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Dissipative collective effects are ubiquitous in quantum physics and their relevance ranges from the
study of entanglement in biological systems to noise mitigation in quantum computers. Here, we put for-
ward the first fully quantum simulation of dissipative collective phenomena on a real quantum computer,
based on the recently introduced multipartite-collision model. First, we theoretically study the accuracy of
this algorithm on near-term quantum computers with noisy gates and we derive some rigorous error bounds
that depend on the time step of the collision model and on the gate errors. These bounds can be employed
to estimate the necessary resources for the efficient quantum simulation of the collective dynamics. Then,
we implement the algorithm on some IBM quantum computers to simulate superradiance and subradiance
between a pair of qubits. Our experimental results successfully display the emergence of collective effects
in the quantum simulation. In addition, we analyze the noise properties of the gates that we employ in the
algorithm by means of full process tomography, with the aim of improving our understanding of the errors
in the near-term devices that are currently accessible to worldwide researchers. We obtain the values of
the average gate fidelity, unitarity, incoherence, and diamond error and we establish a connection between
them and the accuracy of the experimentally simulated state. Moreover, we build a noise model based on
the results of the process tomography for two-qubit gates and show that its performance is comparable
with the noise model provided by IBM. Finally, we observe that the scaling of the error as a function of
the number of gates is favorable, but at the same time reaching the threshold of the diamond errors for
quantum fault-tolerant computation may still be orders of magnitude away in the devices that we employ.

DOI: 10.1103/PRXQuantum.4.010324

I. INTRODUCTION

Quantum simulation, i.e., the groundbreaking idea of
simulating complex quantum systems on a controllable
physical platform following the laws of quantum mechan-
ics [1], is probably the most promising application of
quantum computers in the near future [2], owing to its
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exponential quantum advantage [3], which would lead to
crucial achievements in both fundamental and applied sci-
ence [2]. Quantum simulation of unitary many-body sys-
tems has been studied and experimentally implemented on
several physical platforms [2,4], including superconduct-
ing quantum circuits [5–8], trapped ions [9–11], photonic
systems [12], and cold atoms [13,14]. A relatively less
studied problem is the quantum simulation of open quan-
tum systems, the evolution of which is not unitary due to
the action of an external environment [15–17]. Different
protocols for open-system quantum simulation have been
introduced in the past 20 years [18–33], and careful studies
of the resources that they require are available in the lit-
erature [22,24,25,28,29,31]. On the experimental side, the
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main achievements include the simulation of a quantum
map through quantum gates between trapped ions [34,35],
of different single- and two-qubit quantum channels on a
near-term quantum computer [36], of a single-qubit master
equation via Trotterization in a superconducting quantum
circuit [37], of the Hubbard model with local dissipation
on a near-term device [38], of local fermionic reservoirs
on noninteracting lattices [39,40], and of local master
equations via quantum imaginary time evolution on a near-
term computer [33]. In this work, we present the first
fully quantum digital [41] simulation of dissipative col-
lective effects on a real quantum computer, reproducing
the dynamics driven by a global master equation [42–44]
due to a common environment acting on the whole system.
The experiments are run on near-term superconducting
quantum computers available through the IBM cloud [45].

Quantum dissipation is generally considered detrimen-
tal for quantum technologies, because it inevitably induces
decoherence on the system, hindering the realization of
accurate quantum algorithms [46]. Therefore, experimen-
talists usually try to reduce or counter dissipative processes
in quantum computers. Here, our focus is different: we aim
to engineer the most general coherent processes that occur
in dissipative global dynamics. The importance of engi-
neered collective dissipation is broad for both fundamental
physics and quantum technologies. The simulation of col-
lective dissipation in a qubit platform paves the way for the
experimental study of cutting-edge physical phenomena
such as dissipative phase transitions [47], quantum syn-
chronization [48–50], and dissipative time crystals [51].
Moreover, such quantum simulations are an ideal exper-
imental test bed for quantum thermodynamics, owing to
the importance that global (i.e., collective) master equa-
tions have in this field [42–44]. Indeed, it has been shown
that local master equations may break the second law of
thermodynamics [52] or modify the related energy contri-
butions [53]. Engineered dissipation can also be used to
build a different model of universal quantum computation
[54] or to generate exotic entangled states by means of a
common environment [55–57]. In addition, collective phe-
nomena are believed to play a major role in the dynamics
of light-harvesting complexes [58] and therefore the engi-
neering of global master equations may shed new light
on the relation between dissipative quantum physics and
biological systems. Last but not least, the simulation of
collective dissipation would help us to detect and under-
stand crosstalk in quantum computers [59,60], which may
be one of the major sources of noise therein.

In this paper, we investigate theoretically and experi-
mentally one of the most well-known dissipative collective
processes, namely, the emergence of superradiance [61]
and subradiance [62] between qubits emitting simultane-
ously into a common environment. For this purpose, we
use a quantum algorithm recently introduced by some of
us, namely the multipartite-collision model (MCM) [31].

The algorithm reproduces the global emission by means
of repeated interactions between the system qubits and a
single ancillary qubit that mediates the collective decay.
Collision (or repeated-interaction) models are an impor-
tant tool in the theory of open quantum systems [63–65],
with fundamental applications in quantum thermodynam-
ics [53,66,67] and in the study of non-Markovianity [68,
69]. Our work is the first implementation of the MCM on
a real quantum computer and one of the first experimental
realizations of a collision model [36,70].

Current quantum computers are inevitably noisy [71],
limited by non-negligible gate errors and short coherence
times, which imposes strong constraints on the depth of
quantum circuits. Hence, it is critical to analyze their lim-
itations, identify possible improvements, and characterize
their errors [72]. In particular, near-term quantum comput-
ers are available on the cloud to a community of quantum
physicists who aim to test their theories experimentally
without having access to the hardware. Inevitably, this
means that this community has limited control over the
characterization of the device and over the errors therein. It
is our experience that the data about the noise features on
the quantum computers available on the cloud are some-
times not sufficient to understand the errors we may face
when running simulations on these devices. For instance,
bad experimental results on the IBM quantum comput-
ers may not be justified by the gate errors provided by
IBM [45]. Starting from these considerations, we devote
a considerable part of our work to studying, both theo-
retically and experimentally, the errors arising from noisy
gates.

On the theoretical side, we estimate a rigorous error
bound for the precision of the quantum algorithm that we
use in order to simulate dissipative collective effects in the
presence of noise. On the experimental side, we perform
process tomography [46,73,74] of all the gates employed
in the algorithm and state tomography of the system qubits
at each step of the quantum simulation. This allows us to
better understand the type of noise affecting the quantum
devices used in the experiments, to build a noise model
based on the experimental gate process tomography, and
to propose possible countermeasures.

A crucial aspect of our analysis is the choice of the fig-
ures of merit to estimate the noise properties. Gate process
tomography allows us to compute the average gate fidelity
[75] of all the controlled-NOTs (CNOTs) that we employ in
the algorithm and their diamond distance [76,77] from the
ideal gate. These values capture the features of the error
in each individual gate but are also subject to the so-called
SPAM errors, i.e., errors arising from incorrect state prepa-
ration and measurement [78]. In contrast, the gate error
provided by IBM is obtained through a protocol called
randomized benchmarking [79–84], which estimates a sort
of average error for single- and two-qubit gates on some
selected qubits but it is not subject to SPAM errors.
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We compare the experimental average gate infidelity
with the IBM gate error, showing that in some cases the
two values can be remarkably different. Two different noise
models can be built based on these quantities and we
observe that their performance is similar. However, the
noise model that makes use of the experimental process
tomography may give better predictions in the presence of
some highly noisy gates.

The value of the diamond distance between ideal and
experimental CNOT gates is also of interest to us for two
main reasons. First, it directly relates to the theoretical
error bound that we estimate for the MCM with noisy
gates. Second, it is the most used figure of merit to esti-
mate the gate-error thresholds for fault-tolerant quantum
computation [46], given that the average gate fidelity is not
reliable for this purpose [85]. Having a grasp on the magni-
tude of the diamond distance is of particular importance, as
the first experiments aimed at proving quantum advantage
have recently been presented [86,87]. Our results suggest
that the errors in the near-term devices that we employ
may still be orders of magnitude away from the strictest
fault-tolerance thresholds.

The paper is structured as follows. In Sec. II, we intro-
duce the most important theoretical tools to estimate the
distance between quantum channels and the errors on a
quantum computer. We also discuss the properties of the
figures of merit used in our study and compare them. In
Sec. III, we briefly recall the MCM and the dissipative
quantum dynamics that we aim to simulate. Section IV
is devoted to the discussion of the new theoretical error
bounds for the quantum simulation of open systems with
noisy gates. In Sec. V, we present in detail our experimen-
tal results and the noise analysis. Finally, in Sec. VI, we
draw some concluding remarks and discuss the importance
and significance of our results.

II. ERROR ESTIMATION IN QUANTUM
SIMULATION

The goal of quantum simulation is to reproduce any
quantum dynamics by means of a suitable composition of
quantum channels that we can easily implement on a quan-
tum computer. Therefore, errors in quantum simulation
algorithms arise from the difference between such ideal
quantum channels and the physical ones implemented in
practice. In this section, we introduce some measures to
quantify the distance between two quantum channels, in
order to provide a precise estimate of the error of a quan-
tum simulation algorithm. Specific emphasis is given to
the distance between the ideal quantum gate of our theo-
retical algorithm and its noisy version, i.e., the actual gate
implemented on the quantum computer.

We consider quantum channels T : B(H) → B(H),
where B(H) is the space of bounded operators on the
Hilbert space of the qubits. According to their usual

definition, quantum channels are completely positive linear
trace-preserving maps [15,46,77].

A. Distances between quantum channels and their
properties

In this section, we introduce the figures of merit for esti-
mating the distance between two quantum channels. These
are based either on the “average” or on the “worst-case”
scenario [88]. Throughout the paper, we also employ the
trace norm ‖·‖1 and the infinity norm ‖·‖∞, which are
recalled in Appendix A.
Definition 1: (average gate fidelity). If Ug is the (ideal)
unitary superoperator associated with a quantum gate and
T is its noisy implementation, the average gate fidelity
[75] is defined as

ϕ(Ug ,T ) =
∫

dμ(ψ)F(Ug[|ψ〉 〈ψ |],T [|ψ〉 〈ψ |])

=
∫

dμ(ψ) 〈ψ |U−1
g T [|ψ〉 〈ψ |]|ψ〉 , (1)

where dμ(ψ) is the Haar measure over the pure states of
the Hilbert space and F is the fidelity between two quan-
tum states, introduced in Appendix A. Correspondingly,
we introduce the average gate infidelity as r(Ug ,T ) = 1 −
ϕ(Ug ,T ). Note that if we average over the mixed states
instead of pure states, we obtain the same result, given the
linearity in the definition of a density matrix [88] and the
convexity of the infidelity [77].

From an abstract perspective, obtaining the exact value
of the average gate fidelity requires perfect knowledge of
the channel T and this is obtained through standard quan-
tum process tomography [46]. The latter, however, has the
drawback of being subject to errors in the SPAM in the
circuits for the experimental process tomography [78] and
it is computationally feasible only for few-qubit gates. For
this reason, a procedure called randomized benchmarking
has been introduced [79–84], which does not require either
full-state tomography or precise control over the prepara-
tion and/or measurement errors. The core idea of the ran-
domized benchmarking protocols is to apply a sequence of
gates randomly drawn from the Clifford group and to com-
pose it with its conjugate transpose on the selected qubits,
so that, if the gates were ideal, the outcome channel would
be equal to the identity. The “survival probability” of an
initial state under this kind of evolution is then computed
as a function of the number of gates in the sequence and
an average gate error is estimated by properly fitting the
results (for a more rigorous definition of what randomized
benchmarking is actually measuring, we refer the reader
to extensive discussions in the literature [82,89–91]).
Randomized benchmarking is gauge free and it is robust
both to noise fluctuations on the “twirling gates” (the gates
that form the Clifford group action) and to SPAM errors
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[90,91]. However, it does not estimate the average fidelity
of each individual gate [82]. Individual gate fidelities may
be estimated through interleaved randomized benchmark-
ing [92], although some assumptions must be made for this
protocol to be reliable [93].

The single-qubit and two-qubit gate errors provided by
IBM are obtained through standard randomized bench-
marking [45]. In the experimental part of this work,
we estimate the two-qubit average gate fidelity in Eq.
(1) via process tomography and we reduce the SPAM
errors through readout-error mitigation. A “third way”
between process tomography and randomized benchmark-
ing may be gate-set tomography [78,94–96], which is a
type of calibration-free tomography. However, it suffers
from some so-called “gauge issues” [95,97], so we do not
consider it here and we leave it for future experimental
studies.

Definition 2: (induced superoperator norm). The 1 → 1
superoperator norm of a quantum channel T is defined as

‖T ‖1→1 = max
‖ρ‖1=1

‖T [ρ]‖1 . (2)

The 1 → 1 superoperator norm has the drawback of not
behaving well with respect to the tensor product. For this
reason, a different norm is usually employed in quantum
error-correction algorithms, as follows.

Definition 3: (diamond norm). The diamond norm of a
quantum channel T is defined as [77,98]

‖T ‖♦ = ‖T ⊗ IA‖1→1 , (3)

where IA is the identity superoperator over a copy of the
space B(H).

Note that both the 1 → 1 norm and the diamond norm
are submultiplicative. Furthermore, the diamond norm sat-
isfies the fundamental stability property (see, e.g., Refs.
[88,99]), i.e., ‖T ⊗ IB‖♦ = ‖T ‖♦, where IB is the iden-
tity superoperator over a generic space. Specifically, it
can be shown that the diamond norm defined with the
identity superoperator over a copy of the space B(H) is
the maximal one (it is lower for lower dimensions and it
has the same values for higher dimensions). The diamond
norm can be computed either through convex optimization
procedures [100] or by a semidefinite program [101,102].

Definition 4: (diamond distance). The diamond distance
between an ideal gate with channel Ug and its noisy
realization T is defined as

d♦(Ug ,T ) = 1
2

∥∥Ug − T
∥∥

♦ . (4)

The submultiplicativity of the diamond norm implies
that

‖U1U2 − T1T2‖♦ ≤ ‖U1 − T1‖♦ + ‖U2 − T2‖♦ (5)

and analogously for the 1 → 1 superoperator norm. This is
the subadditivity property, which is crucial to guaranteeing
that the error in the gate composition scales at most linearly
as a function of the length of the gate sequence.

Note that both the 1 → 1 norm and the diamond norm
do not have a closed form as a function of the Choi matrix
of the quantum channel in which we are interested but
must be computed through numerical maximization. More-
over, to obtain their values, we must typically rely on
quantum process tomography, which is sensitive to SPAM
errors (while, e.g., the average gate fidelity may be esti-
mated through a SPAM-free randomized benchmarking
protocol).

In addition, we introduce a figure of merit to estimate
the coherence of noise [103]; that is, how close a given
quantum channel T is to a unitary one. This will be crucial
to understanding whether the error of a noisy quantum gate
will be mostly due to the presence of decoherence or to the
fact that we are performing a gate that is different from the
target gate (say, we are performing a qubit rotation driven
by σ 0.99

x instead of the desired σx or, more drastically, a
rotation driven by σz instead of σx).
Definition 5: (unitarity). The unitarity of a quantum chan-
nel T is defined as the average purity of output states, with
the identity components subtracted:

u(T ) = dS

dS − 1

∫
dμ(ψ)Tr

[
T
[
|ψ〉 〈ψ | − IS

dS

]2
]

, (6)

where dS is the dimension of the system Hilbert space.
Equivalently, the unitarity can be defined as [93,103]

u(T ) = 1
d2

S − 1
Tr[T †

u Tu], (7)

where Tu is the unital block [93], defined by the following
Liouvillian representation of the trace-preserving channel:

T =
(

1 0
Tn Tu

)
. (8)

The orthonormal basis in which we are represent-
ing the matrix is {B0 = IS/

√
dS, B1, B2, . . . , Bd2

S−1}, with

Tr[B†
j Bk] = δjk and thus Tr[Bk] = 0 for k ≥ 1. For

instance, for qubit systems, we choose the basis given
by the tensor products of Pauli matrices, including the
identity. Tn is the nonunital vector [93].

The unitarity of a general quantum channel satisfies
u(T ) ≤ 1, being one only if T is unitary. Moreover,
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u(VT U) = u(T ) for all U ,V unitary. The unitarity satis-
fies the following lower bound in terms of the average gate
infidelity: u(T ) ≥ [1 − dSr(Ug ,T )/(dS − 1)]2 for any Ug
(clearly, the closer Ug is to T , the tighter is the bound
[103]).

Finally, we make use of the incoherence [104,105],
which is a quantity related to the unitarity as follows.
Definition 6: (incoherence). The incoherence of a channel
T is defined as

ω(T ) = dS − 1
dS

(1 −
√

u(T )). (9)

Using the lower bound for the unitarity, we readily
obtain 0 ≤ ω(T ) ≤ r(Ug ,T ) for any Ug . The value of the
incoherence can be thought of as the minimum infidelity
that may be achieved with perfect unitary control over
the system [105], i.e., the “contribution” to the infidelity
due to purely dissipative errors. A different measure of the
“nonunitarity” of a quantum channel has also been intro-
duced in the literature [106] but for simplicity it is not
considered in this study.

B. Comparing different figures of merit

It is a well-known fact that the fidelity is a decep-
tive measure with which to compare quantum states. For
instance, the fidelity between states with very different
properties, e.g., one entangled and the other separable, can
be larger than 0.95 [107]. This is a consequence of the
infidelity not being a proper mathematical distance. If we
compare it to a well-defined distance such as the trace
norm, a common inequality reads [77]

1 −
√
F(ρ, σ) ≤ 1

2
‖ρ − σ‖1 ≤

√
1 − F(ρ, σ), (10)

where, crucially, the trace norm is bounded by the square
root of the infidelity. This means that states with fidelity
0.99 may have a trace distance equal to 0.1.

We can also expect similar considerations when the
fidelity is employed to estimate the distance between quan-
tum channels, as in Eq. (1). Indeed, the most important
and rigorous theorems guaranteeing fault-tolerant quan-
tum computation do not rely on the fidelity and instead
make use of the diamond distance to bound the maximal
error, which can be cast away by means of quantum error-
correction protocols [76,85,108,109]. The diamond norm
is preferred to the 1 → 1 superoperator norm because of
its stability property, discussed in Sec. II A. Moreover, it
is necessary to address the worst-case scenario [i.e., to per-
form a maximization as in Eq. (3)] in order to estimate a
proper fault-tolerant error threshold, while one cannot rely
on the average figure of merit in Eq. (1).

As a possible alternative to average gate fidelity, the
entanglement fidelity [110–113] of a quantum channel,

has been proposed to estimate the noise properties of a
quantum channel.

Definition 7: (entanglement fidelity). The entanglement
fidelity of a quantum channel T is defined as

Fe(T ) = 〈φ| (T ⊗ IA)[φ] |φ〉 , (11)

where IA is the identity superoperator acting on a copy
of the Hilbert space of the system, while φ represents a
maximally entangled state in the extended Hilbert space
H ⊗ HA.

Entanglement fidelity captures how well entanglement
between the quantum system of interest and other systems
is preserved under the local application of the channel T .
It has been shown that the entanglement fidelity can be
directly connected to the average gate fidelity as [75,114]:

ϕ(Ug ,T ) = dSFe(U†
gT )+ 1

dS + 1
, (12)

where dS is the dimension of the system Hilbert space.
However, the entanglement fidelity is not a measure of the
worst-case error either.

An upper bound for the diamond distance as a function
of the system dimension dS and the average gate infidelity
r(Ug ,T ) is given by [83]

d♦(Ug ,T ) ≤ dS

√
(1 + d−1

S )(r(Ug ,T )). (13)

Once again, we see that the square root of the average gate
infidelity appears in the bound. Moreover, the dependence
on the system dimension makes its scaling even worse
than in Eq. (10). The tightness of this bound has not been
proven but some results indicate that the bound is asymp-
totically tight as a function of ϕ and dS [85]. They also
show how, in general, the average gate fidelity is not reli-
able for assessing fault-tolerant quantum computation: a
value of ϕ(Ug ,T ) = 99% for a two-qubit gate can still lead
to an error of around ε = 0.13, which is very far from the
fault-tolerant thresholds against general noise (typically,
ε ≈ 10−3–10−4 [94,96,115–117]).

Therefore, the diamond norm is the only reliable figure
of merit for estimating the distance between quantum gates
with the aim of assessing the fault tolerance of the quantum
computation, while the value of the average gate fidelity,
which is very useful to estimate the average error that we
run into during the implementation of a quantum gate [75,
88], must be taken with a grain of salt when speaking about
fault tolerance (more discussions can be found in Refs. [83,
85,103,109,118]).

A tighter error bound for the diamond distance can be
employed if we know the unitarity of the quantum channel
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[118] (a similar bound can be found in Ref. [109]):

d♦(Ug ,T ) ≤
√

d3
SC2

4
+ (dS + 1)2(r(Ug ,T ))2

2
, (14)

where C2 = d2
S − 1/d2

S(u(T )− 2p(Ug ,T )+ 1) and
p(Ug ,T ) = 1 − (dSr(Ug ,T ))/(dS − 1).

Finally, the unitarity can be used to estimate how the
average gate fidelity of composed channels behaves as a
function of the average gate fidelity of each component
[93] or, equivalently, how the average gate fidelity scales
as a function of the number of gates in the algorithm.
Without getting into the details discussed in Ref. [93], if
we consider, for simplicity, a circuit made of m identi-
cal gates with average gate fidelity ϕ, then the average
gate infidelity of the whole circuit will be upper bounded
by m2(1 − ϕ), plus some lower-order terms that scale as
m4(1 − ϕ)2 [119]. This bound is tight for all unitary chan-
nels with unitarity u = 1. If, on the contrary, one considers
highly incoherent channels, such as the depolarizing one,
the bound can be improved as m(1 − ϕ), plus terms of
the order of O(m2(1 − ϕ)2). To summarize, lower unitarity
implies a better scaling of the infidelity as a function of the
channel length.

III. MCM FOR DISSIPATIVE COLLECTIVE
EFFECTS

A. Introduction to the algorithm

The MCM has recently been introduced [31] as a
repeated-interaction model [63,64] able to reproduce any
Markovian evolution of a multipartite open quantum sys-
tem (i.e., an open system made of multiple subsystems)
by elementary collisions between each subsystem and
some environment particles, termed as “ancillas.” Col-
lision models such as the MCM are naturally suited to
implement digital quantum simulations of open quantum
dynamics. Specifically, we consider a quantum system liv-
ing in a Hilbert space H composed of M subsystems,
which, without loss of generality, we consider identical and
of dimension d:

H =
M⊗

j =1

Hj , dim(Hj ) = d ∀j . (15)

We are interested in the most general Markovian quantum
evolution of the state of the system at time t, ρS(t). Specifi-
cally, starting from a generic ρS(0), we aim to simulate the
dynamics

ρS(t) = expLt[ρS(0)] (16)

on a quantum computer, where L is the so-called Liou-
villian superoperator, i.e., the generator of the quantum

dynamical semigroup driving the dynamics. The most
general structure of the Liouvillian is expressed by the cel-
ebrated Gorini-Kossakowski-Sudarshan-Lindblad (GKLS)
master equation [15]:

L[ρS(t)] = d
dt
ρS(t) = −i[HS, ρS(t)] + D[ρS(t)], (17)

where we are working with units such that � = 1. HS is a
generic Hermitian operator of the system, which we refer
to as the “effective Hamiltonian,” while

D[ρS] =
J∑

k=1


k

(
LkρSL†

k−
1
2
{L†

kLk, ρS}
)

(18)

is the dissipator, describing the nonunitary system dynam-
ics. 
k ≥ 0 are non-negative decay rates, while {Lk}J

k=1 are
the Lindblad operators, the number J of which is bounded
as J ≤ d2M − 1.

The MCM provides a way to simulate Eq. (16) on a
quantum computer by expressing the action of the dissi-
pator of Eq. (18) in terms of elementary quantum gates
between each subsystem, i.e., a subset of qubits, and a
collection of ancillary qubits, representing the environ-
ment ancillas. Dissipative collective effects, due to terms
in Eq. (18) that couple two or more subsystems, are imple-
mented via a suitable sequence of quantum gates between
a single environment ancilla and two or more system
qubits. More precisely, collective terms are treated through
a second-order Suzuki-Trotter decomposition [120]. A
detailed presentation of the MCM algorithm is summarized
in Appendix B.

The fundamental result introduced in Ref. [31] states
that the MCM simulates the exact open-system dynamics
driven by L [Eq. (16)] in the limit of small time step �t:

lim
�t→0+

(φ�t)
n = expLt, n = t/�t, (19)

where φ�t is the quantum channel reproducing a single step
of the MCM (for details, see Appendix B), which here is
applied n times (i.e., n repeated collisions until time t =
n�t).

On a real quantum computer, obviously one cannot
employ an infinitesimal time step �t → 0+ to implement
the gates in Eq. (B2) and one has to choose a small but
finite �t. This implies that the MCM is able to simulate
the dynamical semigroup as in Eq. (19) up to an error
that depends on �t. Let us term this global error as εg ,
following the original paper [31]:

εg = ∥∥(φ�t)
n − expLt

∥∥
1→1 . (20)

In the above equation, we are using the 1 → 1 superoper-
ator norm despite its stability issues, discussed in Sec. II,
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because this figure of merit has been studied in Ref. [31].
This definition is extended through the use of the diamond
norm in Sec. IV and Appendix D.

The global error can be trivially bounded by the sum of
the errors in a single time step εg ≤ nεs, where

εs = ‖φ�t − expL�t‖1→1 . (21)

Reference [31] estimates a very general bound on εs,
showing that its scaling is optimal for collision models.
This allows for the efficient implementation of the quan-
tum simulation algorithm. The complete expression of this
bound is quite cumbersome and can be found in the Sup-
plemental Material of Ref. [31]. Here, we just write it
as

εs ≤ B1→1

= 2e(M�(1 + JR�)�t)2

+ pol1(�, M , J )�t2 + pol2(�, M , J )�t3, (22)

where � = maxk,m{‖HS‖∞ ,
∥∥(λkF (k)

m σ+
k + h.c.)

∥∥
∞} (the

latter term being the Hamiltonian driving a single collision,
as explained in Appendix B) and pol1 and pol2 are poly-
nomial functions of �, the number of subsystems M , and
the maximum number of jump operators J . The scaling of
the global error is εg ∼ O(n�t2) = O(t2/n). Finally, note
that J scales exponentially with the number of subsystems.
However, under the very common assumption of k-locality
[3,22], i.e., the jump operators and the effective Hamilto-
nian can be decomposed as sums of k-local terms that act
nontrivially on k subsystems only, the bound in Eq. (22)
scales polynomially as a function of M [22,31]. This guar-
antees that the MCM is efficiently simulable on a quantum
computer.

B. Simulation of super- and subradiance

We now show how the MCM can be applied to the
simulation of topical collective effects, such as super-
and subradiance. The simplest model where these phe-
nomena arise consists of two atoms that emit coherently
into a common environment. Specifically, superradiance
emerges when the atoms lose their energy through a quick
emission, the intensity of which is enhanced with respect
to the local incoherent decay that each atom would expe-
rience in the absence of the other [61]. In contrast, subra-
diance, which is a complementary effect due to the same
cause (namely, the action of a common bath), can be iden-
tified as the presence of a slowly decaying metastable
mode of the atomic emission, which persists for a time
that is considerably longer than the usual relaxation time
[62] (T1 in the language of cavity or circuit quantum
electrodynamics [8]).

In this work, we address super- and subradiance between
two two-level atoms, i.e., two qubits of a quantum com-
puter. Despite its simplicity, this model displays a rich
landscape of collective phenomena [121] that may also
bring new insights on the presence of entangling noise in
the experimental platform [122]. Remarkably, we address
a scenario where subradiance emerges through the pres-
ence of a decoherence-free subspace, i.e., a subspace of
the system Hilbert space where the dynamics are unitary
and there is no dissipation. The relevance of decoherence-
free subspaces for quantum computation is crucial, given
that noiseless computation may be possible by restrict-
ing the Hilbert space over which we run the quantum
algorithms to the decoherence-free subspace [123]. More
specifically, we aim to simulate the following generator of
the open-system dynamics:

L[ρS] =
∑

j ,k=1,2

γ

(
σ−

j ρSσ
+
k −1

2
{σ+

k σ
−
j , ρS}

)

= γ

(
LcolρSL†

col−
1
2
{L†

colLcol, ρS}
)

, (23)

where Lcol = (σ−
1 + σ−

2 ) and the latter are the lowering
operators of qubits 1 and 2, respectively. In Eq. (23), γ
is a constant decay rate that defines the magnitude of the
dissipation and, specifically, it is the spontaneous emission
coefficient of each atom in the vacuum.

The master equation [see Eq. (23)] can be derived from
a microscopic model with two identical two-level atoms
dissipatively coupled in a symmetric way to the same com-
mon bath at zero temperature [44]. In a reference frame
rotating with the frequency of the qubits, the free Hamil-
tonian of the atoms can then be neglected, as in Eq. (23).
The analytical solution of the dynamics driven by Eq.(23)
can be found in Appendix C.

Superradiance is observed when the open evolution of
the two qubits starts from the “superradiant state” |ψsup〉 =
|ge〉 + |eg〉/√2, where |g〉 and |e〉 are, respectively, the
ground and the excited state of each qubit. Indeed, intro-
ducing ρsup = |ψsup〉 〈ψsup| and the emission power [61],

Pem[ρS(0)](t) = − Tr[HL[expLt[ρS(0)]]], (24)

where H = 1
2 (σ

z
1 + σ z

2 ) is the energy of the system, we
easily find (for details, see Appendix C)

Pem[ρsup](t) = 2γ e−2γ t. (25)

We observe a clear enhancement of the atomic decay,
driven by a decay rate equal to 2γ instead of the standard
spontaneous emission rate γ .

In contrast, subradiance emerges when the system
dynamics starts from the “subradiant state” |ψsub〉 =
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|eg〉 − |ge〉/√2. Defining ρsub = |ψsub〉 〈ψsub|, we observe

L[ρsub] = 0, (26)

with zero emitted power. In other words, the subradiant
state is a steady state of the dynamics that does not “feel”
the presence of dissipation acting on the qubits.

Let us now show how the MCM can simulate the
dynamics in Eq. (23). Since there is a single Lindblad
operator (J = 1), we only need a single ancillary qubit ini-
tialized in the ground state for each time step �t. Let us
term it as the qubit E. Then, the two-qubit quantum gates
that we employ in the algorithm are

U(1)(�t) = exp
[
−i

√
�t(

√
γ σ−

1 σ
+
E +h.c.)

]
,

U(2)(�t/2) = exp

[
−i

√
�t
2
(
√
γ σ−

2 σ
+
E +h.c.)

]
. (27)

These gates are composed as in Eq. (B2).
Let us also consider the analogous quantum evolution

in the presence of two separate baths, i.e., without collec-
tive effects between the qubits. Then, the master equation
driving these dynamics, assuming once again that the fre-
quencies of the qubits and their decay rates are the same,
is equivalent to Eq. (23) without cross terms with j �= k in
the summation [for further details, see Appendix C and Eq.
(C10)]. In this scenario, we have two local Lindblad opera-
tors, namely σ−

1 and σ−
2 . Therefore, the MCM to reproduce

the local dynamics requires two ancillas—say, qubits E1
and E2, respectively—and the same gates as in Eq. (27),
both lasting for a time �t. Indeed, in the absence of col-
lective effects, we do not need to employ the second-order
Suzuki-Trotter decomposition as in Eq. (B2), while we can
just rely on its first-order analogs [31,124].

Let us now fix the values of γ and �t. We set γ =
1 (after choosing some suitable units of measurement),
which is the only physical time scale of the problem. This
means that thermalization is reached at a time tR ∼ O(1)
[44]. The time evolution of the emission power of Eq. (24)
is plotted in Fig. 1(a) for different initial states (superadi-
ant, subradiant, and the excited state |ee〉), and compared to
the case of local dissipation for an initial subradiant state.

For the quantum simulation, we choose �t = 0.1 and
consider the dynamics until t = 1, requiring n = 10 time
steps. The upper bound on the single-step error, given by
Eq. (IV), is plotted in Fig. 1(b) as a function of the time
step �t. These high values of the single-step error are due
to the fact that the bound in Eq. (22) reflects the worst-case
scenario (the maximization is performed over all the initial
states). This is necessary to guarantee the efficiency of the
execution of the algorithm but quite often is of little use for
practical purposes. Therefore, in the inset of Fig. 1(a), we
plot the trace distance between ρS(t), as obtained from Eq.
(23), and the state simulated by the MCM with �t = 0.1,
as a function of the number of time steps, i.e.,

εideal(n) = ∥∥expL(n�t)[ρS(0)] − (φ�t)
n[ρS(0)]

∥∥
1 , (28)

for n = 1, . . . , 10. Note that εideal(n) is different from the
global error at the nth time step εg , introduced in Eq. (20).
Indeed, in Eq. (28) there is no maximization over all the
possible initial states, since we focus on a specific initial
state. As a consequence, εideal(n) is much lower than εg .
In fact, in the inset of Fig. 1(a), we observe that, even
with a large time step such as �t = 0.1, the MCM is able
to simulate the state of the dynamics at time t with high
accuracy.

(a) (b)

FIG. 1. (a) The emission power as a function of time, when the initial state is the subradiant state (dotted light blue line), the
superradiant state (dash-dotted magenta line), and |ee〉 (dashed orange line), and when the dynamics are local, starting from the
subradiant state (continuous black line). The inset in (a) shows the trace distance between the real and the simulated state εideal(n) as a
function of the number of time steps n, with the same initial states as in the main figure. (b) The upper bound B1→1 for the single-step
error εs as a function of the time step�t. The inset in (b) shows the upper bound for the global error εg with�t = 0.1, equal to n times
B1→1, where n is the number of time steps.
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IV. ERROR BOUND FOR THE NOISY
SIMULATION

In Ref. [31], an error bound is computed for the ideal
case of the MCM based on the 1 → 1 superoperator norm.
For a single step of the MCM, it is expressed as in Eq.
(22). Here, we estimate an analogous upper bound for the
case of noisy gates. We use the diamond norm instead of
the 1 → 1 superoperator norm to obtain bounds expressed
in terms of error values that can be employed to guarantee
fault-tolerant quantum computation.

Let us first replace the ideal quantum map φ�t, defined
in Eq. (B5), with a noisy one, which we term as φ∗

�t. The
error we want to estimate is

ε∗
g = ∥∥(φ∗

�t)
n − expLt

∥∥
♦ , with t = n�t. (29)

Due to the triangle inequality, we have

ε∗
g ≤ ∥∥(φ�t)

n − expLt
∥∥

♦ + ∥∥(φ∗
�t)

n − (φ�t)
n
∥∥

♦

≤ n
(
ε♦

s + ε∗
m

)
, (30)

where we introduce the errors

ε♦
s = ‖φ�t − expL�t‖♦ , ε∗

m = ∥∥φ∗
�t − φ�t

∥∥
♦ . (31)

Let us focus on these norms for a single application of the
MCM. We first address the bound for the ideal case based
on the diamond norm ε♦

s and then the diamond norm ε∗
m

between the ideal and noisy MCM maps. We give here
only the final result, while the derivation of the bounds can
be found in Appendix D. Our first statement is as follows.

Proposition 1. The ideal error bound B1→1 evaluated
through the 1 → 1 superoperator norm as in Eq. (22) is
also valid for the diamond norm:

ε♦
s ≤ B1→1, (32)

where the expression B1→1 is introduced in Eq. (22).

This means that all the results of Ref. [31] about the
scaling of the error can be trivially extended to a scenario
where the diamond norm is employed. In particular, the
efficient quantum simulation of the MCM is also guaran-
teed through the diamond norm. Note that, for instance, the
behavior of the upper bound shown in Fig. 1(b) also holds
for ε♦

s .
Let us now focus on ε∗

m. Our aim is to estimate “how
far” the noisy implementation of the MCM is from its
ideal analog. To do so, we may assume that each ancil-
lary qubit is not prepared in the ideal initial state ρE,i but
in the noisy ρ∗

E,i = Gi[ρE,i], where Gi is a known quantum
channel characterizing the noise on the state preparation of
the ith ancilla in the actual device. The quantum channel

for the total unitary evolution of the system plus ancil-
lary qubits of the ideal MCM for a single time step �t is
Usim(�t) = Usim(�t) · U†

sim(�t) [see Eq. (B4)]. The uni-
tary evolution Usim(�t) can also be decomposed as a
composition of many quantum gates on a quantum com-
puter, such as Usim(�t) = ∏

j Uj . These gates typically act
on both the system and ancillary qubits. Let us now sup-
pose that, on a real platform, each of these gates is not ideal
but noisy and can be represented by the quantum channel
Ej . Then, we find the following.

Proposition 2.

ε∗
m ≤

∑
j

∥∥Ej − Uj
∥∥

♦ +
∑

i

‖Gi − IE‖♦

= 2

⎛
⎝∑

j

d♦(Uj , Ej )+
∑

i

d♦(IE ,Gi)

⎞
⎠ , (33)

where Gi and Ej are the noisy channels introduced above,
while the diamond distance d♦ is defined in Eq. (4).

That is to say, even though the MCM map acts on the
state of the system only, we can estimate an upper error
bound for the noisy map that is equal to the sum of the indi-
vidual errors for each quantum gate between the system
qubits and the ancillas (including the preparation of the ini-
tial states of the ancillary qubits). Note that the above error
bound is also valid for modified versions of the MCM,
where, for instance, the ancillary qubits can be prepared
in an initial entangled state. Moreover, the above bound is
robust even under more general sources of error, e.g., if the
initial state of the system qubits plus ancillas is acciden-
tally entangled. Indeed, the diamond distance

∥∥Ej − Uj
∥∥

♦
involves a maximization over all the possible initial states
of the overall system [125], including the entangled ones.
In such a scenario, the noisy preparation given by the set of
Gi can then be extended to act on both system qubits and
ancillas, yielding an entangled state instead of an initial
state that is separable between system and ancillary qubits.

To summarize, the results stated in Propositions 1 and
2 can be employed to estimate a general upper bound for
the global error of the noisy MCM map, according to Eq.
(30). More specifically, Eq. (32) expresses the error due to
the finite (and not infinitesimal) time step �t in the ideal
algorithm. Clearly, the lower �t is, the better, as shown
in Fig. 1(b). Instead, Eq. (33) states that the error due to
a noisy MCM protocol can be decomposed into the sum
of the individual errors for each quantum gate employed
in the algorithm, including the state preparation of the
ancillary qubits. The diamond distances in Eq. (33) can
be estimated experimentally and we show their values for
some CNOT gates employed to simulate the MCM on the
IBM quantum computers (see the discussion in Sec. V and
Appendix G 2).
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We emphasize again that we are using the diamond dis-
tance, which is employed to prove the formal theorems
about fault-tolerant quantum computation. This means that
the distances between noisy and ideal gates that appear in
Eq. (33) express exactly the errors that we must keep below
a certain threshold to guarantee fault-tolerant computa-
tion. Moreover, recall that the diamond norm addresses
the worst-case scenario, so the upper error bound can be
higher than the actual error in a single implementation of
the algorithm [compare Figs. 1(a) and 1(b)].

V. EXPERIMENTAL DEMONSTRATION ON IBM
QUANTUM COMPUTERS

A. Introduction to the experimental results

In this section, we present the implementation of the
MCM on a near-term superconducting IBM quantum com-
puter available on the cloud, programmed through the
QISKIT software library [45]. In particular, we show some
experimental results obtained on the limited-access 16-
qubit IBMQ_GUADALUPE, while more results on the 27-
qubit IBMQ_TORONTO are discussed in Appendix F 2.

Our aim is twofold. On the one hand, we want to show
how even current near-term devices can display nontriv-
ial dissipative collective effects in a quantum simulation
by means of the MCM. On the other hand, we intend to
investigate the properties of noise in these platforms via
process tomography and to relate them to the accuracy
of the simulation of the MCM. By doing this, we aim to
investigate whether the quantum physicists who make use
of near-term quantum computers on the cloud can infer
the accuracy of the simulations they would like to run
without having access to the hardware. We see that gate
process tomography can provide us with useful informa-
tion about the precision of the quantum simulation despite
its drawbacks, which are discussed in the literature [78,96],
namely, its sensitivity to preparation and measurement
(SPAM) errors.

In this paper, we present two different sets of results.
The first one (discussed in the present section) shows clear
signatures of collective effects and the accuracy of the sim-
ulation is reasonably good. The second one is presented in
Appendix F 1 and displays noisier results and the simulated
MCM yields results that are quite far from their expected
values. We show, however, that this can be traced back to
some highly noisy gates that are repetitively employed in
the algorithm, the noise properties of which are captured by
our analysis based on process tomography. Whether these
high levels of noise are due to an incorrect application of
the quantum gate itself or to SPAM errors may be a matter
of debate. However, their signatures are clearly evident in
the results of the quantum computation, which, ultimately,
is what we are interested in when we run algorithms for
quantum simulation on near-term quantum computers.

The experimental details and the platform schemes can
be found in Appendix E. Briefly, the protocols that, for the
above-mentioned purposes, we have to run on the devices
are (note that process tomography is not needed for the
MCM, but only to assess errors):

(1) The algorithm implementing the MCM until the step
n = 5 for the three different initial states explored in
Sec. III B and for the local dynamics and performing
measurements in the computational basis.

(2) State tomography of the system at each time step of
the algorithm.

(3) Process tomography [46] of the CNOT gates
employed in the algorithm, in order to estimate
the noise properties. We do not address the prop-
erties of the single-qubit gates, because their error
is usually a couple of orders of magnitude lower
than that of two-qubit gates (for further details, see
Appendix E).

(4) Readout-error mitigation on the qubits measured in
both the algorithm and the gate process tomography.
This is a standard procedure that can be imple-
mented on the IBM near-term devices through the
QISKIT library [45]. It detects possible systematic
errors in the outcomes of the measurements on the
set of qubits of interest and allows for readout-
error mitigation. All the outcomes that we show
in the paper are obtained after applying the proper
readout-error-mitigation procedure.

Note that we simulate n = 5 steps of the MCM, using the
same model parameters that are employed in Sec. III B
(namely, decay rate γ = 1 and time step �t = 0.1). The
specifics of the near-term devices that we are employ-
ing and the noise level do not allow for more collisions
between the system qubits and the ancillas. In any case, we
see that five steps are already enough to observe collective
effects in the dynamics.

It is worth emphasizing that a crucial challenge in the
simulation of the MCM is to get a new ancilla initialized
in the ground state after each collision, as required by the
steps of the algorithm discussed in Appendix B. In gen-
eral, in the topology of a quantum computer, only one or
two ancillary qubits are directly connected to (i.e., can per-
form operations with) both the system qubits. Therefore,
we generate a new refreshed ancilla after each time step by
swapping the state of the common ancillary qubit with the
one of the nearby qubits prepared in the ground state. To do
this, we need more and more SWAP gates as the number of
collisions increases, giving rise to a “train of ancillas” that
must subsequently be swapped to get to interact with the
system qubits. More details can be found in Appendix E.
A different solution may consist in employing a reset gate
to reinitialize the state of the common ancillary qubit in
the ground state after each collision. However, this does
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FIG. 2. The probability of finding the states |gg〉, |ge〉, |eg〉, and |ee〉 through a projective measurement in the computational basis
as a function of the number of steps in the MCM (first set of results), when the initial state is the subradiant state (light blue), the
superradiant state (magenta), and |ee〉 (orange), and when the dynamics are local, starting from the subradiant state (black). The
continuous lines show the theoretical prediction based on the master equation, while the markers of the dash-dotted lines show
experimental values. The results are obtained as averages over 37 realizations of the protocol and the error bars are within the
markers.

not work on the platforms that we use due to decoherence
effects, as shown in Appendix F 3.

B. Experimental MCM outcomes

A first set of results and measurement outcomes in the
computational basis of the quantum computer is shown in
Fig. 2 as a function of the number of steps in the MCM,
from n = 0 (state preparation) to n = 5. The computational
basis “00,” “01,” “10,” “11” on the IBM quantum com-
puter [45] corresponds to the physical basis |gg〉, |ge〉, |eg〉,
|ee〉 of the two qubits.

The results display clear evidence of dissipative col-
lective effects in the system dynamics. To see this, let
us compare the behavior of the subradiant and super-
radiant evolution with that of the local dynamics. The
ideal local decay of the subradiant state (continuous black
lines) can be considered as a benchmark to discriminate
between collective and noncollective dynamics. Indeed, as
also shown in Fig. 1(a), it corresponds to an exponential
decay driven by the local dissipation rate γ (for the ana-
lytical solution of the dynamics, see Appendix C). Then,
the emergence of collective effects is detected by either the
presence of a slower decaying eigenspace of the dynamics

(“subradiance”) or by a much faster decay (“superradi-
ance”), depending on the initial state of the system. This is
exactly what we observe in the experimental data depicted
in Fig. 2: if we start in the subradiant state (dash-dotted
light blue lines), the decay of the excited population lev-
els (|ge〉 and |eg〉) into the ground state (|gg〉) is slower
than that given by the ideal local dynamics, i.e., they are
decaying with a rate that is smaller than γ . This can only
be possible in the presence of collective effects between
the two qubits. Note that although the light blue mark-
ers are below the continuous black line in the evolution
of |ge〉, this is not due to a faster local decay of the sub-
radiant state but to an imprecise state preparation at time
t = 0, for which the initial population of |ge〉 is lower
than 0.5. Its decay, however, is again slower than e−γ t.
The same considerations apply for the evolution of the
superradiant state (dash-dotted magenta lines): the decay
of the initially excited populations (|ge〉 and |eg〉) into the
ground state (|gg〉) is clearly faster than the local decay
and, at least during the first time steps of the dynamics, it
follows the 2 times faster decay driven by e−2γ t (contin-
uous magenta lines). The experimental local decay of the
subradiant state (black markers) approximately follows the
ideal local dynamics and it decays as e−γ t, as expected.
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FIG. 3. The error analysis of the set of CNOT gates in IBMQ_GUADALUPE employed for the simulation of the first set of results in
Fig. 2. The tick 0–1 on the x axis corresponds to the CNOT gate, where “qubit 0” in IBMQ_GUADALUPE is the control qubit and “qubit 1”
is the target. The lower plot shows the gate error provided by IBM (magenta), the experimental average gate infidelity r(Ug ,T ) via full
process tomography (light blue), and the experimental incoherence ω(T ) (yellow), as defined in Eq. (9). The error bars on the values
of r(Ug ,T ) and ω(T ) are the standard deviations of 100 realizations of a random sample of the experimental data via bootstrapping.
The upper plot shows the ratio between the incoherence and the experimental average gate infidelity of each CNOT gate.

Finally, the collective evolution of the state |ee〉 (orange
markers) is a linear combination of subradiant and super-
radiant dynamics (see Appendix C) and it captures its ideal
behavior well (continuous orange lines). Moreover, it does
not run into a large error in the state preparation, since
preparing |ee〉 (starting from |gg〉) requires only single-
qubit gates. In contrast, the initialization of the super- and
subradiant states involves two-qubit gates, which are much
noisier than single-qubit operations, and this is why their
state preparation is more imprecise.

It is worth noting, however, that the subradiant state
is decaying, while it should be stationary according to
the master equation [see Eq. (23)]. In other words, there
are leakages out of the decoherence-free subspace. This
is due to the errors in the gates that we employ in the
algorithm, which are inevitably noisy in near-term devices.
Another source of leakages is due to the finite Trot-
ter time step �t of the algorithm. However, as one can
infer from the inset of Fig. 1(a), the discrepancy between
the true dynamics and the ideal simulation is very small
for the subradiant state; therefore, this source of leak-
ages is basically negligible in the present scenario. The
interested reader can check in Appendix G 1 a quanti-
tative comparison between the error in the experimental
results of Fig. 2 due to noisy gates and the ideal error of
the algorithm. For the subradiant state, the ratio between
the ideal and the experimental error is always smaller
than 1%.

We emphasize that, despite the dissipation due to the
gate errors, we are able to prove that the MCM produces

a more robust subradiant state than in the presence of
local decay only. Therefore, our algorithm is able to pre-
serve the populations of an entangled state of the qubits
for a longer time than in the absence of collective effects,
even on near-term devices with a considerable level of
decoherence.

C. Gate-error analysis

Let us now focus on the gate analysis shown in Fig. 3.
We compare the experimental average gate infidelity of
the CNOTs in the algorithm, computed by reconstructing
the Choi matrix of the gate [126] through gate process
tomography, with the gate error provided by IBM and
extrapolated through a randomized benchmarking protocol
[45,81]. We also plot the value of the incoherence ω(T )
given by Eq. (9). The experimental values are resampled
100 times via bootstrapping to estimate the standard devi-
ations of the samples (depicted in Fig. 3 as error bars). We
also compute the values of the diamond distances between
ideal and experimental gates, and a discussion about them
can be found in Appendix G 2.

Note that the CNOTs between qubits “10” and “12” are
not taken into account due to an error in the experimental
outputs. However, these gates are employed only a single
time during the whole protocol to switch the fourth and
fifth collision ancillas, so their features are of little interest
for our analysis.

We first make two major remarks:
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(i) As shown in the upper plot of Fig. 3, the ratio
between the incoherence and the average gate
infidelity is larger than 0.9 for almost all gates.
This means that the “coherence of noise” [103] in
the hardware is usually quite low and the dominant
source of error is incoherent. This agrees with
previous studies on the noise properties of the gate
pulses on the IBM quantum computers [127].

(ii) The experimental average gate infidelity is of the
same order of magnitude as the IBM gate error
but it can differ quite remarkably from the latter
(see, e.g., the CNOTs 2–1 or 1–4). Therefore, we are
observing a discrepancy between the average gate
fidelity via process tomography and the value pro-
vided by IBM, which is typically obtained through
randomized benchmarking. Similar remarks on the
IBM quantum devices can be found in the literature
[128,129]. For instance, the full process tomography
shows how the average gate infidelity of a CNOT gate
between the same pair of qubits can differ when we
switch the control and target qubits, while this is not
captured by the IBM error.

Overall, the discrepancy between the experimental aver-
age gate infidelity and the IBM error may be explained as
follows. (1) The IBM error is describing the average infi-
delity of a noise channel obtained as, following standard
randomized benchmarking, the average channel between
the twirling gates of the Clifford group (for more rigorous
details, see, e.g., Refs. [82,90,91]); this is providing us with
a useful measure to benchmark the average noise on the
selected pair of qubits but it is different from the average
gate infidelity of a specific CNOT gate. (2) Even if readout-
error mitigation is applied, some residual SPAM errors
might be present in the characterization of the average gate
infidelities, while the IBM gate error is SPAM free.

Even if we cannot rule out the presence of SPAM errors
in the values of the average gate infidelities (this is a well-
known drawback of process tomography [78]), we point
out that these errors are mitigated through the procedure
for readout-error mitigation. Indeed, the experimental val-
ues of the average gate infidelities without error mitigation
are huge (typically around 5 times larger than the values
that we plot in Fig. 3). Moreover, the gates for SPAM in
the circuits for the full process tomography are only single-
qubit gates, the gate error of which is typically 2 orders of
magnitude smaller than the two-qubit gate error [45]; for
instance, the state preparation of |ee〉, which is the only
one not involving two-qubit gates, is much better than the
preparation of the subradiant or superradiant states. There-
fore, it may be reasonable to posit that the state-preparation
error in the characterization of the average gate infidelities
is not as relevant as the error due to the application of the
gate itself.

D. Scaling of the experimental infidelity

After computing the Choi matrices of the quantum
gates that we employ in the experiment via full process
tomography and the figures of merit depicted in Fig. 3,
we can try to employ them to better understand the noise
that we will face during an execution of the algorithm.
A possible way to do so is to simulate a noisy version
of the algorithm run on a “noisy circuit,” which we con-
struct by replacing all the CNOT gates of the ideal circuit
for the MCM with their corresponding nonideal quantum
channels described by the Choi matrices that we estimate
experimentally. Then, we can compare the state simulated
on this noisy circuit with the experimental state that we
reconstruct through state tomography (the data for the state
tomography are resampled 100 times through bootstrap-
ping and the error bars are within the markers in Fig. 4).
Yet another noise model that we may test is the standard
noise model from the back end provided by IBM [45]. This
is built as follows. (i) For each single-qubit gate, we add
a depolarizing channel with error rate equal to the IBM
gate error, followed by a thermal relaxation through pure
dephasing [15] with rate T2 and through pure dissipation
with rate T1 (these values are available on the IBM web
site and, typically, for IBMQ_GUADALUPE, they are of the
order of 100μs, while the qubit frequencies are of the order
of 2π × 5GHz). (ii) For each two-qubit gate, we apply a
two-qubit depolarizing channel with error rate equal to the
IBM gate error given in Fig. 3, followed by a local thermal
relaxation as for single-qubit gates. The IBM noise model
takes into account single-qubit gate errors and the “natu-
ral” dissipation acting on each qubit, while the noise model
based on the noisy circuit that we reconstruct through the
experimental Choi matrices focuses on the two-qubit gate
errors only.

In Fig. 4, we compare the states simulated according
to the noise models presented above with the ideal and
experimental states. The continuous violet line depicts the
infidelity between the ideal and experimental states as a
function of the number of CNOT gates in the protocol Ng .
The markers indicate the state at each step of the algorithm,
from n = 0 (state preparation) to n = 5. Note that the num-
ber of gates to implement the nth step is higher than for
step n − 1, as explained in Appendix E. We can compare
its scaling with the linear sum (as a function of Ng) of
the average gate infidelities of all the CNOTs employed
in the algorithm, taking into account their repetitions and
following the order in which they appear in the circuit
(i.e., Ng = 1 on the x axis denotes the first gate that we
employ in the algorithm, and so on). We plot this linear
scaling for both the experimental average gate infidelity
obtained through gate process tomography and the IBM
gate error, which are shown in Fig. 3. Note that these
curves are not exact straight lines, because the average gate
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(Experimental tomography)

FIG. 4. The scaling of the error as a function of the number of CNOT gates in the algorithm Ng during the simulation of the collective
dynamics shown in Fig. 2. The markers indicate the steps of the collision model. The dotted light blue and magenta lines show the
linear scaling of, respectively, the IBM gate error and the experimental average gate infidelity, given in Fig. 3. The continuous violet
line shows the infidelity between the experimental state and the ideal one. The error bars for the latter quantity are obtained as
the standard deviations of 100 realizations of a random sample of the state-tomography data via bootstrapping and they are within
the markers. The continuous orange line shows the infidelity between the experimental state and the state simulated on the noisy
circuit. The continuous yellow line shows the infidelity between the experimental state and the state simulated via the IBM noise
model.

fidelities of the gates employed in the algorithm are, in gen-
eral, different. According to the discussion in Sec. II B, we
may expect the experimental state infidelity to scale lin-
early when the noise source is mostly incoherent [93,109],
at least during the first steps of the algorithm (as soon as

the number of CNOT gates Ng increases, it is reasonable
to assume that the experimental errors will drive the state
of the system toward some sort of mixed state, so that
the experimental infidelity will saturate at a value that is
not captured by the linear scaling in Fig. 4). We indeed

FIG. 5. The absolute value of the population difference between the experimental state and the state simulated through the IBM
noise model (the square markers on the dash-dotted lines) and between the experimental state and the state simulated on the noisy
circuit (the circular markers on the dotted lines) as a function of the MCM time steps.
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observe a linear scaling, or also sublinear, as a function
of the number of gates. The linear sum of the experi-
mental average gate infidelities captures the first stages of
the algorithm but then overestimates the error, as we may
expect due to some sort of saturation toward a mixed state.
This may suggest that, in the platform that we are consid-
ering, the average gate fidelity of composed channels [93]
scales in a favorable way, which may also be sublinear.
The scaling of the trace distance between the experimental
and ideal states as a function of Ng is also linear or sub-
linear (we refer the interested reader to the discussion in
Appendix G 1).

Let us now focus on the continuous orange and yellow
lines, which depict the infidelity between the experimen-
tal state and, respectively, the state simulated through the
noisy circuit based on experimental Choi matrices and the
state simulated through the IBM noise model. Remarkably,
both error models provide us with a good prediction for
the experimental state, as the infidelity between the latter
and the simulated states never exceeds 0.1, and is usu-
ally lower than 0.05. For the noisy-circuit noise model,
the discrepancy between the experimental and simulated
states may be explained through the presence of crosstalk
or correlated measurement errors on the back end; i.e., the
quantum channel associated with a gate when operated on
its own may be different from the corresponding quantum
channel when the same gate is applied during a more
complex algorithm, with multiple quantum operations on
different qubits at the same time. Another reason for this
discrepancy may be residual SPAM errors in the charac-
terization of the Choi matrices of the gates.

Interestingly, both noise models have quite similar per-
formance, although the noise model based on experimental
Choi matrices may outperform the IBM noise model in
the presence of very noisy gates (see the second set of
results in Appendix F 1). This means that a noise model
that only addresses two-qubit errors can be as good as a
more complete noise model if the CNOT errors are prop-
erly characterized, highlighting how the latter are the main
source of noise in near-term computers. Finally, note that,
despite the two noise models having similar performance,
as captured by the state infidelity between the experi-
mental and simulated states, the states that they simulate
may actually be quite different. Indeed, Fig. 5 shows the
absolute value of the population difference between the
experimental (results in Fig. 2) and simulated states for
both noise models. We observe that one model outperforms
the other for some time steps and for different observables
but that, overall, they display similar performance, despite
predicting quite different quantum states. A possible
improvement of our noise model may consist in including a
depolarizing channel for each single-qubit gate, where the
decay rate of the channel is obtained through randomized
benchmarking (e.g., the IBM-provided error values can be
used for this). We leave this possibility for future work.

VI. CONCLUDING REMARKS AND
PERSPECTIVES

We present the first fully quantum digital simulation
of dissipative collective effects on a quantum computer
and we analyze, both theoretically and experimentally, the
impact of noisy gates on the algorithm.

State-of-the-art universal quantum computers do not yet
allow for fault-tolerant computation, while they are subject
to a considerable level of noise. However, it is remarkable
that the algorithm that we employ, namely, the MCM [31],
simulates the superradiant and subradiant dynamics of two
qubits colliding with a common ancilla with a good degree
of accuracy (see Figs. 2 and 8 in Appendix F) and that
a noise model based on our experimental noise analysis
is able to estimate, with reasonable precision, the distance
between the ideal and experimental states (see Figs. 4 and
10 in Appendix F 1).

More specifically, we simulate on a quantum computer
the enhanced decay of the two-qubit state prepared in
(|eg〉 + |ge〉)/√2, which is a paradigmatic signature of
superradiance, and the very slow decay of the state (|eg〉 −
|ge〉)/√2, which displays the emergence of subradiance.
As a benchmark for these collective phenomena, we also
simulate the two-qubit dynamics in the presence of local
decay only and the results follow the theoretical scaling.

We emphasize the importance of rigorous analysis of
the gate errors when dealing with current quantum devices
and here we also address this issue theoretically. In Ref.
[31], an error bound for the ideal MCM has been derived
using the 1 → 1 superoperator norm. This error is essen-
tially due to the inevitable choice of a small but finite
algorithm time step �t, while the second-order Suzuki-
Trotter decomposition of the MCM simulates the exact
dynamics in the limit of infinitesimal time step only. In
Sec. IV, we present a refined error bound that takes into
account the possibility of employing noisy gates in the
practical implementation of the MCM. Specifically, Propo-
sition 1 generalizes the bound of Ref. [31] by making use
of the diamond norm, which is a more precise norm for
the distance between quantum channels and, crucially, is
employed in the estimation of a rigorous error threshold
for quantum fault-tolerant computation. Moreover, Propo-
sition 2 estimates an upper bound based on the diamond
norm for the error that we are incurring by using imper-
fect gates. While the quantum map associated with the
MCM acts on the state of the system only, Proposition 2
expresses the error bound by taking into account the action
of each gate on both the system and the ancillary qubits
and decomposes it into the sum of the individual errors of
each quantum gate.

On the experimental side, the results of the noise anal-
ysis are depicted in Figs. 3 and 9 in Appendix F 1 for the
average gate infidelity and the incoherence, while Fig. 14
in Appendix G 2 shows the experimental diamond distance
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between the employed CNOTs and their ideal counter-
parts. To obtain these figures of merit, we perform the
full process tomography of all the CNOT gates employed
in the algorithm. To reduce the SPAM errors that are
the major drawback of two-qubit process tomography, we
apply readout-error mitigation. However, the reader must
be aware that residual SPAM errors may be present in the
results of our experimental noise analysis. Then, we com-
pare these results with the gate errors provided by IBM,
which are obtained through randomized benchmarking.

Our findings indicate that the ratio between incoherence
and average gate infidelity is almost always larger than 0.9;
therefore, the major source of error is dissipative, i.e., the
“coherence of noise” [103] is low. We also observe that
the experimental average gate infidelity computed through
full process tomography can sometimes differ remarkably
from the IBM gate error (see Figs. 3 and 9 in Appendix
F 1). Moreover, the scaling of the infidelity between the
exact and simulated states as a function of the number of
gates is linear or sublinear (see Figs. 4 and 10), i.e., much
better than the worst-case scenario with quadratic scaling.
This may be due to the fact that the major source of errors
is dissipative and not coherent. Finally, the diamond errors
of the CNOT gates that we obtain are of the order of 5 ×
10−2 ÷ 10−1; therefore, if we put these numbers into the
expression for the theoretical bound in Proposition 2, the
latter exceeds 1 after a few time steps. Furthermore, these
values suggest that the near-term devices that we employ
are still orders of magnitude away from the strictest quan-
tum fault-tolerant thresholds, at least if we assume, as may
be reasonable, that SPAM errors do not affect the diamond
distances by several orders of magnitude.

In addition, we employ the experimental results of the
noise analysis to build a noise model that (classically) sim-
ulates the state of the collision model at time step n by
replacing all the CNOT gates in the algorithm with the noisy
channels obtained through process tomography. We find
that this noise model predicts the experimental state with
reasonable accuracy (the infidelity between the experimen-
tal and simulated states is typically lower than 0.1, while
that between the experimental and ideal states is between
5 and 10 times higher; see Fig. 4). Moreover, we com-
pare it with the built-in noise model provided by IBM that
also considers single-qubit gates and qubit relaxation and
discover that their performance is quite similar. However,
our noise model may outperform the IBM one in the pres-
ence of very noisy gates (see Fig. 10 in Appendix F 1) and
this might also suggest that the high values of the average
gate infidelities shown in Fig. 9 in Appendix F 1 are more
informative than the more optimistic IBM gate errors.

A crucial issue of open-system simulation via interac-
tions with ancillary qubits is the need for a new ancilla at
each time step. In this study, we employ a train of ancil-
las that are swapped after each collision, so that a single
ancillary qubit is finally interacting with the system qubits

(see the discussion in Appendix E). A different solution
consists in employing a reset gate to refresh the state of
a single ancillary qubit at every time step. However, our
preliminary results based on the reset gate show a very
quick emergence of decoherence (Fig. 12 in Appendix F).
Reducing the gate time of the reset gate would therefore be
a remarkable improvement for any simulation algorithm
making use of ancillas. If this is not possible, enriching
the topology of the near-term devices will crucially reduce
the number of SWAP gates necessary to refresh the state of
the ancilla for the nth collision. Yet another possibility for
enhancing the accuracy of the quantum simulation would
be to work at the pulse level of the near-term devices [130].
This would basically correspond to performing an analog
quantum simulation instead of a digital one and has very
recently led to improved results on the quantum simulation
of many-body unitary systems [131].

To conclude, our experimental outcomes highlight how
near-term quantum computers, even if far from being ideal,
can already give useful and meaningful results on the sim-
ulation of collective quantum dynamics. Our findings are
a proof-of-principle demonstration of the potential of the
MCM algorithm for the exploration of topical and ground-
breaking phenomena such as dissipative quantum phase
transitions, quantum synchronization, and dissipative time
crystals. Finally, we demonstrate that gate process tomog-
raphy, despite its potential bias due to residual SPAM
errors, can give valuable information about the noise fea-
tures of near-term quantum computers and about the accu-
racy of the experimentally simulated state. We show how
this can help us to understand the device limitations and
hence to engineer possible countermeasures.
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APPENDIX A: DISTANCES IN QUANTUM
INFORMATION

We introduce here some distance measures for operators
on the Hilbert space H [46,77,102].
Definition 8: (Schatten norms). The Schatten p-norm
(with p ∈ [1, ∞]) of an operator A ∈ B(H) is defined as

‖A‖p = Tr[
(√

A†A
)p

]1/p . (A1)

We focus on the following two Schatten norms.
Definition 9: (trace norm). The trace norm (or 1-norm) of
an operator A ∈ B(H) is defined as

‖A‖1 = Tr[
√

A†A]. (A2)

Definition 10: (operator norm). The operator norm (or
infinity norm) of an operator A ∈ B(H) is the standard one
in functional analysis, that is,

‖A‖∞ = max
|v〉∈H: ‖v‖=1

‖A |v〉‖ . (A3)

The vector norm (without any subscript) ‖v‖ is the
standard Euclidean norm in the Hilbert space H.

Here are some properties of the Schatten norms, in addi-
tion to the ones that define a norm, i.e., positivity, being
zero only if A = 0, and fulfilling the triangle inequality
‖A + B‖p ≤ ‖A‖p + ‖B‖p :

(1) Unitary invariance. ‖UAV‖p = ‖A‖p if U, V unitary.
(2) Submultiplicativity. ‖AB‖p ≤ ‖A‖p ‖B‖p .
(3) Monotonicity. ‖A‖1 ≥ ‖A‖p ≥ ‖A‖q ≥ ‖A‖∞ for

p ≤ q.
(4) Hölder’s inequality. ‖AB‖1 ≤ ‖A‖p ‖B‖q, with p ,

q ∈ [1, ∞] (properly generalized) and 1/p + 1/q =
1. In particular, ‖AB‖1 ≤ ‖A‖1 ‖B‖∞.

(5) Stability under tensor product. ‖A ⊗ IB‖p = (dB)
1/p

‖A‖p . In particular, ‖A ⊗ IB‖∞ = ‖A‖∞, ‖A ⊗ IB‖1 =
dB ‖A‖1.

An additional useful figure of merit is the fidelity between
two quantum states:

F(ρ, σ) = ∥∥√ρ√
σ
∥∥2

1 =
(

Tr[
√√

ρσ
√
ρ]
)2

. (A4)

If ρ = |ψ〉 〈ψ | is pure, then F(ρ, σ) = Tr[ρσ ]. The infi-
delity 1 − F(ρ, σ) is not a well-defined mathematical
distance because it does not satisfy the triangle inequality
(although it can be easily turned into a well-defined metric,
e.g., by taking its square root [88]).

APPENDIX B: STEPS OF THE MCM

We provide here the steps of the MCM introduced in
Ref. [31] and discussed in Sec. III A. Let us consider
the master equation [see Eq. (17)] of a multipartite open
system the dynamics of which we aim to simulate. For sim-
plicity, let us now assume that the subsystems 1, . . . , M are
qubits and that the Lindblad operators in Eq. (18) are linear
combinations of local operators acting on a single subsys-
tem only. That is, Lk = ∑M

m=1 F (k)
m and each F (k)

m is local
on the mth subsystem. Then, the steps of the algorithm can
be expressed as follows:

(1) To each k = 1, . . . , J in Eq. (18), assign an ancillary
qubit that will generate the corresponding term of
the master equation.

(2) For each k = 1, . . . , J , prepare the set of two-qubit
quantum gates between the kth ancilla and the mth
subsystem defined by:

U(m)
k (t) = exp[−igI t(λkF (k)

m σ+
k +h.c.)], (B1)

where λk is a dimensionless parameter that is
defined by 
k = |λk|2, while the gate time t will
eventually assume two values only, namely, either
�t or �t/2, where �t is the time step of the
algorithm. gI is a coupling constant that defines the
collision strength and in this paper it is fixed at
gI = �t−1/2 [31].

(3) Compose these quantum gates into a single unitary
evolution Uk(�t) as follows:

Uk(�t) =
M∏

m=1

U(M−m+1)
k (�t/2)

M∏
m′=1

U(m′)
k (�t/2).

(B2)

Note that the two-qubit gate U(1)
k (�t) can be imple-

mented as a single gate lasting for �t, while all the
other gates last for�t/2 and are executed twice dur-
ing a single time step. Equation (B2) expresses the
second-order Suzuki-Trotter decomposition of the
interaction between the subsystems and the ancilla.

(4) Follow the same procedure for each ancilla k =
1, . . . , J and insert each gate sequence in a total uni-
tary operator, where their order of execution does
not matter:

UI (�t) =
d2M −1∏

k=1

Uk(�t). (B3)

(5) Introduce a sequence of gates that simulate the
effective Hamiltonian HS, which is a free-system
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Hamiltonian, during the time step �t:

Usim(�t) = US(�t) ◦ UI (�t), (B4)

where US(�t) = exp[−iHS�t]. Note that the lat-
ter step amounts to simulating the closed-system
dynamics driven by the Hamiltonian HS, which has
been a well-known task in quantum computing since
the seminal paper by Lloyd [3].

(6) Initialize the ancillary qubits in the ground state
expressed by ρE = ⊗J

k=1 |0〉k〈0|. Initialize the sys-
tem qubits in the initial state of the open dynamics
ρS(0), as introduced in Eq. (16).

(7) Implement a single time step �t of the algorithm
by making the system and ancillary qubits evolve
through the sequence of gates contained in the oper-
ator Usim(�t). Then, to obtain the information on
the state of the system only, trace out the degrees of
freedom of the ancillas (the environment):

φ�t[ρS] = TrE[Usim(�t)ρS ⊗ ρEU†
sim(�t)]. (B5)

φ�t is the quantum map associated with a single time
step of the MCM.

(8) To implement n time steps of the algorithm, apply
the quantum map φ�t n times. That is, repeat the
sequence of gates contained in Usim(�t) for n times,
using the same system qubits and a new set of fresh
ancillas, initialized in the ground state ρE , for each
time step. The simulation of the dynamics until time
t requires n = t/�t repetitions, where the time step
of the algorithm�t should be chosen as small as the
experimental conditions allow for.

APPENDIX C: ANALYTICAL SOLUTION OF THE
DYNAMICS

Here, we provide the analytical solution of the collective
dynamics for the different initial states that we consider
in this work. Namely, we obtain ρS(t) = expLt[ρS(0)],
where L is given by Eq. (23), and for ρS(0) = ρsup, ρsub
and ρee = |ee〉 〈ee|, which are introduced in Sec. III B. We
also find the evolution of ρsub when the dissipator is local
and incoherent, i.e., in the absence of the decoherence-free
subspace.

A straightforward calculation yields L[ρsub] = 0. There-
fore,

expLt[ρsub] = ρsub, (C1)

i.e., ρsub is a steady state of the dynamics and lives in a
decoherence-free subspace.

As for the superradiant state, we observe that

L[ρsup] = −2γ (ρsup − ρgg), L[ρgg] = 0, (C2)

where ρgg = |gg〉 〈gg| is the ground state, which is station-
ary because the master equation [see Eq. (23)] is at zero

temperature. Therefore, the operator ρsup − ρgg is an eigen-
vector of the Liouvillian with eigenvalue −2γ . We finally
obtain

expLt[ρsup] = expLt[ρsup − ρgg] + ρgg

= e−2γ tρsup + (1 − e−2γ t)ρgg . (C3)

Using the above result, we immediately find the formula
for the intensity of the superradiant emission in Eq. (25).

Computation of the evolution of ρee is slightly more
involved. First, we calculate

L[ρee] = 2γ (ρsup − ρee). (C4)

Then, we can merge the results of the above equation
and Eq. (C2) into a single system of linear differential
equations, written as

d
dt

v(t) = Mv(t), (C5)

where v(t) = (expLt[ρgg], expLt[ρsup], expLt[ρee])T,

M = γ

⎛
⎝0 0 0

2 −2 0
0 2 −2

⎞
⎠ . (C6)

One way to tackle this problem is to solve each differen-
tial equation, starting from the trivial one for the steady
state, and then to insert this solution into the following
equation, which will now be independent and affine, and so
on. Another instructive (and more general) way to find the
solution of the dynamics is to compute v(t) = exp(Mt)v(0)
by obtaining the Jordan-Chevalley decomposition of M
[132]. Indeed, M has the eigenvalue 0 with eigenvector
(1, 1, 1)T and the eigenvalue −2 with multiplicity 2 and a
one-dimensional eigenspace spanned by (0, 0, 1)T. That is,
M is not diagonalizable. Therefore, we need to obtain its
Jordan decomposition as M = PJM P−1, with

JM = γ

⎛
⎝0 0 0

0 −2 1
0 0 −2

⎞
⎠ , P =

⎛
⎝1 0 0

1 0 1
1 2 0

⎞
⎠ . (C7)

Then, the Jordan-Chevalley decomposition is trivially
expressed by JM = DM + NM , where DM is the diagonal
matrix with the same elements of JM on the diagonal,
while NM is a matrix the only nonzero element of which
is the off-diagonal 1 in JM . NM is nilpotent (N 2

M = 0) and
[NM , DM ] = 0. Then, after some simple matrix algebra, we
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find

eMt = ePJM P−1t = PeDM teNM tP−1

=
⎛
⎝ 1 0 0

1 − e−2γ t e−2γ t 0
1 − e−2γ t(1 + 2γ t) 2γ te−2γ t e−2γ t

⎞
⎠ . (C8)

Finally, we obtain the evolution of ρee:

expLt[ρee] = e−2γ tρee + 2γ te−2γ tρsup

+ (1 − e−2γ t(1 + 2γ t))ρgg . (C9)

Once again, the enhanced decay rate 2γ is a signature of
collective effects in the dynamics.

Let us now compute the local incoherent evolution of
ρsub. The Liouvillian driving this type of dynamics is

Lloc[ρS] =
∑
j =1,2

γ

(
σ−

j ρSσ
+
j −1

2
{σ+

j σ
−
j , ρS}

)
, (C10)

where, for simplicity, we adopt the same decay rate γ for
both qubits. Straightforwardly, Lloc[ρsub] = γ (ρgg − ρsub).
Therefore,

expLloct[ρsub] = e−γ tρsub + (1 − e−γ t)ρgg . (C11)

As expected, the subradiant state decays toward the ground
with the standard incoherent rate γ .

APPENDIX D: PROOFS OF THE RESULTS IN SEC.
IV

1. Diamond distance ε♦
s for the ideal case

We want to prove the bound

‖φ�t − expL�t‖♦ ≤ B1→1. (D1)

To check its validity, note that the bounds that we need
to estimate are, according to the Supplemental Material of
Ref. [31],

‖L‖♦ ,
∥∥Rc

(
TrE[U(�t) · ⊗ρEU†(�t)]

)∥∥
♦ , (D2)

where Rc is a remainder of the expansion of the MCM
unitaries (for details, see the original paper [31]). For our
purposes, it is sufficient to assume that it is a polynomial
function of operators.

Let us first show that the bound on the 1 → 1 norm of
the Liouvillian found is also valid for the diamond norm.
This result is also stated in the Supplemental Material of
Ref. [133]. The crucial point is that despite the 1 → 1 hav-
ing the undesirable property of not scaling well in the pres-
ence of a tensor product, by means of Hölder’s inequality,
introduced in Sec. II, the error bound can be written as a

function of infinity norms only, which are stable. There-
fore, estimation of the same bound with the diamond norm
leads to the same equations. Let us demonstrate this.

In the following, IA is the identity superoperator on a
copy of the space of the bounded operators on the Hilbert
space of the system B(H), according to the definition of
the diamond norm in Eq. (3). We evaluate

‖L ⊗ IA[ρ]‖1 = −i ‖[H ⊗ IA, ρ]‖1

+
∑

k

(∥∥∥∥Lk ⊗ IAρL†
k⊗IA − 1

2
{L†

kLk ⊗ IA}
∥∥∥∥

1

)

≤ 2(‖H‖∞ +
∑

k

‖Lk‖2
∞), (D3)

under the assumption that ‖ρ‖1 = 1. We use Hölder’s
inequality and the multiplicativity of the infinity norm. The
above bound is the same as for the 1 → 1 norm. Indeed,
evaluating everything on a basis of the extended Hilbert
space, we observe that

L ⊗ IA[|ψjψk〉 〈ψlψm|] = L[|ψj 〉 〈ψl|] ⊗ |ψk〉 〈ψm| ,
(D4)

and we can write ρ as

ρ =
∑

j ,k,l,m

ajklm |ψjψk〉 〈ψlψm| . (D5)

Therefore,

L ⊗ IA[ρ] =
∑

j ,k,l,m

ajklm
(−i[H , |ψj 〉 〈ψl|] ⊗ |ψk〉 〈ψm|

+
∑

k

(Lk |ψj 〉 〈ψl| L†
k− . . .)⊗ |ψk〉 〈ψm|

)
,

(D6)

showing that Eq. (D3) is correct. This is basically due to
the linearity of quantum channels.

Equivalently, for the remainder,
∑

j ,k,l,m

ajklm TrE[U(�t) |ψj 〉 〈ψl| ⊗ ρEU†(�t)] ⊗ |ψk〉 〈ψm|

=
∑

j ,k,l,m

ajklm TrE[U(�t)⊗ IA |ψjψk〉 〈ψlψm|

⊗ ρEU†(�t)⊗ IA] = TrE[U(�t)⊗ IAρ

⊗ ρEU†(�t)⊗ IA]. (D7)

Therefore, when evaluating the trace norm of the above
expression, we can still find a bound that only depends
on ‖U(�t)⊗ IA‖∞, i.e., on ‖U(�t)‖∞. This is the same
bound as found in Ref. [31], expressed in Eq. (22).
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2. Diamond distance ε∗
m between ideal and noisy MCM map

The estimation of an upper bound for ε∗
m can be performed as follows:

∥∥φ∗
�t − φ�t

∥∥
♦ =

∥∥∥∥∥∥TrE

⎡
⎣∏

j

Ej

∏
i

IS ⊗ Gi[·⊗ρE]

⎤
⎦− TrE

⎡
⎣∏

j

Uj [·⊗ρE]

⎤
⎦
∥∥∥∥∥∥

♦

=
∥∥∥∥∥∥TrE

⎡
⎣
⎛
⎝∏

j

Ej

∏
i

IS ⊗ Gi −
∏

j

Uj

∏
i

ISE

⎞
⎠ [·⊗ρE]

⎤
⎦
∥∥∥∥∥∥

♦

= sup
ρSA:‖ρSA‖1=1

∥∥∥∥∥∥TrE

⎡
⎣
⎛
⎝∏

j

Ej

∏
i

IS ⊗ Gi −
∏

j

Uj

∏
i

ISE

⎞
⎠⊗ IA[ρSA ⊗ ρE]

⎤
⎦
∥∥∥∥∥∥

1

≤ sup
ρSA:‖ρSA‖1=1

∥∥∥∥∥∥

⎛
⎝∏

j

Ej

∏
i

IS ⊗ Gi −
∏

j

Uj

∏
i

ISE

⎞
⎠⊗ IA[ρSA ⊗ ρE]

∥∥∥∥∥∥
1

≤ sup
ρSA⊗ρE :‖ρSA‖1=1,‖ρ‖E=1

∥∥∥∥∥∥

⎛
⎝∏

j

Ej

∏
i

IS ⊗ Gi −
∏

j

Uj

∏
i

ISE

⎞
⎠⊗ IA[ρSA ⊗ ρE]

∥∥∥∥∥∥
1

≤ sup
ρSAE :‖ρSAE‖1=1

∥∥∥∥∥∥

⎛
⎝∏

j

Ej

∏
i

IS ⊗ Gi −
∏

j

Uj

∏
i

ISE

⎞
⎠⊗ IA[ρSAE]

∥∥∥∥∥∥
1

≤ sup
ρSAEB:‖ρSAEB‖1=1

∥∥∥∥∥∥

⎛
⎝∏

j

Ej

∏
i

IS ⊗ Gi −
∏

j

Uj

∏
i

ISE

⎞
⎠⊗ IA ⊗ IB[ρSAEB]

∥∥∥∥∥∥
1

=
∥∥∥∥∥∥
∏

j

Ej

∏
i

IS ⊗ Gi −
∏

j

Uj

∏
i

ISE

∥∥∥∥∥∥
♦

≤
∑

j

∥∥Ej − Uj
∥∥

♦ +
∑

i

‖Gi − IE‖♦ . (D8)

Note that we are employing the subscript “A” to denote
states and operators that belong or act on a copy of the
Hilbert space of the system, while “B” denotes states and
operators that belong or act on a copy of the Hilbert space
of the ancillary qubits of the collision model, according to
the definition of the diamond norm in Eq. (3). In contrast,
the subscripts “S” and “E” indicate, respectively, the “orig-
inal” Hilbert space of the system and the Hilbert space of
the ancillary qubits. To obtain the final result in Eq. (D8),
we employ the fact that ‖TrE[O]‖1 ≤ ‖O‖1 [134], the sub-
multiplicativity of the diamond norm, as in Eq. (5), and
the fact that the diamond norm defined in Eq. (3) with the
tensor product of the identity operator over a copy of the
Hilbert space (in our case of system plus ancillary qubits
of the MCM) is the maximal one [77].

Finally, note that the diamond distance between the
map Gi and the identity does not assume that the
ancilla is ideally initialized in the ground state. There-
fore, Eq. (D8) is also valid for scenarios with different
choices of initial states. Moreover, if the quantum channel

describing the noise for the state preparation on the back
end is not known, one may tighten the bound by minimiz-
ing ‖Gi − IE‖♦ over all the channels Gi that map the ideal
initial state of the ancilla into the observed noisy state.

APPENDIX E: EXPERIMENTAL SCHEME AND
METHODS

1. Topology of the back end

The IBM quantum computers are often recalibrated to
optimize their performance. That is, their qubit and gate
parameters are often modified at the level of the hard-
ware. As a consequence, the gate and readout errors change
after every calibration. For our purposes, we want to run
the above-listed protocols with a fixed set of experimen-
tal parameters. Therefore, we need to employ a near-term
device with a sufficient time interval between two cal-
ibration procedures (running all the necessary protocols
listed in Sec. V takes roughly 3 h). The 16-qubit back-end
IBMQ_GUADALUPE is very stable in this sense (it is usually
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FIG. 6. The topology of IBMQ_GUADALUPE with 16 qubits.
The links denote the possibility of implementing a direct two-
qubit gate between a pair of qubits. The red (green) qubits
are employed as system (ancillary) qubits in the simulation of
dissipative collective effects.

recalibrated once per day) and so we choose it for running
our algorithm.

When we write the (QISKIT) code to run a quantum
algorithm on a near-term device, we must always take into

account the topology of the latter, because it constraints the
operations that we can actually perform on the platform:
only CNOTs between nearby qubits can be directly imple-
mented. The topology of IBMQ_GUADALUPE is depicted in
Fig. 6.

For the experiments presented in Sec. V, we use the
following sets of qubits on IBMQ_GUADALUPE: the system
qubits are (0, 2). The ancillary qubits for the collective
dynamics are (1, 4, 7, 10, 12). We employ the same set of
ancillary qubits for the local dissipative dynamics on the
system qubit 0, while the ancillas for the local decay of the
system qubit 2 are (3, 5, 8, 11, 14).

Note that the ancillary qubit 1 (and qubit 3 for the local
decay of the system qubit 2) is the only one that is directly
linked to both the system qubits. Therefore, we are only
allowed to implement the CNOTs 0–1, 1–0, 1–2, and 2–1 to
evolve the state of the system. To make the system qubits
interact with the remaining ancillas, we need to swap the
states of the ancillary qubit 1 with the one of the ancil-
lary qubit 4, then 4 with 7 and again 1 with 4, then 7 with
10, and so on. This requires an additional number of CNOT
gates (three per swap) that increases at each time step.
Indeed, given a train of ancillary qubits from 1 (which is
directly linked to the system qubits) to n, we need exactly
n − 1 swaps to make the nth ancilla interact with the sys-

(a) (b)

(c)

FIG. 7. (a) The decomposition of the gate U(1)(0.1) defined in Eq. (27) on the IBM quantum computer, applied on a system qubit
s0 and an ancillary qubit e0. The gates U3 are single-qubit rotations defined by the three Euler angles given in the figure and are
elementary gates available on the IBM quantum computers [45]. Two CNOT gates are also necessary to implement the system-ancilla
interaction. (b) The scheme of a single collision of the MCM with �t = 0.1 on the IBM quantum computer. The gates U(1)(0.1) and
U(2)(0.1/2) are defined in Eq. (27) and their decomposition into elementary gates is given in (a). (c) The experimental circuit scheme
to implement four collisions of the MCM on IBMQ_GUADALUPE, starting from the subradiant state. All the qubits are initialized in the
ground state and the system qubits are then prepared in the subradiant state using the environment qubit 1 as an ancilla (there is no
direct interaction between them). After each collision, as given by the decomposition in (b), a new fresh state of ancillary qubit 1 is
prepared by swapping the latter with the remaining ancillas of the train.
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tem. This is a well-known issue of near-term devices with
limited connectivity [36]. In Sec. E 2, we show how we
are able to optimize the number of necessary gates by
employing, under certain circumstances, only two CNOTs
to perform a single swap.

Possible ways to tackle this problem in the near future
may be as follows: (i) adding more qubit-qubit links to
the topology of the back end, so as to reduce the num-
ber of swaps necessary to connect a distant ancilla with
the system qubits; and/or (ii) implementing a fast and effi-
cient reset gate to be applied on the closest ancillary qubit
(qubit 1 in Fig. 6) at every time step. In fact, by employ-
ing a reset gate, we would need only a single ancillary
qubit to be reinitialized on the ground state after each col-
lision or, equivalently, thinking of more complex physical
problems, one ancillary qubit for each Lindblad operator
in the dissipator in Eq. (18) [31], according to the dis-
cussion in Sec. III. The reset gate is already available on
IBMQ_GUADALUPE. However, it is a very slow gate and
decoherence rapidly emerges after a couple of applications
thereof, as we show in Appendix F. Therefore, improve-
ments on the reset gate time would be extremely beneficial
for the quantum simulation of open systems via MCM.

2. Algorithm implementation and optimization

The circuit scheme to implement the algorithm
discussed in Sec. III B on IBMQ_GUADALUPE is shown in
Fig. 7. The unitary interaction between a single system
qubit and the ancilla, i.e., Eq. (B1) of the MCM or, equiva-
lently, U(i)(�t) in Eq. (27) for the simulation of super- and
subradiance, is depicted in Fig. 7(a). To implement it on the
hardware, two CNOT gates and some single-qubit rotations
are required. Since the gate error of single-qubit rotations
is 1 or 2 orders of magnitude lower than the CNOT error
[45] (typically, the infidelity of single-qubit gates is of the
order of 10−4), the CNOTs in the circuit make the largest
contribution to the overall error of the algorithm.

Figure 7(b) represents a single collision between the sys-
tem qubits and the ancilla, which is composed of the three
applications of the gates described in Fig. 7(a), according
to the second-order Suzuki-Trotter decomposition of the
MCM in Eq. (B2). Finally, Fig. 7(c) shows the implemen-
tation of the algorithm on IBMQ_GUADALUPE, starting from
the subradiant state and up to n = 4 collisions. The prepa-
ration of the subradiant and superradiant states requires one
CNOT and some single-qubit gates [45,46]. In addition, due
to the topology of the back end in Fig. 6, there is no direct
link between the system qubits 0 and 2. Therefore, we need
to employ ancillary qubit 1 to prepare a Bell state between
qubits 0 and 1 and then to swap the state of the qubit 1
with that of qubit 2. In contrast, the preparation of |ee〉 only
needs two local X gates and is therefore considerably less
noisy.

As shown in Fig. 7(c), after the state preparation we
are ready to implement a single time step of the MCM
by applying the routine in Fig. 7(b) to the system qubits
and the ancilla. To simulate further collisions, we need to
reinitialize the state of the ancillary qubit 1 by swapping it
with the fresh ancillas in the train (4,7,10,12). We finally
measure the state of the system qubits to reconstruct the
statistics of the outcomes after the nth collision.

The state preparation, the interactions for every time
step, and the swaps in the train of ancillas require a large
number of noisy CNOT gates. However, we can optimize
this number by noting that either the first or the last CNOT
of the usual three-CNOT constructed SWAP gate is the iden-
tity gate when one of the qubits is in the ground state: if
C01 is the CNOT with qubit 0 as control and qubit 1 as
target, while S01 is the SWAP gate between these qubits,
then S01 |0〉 ⊗ |ψ〉 = C01C10 |0〉 ⊗ |ψ〉. That is, we need
only two CNOTs to implement the SWAP gate if one of the
qubits starts in the ground state. Ideally, all the SWAP gates
in the algorithm act on at least one qubit in the ground
state. However, we verify that the two-CNOT SWAP is only
reliable when the qubit in |0〉 is a fresh ancilla that has
not been manipulated before. Otherwise, the error coming
from the fact that this qubit is not exactly in |0〉 (due to
noise and imperfections in the algorithm implementation)
jeopardizes the advantage of using one CNOT less. As a
consequence, we can remove only five CNOT gates from
the actual protocol (one for each ancillary qubit). Finally,
note that the employment of a reset gate would drastically
reduce the number of two-qubit gates in the algorithm.
Indeed, the train of ancillas at the nth collision requires
(n − 1)× (3n − 1) CNOTs.

3. Methods to estimate the figures of merit

The outcome probabilities shown in Figs. 2 and 8 are
obtained through standard projective measurements in the
computational basis, which are available on the IBM quan-
tum computer, as in the circuit scheme of Fig. 7(c). The
results are computed as averages over 37 realizations of the
protocol and each realization has 8192 shots (i.e., repeti-
tions of the algorithm). We find that the standard deviation
over the 37 realizations always leads to small error bars
that are within the markers shown in the plots.

The state tomography after each collision (Figs. 4
and 10) and the process tomography of the CNOT gates
(Figs. 3 and 9) are computed by running the proper
tomographic circuits on the back end, which are avail-
able on QISKIT.IGNIS [45]. Then, the results are fitted
to reconstruct either the density matrix of the system
through the QISKIT class STATETOMOGRAPHYFITTER or
the Choi matrix of the process through the QISKIT class
PROCESSTOMOGRAPHYFITTER. The results are then resam-
pled 100 times via bootstrapping, after which we compute
the standard deviations that we use for the error bars.
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FIG. 8. The probability of finding the states |gg〉, |ge〉, |eg〉, and |ee〉 through a projective measurement in the computational basis
as a function of the number of steps in the MCM (second set of results), when the initial state is the subradiant state (light blue),
the superradiant state (magenta), and |ee〉 (orange), and when the dynamics are local, starting from the subradiant state (black). The
continuous lines show the theoretical prediction based on the master equation. The markers on the dash-dotted lines are experimental
values. The results are obtained as averages over 37 realizations of the protocol and the error bars are within the markers.

The trace distance and the fidelity between the ideal and
simulated states at each time step are computed through
the built-in functions in QISKIT and QuTIP [135]. Start-
ing from the Choi matrix of the ideal and simulated
gates, the diamond distance and the average gate fidelity
can be evaluated through the QISKIT functions AVER-
AGE_GATE_FIDELITY and DIAMOND_NORM. In particular,
the latter makes use of the semidefinite program devel-
oped in Ref. [101]. Finally, we compute the unitarity of
each gate by employing both definitions in Eqs. (6) and (7).
In particular, we introduce two new functions in QISKIT to
obtain these values, starting from the Choi matrix of the
process. We check that the values computed according to
each definition coincide.

Readout-error mitigation is performed for all the results
shown in the paper. The calibration filters are obtained
through the class COMPLETEMEASFITTER and the function
COMPLETE_MEAS_CAL in QISKIT.

APPENDIX F: FURTHER RESULTS

1. Detrimental effects of noise

In this section, we focus on the second set of results on
the implementation of the MCM on IBMQ_GUADALUPE. We

observe how a pair of very noisy gates can jeopardize the
simulation of collective effects on near-term devices.

The outcomes of the measurements in the computational
basis at each step of the algorithm are shown in Fig. 8. It
is quite evident that the results are very noisy and almost
no signature of collective effects can be extrapolated from
them. In particular, the experimental evolution of the sub-
radiant state following the collective dynamics (light blue
markers) shows no slower decay than in the case of local
dissipation only (continuous black lines). The superradiant
state (magenta markers) does display a fast (although not
always accurate) decay during the first two collisions but
decoherence gains the upper hand starting from the third
one and the dynamics stabilize at a wrong value. The con-
cavity of the evolution of |ee〉 (orange markers) is often
erroneous as well.

The gate analysis in Fig. 9 may shed light on the ori-
gin of these noisy results. We find a very large value of
the experimental average gate infidelities of the CNOTs 1–2
and 2–1, which are repetitively employed in the algorithm,
as explained in Appendix E. The corresponding IBM val-
ues are not as high. These gates may be responsible for
the noisy dynamics in Fig. 8. Indeed, we can once again
compare the experimental state with the states simulated
through the “noisy-circuit” noise model and the IBM noise
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FIG. 9. The error analysis of the set of CNOT gates in IBMQ_GUADALUPE employed for the simulation of the second set of results in
Fig. 8. The tick 0–1 on the x axis corresponds to the CNOT gate, where “qubit 0” in IBMQ_GUADALUPE is the control qubit and “qubit 1”
is the target. The lower plot shows the gate error provided by IBM (magenta), the experimental average gate infidelity r(Ug ,T ) via full
process tomography (light blue), and the incoherence ω(T ) (yellow), as defined in Eq. (9). The error bars on the values of r(Ug ,T )
and ω(T ) are the standard deviations of 100 realizations of a random sample of the experimental data via bootstrapping. The upper
plot shows the ratio between the incoherence and the experimental average gate infidelity of each CNOT gate.

model introduced in Sec. V D. This is done in Fig. 10.
We observe that, especially for the subradiant dynamics,
the noise model based on the noisy circuit built through
the experimental Choi matrices predicts a slightly better
state than the IBM noise model. We find that this is due
to the fact that the IBM noise model is too optimistic,
as it makes use of the relatively not-so-noisy CNOT gates
1–2 and 2–1. Therefore, in the presence of some very
noisy gates, the full process tomography may actually be

an improved tool to understand the errors in the quantum
simulation.

It is worth emphasizing that the gate analysis for the sec-
ond set of results confirms the noise properties that we have
previously found for the first set. In particular, the source
of noise is mostly incoherent, since the ratio between inco-
herence and gate infidelity is almost always larger than 0.9,
as depicted in the upper plot of Fig. 9. Moreover, the scal-
ing of the state infidelity as a function of the channel length

(Experimental tomography)

FIG. 10. The scaling of the error as a function of the number of CNOT gates in the algorithm Ng during the simulation of the
collective dynamics shown in Fig. 8. The markers indicate the steps of the collision model. The dotted light blue and magenta lines
show the linear scaling of, respectively, the IBM gate error and the experimental average gate infidelity, given in Fig. 9. The continuous
violet line shows the infidelity between the experimental state and the ideal one. The error bars for the latter quantity are obtained as
the standard deviations of 100 realizations of a random sample of the state-tomography data via bootstrapping and they are within the
markers. The continuous orange line shows the infidelity between the experimental state and the state simulated on the noisy circuit.
The continuous yellow line shows the infidelity between the experimental state and the state simulated via the IBM noise model.

010324-24



QUANTUM SIMULATION OF DISSIPATIVE COLLECTIVE... PRX QUANTUM 4, 010324 (2023)

FIG. 11. The probability of finding the states |gg〉, |ge〉, |eg〉, and |ee〉 (from left to right) through a projective measurement in the
computational basis as a function of the number of steps in the MCM on IBMQ_TORONTO, when the initial state is the subradiant state.
The continuous black lines show the theoretical prediction based on the master equation. The markers on the dash-dotted lines show
experimental values. The different colors denote different initial pairs of system qubits in the topology of IBMQ_TORONTO, each of
which interacts with a corresponding train of ancillas.

is again linear or sublinear. Finally, the diamond distance is
of the same order of magnitude as for the first set of results,
as discussed in Appendix G 2.

2. Subradiant dynamics on IBMQ_TORONTO

The validity of the experimental results presented in Sec.
V is not restricted to IBMQ_GUADALUPE or to a specific
choice of system and ancillary qubits. Indeed, in Fig. 11
we show the experimental outcomes for the MCM imple-
mented on IBMQ_TORONTO, which is a different IBM back
end with 27 qubits. We run the MCM to simulate the col-
lective subradiant dynamics, starting from different pairs
of system qubits, each of which is connected to a suitable
train of ancillas. The findings plotted in Fig. 11 confirm
the emergence of collective effects in the quantum sim-
ulation, as discussed in Sec. V and Fig. 2. Once again,
the gate errors break the decoherence-free subspace of the
ideal dynamics but comparing Fig. 11 with Fig. 2, we still
observe a slower decay of the subradiant state than in the
scenario with local dissipation only. In some cases, as for
the system pair (9,11) (we refer the reader to the QISKIT

documentation for the topology of the back ends [45]), the
subradiance on IBMQ_TORONTO is actually enhanced with
respect to the best results obtained on IBMQ_GUADALUPE.

Due to the fact that IBMQ_TORONTO is recalibrated much
more often than IBMQ_GUADALUPE, it is not possible to
perform the process tomographies necessary for the gate
analysis that we introduce in Sec. V. However, the crucial
readout-error mitigation is correctly applied to the results
in Fig. 11.

3. Refreshing the ancilla through the reset gate

As discussed in Appendix E, a possible way to optimize
the necessary resources for the quantum simulation of the
MCM is represented by the reset gate available on some
IBM computers [45], which reinitializes the state of the
target qubit in the ground state |0〉. With a reset gate at our
disposal, we need a single ancillary qubit (two ancillary
qubits in the case of the local decay) to simulate collec-
tive effects, since we can reinitialize it after each collision
and avoid using a whole train of ancillas, which must be
swapped. It goes without saying that this would represent

FIG. 12. The probability of finding the states |gg〉, |ge〉, |eg〉, and |ee〉 (from left to right) through a projective measurement in the
computational basis as a function of the number of steps in the MCM on IBMQ_GUADALUPE, when the initial state is the subradiant
state (light blue), the superradiant state (magenta), and |ee〉 (orange), and when the dynamics are local, starting from the subradiant
state (black). The continuous lines show the theoretical prediction based on the master equation. The markers on the dash-dotted lines
show experimental values. The reset gate is employed to refresh the state of the ancillary qubit after each time step.
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MCM

MCM

FIG. 13. The trace distance between the experimental state and the ideal state of the algorithm (continuous violet line), the simulated
state through the noisy circuit (continuous orange line), and the simulated state through the IBM noise model (continuous yellow line),
as a function of the number of gates in the algorithm Ng and for the first set of results in Fig. 2 (first row) and the second set of results
in Fig. 8 (second row). The markers indicate the steps of the collision model. The dotted light blue line depicts the trace distance
εideal(n) between the state of the MCM at each time step of the dynamics and the ideal physical state driven by the master equation,
according to Eq. (28).

a huge improvement in the number of necessary qubits
and gates. Moreover, the ability to reset qubits in parallel
with unitary gates would be beneficial for quantum error-
correction schemes, as it would provide a mechanism for
flushing entropy out of system qubits.

We run a protocol based on the MCM with the reset gate
on IBMQ_GUADALUPE and the results are shown in Fig. 12.
The possibility of always using the same ancilla allows us
to implement more collisions (here, we choose n = 10).
However, the accuracy of the simulation is clearly much
worse than for the MCM via trains of ancillas. Indeed,
after one or two collisions, decoherence arises and the state
of the system qubits reaches what looks like a thermal
stationary state, with no coherences at all.

This is due to the fact that the running time of the
reset gate is much longer than that of standard single- and
two-qubit gates [45] (the reset gate length at the time of
the experiment is around 7.34 μs, while the T1 time of
the ancillary qubit is around 80.0 μs, so ten applications
of the reset gate would already lead to complete dissi-
pation). That is, implementing a dissipative channel on
the quantum platform takes more time than performing
coherent operations. Therefore, employing the reset gate

even just a couple of times is enough for decoherence to
occur. This being said, we point out that no dynamical
decoupling scheme [136] is performed during the applica-
tion of the long-duration reset gate. Dynamical decoupling
may therefore improve the results in Fig. 12.

In conclusion, at present (the results in Fig. 12 were
obtained during December 2021), the reset gate is not
a feasible solution to reduce the number of necessary
resources for the quantum simulation of the MCM. Similar
results are obtained on different IBM computers, including
IBMQ_TORONTO and IBMQ_MUMBAI.

APPENDIX G: ADDITIONAL MATERIAL ON THE
NOISE ANALYSIS

1. Trace distance between experimental, ideal, and
simulated states

Figure 13 shows the trace distance between the exper-
imental state and the ideal state of the algorithm and
between the experimental state and the states simulated
through the two noise models introduced in Sec. V D, as
a function of the number of gates Ng and for each time
step of the algorithm (markers). The first row refers to the
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FIG. 14. The error analysis of the set of CNOT gates in IBMQ_GUADALUPE employed for the simulation of the first set of results in
Fig. 2 (upper plot) and for the second set of results in Fig. 8 (lower plot). The tick 0–1 on the x axis corresponds to the CNOT gate,
where “qubit 0” in IBMQ_GUADALUPE is the control qubit and “qubit 1” is the target. We plot the diamond distance between ideal and
noisy CNOTs according to Eq. (4) (violet) and the corresponding upper bound based on the average gate fidelity and unitarity (orange),
as defined in Eq. (14). The error bars in the plots are given by the standard deviations of 100 realizations of a random sample of the
experimental data via bootstrapping.

first set of results in Fig. 2, while the second row refers to
the second set of results in Fig. 8. We observe that for the
first set of results, the trace distances between experimen-
tal and simulated states have similar behavior for the two
different noise models; the IBM noise models outperforms
the noisy-circuit one for the subradiant dynamics, but it has
worse behavior for the superradiant and |ee〉 initial states.
In contrast, the noisy-circuit noise model is always better
than the IBM noise model for the second set of results. In
any case, both noise models provide a good prediction for
the experimental state of the dynamics. The trace distance
has a larger value than the infidelity between the same
states, depicted in Figs. 4 and 10, because of the square-
root dependence between these quantities, expressed by
Eq. (10).

The scaling of the trace distance between the experi-
mental and ideal states is linear or sublinear as a func-
tion of the number of gates. Finally, in Fig. 13, we
also plot the quantity εideal(n) given by Eq. (28), i.e.,
the trace distance between the ideal state of the MCM
at the nth time step and the “physical” state ρS(n�t)

generated by the master equation [see Eq. (23)]. As we
may also deduce from the inset of Fig. 1(a), the ratio
between the ideal error εideal(n) and the “experimental
error” due to noisy gates (continuous violet line) is very
small (around 10−2) apart from the case where the initial
state is |ee〉. In this case, the ratio is around 10−1, so that
the experimental errors are still playing a major role in
the discrepancy between the physical quantum dynamics
that we aim to simulate (ρS(n�t)) and their experimental
implementation via MCM.

2. Diamond distance of the CNOT gates

In Fig. 14, we show the diamond distance between the
ideal and experimental gates for the CNOTs employed in
the algorithm. The distances are computed by reconstruct-
ing the Choi matrices of the experimental gates via process
tomography and the experimental values are resampled
100 times via bootstrapping to estimate the standard devia-
tions of the samples (error bars in Fig. 14). We observe that
the experimental diamond distances for the noisy CNOTs
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are mostly between 5 × 10−2 and 10−1. As the threshold
values for fault-tolerant quantum computation against gen-
eral noise are typically ε ≈ 10−3–10−4 [94,96,115–117],
our experimental results seem to indicate that current near-
term quantum computers are still orders of magnitude
away from these thresholds. Note, however, that the val-
ues in Fig. 14 may still be biased due to residual SPAM
errors [78], which are, in any case, mitigated as described
in Sec. V C.

The values of the diamond distance in Fig. 14 are also
interesting for our purposes because they are the diamond
distances appearing in the bound in Proposition 2 [see Eq.
(33)] when we restrict ourselves to the errors on two-qubit
gates only. This makes sense because, as stated before,
the errors on single-qubit gates are typically around a
couple of orders of magnitude smaller than on two-qubit
gates. Moreover, the state preparation of the ancillas in the
ground state at the beginning of the algorithm is very accu-
rate on IBM quantum computers, whereas the SWAP gates
to bring the new ancillas in contact with the system qubits
are taken into account by the distances in the plot. There-
fore, we can use the values in Fig. 14 to estimate the upper
bound on the simulation error of the MCM due to its noisy
implementation via imperfect gates. As the diamond errors
are quite large and we are using tens of CNOT gates in the
algorithm, the bound in Eq. (33) quickly exceeds 1.

For completeness, in Fig. 14 we also plot the upper
bound on the diamond distance based on the infidelity and
unitary, as given by Eq. (14). We observe that the actual
value of the diamond distance is always quite far from this
upper bound (typically between 3 and 5 times smaller).

[1] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[2] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler,
C. Chin, B. DeMarco, S. E. Economou, M. A. Eriks-
son, K. M. Fu, and M. Greiner, Quantum Simulators:
Architectures and Opportunities, PRX Quantum 2, 017003
(2021).

[3] S. Lloyd, Universal quantum simulators, Sciences 273,
1073 (1996).

[4] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simu-
lation, Rev. Mod. Phys. 86, 153 (2014).

[5] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quan-
tum simulation with superconducting circuits, Nat. Phys.
8, 292 (2012).

[6] G. S. Paraoanu, Recent progress in quantum simulation
using superconducting circuits, J. Low Temp. Phys. 175,
633 (2014).

[7] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz,
J. I. Wang, S. Gustavsson, and W. D. Oliver, Supercon-
ducting qubits: Current state of play, Annu. Rev. Condens.
Matter Phys. 11, 369 (2020).

[8] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff,
Circuit quantum electrodynamics, Rev. Mod. Phys. 93,
025005 (2021).

[9] R. Blatt and C. F. Roos, Quantum simulations with trapped
ions, Nat. Phys. 8, 277 (2012).

[10] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P.
Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C.
Monroe, Observation of a many-body dynamical phase
transition with a 53-qubit quantum simulator, Nature 551,
601 (2017).

[11] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong,
A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M.
Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao,
Programmable quantum simulations of spin systems with
trapped ions, Rev. Mod. Phys. 93, 025001 (2021).

[12] A. Aspuru-Guzik and P. Walther, Photonic quantum sim-
ulators, Nat. Phys. 8, 285 (2012).

[13] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum sim-
ulations with ultracold quantum gases, Nat. Phys. 8, 267
(2012).

[14] C. Gross and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Sciences 357, 995 (2017).

[15] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford,
2002).

[16] Á Rivas and S. F. Huelga, Open Quantum Systems: An
Introduction (Springer-Verlag, Berlin, 2012).

[17] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 2012).

[18] D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D. W.
Leung, and X. Zhou, Universal simulation of Markovian
quantum dynamics, Phys. Rev. A 64, 062302 (2001).

[19] S. Lloyd and L. Viola, Engineering quantum dynamics,
Phys. Rev. A 65, 010101 (2001).

[20] M. Koniorczyk, V. Bužek, and P. Adam, Simulation
of generators of Markovian dynamics on programmable
quantum processors, Eur. Phys. J. D 37, 275 (2006).

[21] H. Wang, S. Ashhab, and F. Nori, Quantum algorithm
for simulating the dynamics of an open quantum system,
Phys. Rev. A 83, 062317 (2011).

[22] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and
J. Eisert, Dissipative Quantum Church-Turing Theorem,
Phys. Rev. Lett. 107, 120501 (2011).

[23] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, in Advances
in Atomic, Molecular, and Optical Physics, Vol. 61, edited
by P. Berman, E. Arimondo, and C. Lin (Academic Press,
2012), p. 1.

[24] R. Sweke, I. Sinayskiy, and F. Petruccione, Simulation
of single-qubit open quantum systems, Phys. Rev. A 90,
022331 (2014).

[25] R. Sweke, I. Sinayskiy, D. Bernard, and F. Petruccione,
Universal simulation of Markovian open quantum sys-
tems, Phys. Rev. A 91, 062308 (2015).

[26] S.-J. Wei, D. Ruan, and G.-L. Long, Duality quantum
algorithm efficiently simulates open quantum systems,
Sci. Rep. 6, 30727 (2016).

[27] P. Zanardi, J. Marshall, and L. Campos Venuti, Dissipa-
tive universal Lindbladian simulation, Phys. Rev. A 93,
022312 (2016).

[28] A. M. Childs and T. Li, Efficient simulation of sparse
Markovian quantum dynamics, Quantum Inf. Comput. 17,
901 (2016).

[29] R. Cleve and C. Wang, in 44th Int. Colloq. Autom. Lang.
Program. (ICALP 2017) (2017), p. 17:1.

010324-28

https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PRXQuantum.2.017003
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1038/nphys2251
https://doi.org/10.1007/s10909-014-1175-8
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nature24654
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1038/nphys2253
https://doi.org/10.1038/nphys2259
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1103/PhysRevA.64.062302
https://doi.org/10.1103/PhysRevA.65.010101
https://doi.org/10.1140/epjd/e2005-00286-2
https://doi.org/10.1103/PhysRevA.83.062317
https://doi.org/10.1103/PhysRevLett.107.120501
https://doi.org/10.1103/PhysRevA.90.022331
https://doi.org/10.1103/PhysRevA.91.062308
https://doi.org/10.1038/srep30727
https://doi.org/10.1103/PhysRevA.93.022312
https://doi.org/10.26421/QIC17.11-12


QUANTUM SIMULATION OF DISSIPATIVE COLLECTIVE... PRX QUANTUM 4, 010324 (2023)

[30] S. Patsch, S. Maniscalco, and C. P. Koch, Simulation of
open-quantum-system dynamics using the quantum Zeno
effect, Phys. Rev. Res. 2, 023133 (2020).

[31] M. Cattaneo, G. De Chiara, S. Maniscalco, R. Zambrini,
and G. L. Giorgi, Collision Models Can Efficiently Sim-
ulate Any Multipartite Markovian Quantum Dynamics,
Phys. Rev. Lett. 126, 130403 (2021).

[32] A. W. Schlimgen, K. Head-Marsden, L. M. Sager, P.
Narang, and D. A. Mazziotti, Quantum Simulation of
Open Quantum Systems Using a Unitary Decomposition
of Operators, Phys. Rev. Lett. 127, 270503 (2021).

[33] H. Kamakari, S.-N. Sun, M. Motta, and A. J. Minnich,
Digital Quantum Simulation of Open Quantum Systems
Using Quantum Imaginary-Time Evolution, PRX Quan-
tum 3, 010320 (2022).

[34] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,
M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R.
Blatt, An open-system quantum simulator with trapped
ions, Nature 470, 486 (2011).

[35] P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A.
Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, and
R. Blatt, Quantum simulation of dynamical maps with
trapped ions, Nat. Phys. 9, 361 (2013).

[36] G. García-Pérez, M. A. C. Rossi, and S. Maniscalco, IBM
Q Experience as a versatile experimental testbed for sim-
ulating open quantum systems, npj Quantum Inf. 6, 1
(2020).

[37] J. Han, W. Cai, L. Hu, X. Mu, Y. Ma, Y. Xu, W. Wang,
H. Wang, Y. P. Song, C.-L. Zou, and L. Sun, Experimen-
tal Simulation of Open Quantum System Dynamics via
Trotterization, Phys. Rev. Lett. 127, 020504 (2021).

[38] S. Tornow, W. Gehrke, and U. Helmbrecht, Non-
equilibrium dynamics of a dissipative two-site Hubbard
model simulated on the IBM quantum computer, J. Phys.
A: Math. Theor. 55, 245302 (2022).

[39] L. Del Re, B. Rost, A. F. Kemper, and J. K. Freericks,
Driven-dissipative quantum mechanics on a lattice: Simu-
lating a fermionic reservoir on a quantum computer, Phys.
Rev. B 102, 125112 (2020).

[40] B. Rost, L. Del Re, N. Earnest, A. F. Kemper, B. Jones,
and J. K. Freericks, Demonstrating robust simulation of
driven-dissipative problems on near-term quantum com-
puters (2021), preprint ArXiv:2108.01183.

[41] That is, on a gate-based quantum computer.
[42] P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G.

Haack, R. Silva, J. B. Brask, and N. Brunner, Markovian
master equations for quantum thermal machines: Local
versus global approach, New J. Phys. 19, 123037 (2017).

[43] J. O. González, L. A. Correa, G. Nocerino, J. P. Palao,
D. Alonso, and G. Adesso, Testing the validity of the
“local” and “global” GKLS master equations on an exactly
solvable model, Open Syst. Inf. Dyn. 24, 1740010 (2017).

[44] M. Cattaneo, G. L. Giorgi, S. Maniscalco, and R. Zam-
brini, Local versus global master equation with common
and separate baths: Superiority of the global approach in
partial secular approximation, New J. Phys. 21, 113045
(2019).

[45] M. D. Sajid Anis, H. Abraham, R. A. AduOffei, G.
Agliardi, M. Aharoni, I. Y. Akhalwaya, G. Aleksandrow-
icz, T. Alexander, M. Amy, and S. Anagolum, QISKIT: An
open-source framework for quantum computing (2021).

[46] M. A. Nielsen and I. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cam-
bridge University Press, Cambridge, 2010).

[47] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M.
D. Lukin, and J. I. Cirac, Dissipative phase transition in a
central spin system, Phys. Rev. A 86, 012116 (2012).

[48] G. L. Giorgi, F. Plastina, G. Francica, and R. Zambrini,
Spontaneous synchronization and quantum correlation
dynamics of open spin systems, Phys. Rev. A 88, 042115
(2013).

[49] S. Walter, A. Nunnenkamp, and C. Bruder, Quantum Syn-
chronization of a Driven Self-Sustained Oscillator, Phys.
Rev. Lett. 112, 094102 (2014).

[50] M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M.
J. Holland, Synchronization of Two Ensembles of Atoms,
Phys. Rev. Lett. 113, 154101 (2014).

[51] H. Keßler, P. Kongkhambut, C. Georges, L. Mathey, J. G.
Cosme, and A. Hemmerich, Observation of a Dissipative
Time Crystal, Phys. Rev. Lett. 127, 043602 (2021).

[52] A. Levy and R. Kosloff, The local approach to quantum
transport may violate the second law of thermodynamics,
Europhys. Lett. 107, 20004 (2014).

[53] G. De Chiara, G. T. Landi, A. Hewgill, B. Reid, A. Fer-
raro, A. J. Roncaglia, and M. Antezza, Reconciliation
of quantum local master equations with thermodynamics,
New J. Phys. 20, 113024 (2018).

[54] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Quan-
tum computation and quantum-state engineering driven by
dissipation, Nat. Phys. 5, 633 (2009).

[55] D. Braun, Creation of Entanglement by Interaction with
a Common Heat Bath, Phys. Rev. Lett. 89, 277901
(2002).

[56] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A.
S. Sørensen, D. Leibfried, and D. J. Wineland, Dissipative
production of a maximally entangled steady state of two
quantum bits, Nature 504, 415 (2013).

[57] M. E. Kimchi-Schwartz, L. Martin, E. Flurin, C. Aron,
M. Kulkarni, H. E. Türeci, and I. Siddiqi, Stabilizing
Entanglement via Symmetry-Selective Bath Engineering
in Superconducting Qubits, Phys. Rev. Lett. 116, 240503
(2016).

[58] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M.
B. Plenio, Entanglement and entangling power of the
dynamics in light-harvesting complexes, Phys. Rev. A 81,
062346 (2010).

[59] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen,
and R. Blume-Kohout, Detecting crosstalk errors in quan-
tum information processors, Quantum 4, 321 (2020).

[60] U. von Lüpke, F. Beaudoin, L. M. Norris, Y. Sung, R.
Winik, J. Y. Qiu, M. Kjaergaard, D. Kim, J. Yoder, S.
Gustavsson, L. Viola, and W. D. Oliver, Two-Qubit Spec-
troscopy of Spatiotemporally Correlated Quantum Noise
in Superconducting Qubits, PRX Quantum 1, 010305
(2020).

[61] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93,
301 (1982).

[62] A. Crubellier, S. Liberman, D. Pavolini, and P. Pillet,
Superradiance and subradiance. I. Interatomic interference
and symmetry properties in three-level systems, J. Phys.
B: At. Mol. Opt. 18, 3811 (1985).

010324-29

https://doi.org/10.1103/PhysRevResearch.2.023133
https://doi.org/10.1103/PhysRevLett.126.130403
https://doi.org/10.1103/PhysRevLett.127.270503
https://doi.org/10.1103/PRXQuantum.3.010320
https://doi.org/10.1038/nature09801
https://doi.org/10.1038/nphys2630
https://doi.org/10.1038/s41534-019-0235-y
https://doi.org/10.1103/PhysRevLett.127.020504
https://doi.org/10.1088/1751-8121/ac6bd0
https://doi.org/10.1103/PhysRevB.102.125112
https://arxiv.org/abs/2108.01183
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1142/S1230161217400108
https://doi.org/10.1088/1367-2630/ab54ac
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.88.042115
https://doi.org/10.1103/PhysRevLett.112.094102
https://doi.org/10.1103/PhysRevLett.113.154101
https://doi.org/10.1103/PhysRevLett.127.043602
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1038/nphys1342
https://doi.org/10.1103/PhysRevLett.89.277901
https://doi.org/10.1038/nature12801
https://doi.org/10.1103/PhysRevLett.116.240503
https://doi.org/10.1103/PhysRevA.81.062346
https://doi.org/10.22331/q-2020-09-11-321
https://doi.org/10.1103/PRXQuantum.1.010305
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1088/0022-3700/18/18/022


MARCO CATTANEO et al. PRX QUANTUM 4, 010324 (2023)

[63] S. Campbell and B. Vacchini, Collision models in open
system dynamics: A versatile tool for deeper insights?,
Europhys. Lett. 133, 60001 (2021).

[64] F. Ciccarello, S. Lorenzo, V. Giovannetti, and G. M.
Palma, Quantum collision models: Open system dynamics
from repeated interactions, Phys. Rep. 954, 1 (2022).

[65] M. Cattaneo, G. L. Giorgi, R. Zambrini, and S. Manis-
calco, A brief journey through collision models for multi-
partite open quantum dynamics, Open Syst. Inf. Dyn. 29,
2250015 (2022).

[66] F. Barra, The thermodynamic cost of driving quantum
systems by their boundaries, Sci. Rep. 5, 14873 (2015).

[67] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito,
Quantum and Information Thermodynamics: A Unifying
Framework Based on Repeated Interactions, Phys. Rev. X
7, 021003 (2017).

[68] S. Kretschmer, K. Luoma, and W. T. Strunz, Collision
model for non-Markovian quantum dynamics, Phys. Rev.
A 94, 012106 (2016).

[69] S. N. Filippov, J. Piilo, S. Maniscalco, and M. Ziman,
Divisibility of quantum dynamical maps and collision
models, Phys. Rev. A 96, 032111 (2017).

[70] Á. Cuevas, A. Geraldi, C. Liorni, L. D. Bonavena, A. De
Pasquale, F. Sciarrino, V. Giovannetti, and P. Mataloni,
All-optical implementation of collision-based evolutions
of open quantum systems, Sci. Rep. 9, 3205 (2019).

[71] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[72] F. Leymann and J. Barzen, The bitter truth about gate-
based quantum algorithms in the NISQ era, Quantum Sci.
Technol. 5, 044007 (2020).

[73] I. L. Chuang and M. A. Nielsen, Prescription for experi-
mental determination of the dynamics of a quantum black
box, J. Mod. Opt. 44, 2455 (1997).

[74] J. F. Poyatos, J. I. Cirac, and P. Zoller, Complete Charac-
terization of a Quantum Process: The Two-Bit Quantum
Gate, Phys. Rev. Lett. 78, 390 (1997).

[75] M. A. Nielsen, A simple formula for the average gate
fidelity of a quantum dynamical operation, Phys. Lett. A
303, 249 (2002).

[76] A. Y. Kitaev, Quantum computations: Algorithms and
error correction, Russ. Math. Surv. 52, 1191 (1997).

[77] J. Watrous, The Theory of Quantum Information (Cam-
bridge University Press, Cambridge, 2018).

[78] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A.
D. Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen,
Self-consistent quantum process tomography, Phys. Rev.
A 87, 062119 (2013).

[79] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.
Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and
D. J. Wineland, Randomized benchmarking of quantum
gates, Phys. Rev. A 77, 012307 (2008).

[80] E. Magesan, R. Blume-Kohout, and J. Emerson, Gate
fidelity fluctuations and quantum process invariants, Phys.
Rev. A 84, 012309 (2011).

[81] E. Magesan, J. M. Gambetta, and J. Emerson, Scal-
able and Robust Randomized Benchmarking of Quantum
Processes, Phys. Rev. Lett. 106, 180504 (2011).

[82] E. Magesan, J. M. Gambetta, and J. Emerson, Character-
izing quantum gates via randomized benchmarking, Phys.
Rev. A 85, 042311 (2012).

[83] J. J. Wallman and S. T. Flammia, Randomized benchmark-
ing with confidence, New. J. Phys. 16, 103032 (2014).

[84] J. J. Wallman, Randomized benchmarking with gate-
dependent noise, Quantum 2, 47 (2018).

[85] Y. R. Sanders, J. J. Wallman, and B. C. Sanders, Bounding
quantum gate error rate based on reported average fidelity,
New J. Phys. 18, 012002 (2015).

[86] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
Buell, and B. Burkett, Quantum supremacy using a pro-
grammable superconducting processor, Nature 574, 505
(2019).

[87] Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen, X.
Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, and M.
Gong, Strong Quantum Computational Advantage Using
a Superconducting Quantum Processor, Phys. Rev. Lett.
127, 180501 (2021).

[88] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Distance
measures to compare real and ideal quantum processes,
Phys. Rev. A 71, 062310 (2005).

[89] T. Proctor, K. Rudinger, K. Young, M. Sarovar, and R.
Blume-Kohout, What Randomized Benchmarking Actu-
ally Measures, Phys. Rev. Lett. 119, 130502 (2017).

[90] J. J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys.
Rev. A 94, 052325 (2016).

[91] S. T. Merkel, E. J. Pritchett, and B. H. Fong, Randomized
benchmarking as convolution: Fourier analysis of gate
dependent errors, Quantum 5, 581 (2021).

[92] E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan,
J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M.
B. Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen,
Efficient Measurement of Quantum Gate Error by Inter-
leaved Randomized Benchmarking, Phys. Rev. Lett. 109,
080505 (2012).

[93] A. Carignan-Dugas, J. J. Wallman, and J. Emerson,
Bounding the average gate fidelity of composite channels
using the unitarity, New J. Phys. 21, 053016 (2019).

[94] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger,
J. Mizrahi, K. Fortier, and P. Maunz, Demonstration of
qubit operations below a rigorous fault tolerance threshold
with gate set tomography, Nat. Commun. 8, 14485 (2017).

[95] O. Di Matteo, J. Gamble, C. Granade, K. Rudinger, and
N. Wiebe, Operational, gauge-free quantum tomography,
Quantum 4, 364 (2020).

[96] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten,
K. Young, and R. Blume-Kohout, Gate set tomography,
Quantum 5, 557 (2021).

[97] Ł. Rudnicki, Z. Puchała, and K. Zyczkowski, Gauge
invariant information concerning quantum channels,
Quantum 2, 60 (2018).

[98] M. M. Wilde, Quantum Information Theory (Cambridge
University Press, Cambridge, 2017).

[99] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and
Quantum Computation (American Mathematical Society,
Providence, Rhode Island, 2002).

[100] A. Ben-Aroya and A. Ta-Shma, On the complexity of
approximating the diamond norm, Quantum Inf. Comput.
10, 77 (2010).

[101] J. Watrous, Simpler semidefinite programs for completely
bounded norms (2012), preprint ArXiv:1207.5726.

010324-30

https://doi.org/10.1209/0295-5075/133/60001
https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/10.1142/S1230161222500159
https://doi.org/10.1038/srep14873
https://doi.org/10.1103/PhysRevX.7.021003
https://doi.org/10.1103/PhysRevA.94.012106
https://doi.org/10.1103/PhysRevA.96.032111
https://doi.org/10.1038/s41598-019-39832-9
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1080/09500349708231894
https://doi.org/10.1103/PhysRevLett.78.390
https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1103/PhysRevA.87.062119
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevA.84.012309
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevA.85.042311
https://doi.org/10.1088/1367-2630/16/10/103032
https://doi.org/10.22331/q-2018-01-29-47
https://doi.org/10.1088/1367-2630/18/1/012002
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1103/PhysRevLett.119.130502
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.22331/q-2021-11-16-581
https://doi.org/10.1103/PhysRevLett.109.080505
https://doi.org/10.1088/1367-2630/ab1800
https://doi.org/10.1038/ncomms14485
https://doi.org/10.22331/q-2020-11-17-364
https://doi.org/10.22331/q-2021-10-05-557
https://doi.org/10.22331/q-2018-04-11-60
https://doi.org/10.26421/QIC10.1-2-6
https://arxiv.org/abs/1207.5726


QUANTUM SIMULATION OF DISSIPATIVE COLLECTIVE... PRX QUANTUM 4, 010324 (2023)

[102] J. Watrous, John Watrous’s lecture notes: Theory of quan-
tum information (2011), https://cs.uwaterloo.ca/∼watrous/
TQI-notes/.

[103] J. Wallman, C. Granade, R. Harper, and S. T. Flam-
mia, Estimating the coherence of noise, New J. Phys. 17,
113020 (2015).

[104] G. Feng, J. J. Wallman, B. Buonacorsi, F. H. Cho, D.
K. Park, T. Xin, D. Lu, J. Baugh, and R. Laflamme,
Estimating the Coherence of Noise in Quantum Con-
trol of a Solid-State Qubit, Phys. Rev. Lett. 117, 260501
(2016).

[105] C. H. Yang, K. W. Chan, R. Harper, W. Huang, T. Evans,
J. C. C. Hwang, B. Hensen, A. Laucht, T. Tanttu, F.
E. Hudson, S. T. Flammia, K. M. Itoh, A. Morello, S.
D. Bartlett, and A. S. Dzurak, Silicon qubit fidelities
approaching incoherent noise limits via pulse engineering,
Nat. Electron. 2, 151 (2019).

[106] S. Das, S. Khatri, G. Siopsis, and M. M. Wilde, Fun-
damental limits on quantum dynamics based on entropy
change, J. Math. Phys. 59, 012205 (2018).

[107] M. Bina, A. Mandarino, S. Olivares, and M. G. A.
Paris, Drawbacks of the use of fidelity to assess quantum
resources, Phys. Rev. A 89, 012305 (2014).

[108] D. Aharonov and M. Ben-Or, Fault-tolerant quantum com-
putation with constant error rate, SIAM J. Comput. 38,
1207 (2008).

[109] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia,
Comparing Experiments to the Fault-Tolerance Thresh-
old, Phys. Rev. Lett. 117, 170502 (2016).

[110] B. Schumacher, Sending entanglement through noisy
quantum channels, Phys. Rev. A 54, 2614 (1996).

[111] M. A. Nielsen, The entanglement fidelity and quantum
error correction (1996), preprint ArXiv:quant-ph/9606012.

[112] M. Reimpell and R. F. Werner, Iterative Optimization of
Quantum Error Correcting Codes, Phys. Rev. Lett. 94,
080501 (2005).

[113] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[114] M. Horodecki, P. Horodecki, and R. Horodecki, General
teleportation channel, singlet fraction, and quasidistilla-
tion, Phys. Rev. A 60, 1888 (1999).

[115] P. Aliferis and J. Preskill, Fibonacci scheme for fault-
tolerant quantum computation, Phys. Rev. A 79, 012332
(2009).

[116] C. Jones, M. A. Fogarty, A. Morello, M. F. Gyure, A. S.
Dzurak, and T. D. Ladd, Logical Qubit in a Linear Array
of Semiconductor Quantum Dots, Phys. Rev. X 8, 021058
(2018).

[117] S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini,
P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, A. Blais, S.
T. Flammia, and S. M. Girvin, Bias-preserving gates with
stabilized cat qubits, Sci. Adv. 6, 1 (2020).

[118] J. J. Wallman, Bounding experimental quantum error
rates relative to fault-tolerant thresholds (2015), preprint
ArXiv:1511.00727.

[119] Note that a universal bound for any m and ϕ cannot be
found, because the average gate infidelity cannot be higher
than 1.

[120] N. Hatano and M. Suzuki, in Quantum Annealing
and Other Optimization Methods (Springer, 2005),
p. 37.

[121] B. Bellomo, G. L. Giorgi, G. M. Palma, and R. Zam-
brini, Quantum synchronization as a local signature
of super- and subradiance, Phys. Rev. A 95, 043807
(2017).

[122] M. Cattaneo, G. L. Giorgi, S. Maniscalco, G. S. Paraoanu,
and R. Zambrini, Bath-induced collective phenomena
on superconducting qubits: Synchronization, subradiance,
and entanglement generation, Ann. Phys. (Berlin) 533,
2100038 (2021).

[123] D. A. Lidar and K. Birgitta Whaley, in Irreversible Quan-
tum Dynamics (2003), p. 83.

[124] S. Lorenzo, F. Ciccarello, and G. M. Palma, Compos-
ite quantum collision models, Phys. Rev. A 96, 032107
(2017).

[125] That is, including system qubits plus ancillary qubits of
the MCM plus a copy of the total (system plus ancil-
las of the MCM) Hilbert space according to Eq. (3), i.e.,
HS ⊗ HE ⊗ HA ⊗ HB using the labeling we introduce in
Appendix D.

[126] M.-D. Choi, Completely positive linear maps on complex
matrices, Linear Algebra Its Appl. 10, 285 (1975).

[127] D. Willsch, M. Nocon, F. Jin, H. De Raedt, and K.
Michielsen, Gate-error analysis in simulations of quantum
computers with transmon qubits, Phys. Rev. A 96, 062302
(2017).

[128] K. Michielsen, M. Nocon, D. Willsch, F. Jin, T.
Lippert, and H. De Raedt, Benchmarking gate-based
quantum computers, Comput. Phys. Commun. 220, 44
(2017).

[129] D. Bultrini, M. H. Gordon, E. López, and G. Sierra,
Simple mitigation strategy for a systematic gate error in
IBMQ, J. Appl. Math. Phys. 09, 1215 (2021).

[130] T. Alexander, N. Kanazawa, D. J. Egger, L. Capel-
luto, C. J. Wood, A. Javadi-Abhari, and D. C McKay,
QISKIT pulse: Programming quantum computers through
the cloud with pulses, Quantum Sci. Technol. 5, 044006
(2020).

[131] J. P. Stenger, N. T. Bronn, D. J. Egger, and D. Pekker,
Simulating the dynamics of braiding of Majorana zero
modes using an IBM quantum computer, Phys. Rev. Res.
3, 033171 (2021).

[132] S. Lang, Algebra (Springer-Verlag, Berlin, 2002).
[133] A. H. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco,

J. Eisert, and S. Montangero, Positive Tensor Network
Approach for Simulating Open Quantum Many-Body
Systems, Phys. Rev. Lett. 116, 237201 (2016).

[134] D. A. Lidar, P. Zanardi, and K. Khodjasteh, Distance
bounds on quantum dynamics, Phys. Rev. A 78, 012308
(2008).

[135] J. Johansson, P. Nation, and F. Nori, QuTiP: An open-
source PYTHON framework for the dynamics of open
quantum systems, Comput. Phys. Commun. 183, 1760
(2012).

[136] L. Viola and S. Lloyd, Dynamical suppression of decoher-
ence in two-state quantum systems, Phys. Rev. A 58, 2733
(1998).

010324-31

https://cs.uwaterloo.ca/~watrous/TQI-notes/
https://doi.org/10.1088/1367-2630/17/11/113020
https://doi.org/10.1103/PhysRevLett.117.260501
https://doi.org/10.1038/s41928-019-0234-1
https://doi.org/10.1063/1.4997044
https://doi.org/10.1103/PhysRevA.89.012305
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1103/PhysRevLett.117.170502
https://doi.org/10.1103/PhysRevA.54.2614
https://arxiv.org/abs/quant-ph/9606012
https://doi.org/10.1103/PhysRevLett.94.080501
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevA.60.1888
https://doi.org/10.1103/PhysRevA.79.012332
https://doi.org/10.1103/PhysRevX.8.021058
https://doi.org/10.1126/sciadv.aay5901
https://arxiv.org/abs/1511.00727
https://doi.org/10.1103/PhysRevA.95.043807
https://doi.org/10.1002/andp.202100038
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRevA.96.062302
https://doi.org/10.1016/j.cpc.2017.06.011
https://doi.org/10.4236/jamp.2021.96083
https://doi.org/10.1088/2058-9565/aba404
https://doi.org/10.1103/PhysRevResearch.3.033171
https://doi.org/10.1103/PhysRevLett.116.237201
https://doi.org/10.1103/PhysRevA.78.012308
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1103/PhysRevA.58.2733

