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ABSTRACT

Programmers rely on the recognition and utilization of reoccurring
code sequences to understand and create code. Knowledge of these
sequences — programming plans — has been shown to be a factor
that differentiates novice programmers from experts. Although the
information on the development of programming plans would be
beneficial to both teachers and students, explicitly following their
development over a longer time period is scarce. In this article, we
describe an easy-to-apply methodology for monitoring the devel-
opment of programming plans. The development of programming
plans is evaluated with time-constrained code recall tasks, where
students are shown snippets of code for a short period of time,
after which they write the snippets they saw. To determine the
existence of programming plans, the short duration is designed so
that reading the shown code is not feasible in the given time period.
We demonstrate the methodology through an experiment in which
we studied the development of programming plans in students in a
beginner web programming course.
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1 INTRODUCTION

Learning to program has received a lot of attention in comput-
ing education research [20, 22, 27]. It occurs at multiple levels, as
students learn to understand both the syntax and semantics of a
programming language, pragmatic aspects of programming like
working with the available tools [11] and acquire plans that are
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used to achieve reoccurring goals. Learning and increased exper-
tise are intertwined with an improved ability to handle complex
information as organized chunks [9].

In the domain of programming, these organized chunks are re-
ferred to as programming plans. Programming plan knowledge
refers to programmers’ knowledge of reoccurring code patterns
such as code sequences and templates. Knowledge of programming
plans has been recognized as one of the key types of knowledge for
programming expertise [4, 10, 24], and is a key factor in program
comprehension [17]. Due to the importance of plan knowledge
in program comprehension and programming, the ability to rec-
ognize and utilize programming plans has been recognized as an
important learning objective in programming education [16, 28].
However, studies into students’ programming plans mostly focus
on introductory programming, and, are fairly static in that they do
not focus on the evolution of the plans (e.g. [14, 23]).

The overall theme of this work is how do we draw a line between
a novice and a more advanced student, and how do we assess the stu-
dent’s expertise? Prior programming experience has been measured
using tests [21, 25] and surveys [12, 15]. However, these approaches
are rather coarse-grained, allowing the student to search for an-
swers elsewhere and misrepresent information. Researchers have
also used naturally accumulating data, such as keystrokes, as an in-
dicator of experience [19, 26]. These studies, however, have mainly
focused on identifying whether a student has programmed previ-
ously or not.

In the present work, we explore monitoring programming plan
development as a measure of the development of programming
expertise. We propose using time-constrained code recall tasks —
showing code to students for a limited time and asking them to
recall it - for assessing programming plan knowledge. Our research
questions for the present study are as follows:

RQ1 Can a sequence of time-constrained code recall tasks be used
to analyze programming plan development?

RQ2 How does studying affect the correctness of students’ time-
constrained code recall task results?

RQ3 What aspects of code elements are most focal in students’
web programming plans?

2 BACKGROUND

Researchers have worked for decades to understand the types of
skills and knowledge that underlie the performance of expert pro-
grammers. These also represent some of the skills and knowledge
that we should aim to teach in programming education. Program-
ming plan knowledge has long been at the center of these discus-
sions as an important type of knowledge that underlies program-
ming expertise [1-3, 7].
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One of the differences between experienced and novice program-
mers has been shown to be, that instead of reading and mentally
representing code as individual statements, experienced program-
mers have the ability to mentally organize code into meaningful
chunks [2, 3]. Thus, experienced programmers can comprehend
programs as configurations of meaningful elements, rather than as
individual code statements [1-3]. However, these differences be-
tween novices and experienced programmers diminish if the code
studied is not in a meaningful order [2-4]. This strongly supports
the idea that experienced programmers’ ability to mentally organize
code into meaningful chunks comes from their ability to recognize
and comprehend groupings of code statements as instantiations of
well-known patterns, programming plans [1, 3]. Thus, experienced
programmers have acquired knowledge of these reoccurring pat-
terns, which is often referred to as programming plan knowledge or
programming schemata [10, 24]. Knowledge of programming plans
has been recognized as one of the types of knowledge important
for programming experience [4, 10, 24].

As programming plan knowledge underlies expert performance,
the ability to recognize and use programming plans has been de-
scribed as an important skill for students to learn in programming
education [16, 28]. Studies have recognized the importance of pro-
gramming plan knowledge in computer science education [16, 28],
and have shown that some of the plan knowledge important for
expert performance may indeed develop due to explicit instruc-
tion [7]. Although the promotion of programming plan knowledge
and use has been recognized as an important aspect of program-
ming education, many studies on programming plans and their
development have been conducted in study settings that use old
programming languages and technologies that are no longer used
in contemporary settings [14]. Therefore, studies have recognized
the need for a better understanding of student programming plans
in contemporary contexts [14].

Recall studies have been used for decades to investigate the
knowledge, use, and development of programming plans [1, 4, 7].
The effectiveness of these methods comes from the knowledge that
programming plan knowledge allows experienced programmers to
encode more information in one glance [3, 4]. Thus, experienced
programmers can comprehend and memorize code faster and more
accurately as they can effectively process code as configurations of
meaningful elements instead of relying on the line-by-line reading
of individual code statements [1, 4, 7].

Studies have shown that when memorizing code that is presented
in the expected order, experienced programmers perform better
than novices in recall tasks [1]. These studies have shown that
experienced programmers can recall more code and recall the code
with more accuracy [1, 3, 4]. Thus, the presence and development
of programming plans can be deduced, to some extent, from the
participant’s recall performance [1, 3, 4]. Recall studies have also
shown differences in the areas of code that novices and experienced
programmers recall [8]. Some lines of code, the so-called focal lines,
seem to be the most indicative of the presence of a certain plan
and are used by experienced programmers to recognize plans in
code [8]. These lines are recalled with greater accuracy and provide
information about which aspects of the code are emphasized in
programmers’ plan knowledge [8].
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3 METHODOLOGY
3.1 Context

The study was carried out in an online introductory course in Web
Software Development at Aalto University. The course is typically
taken by computer science students during their second year. Dur-
ing our study, the course was continuously ongoing due to the
Covid-19 pandemic, and students could join the course at any point
in their studies. Therefore, the experiment began in an ongoing
course with students at different points in the course, and some
students first saw the experiment halfway through the course.

The course uses an online textbook that contains learning mate-
rials, programming exercises, quizzes, and project handouts. The
course uses JavaScript, which the students had not used in their
studies prior to the course.

3.2 Time-constrained code recall system

To answer RQ1, we developed a time-constrained code recall system
to perform code recall experiments in an online environment. The
key functionality of the system is that it displays a piece of code for
a limited time and asks the participant to write the code that they
saw. Response code and interactions with the system are stored.
Copying and pasting code was disabled within the system.

The system was integrated into the Web Software Development
course. Starting the task opened a dialog and grayed out the course
materials, focusing the student on the task. The flow to complete
a code recall task using the system is shown in Figure 1. First, the
student is shown a dialog explaining the task. This is followed by
a timed dialog that contains the code that the student needs to
remember. Once the time runs out, the student is shown an editor
where they can write the code they had been shown.

3.3 Tasks and data collection

During the code recall tasks, the students were asked to replicate a
piece of code after viewing it for 10 seconds. We used two pieces
of code: the first, shown in Listing 1, was a simple function that
prints the text Hello world! on the console. The second, shown
in Listing 2, was a middleware function that catches and logs errors
in a request and adds information about the error to a response.

Listing 1: Hello world recall code

const hello = () => {
console.log("Hello world!");

3

Listing 2: Error middleware recall code

const errorMiddleware =
try {
await next();

} catch (e) {
console.log(e);
context.response.body = "Error when processing
request";

async (context, next) => {
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resime vl mv el — —

ou have 10 seconds to memorize the code that you are about |
I to be shown. Once the time is out, write the code to the shown
editor to the best of your ability. |

I SHOW ME THE copE! 1

————— —— — —— — — — —]

I const hello =

() == {
I console.log("Hello world!"
}

2

):I

—_—

l Seconds remaining: 1

To the best of your ability, write the code to the editor below.
Once finished, click the "Done!"-button.

Figure 1: Flow of completing a single recall task. Students

are first presented with a dialog that shows them the task.

When they click on the button (1), they are shown a dialog
with the code that they need to study and later recall, with
a countdown timer (2). When the time runs to 0, they are
shown an editor for the code that they previously saw. Once
they finish a single task by clicking the done-button (3), the
next code recall task is shown, given that more tasks are
configured to the system.

The time-constrained code recall system was embedded in the
course’s online textbook at three parts of the course. The first time
the students saw it was at the beginning of the course when the
students had used the console.log command used in Listing 1 but
had not worked with middlewares used in Listing 2. The second
time the students saw it was midway through the course when
students had worked with code similar to both listings. The third
time was towards the end of the course when students had more
experience with code similar to both listings and beyond. The codes
that students were expected to recall were the same each time.

Participation was voluntary and students were not compensated
for participating.

3.4 Participants

Students could complete none, one, or both of the recall tasks at
any of the three times. 344 students participated in the experiment,
completing 802 individual recall tasks. After removing responses

with no content at all, we had 616 recall responses from 332 students.

Table 1 describes the number of students participating and the
number of recall tasks completed each time.

Most of the students participated only one time. 41 students
participated in the experiment both the first and second times, 38

students the second and third times, and 14 students at all times.

Therefore, we focus on the results within each time as cohorts,
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Table 1: The number of students who participated in the
experiment each time and the total number of individual
recall tasks completed by the students each time.

Time ‘ Students Responses
All 322 616
Time 1 228 330
Time 2 116 185
Time 3 68 101

and beyond the subpopulation analysis in Section 4.2, we do not
consider the progress of individual students.

3.5 Analysis

3.5.1 Analysis: RQ2. To answer RQ2, we analyze differences in
code writing time and the correctness of the response at the three
times. The correctness of the response code was measured using
the edit distance between the example code and the response code.

For the edit distance, we used two different approaches. The
first is a simple Levenshtein distance (i.e., the number of character
changes needed to transform one string to another), and the second
is a programming language token distance (i.e., the number of
token changes needed to transform one code to another). For the
token distance, we use a lexerl, to transform the written code into
tokens. When calculating the character-based edit distance, we
took any whitespace characters into account in the calculation. For
token-based edit distance, whitespace characters were ignored.

The data is not normally distributed as confirmed using Shapiro-
Wilk tests. Therefore, we conduct pairwise Mann-Whitney U tests
to study the statistical significance of differences when performing
statistical analyzes. When reporting analysis results, we report the
Mann-Whitney U test statistic, uncorrected p values, and use Rank
Biserial Correlation (RBC) when reporting effect sizes.

3.5.2  Analysis: RQ3. To answer RQ3, we analyze differences in the
accuracy of student recall in different parts of code listings. For
each student response, we used Python difflib to create a list of
non-overlapping matching substrings between the response code
and the example code. We discarded all matching sequences that
were only one character long to prevent non-authentic matches
between characters that occur multiple times in the listings. We
then analyzed how frequently each index of the example code was
present in the matching sequences. This gave us an approximation
of how frequently students were able to recall that part of the code.

4 RESULTS
4.1 Writing time, code length and code
correctness

As shown in Table 2, for Listing 1, the mean writing time decreased
between the three times. However, for Listing 2, the mean writing
time increased between the three times. Table 2 displays the writ-
ing time, code length, and character-based and token-based edit
distances for both listings at the three times.

!We used the JavascriptLexer from Pygments 2.11.2 (https://pygments.org/)
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As shown in Table 2 the average code length (in characters)
remained somewhat constant between the times for Listing 1. For
Listing 2 the average code length increased from 77.3 to 125.5 from
time 1 to time 3.

Overall, as shown in Table 2, there is a clear drop in both character
based and token-based edit distances for both listings between times
1 and 2 and a more subtle drop between times 2 and 3.

To further study these changes, we performed Mann-Whitney
U tests that compared character- and token-based edit distances
between the times for both listings. For both Listing 1 and Listing 2,
there is a statistically significant decrease in both character-based
and token-based edit distance between time 1 and time 2. When
considering the differences between times 2 and 3, the differences
are not statistically significant. The statistical tests and results are
summarized in Table 3.

4.2 Changes in recall over individual students

Only a handful of students participated in the experiment three
times. To provide further evidence for RQ2 on changes between
times 1 and 2, we analyzed the subpopulation of n = 41 students
who participated in the experiment on the first and second times.

For Listing 1, the average writing time decreased slightly, from
63.6 seconds at time 1 to 61.1 seconds at time 2 (median change
from 55.0 to 46.5). The average code length increased from 50.8 to
53.9 characters. The average edit distances decreased from 6.2 to
3.6 for the character-based edit distance and from 2.8 to 2.1 for the
token-based edit distances. However, changes in the edit distance
are not statistically significant for the character-based edit distance
(p = 0.12, RBC = —0.20) or the token-based edit distance (p = 0.27,
RBC = —0.14).

For Listing 2, the average writing time increased from 66.6 to
96.4 seconds (median change from 66.8 to 88.3) between times 1
and 2. The average length of the code increased from 64.6 to 118.4
characters (median change from 58.0 to 115.0). The average edit
distances decreased considerably, from 119.7 to 75.6 (median change
from 123.0 to 77.0) for the character-based edit distance and from
26.0 to 14.7 for the token-based edit distance (median change from
29.0 to 11.0). Changes in edit distance are statistically significant
for character-based edit distance (p = 0.0013) with medium effect
size (RBC = —0.55) and for token-based edit distance (p = 0.0012)
also with medium effect size (RBC = —0.55).

4.3 Focal elements

For the analysis of focal elements for RQ3, we compared the re-
sponse codes with the sample codes to assess which areas of the
sample code were recalled by the participants.

For Listing 1 the analysis shows that the overall correctness
of the participants’ recall increased from time 1 to time 3. At the
first time, some participants were able to recall only the first few
characters of the code Listing correctly, as would be expected if
they read the code character by character, thus not being able to
investigate the whole function in 10 seconds. The second time, the
participants were able to recall the first few characters and also
most of the function body correctly. However, the second time
around, it is still difficult for participants to recall the form of the
arrow function. For the third time, almost all participants were able
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to recall the code Listing correctly, and only a few characters in the
function body and the last curly brace were recalled with less than
90% precision.

Figure 2 displays the percentages of correct recall for each char-
acter in code Listing 2 at the three times. For the first time, the
results are similar to those of Listing 1, showing that participants
recall the first few characters correctly before their recall drops.
We also see that the async statement and the await statement are
recalled with less accuracy than others. The second time, the par-
ticipants were able to recall the first few characters and also most
of the function body correctly up to the last statement of the catch
clause. However, the async and the await statements remain less
well recalled than other areas of the code, whereas the "try" and
"catch" keywords are recalled better. In the third time, the results
are similar to time 2, however, the percentage of correct recall of
the last statements of the catch clause increases.

5 DISCUSSION

5.1 Code recall and expertise

Our results indicate, that students become more accurate at iden-
tifying and recalling code through practice. The results show im-
provements in code recall at both the character and token levels.
This is in line with previous studies, which have shown that expe-
rienced programmers can recall more code and recall code more
accurately [1, 3, 4]. Similar results have been observed in other
domains as well. For example, studies on chess players show that
experienced chess players recall board configurations shown to
them only for a brief moment more accurately than less experi-
enced chess players [9].

Our results on Listing 1 also show that students became faster
in writing the code. The improved writing time is supported by
previous studies on links between typing speed and experience. In
these studies, more experienced students type particular character
pairs faster than less experienced students [19, 26]. Previous studies
have also investigated the typing speed of particular constructs
over the duration of a course, where the typing speed of often used
constructs seems to improve over time [13]. Although we cannot
see the same improvement in writing time for the second listing,
we see an increase in code length between the times for Listing
2. This shows that the students wrote more as they became more
familiar with similar codes throughout the course.

5.2 Focal elements

In our analysis of focal elements in response codes, we can see
that some areas of the code are recalled better than others. For
Listing 1, the results are less conclusive, as this Listing was recalled
well overall. Therefore, we focus primarily on Listing 2, where the
evolution of the recall correctness of different areas of the code
is shown in Figure 2. In time 1, the structure of a function body
and the keywords try and catch are recalled better than other parts
of the function. At that point, students have already worked with
functions, which probably contributes to the recall performance.
Similarly, while the course has not yet touched on error handling at
that point, students attending the web software development course
have learned to use error handlers in their previous programming
courses, which likely reflects in their recall results.
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Table 2: Writing time (in seconds), code length (in characters), character-based edit distance (Character ED, in characters), and
token-based edit distance (Token ED, in tokens) for Listings 1 and 2 at the three times. Reported using the number of samples n,

median, mean, and standard deviation Std.

Time 1 Time 2 Time 3
n Median Mean Std | n  Median Mean Std | n Median Mean Std
Writing time | 226 55.7 66.9 559 | 116 494 569 40.2 | 68 43.1 50.0 23.8
L1 Code length 226 53.0 49.2 113 | 116 54.0 53.2 44 | 68 54.0 52.7 4.8
Character ED | 226 4.0 8.8 11.0 | 116 2.0 3.8 4.7 | 68 2.0 33 5.3
Token ED 226 2.0 3.2 33 | 116 1.0 2.2 23 | 68 1.0 1.7 2.0
Writing time | 104 66.6 73.5 502 | 69 86.8 87.2 362 | 32 92.5 943 427
L2 Code length 104 58.5 773  58.1 | 69 126.0 121.2 484 | 32 143.0 1255 55.2
Character ED | 104 129.0 112.2 524 | 69 70.0 713 444 | 32 52.0 63.8 51.1
Token ED 104 29.0 25.0 132 | 69 11.0 14.1 10.9 | 32 9.0 133 123
100% Time 1
50%
= €onst errorMiddleware = async (context, next) => {try { await next()} cat/ch(e)
100%
50%
we | censeiEppeghesmicenle x L response bodya=miErrorowhen processing LeqguestoHF
100% Time 2
50%
= const errorMiddleware = lasync (context, next) => {try { await next()} catch(e)
100%
50%
o  |{lconsole./log(e):| |contjex|t].|re/splonsel.body = "[Error e pn00E8s.s i hedies s " H}

100%
50%

Time 3

o, €onst errorMiddleware

100%
50%

async (context, next) =>

{try { await next(|)} catch(e)

o {console.log(e);

contlex/t.response.body

= "[Elrirlo|r| whe . piriojcelsisiiinig [rieguelsiti®|}}

Figure 2: Participant recall of each character in the code Listing 2 (error middleware) at each of the three times.

Table 3: Results of the Mann-Whitney U test comparing the
edit distances between the code shown and the code written
by the student for both Listing 1 (L1) and Listing 2 (L2) be-
tween time 1 and time 2 as well as between times 2 and 3.

Time 1 vs. 2 Time 2 vs. 3
Character Token Character Token
U 16977.0 15399.0 4519.5 4467.0
L1 p 0.000007 0.007072 0.095443 0.124233
RBC | -0.30 -0.17 -0.15 -0.13
U 5220.5 5208.5 1289.0 1252.0
L2 p 0.0000004  0.0000005 | 0.283223 0.418466
RBC | -0.45 -0.45 -0.13 -0.10

When comparing the recall accuracy of different parts of Listing 2
between the first and second times, we see that the students become
better at recalling the function parameters and the keywords related
to asynchronous processing. They also become better at recalling
the function body.
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Interestingly, when comparing the second and third times, we
see that the students become somewhat worse at recalling the
function parameter context. This may be due to the course that
teaches object decomposition quite early on. Thus, the students
do not use the context object but rely on decomposition to use the
response directly.

We also observe that some students may skip words that they
consider redundant. In Listing 2, the word when in the error mes-
sage is poorly remembered. Students often write “Error processing
request” instead of “Error when processing request”. There is also a
minor decline in the recall of async and await between the second
and the third times. This could indicate that students start to forget
the elements of middleware. Toward the third time, middleware
plays a very minor role in the course, and project templates typi-
cally include ready-made middlewares, which means that students
do not have to practice writing them.

These results are in line with previous studies that have sug-
gested that there are differences in the areas of code that novices
and more experienced programmers recall [8]. However, while [8]
discusses focal lines, based on differences in recalling try-catch, it is
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a good question if we should be discussing focal structures or focal
patterns, due to experienced programmers relying on configurations
of meaningful elements instead of the line-by-line interpretation of
code [1, 4, 7], which has also been observed in eye tracking studies
(see, e.g. [5, 6]).

5.3 Towards assessing plan development

Our results provide credibility to the notion of assessing plan devel-
opment using a time-restrained code-recall task within an online
environment. In general, our results were in line with prior lab-
based code recall studies. Furthermore, the observation that an
online environment can be used to conduct experiments classically
done within laboratory settings has been pointed out also in the
past in computing education research (see e.g. [18]).

Although the present study was conducted in a Web software
development course with advanced students, we see the potential to
incorporate similar studies into introductory programming courses.
Researchers have previously looked into plan composition in in-
troductory programming courses [14, 23], and using timed code
recall tasks with suitably designed code listings would be a good
next step in evaluating whether timed code recall would be a good
addition to the broader assessment toolkit. We see the possibility
of using time-constrained code recall both for research purposes
and possibly also in exams as an additional piece of evidence of
increasing expertise.

5.4 Limitations of work

First, we acknowledge the selection bias as the participants were
volunteers from a specific course. Thus, we cannot state whether
or to what extent our observations generalize. However, based
on previous research on code comprehension, we believe that the
development of programming plans in novice and more experienced
students could be quantified in a broader classroom context.

Second, we did not have access to information on students’ pro-
gramming experience or grades. Therefore, we were unable to
assess the effect of these on the results. Third, since the listings
were the same throughout the study, there is the possibility that
students learned (parts of) the listings by the second or third time.
Fortunately, only a few students participated more than once, so
we have some evidence that this is not the case.

Fourth, we acknowledge that students could have written the
code with different symbol names even though the task was to
write the shown code. Our analysis focused on the exactness of
the written code and did not consider the possibility that the same
functionality could be written with different symbol names.

Fifth, we did not make corrections for multiple comparisons.
A total of eight statistical significance tests were conducted, al-
though many of them overlapped (character- vs. token-based edit
distances, whole population vs. sub-population). If we applied a
strict Bonferroni correction, the only result that would no longer be
statistically significant would be the token-based change for Listing
1 between times 1 and 2. Instead of relying on the presented sta-
tistics in making decisions on classroom activities, we recommend
using our results as a starting point for future studies. Finally, we
acknowledge that the code recall task requires eyesight and is not
suitable for visually impaired students.
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6 CONCLUSION

In this study, we evaluated the use of a time-constrained code recall
task for monitoring the development of programming plans in an
online web software development course. In the code recall task,
students were shown a code listing for a short period of time, which
they then had to recall and replicate. The experiment was presented
three times in the course materials. At each time, students were
shown two listings, one easier and one more complex. Our research
questions and their answers are as follows:

RQ1: Can a sequence of time-constrained code recall tasks be
used to analyze programming plan development? Answer: Our
results show that we can measure the development of students pro-
gramming plans using the time-constrained code recall system. We
were able to see increased accuracy in students’ web programming
plans from time 1 to time 3, which indicates an increased ability to
recognize and recall code after only a brief glance.

RQ2: How does studying affect the correctness of students’ time-
constrained code recall task results? Answer: The students were
quite good at recalling the easier code already the first time, possibly
because they were already familiar with some of the constructs.
However, there was still a minor improvement in recall correctness
from the first to the second time. For the second, more complex,
listing, the students had no prior exposure to similar code. Thus,
recalling the listing the first time was more challenging, and we
observed a considerable improvement in recall correctness from the
first time to the second time. The second time, the students also had
some exposure to code in the complex listing, which made it easier
to recall the code. No major improvements in terms of correctness
were observed between the second and third time.

RQ3: What aspects of code elements are most focal in students’
web programming plans Answer: For the first time, we observed
that the key focal code elements were the basic structure of the
function and error handling. As the student’s expertise grew during
the course, the middleware function parameters and the functional-
ity used for handling asynchronous requests became more familiar.
We also observed that students omitted redundant content, which
was evidenced in the output sent as a response — students often
skipped the word ‘when’, even though it was present.

Our results highlight that time-constrained code recall tasks are
a potential addition to the toolkit used for assessing student devel-
opment. As a part of our future work, we are employing the same
methodology in an introductory programming course to assess the
development of programming plans in novice programmers. We are
also replicating the present study in the web software development
course, where we also collect data on students’ prior programming
background and their progress in the course. In future iterations of
the study, we are interested in exploring possibilities to consider
the relative importance of recalling different parts of the code. For
example, accurately recalling the correct syntax for a function body
may be more important in students’ learning than the ability to
recall symbol names.
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