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The audio industry uses several sample rates interchangeably, and high-quality sample-rate
conversion is crucial. This paper describes a frequency-domain sample-rate conversion method
that employs a single large (“giant”) fast Fourier transform (FFT). Large FFTs, corresponding
to the duration of a track or full-length album, are now extremely fast, with execution times
on the order of a few seconds on standard commercially available hardware. The method first
transforms the signal into the frequency domain, possibly using zero-padding. The key part of
the technique modifies the length of the spectral buffer to change the ratio of the audio content
to the Nyquist limit. For up-sampling, an appropriate number of zeros is inserted between the
positive and negative frequencies. In down-sampling, the spectrum is truncated. Finally, the
inverse FFT synthesizes a time-domain signal at the new sample rate. The proposed method
does not result in surviving folded spectral images, which occur in some instances with time-
domain methods. However, it causes ringing at the Nyquist limit, which can be suppressed by
tapering the spectrum and by low-pass filtering. The proposed sample-rate conversion method
is targeted to offline audio applications in which sound files need to be converted between
sample rates at high quality.

0 INTRODUCTION

Sample-rate conversion (SRC) is probably more heavily
used in audio than in any other field of signal process-
ing [1]. The audio industry commonly uses many different
sample rates [2, 3], and it is necessary to be able to switch
between them without sacrificing sound quality [4]. This
paper describes a high-quality SRC method, which uses
the fast Fourier transform (FFT) and inverse FFT (IFFT)
algorithms to scale the spectrum of the audio signal, thus
allowing an efficient and algorithmically simple conversion
between any two sample rates.

The most commonly used sample rate is 44.1 kHz, cho-
sen as the standard for the CD system in the late 1970s [5].
The decision was related to the compatibility with video,
which had previously been used for storing digital signals
[6, 5]. Later, the 44.1-kHz sample rate was adopted for use
in several other consumer audio systems, including Digital
Audio Tape players [3], and more recently in music stream-
ing services, such as Spotify [7], Amazon Music [8], Apple
Music [9], Deezer [10], Tidal [11], and Qobuz [12].

In professional audio and video, however, 48 kHz is the
recommended choice [2]. It was available in DAT play-
ers and is also used in the European digital radio standard
Digital Audio Broadcasting and on DVD movie sound-
tracks. Historically, the sample rate of 32 kHz was assigned

for broadcasting because it was sufficient for the 15-kHz
frequency range of radio broadcasts [2]. Since the 1990s,
oversampled rates such as 96 and 192 kHz have become
popular in music production [3]. Furthermore, the family
of multiples of 44.1 kHz, namely 88.2 and 176.4 kHz, are
available in some systems, because they are included in
the MPEG-2 audio standard. The highest sample rates used
currently for multi-bit audio signals are 352.8 [3] and 384
kHz [13, 14].

SRC is also used as a processing stage within certain
audio algorithms, where sound quality can be improved by
oversampling a signal prior to nonlinear processing [15,
16]. Furthermore, techniques similar to SRC are required
to implement wavetable and sampling synthesis [17–19],
the varispeed function [20], and pitch shifting [21], which
are all commonly used in music production. These applica-
tions require a large variety of arbitrary conversion ratios.
However, some such applications require real-time low-
latency SRC or time-varying conversion ratios and are not
discussed here.

Because of the plurality of sample rates and because
practically all music production projects require SRC, such
as between 48 kHz or its multiples and the consumer
sample rate 44.1 kHz, SRC has become an important re-
search problem [22–27]. Most SRC methods are based on
a finite-impulse–response (FIR) filter—either a full-band
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interpolator for up-sampling or a low-pass interpolator for
down-sampling [28, 27, 1]. Conventional SRC methods
then produce the output signal at the converted rate by com-
puting the necessary output samples consecutively. Signal
processing techniques for SRC include polyphase struc-
tures allowing both integer and rational conversion ratios
[29–31, 27, 32], the Smith–Gossett algorithm based on a
tabulated windowed sinc function [22], and the combina-
tion of an integer-factor up-sampler and a low-order vari-
able fractional-delay filter, or Farrow filter [33, 34, 24, 25,
35].

It is well known that the discrete Fourier transform (DFT)
ideally interpolates the spectrum of a signal [36]. This has
led to the popular zero-padding technique used in con-
nection with the FFT: simply adding zeros at the end of
a time-domain signal does not modify the spectrum of
the signal but allows for interpolation in the spectral do-
main [36]. This is a useful and common tool in spectral
analysis.

The corresponding property of the DFT that it interpo-
lates any bandlimited signal perfectly in the time domain
has remained more obscure in audio, however, although
several papers and books hint at applications [37, 38, 36,
39]. When the spectrum of a signal is appended with zeros,
the inverse DFT (IDFT) effectively applies the aliased sinc
function for time-domain interpolation [37, 36]. Bi and
Mitra [40, 41] have suggested using the FFT, frequency-
domain zero-padding, and IFFT for SRC either for short
sequences or for long samples divided into shorter blocks
that could be processed with FFT and IFFT at the time.
They also showed that there is a time-domain aliasing error
at the beginning and end of the resulting signal [40]. More
recently, however, it has become possible to quickly com-
pute very long FFTs containing tens or hundreds of millions
of points or more, sufficient to represent many minutes of
audio [42].

This paper proposes the giant-FFT method, which em-
ploys very large FFT and IFFT lengths for SRC of com-
plete audio files lasting for many minutes. The time-domain
aliasing in the interpolation becomes negligible at large
IFFT lengths, which implies that the giant FFT is virtually
an ideal SRC method. The giant-FFT method is suitable
to all integer and rational conversion ratios. It is proposed
to convert the whole signal using the FFT at once, which
has recently become possible. For example, in MATLAB
an FFT of a 50.7-min audio sample at 44.1 kHz, which fits
an entire CD album and contains over 134 million samples,
takes 3.4 s on an Intel Xeon E3 v5 running on a Lenovo
P50.

Note that the giant-FFT technique efficiently implements
the limiting case of ideal sinc interpolation. The only down-
side is a ringing artefact at the Nyquist frequency, which is
inaudible and can be suppressed if needed. The frequency-
domain tapering or a low-pass filter, which attenuates the
ringing, however, causes time-domain smearing, and after
that, the method no longer implements perfect sinc interpo-
lation. It is expected that the proposed method will be useful
in offline SRC tasks such as mastering audio for different
media.

The rest of this paper is organized as follows. SEC. 1
describes the giant-FFT SRC method for both up-sampling
and down-sampling, demonstrates its time-domain interpo-
lation capabilities, proposes a frequency-domain tapering
method to suppress an artefact at the Nyquist limit, and
suggests methods for choosing FFT and IFFT lengths. SEC.
2 compares the method with other techniques and provides
examples of applying the proposed method to a critical test
signal and a very long musical example. Some concluding
remarks appear in SEC. 3.

1 SRC USING THE FFT

This section describes the FFT-based method for interpo-
lating and decimating audio signals. An economic strategy
to select the zero-padding factors for both time and fre-
quency buffers is introduced.

For reference, the definition of the DFT and IDFT, relat-
ing a time-domain sequence y[n], n = 0, 1, 2 . . . , L − 1,
and its transform Y[k], k = 0, 1, 2, . . . , L − 1, both of
length L samples, are provided here:

Y [k] =
L−1∑
n=0

y[n]e−2πjkn/L , (1)

y[n] = 1

L

L−1∑
k=0

Y [k]e2πjkn/L .

Here, j is the imaginary unit. Notice that the scaling by 1/L
is included in the IDFT in Eq. (1), which is the same choice
as in MATLAB’s FFT and IFFT implementations.

The FFT and IFFT are simply fast algorithms to com-
pute these transformations and were originally proposed for
power-of-two values for L [36]. The terms FFT and IFFT are
used here to indicate the wider family of methods that yield
a fast computation for any integer L (even a prime [43]),
with some variation in the resulting efficiency. Currently,
even the worst-case choice of prime L is not out of range
of audio applications. For the example mentioned above of
3.4-s computation time for 50.7 min of audio at 44.1 kHz,
L was chosen to be a power of two: L = 227 = 134,217,728.
For a very slightly larger L = 134,217,757 (prime) length
transform, computation time is 62.2 s—still not excessive
for an album-length SRC task. Such prime-length trans-
forms are easily avoided, as described below.

1.1 Up-Sampling
Up-sampling is the process of increasing the sampling

density in an audio signal. Ideally, the spectral content of the
signal should be kept unchanged. In practice, the resampled
signal is oversampled, since at least a small fraction of its
spectrum is empty. In the context of SRC, up-sampling is
often called interpolation.

In Fig. 1(b), the basic principle of interpolation using
the giant FFT is illustrated, as applied to a real signal of
length N samples. (Here and henceforth in this article, for
simplicity, N is assumed to be even.) First the FFT is applied
to compute the complex spectrum of the original signal, the
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Fig. 1. (a) Original magnitude spectrum of the signal, (b) the principle of up-sampling using the giant-FFT SRC algorithm by zero-
padding in the frequency domain, and (c) down-sampling by truncation of the middle part of the spectrum. The handling of the special
point at the Nyquist limit is explained in (b) and (c).

magnitude of which is shown in Fig. 1(a). For real signals,
all spectral information is included in bins 0 to N/2, where
bin 0 corresponds to 0 Hz and bin N/2 to the Nyquist limit, or
half of the sampling frequency. Values in the remaining bins
(N/2) + 1. . .N − 1, which are sometimes called “negative
frequencies” or an “image spectrum,” are redundant and
satisfy Hermitian symmetry.

Frequency-domain zero-padding is illustrated in
Fig. 1(b). The modified spectrum, here called X′, has length
N′ > N and retains all information in the original spectrum
X, except for at the Nyquist bin. The image spectrum is
reproduced at the other end of X′. The data contained at
the Nyquist limit, which is real, is divided so that half is
inserted at its original locations (bin number N/2) and half
at the bin location just before the image spectrum, as sug-
gested by Adams [44]. The rest of the buffer is filled with
zeros, so that there will be exactly N′ − N − 1 zeros filling
the center part of the buffer.

The construction of the modified spectral buffer X′(k) of
length N′ > N can be formally expressed as follows:

X ′(k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X (k), 0 ≤ k < N
2

1
2 X ( N

2 ), k = N
2

0, N
2 < k < N ′ − N

2
1
2 X ( N

2 ), k = N ′ − N
2

X (k − N ′ + N ), N ′ − N
2 < k < N ′,

(2)

where X(k) is the original complex spectrum and k is the
spectral bin index. The second and fourth cases above in-
dicate how the spectral value at the Nyquist bin is divided
in two. When constructed this way, the modified spectrum

X′(k) retains Hermitian symmetry, and thus, after the IFFT
is applied, the result is a real-valued signal. This signal
should then be scaled by the factor F ′

s/Fs, where F ′
s and

Fs are the new and original sample rates, respectively. The
conversion process is zero-phase because the output signal
is time-synchronous with the input signal.

In theory, this procedure should be exact in the case of a
time-limited and bandlimited input sequence. Although it is
not possible to achieve this in infinite precision, this prop-
erty can effectively hold in finite precision (here, double-
precision floating point) for some signal types, such as a
Gaussian-windowed sinusoid. See Fig. 2, where Fig. 2(a)
shows samples of such a 10-kHz windowed sinusoid. The
length of the test signal is 2,205,000 samples, correspond-
ing to 50 s at 44.1 kHz. Consider now up-sampling to
96 kHz. The FFT is applied, and the spectrum is zero-
padded to the length of 4,800,000 points, where the ratio
4,800,000/2,205,000 = 2.177 corresponds to that of the
new and old sample rates 96.0 and 44.1 kHz. Then, the
4.8-million–point IFFT is executed, which takes about 0.05
s in MATLAB. Fig. 2(b) shows the converted signal sam-
ples (dots) and the exact modulated sinusoid (solid line).
Fig. 2(c) shows that the approximation error does not ex-
ceed 2.8 × 10−14 and that the resampled signal is exact to
near machine precision.

Fig. 3(a) shows the magnitude of the FFT spectrum of the
test signal, including the image spectrum above the Nyquist
limit at 22.05 kHz. Fig. 3(b) shows the magnitude spectrum
of the interpolated signal up to the new Nyquist limit of
48 kHz. It can be seen that the spectrum has remained
unchanged up to 22.05 kHz. Notably, the spectrum is empty
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Fig. 2. (a) A Gaussian windowed 10-kHz sinusoid (solid line)
sampled at 44.1 kHz (points), (b) the same signal interpolated by
factor 2.177 to 96 kHz using the giant FFT (points) and the exact
signal (solid line), and (c) the difference of the interpolated and
exact signals.

Fig. 3. Magnitude spectra of (a) the windowed 10-kHz sinusoid
sampled at 44.1 kHz, showing both positive and negative (above
the Nyquist limit) frequencies, and (b) the same signal converted
to the sample rate of 96.0 kHz using the 4.8-million–point FFT.
Notice the absence of spectral images in (b).

in the stop-band between 22.05 and 48 kHz, staying 300
dB lower than the peak. The noise floor visible in Fig. 3(b)
between 22.05 and 48 kHz is numerical noise typical to
the FFT algorithm in MATLAB. It is the convention in
hifi audio to require disturbances not to exceed −100 dB,
whereas in professional audio, during studio production, the
dynamic range should be at least 120 dB for highest-quality

Fig. 4. (a) Gaussian windowed 10-kHz sinusoid (solid line) sam-
pled at 44.1 kHz (points), (b) decimated by factor 0.7256 to 32
kHz using the giant FFT (points) with the exact signal (solid line),
and (c) the approximation error.

work. The giant-FFT method meets these requirements,
with operation in double precision.

1.2 Down-Sampling
Down-sampling, or decimation, refers to the lowering of

the sample rate, which requires ensuring that the spectrum
of the signal does not exceed the new Nyquist limit. In
conventional SRC techniques, down-sampling is always
paired with an appropriate low-pass filter.

In the giant-FFT method, down-sampling is accom-
plished by truncating the FFT buffer of the input signal
according to the ratio of the output and input sample rates:
The lower part of the spectrum up to the new Nyquist limit,
together with its image spectrum, are retained, but values in
the rest of the bins are discarded, as illustrated in Fig. 1(c).
This can be expressed formally as

X ′(k) =
⎧⎨
⎩

X (k), for 0 ≤ k < N ′
2

0, for k = N ′
2

X (N − N ′ + k), for N ′
2 < k ≤ N ′ − 1,

(3)

where it is assumed that N > N′. Note that in down-
sampling, according to Eq. (3), a zero is inserted at the
Nyquist bin k = N′/2 in the new spectrum buffer X′.

Fig. 4 shows an example of down-sampling the Gaus-
sian windowed sinusoid from 44.1 kHz to 32 kHz, which
is one of the common large rational conversion ratios
(320/441 = 0.7256). The input signal has been first zero-
padded to the length of N = 2,205,000 samples prior to
the FFT, which is also the length of the FFT buffer. The
FFT spectrum was truncated to the length N′ = 1,600,000
points, as described in Eq. (3) and illustrated in Fig. 1(c).
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Fig. 5. Magnitude spectrum of the Gaussian windowed 10-kHz
sinusoid down-sampled from 44.1 kHz to 32 kHz using the giant
FFT, showing both positive and negative frequencies (above 16
kHz).

The ratio of the output and input buffer lengths, 1.6 million
and 2.205 million, is equal to the desired conversion ratio,
so there is no frequency error. There is no need for any low-
pass filter design or execution in the FFT-based decimation,
apart from the truncation of the spectral buffer.

The time-domain approximation error shown in Fig. 4(c)
is again near machine precision. Fig. 5 shows the spectrum
of the converted signal, which may be compared with that
of the original presented in Fig. 3(a). It is seen that the
spectrum has been cleanly cut at 16 kHz, which is the new
Nyquist limit at the sample rate of 32 kHz. There is no
visible aliasing or numerical noise in Fig. 5.

1.3 Frequency-Domain Tapering
Although the previous examples show excellent perfor-

mance, the basic giant-FFT SRC method does not produce
acceptable results for full-band audio signals. The reason is
that both Eqs. (2) and (3) implement an abrupt truncation of
the frequency response at the Nyquist limit, which causes
an artefact at that frequency range, whenever the input sig-
nal contains energy at the highest frequencies. This section
illustrates this problem and offers as a solution a frequency-
domain tapering technique, which suppresses the ringing.

A suitable tapering can be obtained with half of the cosine
function. A real-valued non-negative weighting sequence
W(k) is defined here for a spectrum containing M bins:

W (k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ k, kc

1 + cos
(

π
2

k−kc+1
M/2

)
2

, kc ≤ k ≤ M/2

1 + cos
(

π
2

kc−k+1
M/2

)
2

, M/2, k ≤ M/2 + kc

1, M/2 + kc, k, M,

(4)

where kc is the bin index at which the tapering begins (at
positive frequencies). The sequence is symmetric with re-
spect to its center value W(M/2), which corresponds to the
Nyquist bin. Fig. 6 shows an example of a million-point
weighting function W(k), which starts the tapering at 90% of
the Nyquist limit, or at bin 450,000. Above the Nyquist bin
500,000 the same behavior is reflected to the image spec-
trum frequencies. When the weighting function is used, the
IFFT is applied to the spectrum W(k)X′(k), which requires

400,000 450,000 500,000 550,000 600,000
0

0.5

1

Fig. 6. Frequency-domain weighting function tapering the highest
frequencies to zero at the Nyquist bin to suppress the artefact at
the Nyquist frequency. Only the center part of the million-point
sequence is presented.

Fig. 7. Impulse, after sample-rate conversion from 44.1 to 96
kHz, both with and without frequency-domain tapering.

point-wise complex multiplication. A clever implementa-
tion modifies only the spectral bins for which the weighting
function is not 1.

As an example, consider the worst case of SRC for an
impulse; ideal interpolation naturally produces oscillations
that decay gradually in the new sample rate. The proposed
tapering in the frequency domain greatly decreases the
spread of such oscillations away from the target location
of the impulse. In Fig. 7, impulses are plotted on a log
scale, after conversion from 44.1 to 96 kHz, both with and
without tapering. If it is desired to suppress the ringing
more, the converted signal may be low-pass filtered.

1.4 Selecting Input and Output FFT Lengths
Suppose the input signal to be converted consists of Nin

samples, at sample rate Fs. In order to sample-rate convert
this sequence to sample rate F ′

s using a single pair of FFT
and IFFT operations, one must first zero pad the original
sequence to N samples, with N ≥ Nin. Furthermore, the
length of the sample-rate–converted sequence will be N′. It
is important to find good choices of integers N and N′ that
minimize zero-padding and thus FFT length.

The sequence lengths N and N′ must be in the ratio of
the sample rates F ′

s and Fs. Suppose that this ratio can be
written as

F ′
s

Fs
= P

Q
(5)

for integers P and Q with no common factors. See Table 1
for (P, Q) for commonly encountered audio sample rates.

Now, let

N = QM (6)

and

N ′ = P M, (7)
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Table 1. Pairs (P, Q) for sample rate ratios F ′
s/Fs as indicated, for input and output sample rates Fs and F ′

s in kilohertz.

Input sample rate Fs

Output sample rate F ′
s 32 kHz 44.1 kHz 48 kHz 96 kHz 192 kHz

32 kHz ··· (320, 441) (2, 3) (1, 3) (1, 6)
44.1 kHz (441, 320) ··· (147, 160) (147, 320) (147, 640)
48 kHz (3, 2) (160, 147) ··· (1, 2) (1, 4)
96 kHz (3, 1) (320, 147) (2, 1) ··· (1, 2)
192 kHz (6, 1) (640, 147) (4, 1) (2, 1) ···

for some integer M yet to be determined. Note that, given
that P/Q is in lowest terms, at least one of P and Q must
be odd. This implies that, in order to obtain frame sizes N
and N′ that are even, M must be chosen to be even. Also,
one would like to select M such that N is as close to Nin as
possible. This implies that

M ≥ Mmin = 2

⌈
Nin

2Q

⌉
, (8)

where � · � indicates a ceiling operation. Given that M
appears as a factor in both N and N′, for the sake of per-
formance, it may be desirable to choose M even such that
M > Mmin if a suitable M can be found that is composite
and ideally factorizable into small prime numbers. The pre-
cise question of how to choose M subject to such transform
efficiency issues will not be discussed further here.

As an example, consider an initial set of Nin = 600,000
samples at Fs = 44.1 kHz, which corresponds to 13.6 s and
where the new sample rate is F ′

s = 48 kHz. In this case,
Q = 147 according to Table 1, and Mmin = 4,082, yielding
according to Eq. (6) a frame size N = QM = 600,054
that is only slightly larger than Nin. Unfortunately, 4,082
possesses the relatively large factor of 157. A better choice
for M might then be M = 4,096, which is a power of two,
and yields a slightly larger frame size of N = QM = 602,
112 = 212 × 3 × 72. In practice, this means that the input
sequence must be padded with 2,112 zeros before the FFT.
For N′ then, using Eq. (7) and P = 160, which can be read
from Table 1, the value N′ = PM = 160 × 4,096 = 655,360
is obtained. This means that N′ − N = 53,248 zeros must
be inserted in the FFT buffer prior to the IFFT to achieve
the desired SRC from 44.1 to 48 kHz.

Finally, the extra zeros can be truncated from the end
of the output sequence. The output signal length Nout in
samples, at the new sample rate, is

Nout =
⌈

F ′
s

Fs
Nin

⌉
. (9)

This implies that there are N′ − Nout excessive zeros in
the IFFT result x′ that must be truncated. In the example
case above, 655,360 – 653,062 = 2,298 zero samples are
discarded from the end of the signal to reach the correct
length. Notice that in the case above (and in most practical
cases, including those common choices of sample rates
in Table 1), the amount of zero-padding required in the
time domain to obtain N samples from Nin samples, is very
small—here approximately 0.35%.
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Fig. 8. Spectrogram of a 5-s linear chirp at 44.1 kHz, where 1,024-
point Chebyshev windows with a 130-dB stop-band rejection and
512-point overlap were used.

1.5 General Algorithm Summary
A general form of the FFT-based SRC algorithm, which

applies to both up-sampling and down-sampling cases, is
described next. Given input sequence xin (length Nin sam-
ples) at original sample rate Fs, which is to be converted to
the new sample rate F ′

s , do the following steps:

1. Choose sequence lengths N and N′, see SEC. 1.4;
2. Zero-pad xin to obtain x of length N ≥ Nin samples;
3. Perform FFT to obtain X with N bins;
4. Apply frequency-domain tapering with W, if desired;
5. Zero-pad [Eq. (2)] or truncate [Eq. (3)] spectrum X

symmetrically to obtain X′ with N ′ = N F ′
s/Fs bins;

6. Perform IFFT to obtain x′ of length N′ samples;
7. Scale x′ by a factor P/Q;
8. Remove additional zeros to obtain output signal xout,

see SEC. 1.4; and
9. Apply a low-pass filter at the Nyquist limit, if de-

sired.

2 EVALUATION AND COMPARISON

This section shows how the proposed method compares
with traditional SRC techniques, which process the input
signal in the time domain using an FIR filter. The effec-
tiveness of the frequency-domain tapering technique is also
demonstrated in both up-sampling and down-sampling. Fi-
nally, a very long music signal is first up-sampled and then
down-sampled back to the original sample rate, to analyze
the conversion error.

A linear chirp running from 0 Hz to 20 kHz in 5 s is used
as the test signal. It is generated at the sample rate of 44.1
kHz. One second of silence (zero samples) is inserted at
the end of the test sound file. Fig. 8 shows its spectrogram
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Fig. 9. For comparison, SRC from 44.1 to 96 kHz using (a) linear
interpolation, showing heavy imaging, and (b) a polyphase FIR
filter having 12,801 coefficients, which performs better.

containing a single spectral component. Notice the faint
vertical line at 5.0 s, which is the transient caused by the
abrupt ending of the chirp.

2.1 Up-Sampling Example and Comparison
The test signal is converted to the sample rate of 96

kHz using three different methods. First, Fig. 9(a) shows
the result of the conversion using the simplest method,
linear interpolation, which resamples the signal using a
two-tap FIR filter [45]. Fig. 9(a) shows many extra spectral
components, which are images. Some of the images are
attenuated by only about 40 dB, which means that the result
is badly corrupted and useless for high-quality audio work.

Fig. 9(b) shows the spectrogram after the signal has been
converted using a high-order polyphase FIR filter, which
is a better method than linear interpolation (the resample
function of MATLAB was used). The polyphase filter re-
quires only 20 FIR filter coefficients to be applied per out-
put sample, while giving identical results as if a polyphase
low-pass FIR filter of length 12,801 was used in a direct
implementation. The cutoff frequency of the filter is 21,920
Hz, and it attenuates the images much better than linear in-
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Fig. 10. Spectrograms of the chirp after converting from 44.1
to 96 kHz using the proposed method (a) without and (b) with
the proposed frequency-domain tapering above 20 kHz, which
suppresses the ringing at the original Nyquist frequency associated
with up-sampling.

terpolation. The loudest image component at about 24 kHz
remains below −65 dB. At lower (audio) frequencies, the
images remain at −98 dB or lower, which suggests that the
result is close to being acceptable for hifi use.

Fig. 10(a) shows the result of using the proposed method.
The original chirp contains 264,600 samples and is first
zero-padded to 336 × 882 = 296,352 samples, and the FFT
is applied. In the frequency domain, the spectrum is zero-
padded to the length of 731 × 882 = 645,120 points, after
which the IFFT is used to obtain the output signal. The extra
samples are discarded. The spectrogram is generally very
clean, but a horizontal artefact, or ringing, at the original
Nyquist limit 22 kHz is observed, which originates from the
abrupt truncation of the spectrum through zero-padding.

Fig. 10(b) demonstrates how the frequency-domain ta-
pering proposed in SEC. 1.3 helps reduce the artefact at the
original Nyquist frequency. A cosine weighting function is
used to taper the spectrum above 19,845 Hz, which is out-
side the audio range. As a result, the artefact at 22 kHz has
been suppressed in Fig. 10(b). A click, which can be seen
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Fig. 11. Spectrogram of the error in the converted chirp at 96 kHz,
for which 1,024-point Chebyshev windows with a 200-dB stop-
band rejection and 512-point overlap were applied. The dashed
line indicates the location of the chirp that has been canceled,
cf. Fig. 10(b). Note the scaling is different than that in the other
spectrograms.

as a faint vertical line at 5.0 s, is still visible but is part of
the ideal test signal (see Fig. 8).

Because the frequency-domain SRC method is a zero-
phase technique, in the case of the synthetic test signal, it
is possible to extract the conversion error. A copy of the
linear chirp is generated at the 96-kHz sample rate and is
subtracted from the converted signal, which corresponds to
Fig. 10(b). Because the error signal is very faint, it has been
amplified by factor 1,000,000 or by 120 dB prior to com-
puting its spectrogram shown in Fig. 11. It can be seen that
the spectrogram contains some similar diagonal patterns to
those seen in Figs. 9(a) and 9(b), but they are fragmented
and very faint, appearing over 200 dB below the peak signal
level. Furthermore, a soft ringing appears at about 20 kHz,
which is where the chirp ends. This test verifies that the
imaging and rounding errors remain sufficiently small for
hifi audio applications.

2.2 Down-Sampling Example
Fig. 12 gives an example of down-sampling the 5-s chirp

from 44.1 to 32 kHz. This time the chirp is cut at 4.0 s,
as it exits the new frequency range, see Fig. 12(a). Again,
without the frequency-domain weighting function, an arte-
fact is born at the Nyquist frequency, which is now 16 kHz.
The image spectrum is included to better show the ringing.
Fig. 12(b) reveals that the weighting function tapering the
spectrum above 15 kHz, which is 93.75% of 16 kHz, deletes
the artefact. Notice a faint click at 5.0 s, which comes from
the discontinuity at the end of the original chirp and is also
visible in Fig. 8.

2.3 Testing With a Long Music Signal
Finally, the proposed FFT-based SRC method is tested

with a musical signal. As the test signal, “Tom’s Diner”
by Suzanne Vega was chosen. The duration of the original
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Fig. 12. Spectrograms of the chirp at 32 kHz decimated with
the giant-FFT technique (a) without and (b) with the proposed
frequency-domain tapering. Here both the baseband and image
spectrogram are presented to show the ringing at the new Nyquist
frequency 16 kHz and how it is suppressed using tapering prior to
down-sampling.

stereo recording at the sample rate of 44.1 kHz is 2 min
11 s and contains 5,776,512 samples per channel. To study
the performance of the proposed method in the case of a
lengthy recording, such as a full music album, the same
song is concatenated 24 times, yielding a long signal of 52
min and 24 s, or 138,636,288 samples per stereo channel.

The long test signal is first converted from 44.1 to 48 kHz
using P = 160, Q = 147, and M = 943,104, which produces
an interpolated signal of 150,896,640 samples per channel.
To allow a direct comparison with the original, this signal
is converted back to 44.1 kHz using P = 147, Q = 160,
and M = 943,104 (same M as above). The resulting signal
has 138,636,288 samples, the same as the long test signal
before any conversion. The same processing is applied to
both stereo channels separately. The conversion to a higher
sample rate and back gives access to an error signal by sim-
ply subtracting the twice-converted signal from the original
one.

Fig. 13 shows the envelope of the long test signal (maxi-
mum value, −11.8 dB) and the conversion error (maximum
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Fig. 13. Temporal envelopes of the 52-min−long music signal
and the error after converting it from 44.1 to 48 kHz and back.
The bottom curve is the error signal low-pass filtered at 20 kHz to
reduce the ringing artefact near the Nyquist limit.

value, −88.0). Unfortunately, the error exceeds the −120-
dB and −100-dB limits. Further analysis shows that the
peak error occurs near the original Nyquist limit of 22.05
kHz, where it does not affect the sound quality. For this
reason, the original and converted signals are low-pass fil-
tered with a linear-phase FIR of length 215 coefficients to
remove the inaudible error. The filter’s cutoff frequency
(−6-dB point) is set at 20.2 kHz and the stop-band ripple
is −100 dB at frequencies above 20.7 kHz. The conversion
error after the filtering operation, which is shown as the
bottom curve in Fig. 13, now remains below −195 dB in
the audio band, which is sufficient for hifi use.

This test demonstrates that the proposed giant-FFT SRC
method does not suffer from accumulating numerical er-
rors even when extremely long signals are processed—not
at least when double-floating-point computing is in use.
However, the test also suggests that the frequency-domain
tapering by itself may be insufficient in suppressing the
high-frequency ringing for the most critical cases, and ad-
ditional postprocessing using a low-pass filter (or a Nyquist
notch filter) in the time domain may be worthwhile.

3 CONCLUSION

An FFT-based technique is proposed for converting au-
dio signals between arbitrary sample rates without notable
quality degradation. The method performs the rate con-
version without explicitly having to design or apply any
interpolation or decimation filters, which have been tra-
ditionally used for implementing SRC. Furthermore, the
method is conceptually simpler than SRC systems based
on interpolating filters, because there is no need to keep
track of the exact time locations of output samples.

The key idea in the described method is to employ the
theoretically perfect time-domain interpolation capability
of the Fourier transform for bandlimited signals. This is
achieved by zero-padding or truncating the FFT spectrum

of the signal, which essentially changes the ratio of the
spectral content and Nyquist limit. The IFFT yields all
converted signal samples at once. The method is called the
giant FFT, because the whole signal is processed in one go
using a single large FFT. This requires the use of very long
FFTs, typically millions of points for audio signals that last
for minutes, which are still quick to compute.

The giant-FFT method has been compared with conven-
tional SRC techniques. It has been shown that the resulting
spectrum of the converted signal is notably free of spectral
imaging, which is a nuisance in time-domain SRC methods.
However, in the FFT-based method, a ringing artefact ap-
pears near the original or new Nyquist limit and may have
to be suppressed. This paper suggests a frequency-domain
tapering toward the Nyquist limit to significantly attenuate
the artefact. Nevertheless, a test case shows that for best
quality, it may be necessary to use a low-pass or Nyquist
notch filter to further reduce the high-frequency ringing.

It remains to be investigated how the sequence of the very
long FFT and IFFT operations together keep the numeri-
cal precision high. The numerical error grows with FFT
size—a feature that has seen substantial investigation [46,
47]. As double-precision floating-point precision is not al-
ways available, it would be of interest to check whether
the proposed method provides good results using a single-
precision floating-point number system. Future work also
includes a formal listening test with experienced listeners,
such as mastering engineers, to verify that the sound quality
is indeed preserved using the proposed SRC method. Var-
ious critical test signals, such as nonstationary and noisy
sounds and speech should be included in such a test. It is
expected that the giant-FFT method described in this paper
will be useful in many audio and music applications, where
sound files need to be converted between sample rates at
high quality.
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pling for Nonlinear Waveshaping: Choosing the Right Fil-
ters,” J. Audio Eng. Soc., vol. 67, no. 6, pp. 440–449 (2019
Jun.). https://doi.org/10.17743/jaes.2019.0012.

[16] D. Albertini, A. Bernardini, and A. Sarti,
“Antiderivative Antialiasing Techniques in Non-
linear Wave Digital Structures,” J. Audio Eng.
Soc., vol. 69, no. 7/8, pp. 448–464 (2021 Jul.).
https://doi.org/10.17743/jaes.2021.0017.

[17] D. Rossum, “Constraint Based Audio Interpo-
lators,” in Proceedings of IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics
(WASPAA), pp. 161–164 (New Paltz, NY) (1993 Oct.).
https://doi.org/10.1109/ASPAA.1993.379972.

[18] R. C. Maher, “Wavetable Synthesis Strategies for
Mobile Devices,” J. Audio Eng. Soc., vol. 53, no. 3, pp. 205–
212 (2005 Mar.).
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[35] A. Chinaev, P. Thüne, and G. Enzner, “Low-
Rate Farrow Structure With Discrete-Lowpass and Poly-
nomial Support for Audio Resampling,” in Proceed-
ings of the 26th European Signal Processing Confer-
ence (EUSIPCO), pp. 475–479 (Rome, Italy) (2018 Sep.).
https://doi.org/10.23919/EUSIPCO.2018.8553469.

[36] J.O. Smith III, Mathematics of the Discrete Fourier
Transform (DFT) With Audio Applications (Palo Alto, CA)
(W3K Publishing, 2007), 2nd ed.

[37] T. J. Cavicchi, “DFT Time-Domain Interpolation,”
in Digital Signal Processing, pp. 441–454 (Wiley, New
York, NY, 2000).

[38] D. Fraser, “Interpolation by the FFT Revisited—An
Experimental Investigation,” IEEE Trans. Acoust. Speech
Signal Process., vol. 37, no. 5, pp. 665–675 (1989 May).
https://doi.org/10.1109/29.17559.

[39] R. G. Lyons, Understanding Digital Signal Pro-
cessing (Pearson Education, Boston, MA, 2011), 3rd ed.

[40] G. Bi and S. K. Mitra, “Sampling Rate Conversion
in the Frequency Domain [DSP Tips and Tricks],” IEEE
Signal Process. Mag., vol. 28, no. 3, pp. 140–144 (2011
May). https://doi.org/10.1109/MSP.2011.940413.

[41] G. Bi and S. K. Mitra, “FFT-Based Sam-
pling Rate Conversion,” in Proceedings of the 7th
IEEE Conference on Industrial Electronics and
Applications (ICIEA), pp. 428–431 (2012 Jul.).
https://doi.org/10.1109/ICIEA.2012.6360765.
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