 1998 ; Deco et al., 2015 ). 
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The relationship of fMRI functional connectivity to underlying 

electrophysiological connectivity is complex and not attributable to 

any single form of neuronal activity or coupling ( Kucyi et al., 2018 ; 

Shafiei et al., 2022 ). Electrophysiological measurements of macro-scale 

neuronal activity with Magneto- (MEG) and Electroencephalography 

(EEG) reveal band-limited neuronal oscillations in multiple frequen- 

cies, whose inter-regional coupling is observable as synchronization be- 

tween oscillation phases and correlations between oscillation amplitude 

envelopes ( Palva et al., 2005 ; Fell & Axmacher, 2011 ; Brookes et al., 

2011 ; Palva & Palva, 2012 ; Engel et al., 2013 ). Amplitude correlations 

reflect, e.g. , co-modulation in neuronal excitability ( Vanhatalo et al., 

2004 ; Schroeder & Lakatos, 2009 ; Engel et al., 2013 ) while phase- 

synchronization implies spike-time relationships of neuronal activity 

and may regulate inter-regional neuronal communication ( Fries, 2015 ; 

Bastos et al., 2015 ). Large-scale networks of phase-synchronization are 

proposed to support the coordination, regulation, and integration of 

neuronal processing in cognitive functions, both in frequencies up to 

130 Hz ( Varela et al., 2001 ; Palva et al., 2005 ; Uhlhaas et al., 2010 ; 

Kitzbichler et al., 2011 ; Palva & Palva, 2012 ), and in frequencies higher 

than 130 Hz, i.e., high-frequency oscillations (HFO) ( Vaz et al., 2019 ; 

Arnulfo et al., 2020 ). 

In the light of such putative mechanistic roles for phase- 

synchronization in cognitive functions, a modular architecture and 

inter-modular coupling in connectomes of phase-synchronization dur- 

ing resting-state would establish a baseline to support correspond- 

ing demands for functional segregation and integration during cogni- 

tive operations ( Smith et al., 2009 ; Spadone et al., 2015 ). An MEG 

study investigated modules in connectomes of phase-synchronization 

and amplitude correlation using source-reconstructed resting-state data 

( Zhigalov et al., 2017 ). Both connectomes of amplitude correlation and 

phase-synchronization comprised distinct modules in frontal regions, 

sensorimotor regions and occipital regions, particularly in the alpha (8–

14 Hz) and beta (14–30 Hz) frequency bands. Another MEG study used 

source-reconstructed resting-state data to identify module-like struc- 

tures in connectomes of inter-regional coherence ( Vidaurre et al., 2018 ), 

a connectivity measure influenced by phase-synchronization. The con- 

nectomes included module-like structures comprising frontal regions, 

sensorimotor regions and occipital regions across delta/theta (1–8 Hz), 

alpha (8–14 Hz) and beta (14–30 Hz) frequencies. However, the ac- 

curacy of modules identified in MEG/EEG connectomes is compro- 

mised by the intrinsic resolution limitations of these methods, including 

artificial and spurious false positive observations with bivariate con- 

nectivity measures arising from source leakage ( Palva & Palva, 2012 ; 

Palva et al., 2018 ) as well as false negatives due to linear-mixing insensi- 

tive measures that ignore also true near-zero-lag phase-synchronization 

( Vinck et al., 2011 ; Brookes et al., 2012 ; Palva & Palva, 2012 ). On the 

other hand, low-resolution ( < 35 parcels /hemisphere) cortical parcel- 

lations, which are needed when spurious connections are eliminated by 

multivariate leakage correction ( Colclough et al., 2015 ), may be too 

coarse to identify fine-grained cortical network structures such as mod- 

ules. 

In this study, we pooled resting-state stereo-EEG (SEEG) record- 

ings data from a large cohort ( N = 67) to accurately estimate connec- 

tomes of phase-synchronization. In contrast to the centimetre-scale, in- 

sight yielded by MEG, SEEG provides a millimeter range, meso ‑scale 

measurement of human cortical local field potentials (LFPs) ( Parvizi & 

Kastner, 2018 ; Zhigalov et al., 2015 ; Zhigalov et al., 2017 ). We used 

submillimetre-accurate anatomical localization of SEEG electrode con- 

tacts to brain regions ( Narizzano et al., 2017 ; Arnulfo et al., 2015b ) 

and referenced each gray-matter contact to its closest white-matter con- 

tact ( Arnulfo et al., 2015a ), which yielded polarity-correct measure- 

ments of local cortical activity without the phase distortion potentially 

arising with conventional bipolar referencing. This enabled the esti- 

mation of a large proportion of connections in the connectome while 

adequately controlling for volume conduction so that also near zero- 

lag phase-synchronization was measurable ( Arnulfo et al., 2015a ). Fi- 

nally, we combined community detection with consensus clustering 

( Williams et al., 2019 ) to identify modules in connectomes of phase- 

synchronization in a manner that is robust against unsampled connec- 

tions. 

We found that connectomes of phase-synchronization exhibited 

modular organization at multiple spatial scales, throughout the stud- 

ied range of frequencies from 3 to 320 Hz. These modules were highly 

similar within canonical frequency bands and comprised anatomically 

contiguous regions up to the high-gamma frequency band (80–113 Hz). 

Finally, we used Neurosynth meta-analysis decoding ( Yarkoni et al., 

2011 ) to reveal that the observed modules comprised cortical regions ex- 

hibiting shared cognitive functions, suggesting that these modules cor- 

respond to brain systems with specific functional roles. Hence, the mod- 

ules identified might serve the regulation of balance between segrega- 

tion and integration of neuronal activity through phase-synchronization. 

2. Materials & methods 

2.1. Analysis pipeline to identify modules in connectomes of 

phase-synchronization 

We combined pre-surgical SEEG recordings from epileptic patients 

with state-of-the-art methods, to identify modules in connectomes of 

phase-synchronization. We recorded resting-state LFP data from each 

patient using a common reference in white matter, distant from the 

putative epileptogenic zone. We re-referenced the LFP activity of each 

gray-matter SEEG contact to its closest white-matter contact, which we 

have demonstrated to preserve undistorted phase reconstruction while 

minimizing volume conduction ( Arnulfo et al., 2015a ). We filtered the 

recorded LFP data using 18 narrow-band Finite Impulse Response (FIR) 

filters ( Fig. 1 A) from 2.5 Hz up to 350 Hz with line-noise suppressed 

using band-stop filters at 50 Hz and harmonics. Next, we estimated the 

strength of phase-synchronization between every pair of SEEG contacts, 

for each frequency, using Phase Locking Value ( Fig. 1 B). We assigned 

each SEEG contact to a brain region, by first identifying the position of 

each contact from a post-implant CT volume, and using co-registered 

pre-implant MRI scans to assign each contact to one of 148 regions 

in the Destrieux brain atlas ( Destrieux et al., 2010 ) with FreeSurfer 

( http://freesurfer.net/ ). We identified the position of each SEEG con- 

tact by using planned entry and termination points of SEEG shafts to 

initialize the shaft axis, and used constraints of inter-contact distance 

and axis deviation to locate each SEEG contact along the shaft axis 

( Arnulfo et al., 2015b ). We then estimated group-level connectomes by 

averaging for each region-pair, the corresponding contact-contact PLVs 

across subjects ( Fig. 1 C). We analyzed the left and right hemispheres 

separately ( Fig. 1 D) and identified modules with Louvain community 

detection ( Blondel et al., 2008 ) combined with consensus clustering 

( Williams et al., 2019 ) ( Fig. 1 E). Finally, we visualised the identified 

modules on anatomical brain surfaces ( Fig. 1 F). 

2.2. Data acquisition 

We recorded SEEG data from 67 participants affected by drug- 

resistant focal epilepsy and undergoing pre-surgical clinical assessment. 

For each participant, we inserted 17 ± 3 (mean ± SD) SEEG shafts into 

the brain, with anatomical positions varying by surgical requirements. 

Each shaft had between 8 and 15 platinum-iridium contacts, each con- 

tact being 2 mm long and 0.8 mm thick, with inter-contact distance of 

1.5 mm (DIXI medical, Besancon, France). We acquired 10 min eyes- 

closed resting-state activity from each participant, via a 192-channel 

SEEG amplifier system (Nihon Kohden Neurofax-110) at a sampling fre- 

quency of 1 kHz. We obtained written informed consent from partici- 

pants prior to recordings. We obtained ethics approval for the study from 

Niguarda “Ca’ Granda ” Hospital, Milan, and we performed the study ac- 

cording to WMA Declaration of Helsinki – Ethical Principles for Medical 

Research Involving Human Subjects. 
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Fig. 1. Modules in connectomes of phase-synchronization estimated by pooling data across subjects. A. Band-pass filtered data (center frequency = 14 Hz) for ex- 

ample group of subjects. B. Subject-level matrices of phase-synchronization between SEEG contacts, for example group of subjects. C. Group-level matrix of phase- 

synchronization between brain regions. Matrix ordered to show left- (bottom left), right- (top right) and inter-hemispheric connections (top left and bottom right) 

respectively. Non-estimable connections are gray. D. Group-level matrix of phase-synchronization between right-hemispheric regions. E. Sorted group-level matrix 

of phase-synchronization between right-hemispheric regions, sorting based on results of community detection to identify modules. F. Color-coded modules for lateral 

(top) and medial (bottom) views of right-hemispheric inflated cortical surface. 

2.3. Pre-processing 

We performed re-referencing, filtering and artefact removal of the 

SEEG data, before estimating the connectome of phase-synchronization. 

We originally recorded data from all contacts with a monopolar ref- 

erencing scheme. We subsequently re-referenced activity from each 

gray-matter contact to the nearest white matter contact as identi- 

fied by GMPI (gray matter proximity index). We have previously 

demonstrated the utility of this referencing scheme in studying phase- 

synchronization, since phase relationships between contacts are well 

preserved ( Arnulfo et al., 2015a ). We only analysed activity from gray- 

matter contacts after re-referencing. We filtered activity from each gray- 

matter contact using FIR filters (equiripples 1% of maximal band-pass 

ripples) into 18 frequency bands, with center frequencies ( 𝐹 𝑐 ) rang- 

ing from 3 to 320 Hz (excluding 50 Hz line-noise and harmonics). We 

used log-spaced center frequencies of 3, 4, 5, 7, 10, 14, 20, 28, 40, 

57, 80, 113, 135, 160, 190, 226, 269 and 320 Hz. We used a rel- 

ative bandwidth approach for filter banks such that pass band ( 𝑊 𝑝 ) 

and stop band ( 𝑊 𝑠 ) were defined 0.5 × 𝐹 𝑐 and 2 × 𝐹 𝑐 , respectively 

for low and high-pass filters, producing log-increasing spectral window 

widths. The choice of log-spaced center frequencies followed the exper- 

imentally observed center frequencies of brain oscillations ( Penttonen 

& Buzsáki, 2003 ). The log-increasing window widths afforded fine spec- 

tral resolution at lower frequencies, avoiding confounding instanta- 

neous phases of multiple frequency components at lower frequencies 

( Lopes da Silva, 2013 ). Simultaneously, this choice also provided fine 

temporal resolution at higher frequencies, enabling accurately estimat- 

ing the instantaneous phase of the known-to-be-short-lived oscillations 

at higher frequencies ( Lundquist et al., 2018 ). We applied the Hilbert 

transform to the FIR-filtered signal to return the analytic signal, from 

which angle we extracted the instantaneous phase. Before estimating 

phase-synchronization, we excluded select 500 ms windows contain- 

ing Inter-Ictal Epileptic (IIE) events, to counteract any spurious phase- 

synchronization due to filtering artefacts around the epileptic spikes. 

We defined IIE as at least 10% of SEEG contacts narrow-band time series 

demonstrating abnormal, concurrent sharp peaks in more than half the 

18 frequencies. To identify such periods, we searched for “spiky ” periods 

in amplitude envelopes of each SEEG contact. We tagged a 500 ms win- 

dow as “spiky ” if any of its samples were 5 standard deviations higher 

than mean amplitude of the contact. 

2.4. Connectome estimation 

We pooled estimates of phase-synchronization between SEEG con- 

tacts to obtain the group-level inter-regional connectome of phase- 

synchronization. We measured phase-synchronization between SEEG 

contacts with Phase Locking Value ( Lachaux et al., 1999 ): 

𝑃 𝐿𝑉 = 

1 
𝑁 

||||||

𝑁 ∑
𝑛 =1 

𝑒 𝑗 ( 𝜃1 ( 𝑛 ) − 𝜃2 ( 𝑛 ) ) 
||||||

where 𝜃1 ( 𝑛 ) and 𝜃2 ( 𝑛 ) are instantaneous phases from a pair of SEEG con- 

tacts at sample 𝑛 , with 𝑁 being the total number of samples. We es- 
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timated the group-level phase-synchronization between a pair of brain 

regions as the average PLV over all subjects, of all SEEG contact-pairs 

traversing that pair of brain regions. This procedure furnished accu- 

rate estimates of group-level phase-synchronization, since it computes 

a weighted average of phase-synchronization across subjects, wherein 

subjects contributing higher number of PLV values are assigned a higher 

weight in the group-level estimate. The alternative procedure of first av- 

eraging all PLV values for a pair of brain regions for each subject sepa- 

rately, before averaging these subject-level PLV estimates, would assign 

equal weight to each subject in the group-level estimate despite some 

subjects contributing higher number of PLV values to the estimate. We 

estimated the connectome of phase-synchronization as the group-level 

phase-synchronization between every pair of 148 regions in the De- 

strieux brain atlas for which we had at least one SEEG contact-pair. We 

then thresholded the connectome by retaining the estimated strengths 

of only the top 20 percentile of connections, setting all others to 0. We 

performed this thresholding as a means of emphasizing the topological 

organization of the connectome ( Rubinov and Sporns, 2010 ). We also 

determined the robustness of our results to the specific choice of per- 

centile threshold, by also identifying modules on connectomes thresh- 

olded by retaining the strengths of the top 10 and top 30 percentile of 

connections. 

Since we did not have complete recording coverage of the brain with 

SEEG, we had insufficient data to estimate phase-synchronization of 

all connections in the group-level connectome. Rather, we had suffi- 

cient coverage with SEEG, to estimate phase-synchronization of 47.2% 

of connections in the group-level connectome. Many of these connec- 

tions were intra-hemispheric - we estimated phase-synchronization of 

68% of connections between just left-hemispheric regions, and of 80% 

of connections between just right-hemispheric regions. Hence, we sep- 

arately identified modules in the connectome of just left-hemispheric 

regions and in the connectome of just right-hemispheric regions. 

We excluded selected contact-pairs from the connectome estima- 

tion due to potential artefacts, as per the below criteria. We excluded 

contact-pairs involving SEEG contacts marked by clinical experts as 

falling within the epileptogenic or seizure propagation regions. We per- 

formed this step after we removed 500 ms windows containing IIE, as 

described above ( Section 2.3 ). Further, we excluded contact-pairs whose 

respective SEEG contacts were less than 20 mm apart and those with the 

same white-matter reference, both to reduce the effect of volume con- 

duction. We have described these steps in further detail, in recent work 

using the same SEEG dataset ( Arnulfo et al., 2020 ). 

2.5. Analysing the connectome of phase-synchronization 

2.5.1. Identifying modules in connectomes of phase-synchronization 

We used Louvain community detection ( Reichardt and Born- 

holdt, 2006 ; Blondel et al., 2008 ; Ronhovde and Nussinov, 2009 ; 

Sun et al., 2009 ) combined with consensus clustering ( Lancichinetti and 

Fortunato, 2012 ) to identify modules in the connectome of phase- 

synchronization. Modules are sets of strongly interconnected nodes in 

a network. The Louvain community detection method iteratively iden- 

tifies a partition of network nodes into modules, such that ‘modular- 

ity’ of the partition is maximised. The ‘modularity’ objective function 

that is maximised, quantifies the extent to which the network comprises 

non-overlapping modules compared to a null model of an equivalent 

network that would be expected by chance ( Blondel et al., 2008 ). We 

chose the Louvain method due to its superior performance in accurately 

identifying network modules compared to alternative community de- 

tection methods ( Lancichinetti and Fortunato, 2009 ), and its superior 

performance, when combined with consensus clustering, in recovering 

modules in incomplete brain networks ( Williams et al., 2019 ). We used 

the implementation of the Louvain method in Brain Connectivity Tool- 

box ( Rubinov and Sporns, 2010 ). We applied the Louvain method to left 

and right hemispheric regions separately, since the low number of inter- 

hemispheric connections might confound the identification of modules. 

To identify modules while accounting for missing values in the group- 

level connectome matrix, we first generated 5000 variants of the connec- 

tome wherein we replaced each missing value with a randomly sampled 

(with replacement) existing value from the group-level connectome. Re- 

placing missing values with existing values from the group-level con- 

nectome generates complete connectomes with the same distribution of 

phase-synchronization strengths as the original incomplete connectome. 

We applied Louvain community detection to identify modules on each of 

these 5000 complete matrices. We identified modules at a range of spa- 

tial scales by setting the 𝛾 input parameter of the Louvain method from 

0.8 to 5, in intervals of 0.1. For each 𝛾 value, we combined the mod- 

ule assignments of the 5000 connectome variants to obtain a consensus 

module assignment. We performed this step by first generating matrix 

representations of each module assignment, with number of matrix rows 

and columns being the number of regions. We set each element in the 

matrix to 1 or 0 depending respectively on whether that pair of regions 

were in the same module or not. We then obtained a consensus matrix 

by averaging the 5000 matrix representations and obtained a consensus 

module assignment by applying the Louvain method to this consensus 

matrix. We have demonstrated this consensus clustering approach is su- 

perior to other approaches to identify modules in incomplete human 

brain networks ( Williams et al., 2019 ). We applied this procedure to 

identify modules at each frequency, for left and right hemispheres sep- 

arately. 

2.5.2. Determining statistical significance of modular organization 

We determined statistical significance of modular organization by 

comparing modularity of connectomes against modularity of corre- 

sponding randomized connectomes. Modularity is high when the con- 

nectome is divided into internally dense modules. We compared mod- 

ularity of the original connectomes to their corresponding randomized 

connectomes, with the following steps (1). We estimated modularity of 

the original connectome using Louvain community detection in combi- 

nation with consensus clustering, for 𝛾 values (spatial scales) from 0.8 to 

5 (see Section 2.5.1 ). Modularity is the objective maximised by the Lou- 

vain method. We used 100 variants of the original connectome for the 

consensus clustering step. (2). We standardised the modularity values of 

the original connectomes by z -scoring the estimated modularity at each 

𝛾 value against a null distribution of 100 modularity values generated 

by identifying modules on randomly permuted (without replacement) 

versions of the original connectome. We identified modules for each 

of these randomized connectomes with the same procedure as we used 

to identify modules on the original connectome. We estimated z -scored 

modularity for connectomes at each frequency, for left and right hemi- 

spheres separately. (3). We determined the statistical significance of the 

estimated modularity values of the original connectome by converting 

the z -scores to p -values assuming a Gaussian distribution and used False 

Discovery Rate (FDR) thresholding ( Benjamini and Hochberg, 1995 ) to 

correct for multiple comparisons across all combinations of 𝛾 and fre- 

quency. We considered FDR-corrected p < 0.05 to indicate statistically 

significant modular organization of the original connectome at a given 𝛾

and frequency. We performed FDR thresholding separately for connec- 

tomes of each hemisphere. 

2.5.3. Determining statistical significance of percentage of stable regions 

We determined the statistical significance of percentage of stable re- 

gions using a permutation-based test to assess the stability of module 

assignment of each brain region, and a second permutation-based test 

to assess if the percentage of stable regions is higher than expected by 

chance. We performed the following steps (1). We constructed 100 boot- 

strapped connectomes with the same procedure as for the original con- 

nectomes ( Section 2.4 ), each from a cohort of 67 randomly resampled 

(with replacement) subjects from the original cohort. (2). We considered 

the module assignment of a brain region to be stable if it was assigned to 

the same module in the original connectome, as it was assigned to across 

the 100 bootstrapped connectomes. Hence, we quantified the stability 
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of module assignment of a region as the mean correspondence in its 

module affiliation in the original connectome, to module affiliations of 

the same region across the 100 bootstrapped connectomes. For a given 

brain region, we specified module affiliation as a vector of ‘1 ′ and ‘0’s, 

depending respectively on whether each other brain region was or was 

not assigned to the same module, and we estimated the correspondence 

between module affiliations by the proportion of common ‘1’s and ‘0’s. 

Highly stable assignment of modules for a given brain region, were re- 

flected in mean correspondences in module affiliation close to 1, for that 

brain region. (3). We counted the stability of module assignment of a 

brain region as statistically significant if it exceeded the 95-percentile 

value of the null distribution of stability values for that brain region. We 

estimated the null distribution of stability values as the mean stability 

values when comparing module affiliation with the original connectome 

against 100 randomly permuted (without replacement) module affilia- 

tion vectors of each of the bootstrapped connectomes. Hence, we had 

100 samples in the null distribution of stability values for each brain 

region, one for each bootstrapped connectome. (4). We next estimated 

the percentage of brain regions for each combination of spatial scales or 

𝛾 values (from 0.8 to 5) and frequencies, for left and right hemispheres 

separately. (5). Finally, we determined the statistical significance of the 

percentage of stable regions, by z -scoring it against the percentage of re- 

gions expected to be stable by chance across the 100 bootstrapped con- 

nectomes. We estimated these chance percentages for each bootstrapped 

connectome, as the percentage of brain regions whose null stability val- 

ues exceeded the 95-percentile value of the null distribution of stabil- 

ity values for that bootstrapped connectome. We then converted the z - 

scores to p -values assuming a Gaussian distribution and used False Dis- 

covery Rate (FDR) thresholding to correct for multiple comparisons due 

to testing across every combination of 𝛾 and frequency. We considered 

FDR-corrected p < 0.05 to indicate statistically significant percentage of 

stable regions. 

2.5.4. Grouping frequencies by similarity of modules 

We used multi-slice community detection ( Mucha et al., 2010 ) to 

identify groups of frequencies with similar modules, simultaneously for 

both left and right hemispheres. First, we generated matrices of module 

similarity between each pair of frequencies, separately for left and right 

hemispheres. We estimated similarity between module assignments by 

first generating matrix representations of module assignments at each 

frequency. The number of rows and columns of these matrices were 

equal to the number of brain regions, each element being set to 1 or 0 

depending respectively on whether the corresponding pair of brain re- 

gions were in the same module or not. We measured similarity between 

module assignments using partition similarity ( Ben-Hur et al., 2002 ): 

𝑃 𝑆 = 

⟨𝑙 1 , 𝑙 2 ⟩√⟨𝑙 1 , 𝑙 1 ⟩⟨𝑙 2 , 𝑙 2 ⟩
where ⟨𝑙 𝑚, 𝑙 𝑛 ⟩ = 

∑
𝑖,𝑗 

𝐶 

( 𝑚 ) 
𝑖,𝑗 

𝐶 

( 𝑛 ) 
𝑖,𝑗 

, i.e., the dot product between matrix repre- 

sentations of the module assignments for frequencies 𝑚 and 𝑛 . Note that 

this measure of partition similarity effectively extends the measure in 

Section 2.5.3 , which compares the module assignments of single brain 

regions (in relation to a set of brain regions), to the case of comparing 

the module assignments of a set of brain regions. We obtained matrices 

of partition similarity for each 𝛾 value (spatial scale) from 0.8 to 5. We 

then estimated a weighted average of these matrices across the 𝛾 dimen- 

sion, to yield a matrix indicating similarity of modules between frequen- 

cies that was consistent across spatial scales. We assigned weights to the 

matrix at each 𝛾 value, as the number of frequencies with statistically 

significant modular organization at that 𝛾 value. Note however, that 

we also compared the frequency groupings we obtained when applying 

these weights, to frequency groupings we obtained when applying equal 

(unit) weights to the module similarity matrices at all 𝛾 values. 

We entered the left and right hemispheric matrices of module simi- 

larity into a multi-slice community detection procedure ( Mucha et al., 

2010 ), to identify groups of frequencies with similar modules for both 

hemispheres. Multi-slice community detection is a principled general- 

ization of modularity maximization community detection methods, e.g., 

Louvain, to multiple slices. It does so by formulating the null model for 

community structure across multiple slices, in terms of the stability of 

communities under Laplacian dynamics ( Mucha et al., 2010 ). Multi-slice 

community detection has previously been applied to study dynamic re- 

configuration of human brain networks in learning ( Bassett et al., 2011 ), 

and to relate modules in human brain networks identified for different 

cognitive tasks ( Cole et al., 2014 ). 

The method has two input parameters, 𝛾multislice and 𝜔 . 𝛾multislice rep- 

resents the spatial scale (just as with 𝛾 for the Louvain method), while 

𝜔 represents the dependence between communities across the differ- 

ent slices . In our context, 𝛾multislice influences the number of identified 

groups of frequencies while 𝜔 controls the dependence between the 

identified groups of left and right hemispheres. To select values for these 

parameters, we first estimated modularity values for each combination 

of 𝛾multislice = 1–1.5 (intervals of 0.05) and 𝜔 = 0.1–1 (intervals of 0.1). 

Then, we generated a null distribution of modularity values by applying 

the method to identically randomly resampled (without replacement) 

left and right hemispheric matrices of module similarity. We z -scored 

the original modularity values against the null distribution and con- 

verted them to p -values assuming a Gaussian distribution. Finally, we 

inspected frequency groups for selected combinations of 𝛾multislice and 𝜔 

with FDR-thresholded p < 0.05. 

2.5.5. Identifying modules across multiple frequencies or spatial scales 

We used a consensus clustering approach ( Section 2.5.1 ) to identify 

a single set of modules across frequencies and spatial scales. To do this, 

we first generated matrix representations of modules at individual fre- 

quencies, at each 𝛾 value (spatial scale) from 0.8 to 5, for left and right 

hemispheres separately. Matrix representations have number of rows 

and columns equal to the number of brain regions, each element in the 

matrix is 1 or 0 depending respectively on whether the corresponding 

pair of regions are in the same module or not. We then averaged the 

matrix representations, first across all frequencies and then across all 

spatial scales, for left and right hemispheres separately. Finally, we ap- 

plied multi-slice community detection to the averaged matrices of left 

and right hemispheres, to identify eight modules representing sets of re- 

gions assigned to the same module across frequencies and spatial scales, 

for both left and right hemispheres. The rationale for identifying these 

consensus modules was to relate these modules to their putative fMRI 

counterparts, Resting State Networks (RSNs). Hence, we fixed 𝛾multislice 

to 1.6 to return eight modules, while we set 𝜔 = 1 to constrain the mod- 

ules to be bilaterally symmetric – RSNs are typically reported as between 

seven and ten bilaterally symmetric modules ( e.g., in Yeo et al., 2011 ). 

2.6. Inferring whether regions in a module are functionally related 

We combined Neurosynth meta-analyses decoding ( Yarkoni et al., 

2011 ) with comparison to surrogate modules, to assign putative func- 

tional roles to each module. We used Neurosynth decoding to find terms 

related to perception, cognition and behavior selectively associated to 

the centroid co-ordinates of each brain region, based on a large database 

of fMRI studies. Then, we aggregated the terms associated with regions 

in each module and compared the occurrence frequencies of these terms 

to those of equally sized surrogate modules which were constrained 

to comprise anatomically proximal and bilaterally symmetric brain re- 

gions. Hence, we determined terms that were common to regions in a 

module, even after accounting for the anatomical proximity of its re- 

gions. We z -scored the occurrence frequency of each term in a module 

against corresponding frequencies of the surrogate modules. We con- 

verted these z -scores to p -values assuming a Gaussian distribution and 

FDR-thresholded at p < 0.05, to reveal those terms selectively associated 

to each module. 
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We inferred the putative functional role of each module by the set 

of terms it was selectively associated to. We also performed a post-hoc 

analysis to verify the functional specificity of each module. To do this, 

we generated an 8 × 8 ‘confusion matrix’ of percentages of selectively 

associated terms of each module distributed across the eight cognitive 

functions assigned to the modules. High values along the diagonal would 

reflect high functional specificity, i.e., that the terms of each module 

were largely confined to a single cognitive function. We compared these 

percentages against the percentages of all terms related to a module, not 

just those selectively associated to each module. We expected these sets 

of all terms of each module to be distributed across diverse cognitive 

functions. 

2.7. Assessing robustness of modules identified 

We assessed robustness of modules identified, to a range of poten- 

tial confounds. First, we assessed the robustness of modules identified 

to the specific set of SEEG contact-pairs used to generate the group- 

level connectomes of phase-synchronization. To do this, we identified 

and compared modules identified from split connectomes at 𝛾 = 2, each 

of the split connectomes being generated by combining different sets 

of SEEG contact-pairs. To generate a split connectome, we estimated 

strength of each connection from a randomly selected sample of half 

the SEEG contact-pairs used to estimate strength of each estimated con- 

nection in the original connectome. We estimated the same connection 

in the other split connectome with the other half of SEEG contact-pairs 

used to estimate strength of that connection in the original connectome. 

Next, we assessed the robustness of the modules to the community de- 

tection method used to identify the modules. To do this, we compared 

the original modules obtained with Louvain community detection at 

𝛾 = 2, against modules obtained with Infomap community detection 

( Rosvall and Bergstrom, 2008 ). Network density influences the number 

of modules with Infomap - we set the network density to 10% since this 

value yielded interpretable modules in previous work ( Williams et al., 

2019 ). Further, we assessed the robustness of our results when mod- 

ules were identified on binarized rather than weighted connectomes, 

when modules were identified by retaining the top 10 and 30 percentile 

group-level connections rather than top 20 percentile, and when mod- 

ules were identified on connectomes generated with a criterion of at 

least 5 and 10 SEEG contact-pairs required to estimate an inter-regional 

group-level connection, rather than at least 1. Finally, we investigated if 

identifying modules is confounded by amplitude of oscillations from in- 

dividual nodes in a network. To do this, we compared modules of the 67 

subject-level networks of phase-synchronization before and after remov- 

ing amplitude-related differences in functional connection strengths, at 

each of the 18 frequencies, at six spatial scales ( 𝛾 = 1, 1.8, 2.6, 3.4, 

4.2 and 5). We removed amplitude-related differences by relating the 

strengths of each functional connection to average amplitude of corre- 

sponding node-pairs via linear regression, and recovering the residuals. 

We compared modules identified before and after removing amplitude- 

related differences, with the partition similarity measure ( Section 2.5.4 ). 

We have made available MATLAB code to perform each stage of the 

analyses, via our GitHub repository ( https://github.com/nitinwilliams/ 

eeg _ meg _ analysis/tree/master/FC _ modules ). 

3. Results 

3.1. Whole-brain coverage achieved by broad spatial sampling of SEEG 

contacts 

We quantified the sampling of brain regions and inter-regional con- 

nections ( Arnulfo et al., 2020 ) by the percentage of brain regions and 

region-pairs in Destrieux brain atlas ( Destrieux et al., 2010 ) contain- 

ing at least one gray-matter SEEG contact or an inter-regional SEEG- 

contact-pair across subjects, respectively. The cohort sampled with at 

least one SEEG contact 97% of brain regions (143 of 148) in the De- 

strieux atlas ( Fig. 2 A). The SEEG contacts were sampled more densely 

on the right ( N = 45 ± 38, mean ± standard deviation, range 0–123, con- 

tacts per subject) than the left (32 ± 41, 0–128, contacts per subject) 

hemisphere. This yielded a coverage of 68% of left-hemispheric, 80% 

of right-hemispheric connections and 20% of inter-hemispheric connec- 

tions ( Fig. 1 B). We also estimated the numbers of SEEG contacts across 

subjects in each of the Yeo functional systems ( Yeo et al., 2011 ; Fig. 1 C) 

and found them densely sampled, with > 100 contacts in each functional 

system ( Fig. 1 D). 

Within each hemisphere, we further investigated the coverage of 

inter-regional connections with respect to distance, provided by the 

SEEG recordings. Coverage of inter-regional connections both between 

proximal and between distant brain regions would allow the commu- 

nity detection method to identify modules comprising both proximal 

and distant brain regions, while coverage of connections between only 

proximal brain regions would limit the community detection method 

to identifying modules comprising only proximal brain regions. We ex- 

pected coverage of connections both between proximal and between dis- 

tant brain regions due to the large cohort of subjects we used ( N = 67), 

with recordings from 17 ± 3 (mean ± SD) SEEG shafts from each subject. 

To assess the coverage with respect to distance, we (1). determined the 

percentage of connections sampled by at least one SEEG contact-pair, 

for four distance categories: very short ( < 30 mm), short (30–60 mm), 

medium (60–90 mm) and long ( > 90 mm), for both left and right hemi- 

spheres, and (2). determined the percentage of connections sampled by 

at least one SEEG contact-pair between regions in every pairwise com- 

bination of the following functional subdivisions: frontal, parietal, tem- 

poral, occipital, limbic and insula. We found that our SEEG recordings 

sampled inter-regional connections at all distance categories, for both 

hemispheres (Supplementary material, Fig. S1A). Short-distance con- 

nections were sampled most densely, with 87% for left hemisphere and 

92% for right hemisphere, but we also sampled 25% of long-distance 

connections for left hemisphere and 47% of long-distance connections 

for right hemisphere. Crucially, we found the SEEG recordings allowed 

dense sampling of inter-regional connections between standard func- 

tional subdivisions, i.e. frontal, parietal, temporal, occipital, limbic and 

insular cortices (Supplementary material, Fig. S1B): between 48 and 

100% of connections between regions in pairs of functional subdivisions 

were sampled for left hemisphere, and between 55 and 100% of connec- 

tions were sampled for right hemisphere. Hence, the SEEG recordings 

allowed sampling intra-hemispheric connections both between proximal 

and between distant brain regions, including between regions in differ- 

ent functional subdivisions. 

We identified modules on thresholded connectomes, wherein we re- 

tained the strengths of the top 20 percentile strongest connections, set- 

ting all others to 0. To check the sampling statistics, we investigated the 

relationship between the percentage of supra-threshold connections and 

connection distance. We found that the percentage of supra-threshold 

connections was higher for short-distance than long-distance connec- 

tions . However, we did find several connections between spatially dis- 

tant brain regions, including between regions in different functional sub- 

divisions, i.e. frontal, parietal, temporal, occipital, limbic and insular 

cortices (Supplementary material, see Supplementary Text and Fig. S2 

for details). 

3.2. Connectomes of phase-synchronization are characterized by distinct 

and stable modules at multiple spatial scales 

We combined Louvain community detection with consensus cluster- 

ing to identify modules in connectomes of phase-synchronization. The 

presence of distinct and stable modules would suggest that these mod- 

ules operate as functional systems within the connectome. Hence, we 

determined the distinctness and stability of the identified modules. We 

performed this investigation at multiple spatial scales in order to avoid 

missing modules due to the resolution limit imposed by identifying mod- 
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Fig. 2. Whole-brain coverage achieved by placement of SEEG contacts. A. Number of SEEG contacts across subjects, in each brain region, for left (dark blue) and 

right (dark red) hemispheres, from lateral (top) and medial (bottom) views. B. Coverage of left-hemispheric (dark blue), right-hemispheric (dark red) and inter- 

hemispheric (gray) connections for a range of minimum number of SEEG contact-pairs across subjects. C. 7 Yeo systems from lateral (top) and medial (bottom) 

views. VIS = Visual, SM = Sensorimotor, DA = Dorsal Attention, VA = Ventral Attention, Lim = Limbic, FP = Fronto-parietal and Def = Default Mode. D. Number of 

SEEG contacts across subjects, in each of 7 Yeo systems, for left (dark blue) and right (dark red) hemispheres. 

ules at a single spatial scale ( Sporns and Betzel, 2016 ). We used Louvain 

community detection with a range of the 𝛾 parameter from 0.8 to 5 

to identify modules at multiple spatial scales. The numbers of modules 

varied from 1 to 18 across the range of spatial scales and filter cen- 

ter frequencies ( Fig. 3 A). We used permutation-based methods to assess 

the distinctness and stability of the identified modules. To assess stabil- 

ity of the identified modules, we determined if the percentage of brain 

regions consistently assigned to the same module across bootstrapped 

versions ( N = 100) of the original connectome, was more than would be 

expected by chance. To assess distinctness of the identified modules, we 

assessed if modularity of the original connectome was higher than mod- 

ularity of randomized versions of the original connectome ( N = 100). 

Modularity is high when the connectome divides into internally dense 

modules. We observed that across a wide range of spatial scales and fre- 

quencies, 12.2–100% cortical regions had stable module assignments, 

yielding statistically significant percentages of stable regions at multi- 

ple spatial scales ( p < 0.05, FDR-corrected, permutation test) ( Fig. 3 B). 

Further, the connectomes had statistically significantly distinct modu- 

lar organization ( p < 0.05, FDR-corrected, permutation test) at multiple 

spatial scales throughout the studied frequency range ( Fig. 3 C). Connec- 

tomes in beta frequency band (14–20 Hz) exhibited the widest range of 

spatial scales for which modules were statistically significantly distinct. 

The distinctness and stability of the modules, across a range of spatial 

scales, suggests that modules of different sizes operate as functional sys- 

tems within the connectome. 

We used bootstrapping ( N = 100 connectomes resampled with re- 

placement) to assess statistical significance of the percentage of brain 

regions with stable module assignments, and shuffling ( N = 100 shuf- 

fled connectomes) to assess statistical significance of modularity of the 

original connectomes. Since the outcome of permutation-based signifi- 

cance tests can be sensitive to the number of samples used, we evaluated 

the robustness of our results to the number of samples used to assess 

statistical significance. To do this, we compared z -scores of the percent- 

ages of stable brain regions we obtained with the original 100 boot- 

strapped connectomes to the corresponding z -scores with 1000 boot- 

strapped connectomes. Similarly, we compared the z-scores of the mod- 

ularity we obtained with the original 100 randomized connectomes to 

the corresponding z -scores with 1000 randomized connectomes. In the 

original analysis, the z -scores were converted to p -values, from which 

we assessed statistical significance. We found that the z- scores of per- 

centages of stable regions for 100 and 1000 bootstrapped connectomes 

were highly correlated (0.9 for left hemisphere and 0.96 for right hemi- 

sphere). Similarly, the z -scores of modularity of the connectomes for 

100 and 1000 randomized connectomes were highly correlated (0.99 
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Fig. 3. Connectomes of phase-synchronization reveal distinct and stable modules at multiple spatial scales. A. Number of identified left and right hemisphere 

modules, for each combination of spatial scale and filter center frequency. B. Percentages of left and right hemisphere regions with stable module assignments, for 

each combination of spatial scale and filter center frequency. C. Modularity for left and right hemisphere, for each combination of spatial scale and filter center 

frequency. Values below statistical significance are gray. D. Translation of colours for each brain region from an inflated to (top) flattened cortical surface (bottom). 

We performed the transformation from the inflated to flattened cortical surface using the tksurfer FreeSurfer command (Fischl et al., 1999). E. Color-coded modules 

for right hemisphere at 14 Hz on flattened cortical surface, at six spatial scales ( 𝛾 = 1 to 5). We converted from HSV to RGB before plotting the modules. Regions 

with unstable module assignments are gray. Small black rectangles in panels A-C indicate 𝛾 values at which modules are visualised in panel E. 

for both left and right hemispheres). These results demonstrate that the 

results of our permutation-based tests on statistical significance of the 

identified modules are robust to the number of samples used. 

For a given frequency, we illustrate modules on flattened projec- 

tions of the cortical surface (Fischl et al., 1999) ( Fig. 3 D). We assigned 

colours to modules displayed on the flattened cortical surfaces using the 

following procedure: (1). Collapsing the set of region x - y coordinates to 

a single hemisphere by first flipping all right-hemispheric coordinates 

about the y -axis and estimating the average of x - y coordinates of the 

left hemisphere and (flipped) right hemisphere, for each brain region. 

(2). Centering the x - y coordinates by subtracting the mean x and y coor- 

dinates. (3). For each brain region, estimating Euclidean distance from 

the (0,0) center, rescaled between 0.6 and 1, and estimating angle from 

the (0,0) center using the arctan function, rescaled between 0 and 1. 

(4). Assigning the color of each brain region by the Hue Saturation Lu- 

minance (HSV) scheme, setting hue as the rescaled angle, luminance as 

the rescaled distance, and saturation as 1. (5). Assigning module colours 

using the HSV scheme, setting hue as the circular mean of angles of 

constituent regions, rescaled between 0 and 1, saturation as 1, and lu- 

minance as the mean of the rescaled distances from the region centers. 

At a representative frequency of 14 Hz, modules comprised superior- 

frontal, inferior-frontal, temporal, parietal and occipital regions at a 
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Fig. 4. Modules in connectomes of phase-synchronization cluster into canonical frequency bands. Matrices of module similarity, between modules at every pair of 

frequencies, for left and right hemispheres. Statistically significant clustering common to both hemispheres, into three frequency bands (dashed red outline), i.e. 

3–14 Hz, 20–113 Hz and 135–320 Hz and into six frequency bands (black outline), i.e. 3–4 Hz, 5–10 Hz, 14–20 Hz, 28–57 Hz, 80–113 Hz and 135–320 Hz, are 

shown. 

coarse spatial scale ( 𝛾 = 1.8). The module of temporal regions split into 

modules of superior and inferior-temporal regions at finer spatial scales 

( 𝛾 = 2.6) ( Fig. 3 E). 

3.3. Modules in connectomes of phase-synchronization cluster into 

canonical frequency bands 

Neuronal activity from brain regions fall into distinct frequency 

bands, e.g. delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–

30 Hz) and gamma (30–80 Hz), each with specific behavioural corre- 

lates ( Buzsáki and Moset, 2013 ; Zhou et al., 2021 ; Spitzer and Hae- 

gens, 2017 ; Zielinski et al., 2019 ). Statistical factor analysis on spectral 

values of EEG activity from brain regions yielded clusters of frequencies 

that largely corresponded to these canonical frequency bands ( Lopes da 

Silva, 2013 ), but a data-driven clustering of modules at different fre- 

quencies has not been performed. We determined if the identified mod- 

ules clustered into statistically distinct sets of frequencies. To do this, we 

first generated matrices of module similarity, between modules at every 

pair of frequencies, for left and right hemispheres separately. Then, we 

applied multi-slice community detection ( Mucha et al., 2010 ) to iden- 

tify sets of frequencies for which modules were highly similar, for both 

left and right hemispheres ( Fig. 4 ). These module similarity matrices 

were weighted averages of matrices of module similarity at individual 

spatial scales, where the weights were specified by the number of fre- 

quencies for which the connectomes had statistically significant mod- 

ular organization at that spatial scale. We found multiple statistically 

significant ( p < 0.05, FDR-corrected, permutation test, N = 100) group- 

ings of between two and thirteen frequency bands. For further analysis, 

we used the groupings into three frequency bands and six frequency 

bands, though we note that other equally valid groupings could be 

used. The statistically significant clustering into three frequency bands 

( 𝛾multislice = 1.1, 𝜔 = 0.2–1) comprised sets of adjacent filter center fre- 

quencies, 3–14, 20–113 and 135–320 Hz ( Fig. 4 , dashed red line boxes). 

Similarly, the statistically significant clustering into six frequency bands 

( 𝛾multislice = 1.25, 𝜔 = 0.2–1) comprised sets of adjacent filter center fre- 

quencies, 3–4, 5–10, 14–20, 28–57, 80–113 and 135–320 Hz ( Fig. 4 , 

solid black line boxes). Notably, we found an identical clustering into 

six frequency bands (Supplementary material, Fig. S3, solid black line 

boxes) when we applied equal (unit) weights to the matrices of module 

similarity at all spatial scales, and the clustering into three frequency 

bands was also highly similar (3–10 Hz, 14–80 Hz, 113–320 Hz) (Sup- 

plementary material, Fig. S3, dashed red line boxes). The clustering into 

six sets of frequencies yielded frequency bands that are close to canon- 

ical frequency bands observed in prior literature, i.e. , delta (3–4 Hz), 

theta/alpha (5–10 Hz), beta (14–20 Hz), low gamma (28–57 Hz), high 

gamma (80–113 Hz) and high-frequency oscillations (135–320 Hz) re- 

spectively ( Lopes da Silva, 2013 ; Arnulfo et al., 2020 ). Thus, the identi- 

fied modules cluster into statistically distinct sets of frequencies, which 

map to canonical frequency bands. 

3.4. Modules in connectomes of phase-synchronization comprise 

anatomically contiguous regions 

Module-like structures identified in resting-state fMRI, such as the 

default mode, fronto-parietal, ventral- and dorsal-attention systems in- 

clude anatomically non-contiguous regions ( Beckmann et al., 2005 ; 

van den Heuvel and Pol, 2010 ). We investigated if modules in connec- 

tomes of phase-synchronization similarly comprised anatomically non- 

contiguous regions for the statistically significant grouping into three 

and six frequency bands, at different spatial scales ( Fig. 5 ). For the 

grouping into three frequency bands (3–14, 20–113 and 135–320 Hz), 

we in fact found the modules comprised anatomically contiguous re- 

gions for the 3–14 and 20–113 Hz frequency bands, where the mod- 

ules respectively comprised frontal, temporal, and parietal regions at 

a coarse spatial scale ( 𝛾 = 1). For example, for the 3–14 Hz frequency 

band, both the left-hemispheric (green) and right-hemispheric (green) 

modules comprising frontal regions included fronto-marginal gyrus and 

sulcus, middle frontal gyrus and sulcus, orbital and triangular parts 

of the inferior frontal gyrus. Similarly, both the left-hemispheric (red) 

and right-hemispheric (red) modules comprising temporal regions in- 

cluded the temporal pole, inferior temporal gyrus, middle temporal 

gyrus, superior temporal sulcus and inferior temporal sulcus. Both the 

left-hemispheric (light blue) and right-hemispheric (dark blue) modules 

comprising parietal regions included superior parietal gyrus, paracentral 

gyrus and sulcus, postcentral gyrus and sulcus, and precuneus. At finer 

spatial scales ( 𝛾 = 2–4), these modules split into smaller sets of regions, 

but the brain regions within a module remained anatomically contigu- 

ous. For example, the 20–113 Hz frequency band at 𝛾 = 2 yielded a left- 

hemispheric module (brown) including superior temporal regions such 

as transverse temporal sulcus, anterior transverse temporal gyrus and 

planum temporale of the superior temporal gyrus, as well as a module 

(reddish pink) including inferior temporal regions such as the inferior 
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Fig. 5. Modules in connectomes of phase-synchronization up to high-gamma frequencies comprise anatomically contiguous regions. Flattened cortical surface 

representations of modules in connectomes of phase-synchronization for 3–14 Hz, 20–113 Hz and 135–320 Hz, at four spatial scales ( 𝛾 = 1 to 4). Black lines on each 

flattened surface show outlines of consensus modules, i.e. sets of regions assigned to the same module across frequencies and spatial scales. 

temporal gyrus, inferior temporal sulcus and temporal pole. In contrast 

to modules for the 3–14 and 20–113 Hz frequency bands however, the 

modules in the 135–320 Hz frequency band included anatomically non- 

contiguous regions, across the range of visualised spatial scales ( 𝛾 = 2–4) 

( Fig. 5 ) ( Arnulfo et al., 2020 ). For example, the 135–320 Hz frequency 

band at 𝛾 = 1 yielded a right-hemispheric module (orange) traversing 

temporal regions such as superior and inferior temporal sulci, parietal 

regions such as postcentral gyrus and supramarginal gyrus, and occipital 

regions such as anterior occipital sulcus and middle occipital gyrus. Sim- 

ilar to the modules of the three frequency bands, modules of the six fre- 

quency bands (3–4, 5–10, 14–20, 28–57, 80–113 and 135–320 Hz) com- 

prised anatomically contiguous regions up to 113 Hz, but the modules in 

the 135–320 Hz frequency band included anatomically non-contiguous 

regions (Supplementary material, Fig. S4 and 5). Hence, unlike with 

resting-state fMRI, modules in connectomes of phase-synchronization 

up to high-gamma frequencies comprised anatomically contiguous re- 

gions. 

Please find module assignments for left and right hemispheres, at 

a number of spatial scales ( 𝛾 = 1,2,3,4), in our shared open dataset 

( Williams et al. (2021) ). 

3.5. Modules in connectomes of phase-synchronization comprise 

functionally related regions 

Module-like structures in fMRI functional connectomes, typically 

recognized as resting-state networks or functional brain systems, com- 

prise regions that are concurrently active in tasks relating to spe- 

cific sensory, motor, or cognitive domains, such as visual, sensorimo- 

tor, attentional, and executive control processing ( Smith et al., 2009 ; 

Power et al., 2011 ). Hence, we investigated if modules in connectomes 

of phase-synchronization also comprised regions that are concurrently 

active in tasks relating to specific cognitive domains. For this purpose, 

we used eight consensus modules that represented sets of regions as- 

signed to the same module across frequencies and spatial scales. In 

the absence of a priori knowledge on the number of consensus mod- 

ules, we set the number as eight to fall within the range of seven to 

ten reported for their putative fMRI counterparts ( Beckmann et al., 

2005 ; Damoiseaux et al., 2006 ; Yeo et al., 2011 ; Power et al., 2011 ). 

The eight consensus modules comprised anatomically contiguous re- 

gions and respectively included regions in the superior-frontal (bright 

green), inferior-frontal (pale green), insula (olive), superior-temporal 
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Fig. 6. Modules in connectomes of phase-synchronization comprise functionally related regions. A. Terms and putative functional roles specific to each of the 

eight consensus modules displayed in center. Sizes of words are proportional to their frequency of occurrence. sF = superior Frontal, iF = inferior Frontal, Ins = Insula, 

sT = superior Temporal, iT = inferior Temporal, lO = lateral Occipital, mO = medial Occipital, P = Parietal. B. Percentages of terms specific to each module (row) assigned 

to each of eight cognitive functions (left) and percentages of all terms related to each module (row) assigned to the same cognitive functions (right). 

(brown), inferior-temporal (dark pink), parietal (light blue), lateral- 

occipital (dark purple), and medial-occipital (light purple) cortical areas 

( Fig. 6 A). Module colours reflect anatomical location of their constituent 

regions (see Section 3.2 ). The consensus modules predominantly resem- 

bled modules at the lower frequencies (14–40 Hz) and intermediate spa- 

tial scales ( 𝛾 = 1.5–2.5) (Supplementary material, Fig. S6). 

We first used the Neurosynth meta-analyses-based decoding tool 

( Yarkoni et al., 2011 ) to find terms related to perception, cognition 

and behavior, selectively associated with each brain region in the De- 

strieux brain atlas, where we identified each region by its centroid coor- 

dinates. These terms were both sensitively and specifically associated to 

fMRI activation in the corresponding brain regions, according to a large 

database of fMRI studies. We then identified terms selectively associated 

with each module by finding terms that occurred more frequently ( p < 

0.05, FDR-corrected, permutation test, N = 74) across the regions in a 

module, compared to equally sized surrogate modules of anatomically 

contiguous regions. This effectively tested the hypotheses that regions 

comprising a module serve shared functional roles, even after account- 

ing for their anatomical proximity. 

The terms for the superior-frontal module were related to attention 

and executive function while the inferior-frontal module was associated 

with affective processing and social cognition ( Fig. 6 A). The parietal 

module related to sensorimotor, sensory and motor processing, while 

the medial-occipital and lateral-occipital modules were associated with 
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basic and advanced visual processing respectively. The superior tempo- 

ral module was related to language and auditory processing, while the 

inferior temporal module was related to memory function. Finally, the 

terms for the insula module were associated with somatosensory pro- 

cessing. The results suggest that, similarly to modules in resting-state 

fMRI, the modules in connectomes of phase-synchronization comprised 

regions with shared functional roles in task-related processing. The pu- 

tative functional roles of these modules, inferred from their sets of terms, 

were in good agreement with overarching functions of their constituent 

regions ( Gazzaniga et al., 2009 ). 

We sought to further corroborate the functional specificity of mod- 

ules, i.e., that they are specialised to support particular domains of cog- 

nitive functions. To verify this, we determined the percentage of selec- 

tively associated terms for each module that could be categorised under 

every module’s assigned functional role. We compared this against the 

percentage of all terms for each module, i.e., before FDR-thresholding, 

that could be categorised under every module’s assigned cognitive func- 

tion. Functional specificity of modules would be reflected by high per- 

centages of selectively associated terms for each module being assigned 

to their assigned cognitive function, but the set of all terms for each mod- 

ule being distributed across diverse cognitive functions. As expected, we 

found high percentages of selectively associated terms for each mod- 

ule were categorised within the cognitive function assigned to them 

( Fig. 6 B, left), but the set of all terms for each module were distributed 

across diverse cognitive functions ( Fig. 6 B, right). These results further 

verify the functional specificity of the identified modules. 

Please find the set of terms selectively associated to each of the con- 

sensus modules, in our shared open dataset ( Williams et al. (2021) ). 

3.6. Robustness of results to potential confounds 

The modules identified might be influenced by a number of poten- 

tial confounds, for e.g. the community detection method used to identify 

modules. Hence, we investigated the robustness of the identified mod- 

ules to several potential confounds. These tests revealed that the mod- 

ules identified were robust to (1). the specific sets of SEEG contact-pairs 

used to generate the group-level connectomes, (2). the community de- 

tection method used to identify modules, (3). the filter banks used to 

isolate neuronal activity from different frequencies, (4). the criterion 

for the minimum number of SEEG contact-pairs required to estimate a 

group-level inter-regional connections (5). the percentile values used to 

set the connectome threshold, and (6). regional amplitude differences. 

Please see Supplementary Text and Figs. S7–14 in Supplementary ma- 

terial for further details. 

4. Discussion 

Modules in the fMRI connectome comprise distinct sets of connected 

regions for sensory, motor and cognitive processing ( Valencia et al., 

2009 ; Benjaminsson et al., 2010 ; Yeo et al., 2011 ; Power et al., 2011 ; 

Lee et al., 2012 ). In this study, we investigated whether connectomes 

of phase-synchronization among meso ‑ and macroscale assemblies of 

neuronal oscillations exhibit a modular architecture. We used intrac- 

erebral SEEG data from 67 subjects to generate connectomes of phase- 

synchronization ( Arnulfo et al., 2020 ) which are negligibly affected by 

volume conduction ( Arnulfo et al., 2015a ). We found that connectomes 

of phase-synchronization exhibited distinct and stable modules at mul- 

tiple spatial scales at all studied frequencies. Furthermore, data-driven 

clustering showed that the modules were anatomically similar within 

canonical frequency bands, i.e., delta (3–4 Hz), theta/alpha (5–10 Hz), 

beta (14–20 Hz), gamma (28–57 Hz), high-gamma (80–113 Hz) and high 

frequency (135–320 Hz) bands. In contrast to the modules identified in 

fMRI, we found that modules up to high-gamma frequency band (80–

113 Hz) comprised only anatomically contiguous regions. Importantly, 

modules comprised brain regions with significantly shared functional 

roles in e.g., attentional and executive function, language and memory. 

4.1. SEEG recordings can be used to identify modules in connectomes of 

phase-synchronization 

Despite the millimeter scale anatomical specificity and high signal- 

to-noise ratio (SNR) offered by intra-cranial EEG methods like Elec- 

trocorticography and SEEG ( Parvizi and Kastner, 2018 ), their sparse 

spatial coverage and artefacts due to epileptogenic activity have mil- 

itated against their use to identify modules in connectomes of phase- 

synchronization. Our results demonstrate the viability of combining 

SEEG recordings with state-of-the-art methods to identify modules in 

connectomes of phase-synchronization. We counteracted sparse SEEG 

coverage by pooling data from 67 subjects and addressed epilepto- 

genic artefacts by removing SEEG contacts and data segments poten- 

tially containing epileptic artefactual activity. Further, we used auto- 

mated procedures to overcome the problem of assigning SEEG con- 

tacts to brain regions and used closest-white-matter referencing to min- 

imize volume conduction, to accurately estimate connectomes of phase- 

synchronization. Finally, we combined consensus clustering with com- 

munity detection to identify modules in the connectomes despite the 

presence of missing connections. A recent MEG study ( Zhigalov et al., 

2017 ) used a similar procedure with a smaller cohort ( N = 27) to es- 

timate the connectome of phase-synchronization, but did not identify 

modules in these due to the high proportion of missing connections. A 

recent Electrocorticography (ECoG) study ( Kucyi et al., 2018 ) measured 

amplitude correlations between a number of brain regions, but lacked 

the spatial coverage to estimate the connectome or modules in the con- 

nectome. Hence, our study is the first to our knowledge to harness the 

high SNR and fine anatomical specificity of intra-cranial EEG to study 

the modular organization of the connectome of phase-synchronization. 

It should be mentioned that the yet incomplete coverage offered by 

SEEG combined with connectome thresholding, might result in missing 

modules comprising sets of distant ( > 90 mm) brain regions. This should 

be considered when weighing the strengths and limitations of our ap- 

proach. However, we do reiterate that our investigation of the coverage 

offered by our method revealed that neither the positions of the SEEG 

shafts nor thresholding the connectome, precluded identifying modules 

comprising distant brain regions, including brain regions in different 

functional subdivisions, i.e. frontal, parietal, temporal, occipital, limbic 

and insular cortices. Rather, we found a number of supra-threshold con- 

nections between regions in different functional subdivisions. In fact, 

modules identified at a coarse spatial scale for the 135–320 Hz frequency 

group, comprised distant brain regions encompassing parietal, temporal 

and occipital cortices. 

Since SEEG measures LFPs, it is limited in its anatomical specificity, 

in for e.g., reconstructing the detailed microscopic arrangement of trans- 

membrane currents ( Einevoll et al., 2013 ). However, SEEG’s anatomi- 

cal specificity at the level of neuronal populations, together with our 

closest white-matter referencing scheme, enable accurately estimating 

inter-regional phase-synchronization and identifying modules in con- 

nectomes of phase-synchronization. Compared to MEG, SEEG provides 

higher spatial resolution due to the minimal influence of volume con- 

duction on estimates of phase-synchronization ( Arnulfo et al., 2015a ). 

Further, SEEG does not have different sensitivities to gyral and sulcal 

sources, and source orientations, but MEG does ( Baillet (2017) ). 

4.2. SEEG reveals novel modules in connectomes of phase-synchronization 

Some of the distinct modules we identified with SEEG have not previ- 

ously been observed with either fMRI or MEG. The relationship between 

fMRI connectivity to electrophysiology is multi-factorial, including con- 

tributions from both amplitude correlations and phase-synchronization, 

in multiple frequency bands ( Shafiei et al., 2022 ). Hence, we do not ex- 

pect a one-to-one correspondence between the modules we identified in 

SEEG connectomes of phase-synchronization, and the modules reported 

with fMRI. We identified modules comprising superior frontal regions, 

inferior frontal regions, superior temporal regions, inferior temporal re- 
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gions, parietal regions, insula, lateral occipital regions and medial occip- 

ital regions. Modules comprising occipital regions and temporal regions 

have been identified in resting-state fMRI ( Benjaminsson et al., 2010 ; 

Yeo et al., 2011 ; Power et al., 2011 ). However, we identified separate 

modules of medial occipital and lateral occipital regions compared to a 

single module of occipital regions reported in fMRI, and separate mod- 

ules of superior temporal and inferior temporal regions compared to a 

single module of temporal regions reported in fMRI. Further, we iden- 

tified separate modules of superior frontal and inferior frontal regions, 

rather than the module of fronto-parietal regions reported in fMRI. Fi- 

nally, we identified a module of parietal regions, and a module of re- 

gions in the insula, both of which have not been previously reported in 

fMRI. Each of these SEEG modules comprised anatomically contiguous 

regions in contrast to, for e.g. , attentional or default-mode brain systems 

identified with fMRI, which include regions distributed across frontal, 

parietal, and temporal cortices ( Benjaminsson et al., 2010 ; Yeo et al., 

2011 ; Power et al., 2011 ). The only partial overlap in modules we iden- 

tified with SEEG to those reported in fMRI is in agreement with the 

weak correspondence between fMRI connectomes to electrophysiolog- 

ical connectomes of phase-synchronization estimated from MEG data 

( Shafiei et al., 2022 ). Correspondence between fMRI and electrophysi- 

ological connectomes was highest in sensory and motor cortices rather 

than associative cortex ( Shafiei et al., 2022 ), much the same as the mod- 

ules we identified with SEEG comprising sensory or motor regions, e.g. , 

the module of superior temporal regions (auditory), corresponding to 

the module of temporal regions in fMRI data (auditory), but there be- 

ing no such correspondence for modules comprising associative brain 

regions. 

Previous MEG studies have identified module-like structures rep- 

resenting sets of brain regions whose oscillation amplitude envelopes 

in specific frequency bands are correlated ( Brookes et al., 2011 ; 

de Pasquale et al. 2010 ). Notably, these studies have demonstrated a 

strong correspondence to modules identified in fMRI, such as a module 

of fronto-parietal regions (fronto-parietal control), a module of occipital 

brain regions (visual) and a module comprising regions in the default 

mode brain system ( Brookes et al., 2011 ). Correlation between oscil- 

lation amplitude envelopes of brain regions is known to be physiologi- 

cally distinct to synchronization between oscillation phases ( Engel et al., 

2013 ), and to also exhibit different patterns of inter-regional connectiv- 

ity ( Siems and Siegel, 2020 ). Hence, we did not expect a strong corre- 

spondence between the modules we identified, and previously reported 

module-like structures of regions whose oscillation amplitude envelopes 

were correlated. We observed a partial correspondence for a single mod- 

ule - while a previous study ( Brookes et al., 2011 ) reported a module 

comprising occipital regions, we reported separated modules for me- 

dial occipital regions and lateral occipital regions. However, we also 

reported modules comprising superior frontal regions, inferior frontal 

regions, superior temporal regions, inferior temporal regions, parietal 

regions and regions in the insula, which have not been previously re- 

ported in MEG studies identifying sets of regions whose oscillation am- 

plitude envelopes are correlated. 

Results from two MEG studies ( Zhigalov et al., 2017 ; Vidaurre et al., 

2018 ) investigating module-like structures in connectomes of phase- 

synchronization, corroborate our identification of modules compris- 

ing anatomically contiguous regions up to high-gamma frequencies. 

Zhigalov et al. (2017) reported distinct modules comprising occipital 

regions, sensorimotor regions and frontal regions. Another recent MEG 

study ( Vidaurre et al., 2018 ) used Hidden-Markov modeling to identify 

spatially localised “functional states ”, including those comprising pre- 

dominantly occipital regions, sensorimotor regions and frontal regions. 

The “functional states ”, were characterised by short-lived patterns of 

inter-regional coherence and hence, constituted module-like structures. 

However, in contrast to these MEG studies, we identified separate mod- 

ules of superior frontal regions and inferior frontal regions and separate 

modules of medial occipital regions and lateral occipital regions, and 

we identified a module of parietal regions including both sensorimo- 

tor and posterior parietal regions while both the MEG studies reported 

modules of only sensorimotor regions. The low-resolution parcellations 

used with MEG to avoid field spread, might distort modules identified 

at finer spatial scales. We also identified modules comprising superior 

temporal regions, inferior temporal regions and regions in the insula, 

that have not been reported before. These might be observed due to the 

sensitivity of interaction measures, e.g., Phase Locking Value, to near- 

zero-lag phase-synchronization when used with SEEG. MEG field spread 

or EEG volume conduction produce high amounts of spurious phase- 

synchronization when measures such as Phase Locking Value are applied 

to MEG or EEG data. In contrast, the fine anatomical specificity of SEEG 

allows using measures sensitive to near-zero-lag phase-synchronization, 

which then reveal novel sets of regions functionally interacting during 

resting-state. 

Evidence from animal electrophysiology ( Leopold et al., 2003 ) as 

well as human SEEG recordings ( Arnulfo et al., 2015a ) reveal that 

strength of phase-synchronization decreases with increasing inter-site 

distance, which is consistent with the presence of modules comprising 

anatomically contiguous regions. We also observed modules at frequen- 

cies higher than 113 Hz to comprise spatially distant regions. These 

results are consistent with evidence from intra-cranial EEG recordings 

( Arnulfo et al., 2020 ; Vaz et al., 2019 ; Khodagholy et al., 2017 ), demon- 

strating long-distance phase-synchronization at frequencies exceeding 

100 Hz. Phase-synchronization from 113 to 320 Hz is proposed to re- 

flect broadcasting and transmission of information through High Fre- 

quency Oscillations (HFOs), which are generated in deep cortical layers 

( Arnulfo et al., 2020 ). 

4.3. Modules at multiple spatial scales consistent with hierarchical 

organization 

Our study is the first to report modular organization at multiple 

spatial scales in connectomes of phase-synchronization. The module of 

frontal regions identified at a coarse spatial scale splits into modules 

of superior frontal regions and inferior frontal regions at a finer spatial 

scale. Similarly, the module of temporal regions identified at a coarse 

spatial scale splits into modules of superior temporal regions and infe- 

rior temporal regions at a finer spatial scale. This recursive occurrence of 

sub-modules within modules is consistent with hierarchical modular or- 

ganization, and has been observed in resting-state fMRI ( Meunier et al., 

2009 ) but not with electrophysiological methods. However, a stricter as- 

sessment of hierarchical modular organization requires simultaneously 

identifying modules at multiple spatial scales. Separately identifying 

modules at multiple spatial scales, as in the current study, make it diffi- 

cult to rigorously assess hierarchical modular organization due to the 

very high number of possible permutations when matching modules 

across spatial scales. 

4.4. Functional specificity of identified modules suggests their behavioural 

relevance 

We used information from an independent database of fMRI studies 

to infer the functional role of each module. Regions in different modules 

had shared involvement in cognitive functions of attention and execu- 

tive function, affective processing and social cognition, somatosensory 

processing, language and auditory processing, memory function, visual 

processing, advanced visual processing and sensorimotor processing re- 

spectively. The demonstrated functional specificity of these modules 

suggests that they operate as distinct brain systems. In line with pro- 

posed frameworks on brain function ( Tononi et al., 1994 ; Tononi et al., 

1998 ; Balduzzi and Tononi, 2008 ; Lord et al., 2017 ; Shine et al., 2018 ), 

strong connections within modules might support segregated informa- 

tion processing ( Chan et al., 2014 ) while weak connections between 

modules might support integrated information processing ( Deco et al., 

2015 ; Westphal et al., 2017 ). 
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We speculate that the identified modules impose a functional archi- 

tecture of the connectome during resting-state, which is reorganized 

to meet task-related demands for segregation and integration. Recent 

frameworks propose that cognitive function is implemented by integra- 

tion between modules present in the baseline period ( Cole et al., 2014 ; 

Wig, 2017 ). Some fMRI studies have found evidence to support this, 

in the form of associations between cognitive performance and task- 

related functional reorganization of the brain to facilitate interaction be- 

tween modules operating at baseline ( Spadone et al., 2015 ; Shine et al., 

2016 ; Cohen and D’Esposito 2016 ). While many MEG/EEG studies have 

found task-related phase-synchronization in for e.g., studies of atten- 

tion ( Lobier et al., 2018 ), somatosensory processing ( Hirvonen et al., 

2018 ) and working memory ( Kitzbichler et al., 2011 ), there are no stud- 

ies investigating task-related phase-synchronization as reorganization of 

the functional architecture imposed by modules during resting-state. Fu- 

ture studies could describe task-related phase-synchronization with ref- 

erence to the natural framework provided by the identified modules in 

connectomes of phase-synchronization during resting-state, and related 

frameworks rooted in electrophysiology have been recently proposed 

( Sadaghiani et al., 2022 ). 

Since the modules we identified were in resting-state, we empha- 

size that they naturally accommodate studies on task-related mod- 

ulations of phase-synchronization, including those in which the dis- 

tance between interacting regions is inversely related to the frequency 

of interaction. For example, Womelsdorf et al. (2006) reported task- 

related gamma-band of phase-synchronization between macaque vi- 

sual areas, Salazar et al. (2012) reported task-related long-distance 

beta-band synchronization between macaque frontal and parietal re- 

gions and Gross et al. (2004) reported task-related long-distance beta- 

band synchronization between human frontal, parietal and temporal 

brain regions. As per the framework imposed by the modules we 

identified, the task-related short-distance gamma-band synchronization 

( Womelsdorf et al., 2006 ) might reflected segregated information pro- 

cessing via intra-modular connections while the studies reporting task- 

related long-distance beta-band synchronization ( Salazar et al., 2012 ; 

Gross et al., 2004 ) might reflect integrated information processing via 

inter-modular connections. However, the framework also accommo- 

dates divergences from the principle of distance between brain re- 

gions being inversely related to the frequency of interaction. For exam- 

ple, Buschman et al. (2012) reported task-related short-distance alpha- 

band and beta-band synchronization between electrodes in macaque 

dorsolateral prefrontal cortex, Michalareas et al. (2016) reported task- 

related short-distance alpha/beta-band synchronization between visual 

areas in human MEG, and Melloni et al. (2007) reported task-related 

long-distance gamma-band synchronization in human EEG. In these 

cases, the task-related short-distance alpha/beta-band synchronization 

( Buschman et al., 2012 ; Michalareas et al., 2016 ) might reflect segre- 

gated information processing via intra-modular connections while the 

task-related long-distance gamma-band synchronization ( Melloni et al., 

2007 ) might reflect integrated information processing via inter-modular 

connections. Thus, the modules provide a natural framework to inter- 

pret results of studies on task-related phase-synchronization. 

4.5. Directions for future work 

We propose two particularly promising directions to build on this 

work. While we studied the anatomical composition of each of the mod- 

ules, we did not investigate the relationships between modules. Study- 

ing the balance between intra-modular and inter-modular connections 

of brain regions within each of the modules might provide clues to the 

role of the module within the whole-brain system ( Guimerà and Ama- 

ral, 2005 ). For example, some modules might serve as “processing sys- 

tems ” while others might play the role of “control systems ” ( Power et al., 

2011 ). Another promising direction is to consider other means by which 

functional segregation might be implemented, in addition to segrega- 

tion made possible by the modular structure defined by the connection 

strengths ( Dotson et al., 2014 ). In particular, the phase-lags of the syn- 

chronization between every pair of regions could be studied to deter- 

mine if for e.g., phase-lags between regions within a module are lower 

than phase-lags between regions in different modules, thus reinforcing 

the segregation of information processing imposed by the modular or- 

ganization. 

5. Conclusion 

In this study, we combined resting-state SEEG recordings with state- 

of-the-art methods to accurately identify modules in connectomes of 

phase-synchronization. We found the modules to predominantly com- 

prise anatomically contiguous regions, unlike modules identified in 

resting-state fMRI. Importantly, each of the modules comprised regions 

with shared involvement in specific cognitive functions. Hence, these 

modules might represent distinct brain systems with particular roles in 

perceptual, cognitive and motor processing. 

Data and code availability statement 

We have made available (1). module assignments at differ- 

ent spatial scales for each of the studied frequencies, (2). mod- 

ule assignments of the consensus modules, and (3). Neurosynth 

terms relating to perceptual, cognitive and motor processing, at: 

https://data.mendeley.com/datasets/ypx74nmfs8/1 

We have made available MATLAB code to reproduce our results, 

via our GitHub repository: https://github.com/nitinwilliams/eeg _ meg _ 

analysis/tree/master/FC _ modules 

Declaration of Competing Interest 

None 

Data availability 

Please see data and code availability statement. 

Acknowledgments 

The authors gratefully acknowledge the support of Human Brain 

Project (Grant No. 604102 ), Sigrid Juselius Foundation and Academy of 

Finland (J.M.P. project Nos. 253130, 256472, 281414, 296304, 266745. 

S.P. project numbers: 266402, 266745, 303933, 325404) to complete 

this project. Further, the authors are grateful to Jonni Hirvonen and 

Santeri Rouhinen, for help with data processing, and to Dr. Franceso 

Cardinale and Annalisa Rubino for facilitating the SEEG recordings. 

Supplementary materials 

Supplementary material associated with this article can be found, in 

the online version, at doi: 10.1016/j.neuroimage.2023.120036 . 

References 

Arnulfo, G., Hirvonen, J., Nobili, L., Palva, S., Palva, M, 2015a. Phase and amplitude cor- 

relations in resting-state activity in human stereotactical EEG recordings. Neuroimage 

112, 114–127 . 

Arnulfo, G., Narizzano, M., Cardinale, F., Fato, M., Palva, M, 2015b. Automatic segmenta- 

tion of deep intracerebral electrodes in computed tomography scans. BMC Bioinform. 

16 (1), 1–12 . 

Arnulfo, G., Wang, S., Myrov, V., Toselli, B., Hirvonen, J., Fato, M., Nobili, L., Cardinale, F., 

Rubino, A., Zhigalov, A., Palva, S., Palva, M, 2020. Long-range phase-synchronization 

of high-frequency oscillations in human cortex. Nat. Commun. 11, 5363 . 

Baillet, S., 2017. Magnetoencephalography for brain electrophysiology and imaging. Nat. 

Neurosci. 20 (3), 327–339 . 

Balduzzi, D., Tononi, G., 2008. Integrated information in discrete dynamical systems: mo- 

tivation and theoretical framework. PLOS Comput. Biol. 4 (6), e1000091 . 

Bassett, D., Wymbs, N., Porter, M., Mucha, P., Carlson, J., Grafton, S., 2011. Dynamic 

reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U. S. 

A. 108 (18), 7641–7646 . 

14 

https://data.mendeley.com/datasets/ypx74nmfs8/1
https://github.com/nitinwilliams/eeg_meg_analysis/tree/master/FC_modules
https://doi.org/10.1016/j.neuroimage.2023.120036
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0001
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0002
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0003
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0004
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0005
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0006


N. Williams, S.H. Wang, G. Arnulfo et al. NeuroImage 272 (2023) 120036 

Bastos, A., Vezoli, J., Bosman, C., Schoffelen, J., Oostenveld, R., Dowdall, J., De Weerd, P., 

Kennedy, H., Fries, P., 2015. Visual areas exert feedforward and feedback influences 

through distinct frequency channels. Neuron 85 (2), 390–401 . 

Beckmann, C., DeLuca, M., Devlin, J., Smith, S., 2005. Investigations into resting-state 

connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B 

Biol. Sci. 360 (1457), 1001–1013 . 

Ben-Hur A., Elisseeff A., Guyon I. (2002) A stability based method for discover- 

ing structure in the clustered data. Pacific Symposium on Biocomputing 6–17. 

https://pubmed.ncbi.nlm.nih.gov/16372022/ 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. J. R. Stat. Soc. B 57 (1), 289–300 . 

Benjaminsson, S., Fransson, P., Lansner, A., 2010. A novel model-free data analysis tech- 

nique based on clustering in a mutual information space: application to resting-state 

fMRI. Front. Syst. Neurosci. 4, 34 . 

Blondel, V., Guillame, J-L, Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of communi- 

ties in large networks. J. Stat. Mech. P10008 . 

Brookes, M., Woolrich, M., Barnes, G., 2012. Measuring functional connectivity in MEG: 

a multivariate approach insensitive to linear source leakage. Neuroimage 63 (2), 

910–920 . 

Brookes, M., Woolrich, M., Luckhoo, H., Price, D., Hale, J., Stephenson, M., Barnes, G., 

Smith, S., Morris, P., 2011. Investigating the electrophysiological basis of resting state 

networks using magnetoencephalography. Proc. Natl. Acad. Sci. U. S. A. 108 (40), 

16783–16788 . 

Buschman, T., Denovellis, E., Diogo, C., Bullock, D., Miller, E., 2012. Synchronous oscil- 

latory neural ensembles for rules in the prefrontal cortex. Neuron 76 (4), 838–846 . 

Buzsáki, G., Moser, E.I., 2013. Memory, navigation and theta rhythm in the hippocam- 

pal-entorhinal system. Nat. Neurosci. 16 (2), 130–138 . 

Chan, M., Park, D., Savalia, N., Petersen, S., Wig, G., 2014. Decreased segregation of brain 

systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. U. S. A. 111 (46), 

E4997–E5006 . 

Cohen, J., D’Esposito, M, 2016. The segregation and integration of distinct brain networks 

and their relationship to cognition. J. Neurosci. 36 (48), 12083–12094 . 

Colclough, G., Brookes, M., Smith, S., Woolrich, M., 2015. A symmetric multivariate leak- 

age correction for MEG connectomes. Neuroimage 117, 439–448 . 

Cole, M., Bassett, D., Power, J., Braver, T., Peterson, S., 2014. Intrinsic and task-evoked 

network architectures of the human brain. Neuron 83 (1), 238–251 . 

Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S, Beckmann, C., 

2006. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 

U. S. A. 103 (37), 13848–13853 . 

de Pasquale, F., Penna, S., Snyder, A., Lewis, C., Mantini, D., Marzetti, L., Belardinelli, P., 

Ciancetta, L., Pizzella, V., Romani, G., Corbetta, M., 2010. Temporal dynamics of 

spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. U. S. A. 107 (13), 

6040–6045 . 

Deco, G., Tononi, G., Boly, M., Kringelbach, M., 2015. Rethinking segregation and inte- 

gration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16 (7), 430–439 . 

Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human 

cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53 (1), 

1–15 . 

Dotson, N., Salazar, R., Gray, C., 2014. Frontoparietal correlation dynamics reveal inter- 

play between integration and segregation during visual working memory. J. Neurosci. 

34 (41), 13600–13613 . 

Doucet, G., Naveau, M., Petit, L., Delcroix, N., Zago, L., Crivello, F., Jobard, G., Tzourio–

Mazoyer, N., Mazoyer, B., Mellet, E., Joliot, M., 2011. Brain activity at rest: a multi- 

scale hierarchical functional organization. J. Neurophysiol. 105 (6), 2753–2763 . 

Einevoll, G., Kayser, C., Logothetis, N., Panzeri, S., 2013. Modelling and analysis of local 

field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14 

(11), 770–785 . 

Engel, A., Gerloff, C., Hilgetag, C., Nolte, G., 2013. Intrinsic coupling modes: multiscale 

interactions in ongoing brain activity. Neuron 80 (4), 867–886 . 

Fell, J., Axmacher, N., 2011. The role of phase synchronization in memory processes. Nat. 

Rev. Neurosci. 12 (2), 105–118 . 

Fries, P., 2015. Rhythms for cognition: communication through coherence. Neuron 88 (1), 

220–235 . 

Gazzaniga, M., Ivry, R., Mangun, G., 2009. Cognitive Neuroscience: The Biology of the 

Mind. Norton Press, London . 

Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., Schnitzler, A., 

2004. Modulation of long-range neural synchrony reflects temporal limitations of vi- 

sual attention in humans. Proc. Natl. Acad. Sci. U. S. A. 101 (35), 13050–13055 . 

Guimerà, R., Amaral, L., 2005. Functional cartography of complex metabolic networks. 

Nature 433, 895–900 . 

Hirvonen, J, Monto, S, Wang, S, Palva, M, Palva, S, 2018. Dynamic large-scale network 

synchronization from perception to action. Netw. Neurosci. 2 (4), 442–463 . 

Khodagholy, D., Gelinas, J., Buzsáki, G., 2017. Learning-enhanced coupling between 

ripple oscillations in association cortices and hippocampus. Science 358 (6361), 

369–372 . 

Kitzbichler, M., Henson, R., Smith, M., Nathan, P., Bullmore, E., 2011. Cognitive effort 

drives workspace configuration of human brain functional networks. J. Neurosci. 31 

(22), 8259–8270 . 

Kucyi, A., Schrouff, J., Bickel, S., Foster, B., Shine, J., Parvizi, J., 2018. Intracranial elec- 

trophysiology reveals reproducible intrinsic functional connectivity with human brain 

networks. J. Neurosci. 38 (17), 4230–4242 . 

Lachaux, J.P., Rodriquez, E., Martinerie, J., Varela, F., 1999. Measuring phase synchrony 

in brain signals. Hum. Brain Mapp. 8, 194–208 . 

Lancichinetti, A., Fortunato, S., 2009. Community detection algorithms: a comparative 

analysis. Phys. Rev. E 80 (5), 056117 . 

Lancichinetti, A., Fortunato, S., 2012. Consensus clustering in complex networks. Sci. Rep. 

2 (1), 1–7 . 

Lee, M., Hacker, C., Snyder, A., Corbetta, M., Zhang, D., Leuthardt, E., 2012. Clustering 

of resting state networks. PLOS One 7 (7), e40370 . 

Leopold, D., Murayama, M., Logothetis, N., 2003. Very slow activity fluctuations in mon- 

key visual cortex: implications for functional brain imaging. Cereb. Cortex 13 (4), 

422–433 . 

Lobier, M, Palva, M, Palva, S, 2018. High-alpha band synchronization across frontal, pari- 

etal and visual cortex mediates behavioural and neuronal effects of visuospatial at- 

tention. Neuroimage 165, 222–237 . 

Lopes da Silva, F., 2013. EEG and MEG: relevance to Neuroscience. Neuron 80 (5), 

1112–1128 . 

Lord, L., Stevner, A., Deco, G., Kringelbach, M., 2017. Understanding principles of inte- 

gration and segregation using whole-brain computational connectomics: implications 

for neuropsychiatric disorders. Philos. Trans. R. Soc. A 375, 20160283 . 

Lundquist, M., Herman, P., Warden, M., Brincat, S., Miller, E., 2018. Gamma and beta 

bursts during working memory readout suggest roles in its volitional control. Nat. 

Commun. 9, 394 . 

Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., Rodriguez, E., 2007. Synchro- 

nization of neural activity across cortical areas correlates with conscious perception. 

J. Neurosci. 27 (11), 2858–2865 . 

Meunier, D., Lambiotte, R., Fornito, A., Ersche, K., Bullmore, E., 2009. Hierarchical mod- 

ularity in human brain functional networks. Front. Neuroinformatics 3, 37 . 

Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.M., Kennedy, H., Fries, P., 2016. 

Alpha-beta and gamma rhythms subserve feedback and feedforward influences among 

visual cortical areas. Neuron 89 (2), 384–397 . 

Mucha, P., Richardson, T., Macon, K., Porter, M., Onnela, J.P., 2010. Community structure 

in time-dependent, multiscale and multiplex networks. Science 328 (5980), 876–878 . 

Narizzano, M., Arnulfo, G., Ricci, S., Toselli, B., Tisdall, M., Canessa, A., Cardinale, F., 

2017. SEEG assistant: a 3DSlicer extension to support epilepsy surgery. BMC Bioin- 

form. 18, 124 . 

Palva, M., Palva, S., Kaila, K., 2005. Phase synchrony among neuronal oscillations in the 

human cortex. J. Neurosci. 25 (15), 3962–3972 . 

Palva, M., Wang, S., Palva, S., Zhigalov, A., Monto, S., Brookes, M., Schoffelen, J., Jerbi, K., 

2018. Ghost interactions in MEG/EEG source space: a note of caution on inter-areal 

coupling measures. Neuroimage 173, 632–643 . 

Palva, S., Palva, M., 2012. Discovering oscillatory interaction networks with M/EEG: chal- 

lenges and breakthroughs. Trends Cogn. Sci. 16 (4), 219–230 . 

Parvizi, J., Kastner, S., 2018. Promises and limitations of human intracranial electroen- 

cephalography. Nat. Neurosci. 21 (4), 474–483 . 

Penttonen, M., Buzsáki, G., 2003. Natural logarithmic relationship between brain oscilla- 

tions. Thalamus Relat. Syst. 2 (2), 145–152 . 

Power, J., Cohen, A., Nelson, S., Wig, G., Barnes, K., Church, J., Vogel, A., Laumann, T., 

Miezin, F., Schlaggar, B., Petersen, S., 2011. Functional network organization of the 

human brain. Neuron 72 (4), 665–678 . 

Reichardt, J., Bornholdt, S., 2006. Statistical mechanics of community detection. Phys. 

Rev. E 74 (1), 016110 . 

Ronhovde, P., Nussinov, Z., 2009. Multiresolution community detection for megascale 

networks by information-based replica correlations. Phys. Rev. E 80 (1), 016109 . 

Rosvall, M., Bergstrom, C., 2008. Maps of random walks on complex networks reveal 

community structure. Proc. Natl. Acad. Sci. U. S. A. 105 (4), 1118–1123 . 

Rubinov, M., Sporns, 2010. Complex network measures of brain connectivity: uses and 

interpretations. Neuroimage 52 (3), 1059–1069 . 

Sadaghiani, S., Brookes, M., Baillet, S., 2022. Connectomics of human electrophysiology. 

Neuroimage 247, 118788 . 

Salazar, R., Dotson, N., Bressler, S., Gray, C., 2012. Content-specific fronto-parietal syn- 

chronization during visual working memory. Science 338 (6110), 1097–1100 . 

Schroeder, C., Lakatos, P., 2009. Low-frequency neuronal oscillations as instruments of 

sensory selection. Trends Neurosci. 32 (1), 9–18 . 

Shafiei, G, Baillet, S, Misic, B, 2022. Human electromagnetic and haemodynamic networks 

systematically converge in unimodal cortex and diverge in transmodal cortex. PLOS 

Biol. 20 (8), e3001735 . 

Shine, J., Aburn, M., Breakspear, M., Poldrack, R., 2018. The modulation of neural gain 

facilitates a transition between functional segregation and integration in the brain. 

eLife 7, e31130 . 

Shine, J., Bissett, P., Bell, P., Koyejo, O., Balsters, J., Gorgolewski, K., Moodie, C., Pol- 

drack, R., 2016. The dynamics of functional brain networks: integrated network states 

during cognitive task performance. Neuron 92, 544–554 . 

Siems, M., Siegel, M., 2020. Dissociated neuronal phase- and amplitude-coupling patterns 

in the human brain. Neuroimage 209, 116538 . 

Smith, S., Fox, P., Miller, K., Glahn, D., Fox, M., Mackay, C., Filippini, N., Watkins, K., 

Toro, R., Laird, A., Beckmann, C., 2009. Correspondence of the brain’s functional 

architecture during activation and rest. Proc. Natl. Acad. Sci. U. S. A. 106 (31), 

13040–13045 . 

Spadone, S., Penna, S., Sestieri, C., Betti, V., Tosoni, A., Perrucci, M., Romani, G., Cor- 

betta, M., 2015. Dynamic reorganization of human resting-state networks during vi- 

suospatial attention. Proc. Natl. Acad. Sci. U. S. A. 112 (26), 8112–8117 . 

Spitzer, B., Haegens, S., 2017. Beyond the status quo: a role for beta oscillations in en- 

dogenous content (Re)activation. eNeuro 4 (4), 4550–4565 . ENEURO.0170-17.2017 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554624/ 

Sporns, O., Betzel, R., 2016. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 . 

Sun, Y., Danila, B., Josi ć, K, Bassler, K, 2009. Improved community structure detection 

using a modified fine-tuning strategy. EPL Europhys. Lett. 86 (2), 28004 . 

Tononi, G., Edelman, G., Sporns, O., 1998. Complexity and coherency: integrating infor- 

mation in the brain. Trends Cogn. Sci. 2 (12), 474–484 . 

15 

http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0007
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0008
https://pubmed.ncbi.nlm.nih.gov/16372022/
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0010
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0011
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0012
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0013
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0014
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0015
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0016
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0017
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0018
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0019
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0020
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0021
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0022
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0023
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0024
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0025
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0026
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0027
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0028
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0029
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0030
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0031
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0032
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0033
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0034
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0035
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0036
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0037
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0038
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0039
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0040
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0041
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0042
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0043
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0044
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0045
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0046
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0047
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0048
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0049
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0050
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0051
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0052
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0053
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0054
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0055
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0056
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0057
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0058
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0059
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0060
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0061
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0062
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0063
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0064
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0065
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0066
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0067
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0068
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0069
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0070
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554624/
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0072
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0073
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0074


N. Williams, S.H. Wang, G. Arnulfo et al. NeuroImage 272 (2023) 120036 

Tononi, G., Sporns, O., Edelman, G., 1994. A measure for brain complexity: relating func- 

tional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U. S. 

A. 91 (11), 5033–5037 . 

Uhlhaas, P., Roux, F., Rodriguez, E., Rotarska-Jagiela, A., Singer, W., 2010. Neural syn- 

chrony and the development of cortical networks. Trends Cogn. Sci. 14 (2), 72–80 . 

Valencia, M., Pastor, M., Fernández-Seara, M., Artieda, J., Martinerie, J., Chavez, M., 

2009. Complex modular structure of large-scale brain networks. Chaos 19 (2), 023119 . 

van den Heuvel, M., Pol, H., 2010. Exploring the brain network: a review on resting-state 

fMRI functional connectivity. Eur. Neuropsychopharmacol. 20 (8), 519–534 . 

Vanhatalo, S., Palva, M., Holmes, M., Miller, J., Voipio, J., Kaila, K., 2004. Infraslow 

oscillations modulate excitability and interictal epileptic activity in the human cortex 

during sleep. Proc. Natl. Acad. Sci. U. S. A. 101 (14), 5053–5057 . 

Varela, F., Lachaux, J., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase-synchro- 

nization and large-scale integration. Nat. Rev. Neurosci. 2 (4), 229–239 . 

Vaz, A., Inati, S., Brunel, N., Zaghloul, K., 2019. Coupled ripple oscillations between the 

medial temporal lobe and neocortex retrieve human memory. Science 363 (6430), 

975–978 . 

Vidaurre, D., Hunt, L., Quinn, A., Hunt, B., Brookes, M., Nobre, A., Woolrich, M., 2018. 

Spontaneous cortical activity transiently organizes into frequency-specific phase-cou- 

pling networks. Nat. Commun. 9, 2987 . 

Vinck, M., Oostenveld, R., Wingerden, M., Battaglia, F., Pennartz, C., 2011. An improved 

index of phase-synchronization for electrophysiological data in the presence of vol- 

ume-conduction, noise and sample-size bias. Neuroimage 55 (4), 1548–1565 . 

Westphal, A., Wang, S., Rissman, J., 2017. Episodic memory retrieval benefits from a less 

modular brain network organization. J. Neurosci. 7 (13), 3523–3531 . 

Wig, G, 2017. Segregated systems of human brain networks. Trends Cogn. Sci. 21 (12), 

981–996 . 

Williams, N., Arnulfo, G., Wang, S., Nobili, L., Palva, S., Palva, M., 2019. Comparison of 

methods to identify modules in noisy or incomplete brain networks. Brain Connect 9 

(2), 128–143 . 

Williams, N., Wang, S., Arnulfo, G., Nobili, L., Palva, S., Palva, M., 2021. Modules in 

human electrophysiological connectomes of phase-synchronization. Mendeley Data 

V1 . 

Womelsdorf, T., Fries, P., Mitra, P., Desimone, R., 2006. Gamma-band synchronization in 

visual cortex predicts speed of change detection. Nature 439 (7077), 733–736 . 

Yarkoni, T., Poldrack, R., Nichols, T., Van Essen, D., Wager, T., 2011. Large-scale au- 

tomated synthesis of human functional neuroimaging data. Nat. Methods 8 (8), 

665–670 . 

Yeo, B., Krienen, F., Sepulchre, J., Sabuncu, M., Lashkari, D., Hollinshead, M., Roffman, J., 

Smoller, J., Zöllei, L, Polimeni, J., Fischl, B., Liu, H., Buckner, R., 2011. The organi- 

zation of the human cerebral cortex estimated by intrinsic functional connectivity. J. 

Neurophysiol. 106 (3), 1125–1165 . 

Zhigalov, A., Arnulfo, G., Nobili, L., Palva, S., Palva, M., 2015. Relationship of fast-and-s- 

low-timescale neuronal dynamics in human MEG and SEEG. J. Neurosci. 35 (13), 

5385–5396 . 

Zhigalov, A., Arnulfo, G., Nobili, L., Palva, S., Palva, M., 2017. Modular co-organization of 

functional connectivity and scale-free dynamics in the human brain. Netw. Neurosci. 

1 (2), 143–165 . 

Zhou, Y.J., Iemi, L., Schoffelen, J.M., De Lange, F.P., Haegens, S., 2021. Alpha oscilla- 

tions shape sensory representation and perceptual sensitivity. J. Neurosci. 41 (46), 

9581–9592 . 

Zielinski, M.C., Shin, J.D., Jadhav, S.P., 2019. Coherent coding of spatial position mediated 

by theta oscillations in the hippocampus and prefrontal cortex. J. Neurosci. 39 (23), 

4550–4565 . 

16 

http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0075
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0076
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0077
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0078
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0079
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0080
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0081
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0082
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0083
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0084
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0085
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0086
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0087
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0088
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0089
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0090
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0091
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0092
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0093
http://refhub.elsevier.com/S1053-8119(23)00182-9/sbref0094

