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a b s t r a c t 

Humans rapidly extract diverse and complex information from ongoing social interactions, but the perceptual 

and neural organization of the different aspects of social perception remains unresolved. We showed short movie 

clips with rich social content to 97 healthy participants while their haemodynamic brain activity was measured 

with fMRI. The clips were annotated moment-to-moment for a large set of social features and 45 of the features 

were evaluated reliably between annotators. Cluster analysis of the social features revealed that 13 dimensions 

were sufficient for describing the social perceptual space. Three different analysis methods were used to map the 

social perceptual processes in the human brain. Regression analysis mapped regional neural response profiles for 

different social dimensions. Multivariate pattern analysis then established the spatial specificity of the responses 

and intersubject correlation analysis connected social perceptual processing with neural synchronization. The 

results revealed a gradient in the processing of social information in the brain. Posterior temporal and occipital 

regions were broadly tuned to most social dimensions and the classifier revealed that these responses showed 

spatial specificity for social dimensions; in contrast Heschl gyri and parietal areas were also broadly associated 

with different social signals, yet the spatial patterns of responses did not differentiate social dimensions. Frontal 

and subcortical regions responded only to a limited number of social dimensions and the spatial response patterns 

did not differentiate social dimension. Altogether these results highlight the distributed nature of social processing 

in the brain. 

1. Introduction 

Humans live in a complex and ever-changing social world, but how 

do we make sense of the high-dimensional and time-variable informa- 

tion constantly conveyed by our conspecifics? Prior functional imaging 

studies have localized specific aspects of social perception into different 

brain regions ( Brooks et al., 2020 ). Fusiform gyrus (FG) is consistently 

involved in the perception of faces ( Haxby et al., 2000 ) and lateral occip- 

itotemporal cortex (LOTC) in the perception of bodies ( Downing et al., 

2001 ). Temporoparietal junction (TPJ) is in turn involved in reflect- 

ing the mental states of others ( Saxe and Kanwisher, 2003 ) as well as 

in processing of social context and in focusing attention ( Carter and 

Huettel, 2013 ). Polysensory areas in the superior temporal sulcus (STS) 
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have been associated with multiple higher-order aspects of social per- 

ception ( Deen et al., 2015 ; Isik et al., 2017 ; Lahnakoski et al., 2012 ; 

Nummenmaa and Calder, 2009 ), while medial frontal cortex (MFC) has 

been extensively studied in the context of self-representation and theory 

of mind ( Amodio and Frith, 2006 ). Finally, speech-based social commu- 

nication is accomplished by a network consisting of superior temporal 

gyrus (STG) and its proximal areas STS (Wernicke area in left pSTS), 

TPJ, angular gyrus, middle temporal gyrus (MTG) and inferior frontal 

gyrus (Broca’s area in the left IFG) ( Price, 2012 ). 

Humans can however reliably process numerous simultaneously oc- 

curring features of the social world ranging from others’ facial identities 

and emotions to their intentions and mental contents to the fine-grained 

affective qualities of the social interaction. Given the computational 
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limits of the human brain, it is unlikely that all features and dimen- 

sions of the social domain are processed by distinct areas and systems 

( Huth et al., 2012 ). Although the brain basis of perceiving specific iso- 

lated social features has been successfully delineated, the phenomeno- 

logical as well as neural organization of the different social perceptual 

processes have remained poorly understood and neural responses to 

complex stimuli cannot necessarily be predicted on statistical combi- 

nation of responses to simple stimuli ( Felsen and Dan, 2005 ). Therefore 

studies based on neural responses to isolated social features may not 

generalize to real-world social perception ( Adolphs et al., 2016 ) where 

social features such as facial identities, body movements, and nonver- 

bal communication often overlap with distinct temporal occurrence pat- 

terns. 

In psychological domains including actions ( Huth et al., 2012 ), lan- 

guage ( Huth et al., 2016 ), and emotions ( Koide-Majima et al., 2020 ), 

neuroimaging studies have tackled this issue by first generating a com- 

prehensive set of modelled dimensions for the complex dynamic stimu- 

lus. Then, using dimension reduction techniques, they have assessed the 

representational similarities of the modelled dimensions, or the repre- 

sentational similarities of the brain activation patterns associated with 

each dimension. For example, a recent study found that linguistic and 

visual semantic representations converge so that visual representations 

locate on the border of occipital cortex while linguistic representations 

are located anterior to the visual representations ( Popham et al., 2021 ). 

However, a detailed representational space for social features at both 

perceptual and neural level is currently lacking. 

Commonly applied univariate analyses modelling the BOLD response 

in each voxel or region separately cannot reveal the specificity of spatial 

brain activation patterns resulting from the perception of different so- 

cial features. Consequently, they do not allow testing whether different 

perceptual features can be reliably discriminated based on their spatial 

brain activation patterns. Multivariate pattern analysis (MVPA) allows 

the analysis of information carried by fine-grained spatial patterns of 

brain activation ( Tong and Pratte, 2012 ). Pattern recognition studies 

have established that regional multivariate patterns allow distinguish- 

ing brain activation related to multiple high-level social features such as 

faces ( Haxby et al., 2001 ) and their racial group ( Brosch et al., 2013 ) in 

FG and facial expressions in FG and STS ( Harry et al., 2013 ; Said et al., 

2010 ; Wegrzyn et al., 2015 ). Perception of different goal-orientated mo- 

tor actions with different levels of abstraction can be decoded in LOTC 

and in inferior parietal lobe, suggesting that these regions process the 

abstract concepts of the goal-orientated actions, not just their low-level 

visual properties ( Wurm and Lingnau, 2015 ). Furthermore, decoding of 

goal-orientated actions was successful in LOTC when subjects observed 

the actions in both first and third person perspectives ( Oosterhof et al., 

2012 ). It however remains unresolved how specific these regional re- 

sponse profiles are across different social perceptual features. The per- 

ception and interpretation of sensory social information is vital for plan- 

ning social interaction in everyday life of people, and neuroimaging 

studies have also highlighted the centrality of social information in the 

brain function ( Hari et al., 2015 ). Accordingly, it is important to estab- 

lish how sensory social information is organized at the phenomenolog- 

ical and neural levels. 

We define social perception as perception of all possible information 

relevant to interpret social interaction. To our knowledge, there is cur- 

rently no consensus on a combined taxonomy for this broad definition. 

In social psychology, social situation has been described as a triad of 

person, situation and consequent behaviour ( Lewin, 1936 ) where these 

elements have close interact between each other ( Funder, 2006 ). How- 

ever, data-driven taxonomies have only been proposed for the elements 

separately. Person perception has been extensively studied and person 

characteristics can be categorised as a limited set of trait dimensions, 

such as Big Five ( Goldberg, 1990 ) or Big Six ( Lee and Ashton, 2004 ). 

For psychological situations, data-driven lexical studies have proposed 

limited dimensionality ( Parrigon et al., 2017 ; Rauthmann et al., 2014 ). 

Recently, in behavioural domain categorization of human actions have 

also been proposed ( Thornton and Tamir, 2022 ). For two reasons, these 

established taxonomies are suboptimal for studying social perception as 

whole. First, these taxonomical studies base their results on question- 

naires regarding social situations or rated similarities of different words 

describing social situations instead of the actual perception of social 

situations in real-life dynamic environment. Second, since the three ele- 

ments (person, situation, and behaviour) are intimately linked, it would 

be sensible to study them together. Therefore, we selected a large set of 

features from the person, situation, and behaviour domains, collected 

perceptual ratings for these features from the stimulus used in this neu- 

roimaging study and then limited the social perceptual space of the stim- 

ulus with clustering analysis. 

1.1. The current study 

In this fMRI study, we mapped the perceptual and neural represen- 

tations of naturalistic social episodes using both univariate and multi- 

variate analyses ( Fig. 1 ). We used short movie clips as stimuli because 

cinema contains rich and complex social scenarios and as it also elic- 

its strong and consistent neural responses in functional imaging studies 

( Hasson et al., 2010 ; Lahnakoski et al., 2012 ). We first aimed at es- 

tablishing a perception-based taxonomy of the social dimensions that 

human observers use for describing social scenarios, and then mapped 

the brain basis of this social perceptual space. We mapped the percep- 

tual space of social processes based on subjective annotations of a large 

array of social features ( n = 112) in the movies ( n = 96). We then used 

dimension reduction techniques to establish the representational space 

of social perception, and to reduce the multidimensional space into a 

limited set of reliable perceptual dimensions of social features. Using a 

combination of univariate regression analysis and multivariate pattern 

analysis we established that posterior temporal and occipital regions 

are the main hubs for social perception and that brain shows a gra- 

dient in social perceptual processing from broadly tuned but spatially 

dimension-specific responses in posterior temporal and occipital regions 

towards more selective responses in frontal and subcortical areas. 

2. Materials and methods 

2.1. Participants 

Altogether 102 volunteers participated in the study. The exclusion 

criteria included a history of neurological or psychiatric disorders, alco- 

hol or substance abuse, BMI under 20 or over 30, current use of medica- 

tion affecting the central nervous system and the standard MRI exclusion 

criteria. Two additional subjects were scanned but excluded from fur- 

ther analyses because unusable MRI data due to gradient coil malfunc- 

tion. Two subjects were excluded because of anatomical abnormalities 

in structural MRI and additional three subjects were excluded due to vis- 

ible motion artefacts in preprocessed functional neuroimaging data. This 

yielded a final sample of 97 subjects (50 females, mean age of 31 years, 

range 20 – 57 years). All subjects gave an informed, written consent and 

were compensated for their participation. The ethics board of the Hos- 

pital District of Southwest Finland had approved the protocol and the 

study was conducted in accordance with the Declaration of Helsinki. 

2.2. Neuroimaging data acquisition and preprocessing 

MR imaging was conducted at Turku PET Centre. The MRI data 

were acquired using a Phillips Ingenuity TF PET/MR 3-T whole-body 

scanner. High-resolution structural images were obtained with a T1- 

weighted (T1w) sequence (1 mm 

3 resolution, TR 9.8 ms, TE 4.6 ms, 

flip angle 7°, 250 mm FOV, 256 × 256 reconstruction matrix). A to- 

tal of 467 functional volumes were acquired for the experiment with 

a T2 ∗ -weighted echo-planar imaging sequence sensitive to the blood- 

oxygen-level-dependant (BOLD) signal contrast (TR 2600 ms, TE 30 ms, 

75° flip angle, 240 mm FOV, 80 × 80 reconstruction matrix, 62.5 kHz 
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Fig. 1. Analysis stream from data acquisition and processing to the univariate regression analysis, multivariate pattern analysis and intersubject correlation analysis. 

bandwidth, 3.0 mm slice thickness, 45 interleaved axial slices acquired 

in ascending order without gaps). 

The functional imaging data were preprocessed with fMRIPrep 

( Esteban et al., 2019 ) (v1.3.0), a Nipype ( Gorgolewski et al., 2011 ) 

based tool that internally uses Nilearn ( Abraham et al., 2014 ). During 

the preprocessing, each T1w volume was corrected for intensity non- 

uniformity using N4BiasFieldCorrection (v2.1.0) ( Tustison et al., 2010 ) 

and skull-stripped using antsBrainExtraction.sh (v2.1.0) using the OA- 

SIS template. Brain surfaces were reconstructed using recon-all from 

FreeSurfer (v6.0.1) ( Dale et al., 1999 ), and the brain masque estimated 

previously was refined with a custom variation of the method to rec- 

oncile ANTs-derived and FreeSurfer-derived segmentations of the cor- 

tical grey-matter of Mindboggle ( Klein et al., 2017 ). Spatial normaliza- 

tion to the ICBM 152 Nonlinear Asymmetrical template version 2009c 

( Fonov et al., 2009 ) was performed through nonlinear registration with 

the antsRegistration (ANTs v2.1.0) ( Avants et al., 2008 ), using brain- 

extracted versions of both T1w volume and template. Brain tissue seg- 

mentation of cerebrospinal fluid, white-matter and grey-matter was per- 

formed on the brain-extracted T1w image using FAST ( Zhang et al., 

2001 ) (FSL v5.0.9). 

Functional data were slice-time-corrected using 3dTshift from 

AFNI ( Cox, 1996 ) (v16.2.07) and motion-corrected using MCFLIRT 

( Jenkinson et al., 2002 ) (FSL v5.0.9). These steps were followed by 

co-registration to the T1w image using boundary-based registration 

( Greve and Fischl, 2009 ) with six degrees of freedom, using bbregis- 

ter (FreeSurfer v6.0.1). The transformations from motion-correction, 

coregistration, and spatial normalization were concatenated and ap- 

plied in a single step using antsApplyTransforms (ANTs v2.1.0) us- 

ing Lanczos interpolation. Independent-component-analysis-based Au- 

tomatic Removal Of Motion Artifacts (ICA-AROMA) was used to de- 

noise the data nonaggressively after spatial smoothing with 6-mm Gaus- 

sian kernel ( Pruim et al., 2015 ). The data were then detrended using 

240-s-Savitzky–Golay filtering to remove the scanner drift ( Cukur et al., 

2013 ), and finally downsampled to original 3 mm isotropic voxel size. 

The BOLD signals were demeaned to make the regression coefficients 

comparable across different individuals ( Chen et al., 2017 ). First and 

last two functional volumes were discarded to ensure equilibrium ef- 

fects and to exclude the time points before and after the stimulus. 

2.3. Stimulus 

To map brain responses to different social features, we used 

our previously validated socioemotional “localizer ” paradigm that 

allows reliable mapping of various social and emotional func- 

tions ( Karjalainen et al., 2017 , 2019 ; Lahnakoski et al., 2012 ; 

Nummenmaa et al., 2021 ). The experimental design and stimulus se- 

lection has been described in detail in the original study with this setup 

( Lahnakoski et al., 2012 ). Briefly, the subjects viewed a medley of 96 

movie clips (median duration 11.2 s, range 5.3 – 28.2 s, total dura- 

tion 19 min 44 s) that have been curated to contain large variability 

of social and emotional content. The videos were extracted from main- 

stream Hollywood movies with audio track in English. To limit experi- 

ment duration, a subset of 87 of the previously validated 137 clips were 

selected. 71 of these clips contained people in various social situations 

and contexts (one person: 15, two people: 22, more than two people: 

34). To distinguish person perception from other audiovisual percep- 

tion, the stimulus contained four clips with animals and 12 control clips 

without people (showing e.g. scenery and objects). Additionally, nine 

erotic scenes showing heterosexual intercourse were added to broaden 

the emotional content of the original stimuli. Short descriptions about 

movie clips can be found from Table SI-1 . Because this task was de- 

signed to map neural processing of naturalistic socioemotional events, 

the clips were not deliberately matched with respect to, for example, 

human motion or optic flow. The videos were presented in fixed order 

across the subjects without breaks to allow the brain synchronization 

analyses between subjects (see section 2.11). Subjects were instructed 

to view the movies similarly as if they were viewing a movie at a cin- 

ema or at home and no specific task was assigned. Visual stimuli were 

presented with NordicNeuroLab VisualSystem binocular display. Sound 

was conveyed with Sensimetrics S14 insert earphones. Stimulation was 
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controlled with Presentation software. Before the functional run, sound 

intensity was adjusted for each subject so that it could be heard over the 

gradient noise. 

2.4. Stimulus features 

We collected ratings for 112 predefined social features (see Table 

SI-2 ) from the movie clips. We selected a broad range of socioemotional 

features describing persons, social situations and behaviours from fol- 

lowing categories: sensory input (e.g. smelling, tasting), basic bodily 

functions (e.g. facial expressions, walking, eating), person characteris- 

tics (e.g. pleasantness, trustworthiness) and person’s inner states (e.g. 

pleasant feelings, arousal), social interaction signals (e.g. talking, com- 

municating with gestures) and social interaction characteristics (e.g. 

hostility, sexuality). Collecting perceptual ratings from a large set of in- 

dividual social features enables reliable mapping of the whole social per- 

ceptual space that can be derived from the stimulus movie clips and en- 

sures that the data-driven dimensionality arises from the used stimulus. 

It was stressed to the observers that they should rate the perceived fea- 

tures of the social interaction rather than the observer’s own inner states 

(such as emotions evoked by the movies). The ratings were collected sep- 

arately for each video clip in short time intervals (median 4.0 s, range: 

3.1 – 7.3 s). Features were annotated in a continuous and abstract scale 

from “absent ” to “extremely much ”. For analyses the ratings were trans- 

formed to continuous scale from 0 (absent) to 100 (extremely much). 

Annotators watched the video clips altogether 12 times, rating an aver- 

age of 10 features on each viewing to reduce the cognitive load. The rat- 

ings were done using an online rating platform Onni ( http://onni.utu.fi) 

developed at Turku PET Centre ( Heikkilä et al., 2020 ). 

2.5. Feature reliability 

We first evaluated whether the a priori features were frequently 

and consistently perceived in the stimulus movies. Features with low 

occurrence rate and/or inter-rater reliability were excluded, because 

i) high occurrence rate is needed to reliably estimate the stimulus- 

dependant variation in BOLD signal, and ii) high inter-rater reliability 

is necessary to study brain activity in a sample of participants inde- 

pendent from the raters. The occurrence rate was defined as the num- 

ber of time points where the mean rating (minus standard error of the 

mean) over the annotators exceeded 5 (on a scale ranging from 0 to 

100, 5% of the slider length). Features were included in the analyses 

if they occurred at least five times throughout the experiment; this 

was estimated to yield sufficient statistical power in the BOLD-fMRI 

GLM analyses. Inter-rater reliability of the features was assessed us- 

ing intra-class correlation coefficient (ICC) as calculated in the R pack- 

age psych ( https://cran.r-project.org/package = psych ). ICC(A,1) was se- 

lected as appropriate model for ICC since it treats both video clips and 

raters as random effects and measures the absolute agreement between 

raters ( McGraw and Wong, 1996 ). ICCs below 0.5 are considered poor 

( Koo and Li, 2016 ), thus we only included features with ICC over 0.5. 

A total of 45 features satisfied both criteria. The occurrence rate and 

inter-rater reliability of each feature are shown in Figure SI-1 . 

2.6. Reliability check for the social feature annotations 

Dynamically rating 112 social perceptual features from 96 movie 

clips is extremely laborious (28 672 individual rating decisions). The 

reliability of online data collecting platforms have also been questioned 

( Webb and Tangney, 2022 ), thus we chose to recruit local subjects to 

the laboratory for doing the annotations. The decision ensured that the 

neuroimaging subjects and annotators belong to the same population 

and that we could ensure that the annotators adhered to the instructions. 

Moreover, the fMRI analysis only focused on the social features that 

were perceived most coherently (based on ICC) between the raters. Prior 

high-dimensional annotation studies have also used similar annotator 

pools ( Huth et al., 2012 ). 

To further ensure the reliability of our ratings from a small subject 

pool, we also compared the average perceptual ratings of our five an- 

notators with an independent, significantly larger dataset collected for 

another study using the same stimulus deck. In this dataset we col- 

lected ratings for a subset of the reliable social features in the cur- 

rent study (33 out of 45) from the majority of the movie clips (87 

out of 96). These annotations were collected only once for each video 

clip instead of shorter intervals used for generating the fMRI stimulus 

model. The validation data were collected using online platform Pro- 

lific ( https://www.prolific.co/ ) and included ten ratings for each social 

feature in each video clip. This dataset contained ratings from 1096 

participants (one participant annotated only few social features and few 

movie clips). The correlation of the population average ratings over all 

33 social features between local and online data collection was high 

( r = 0.78, p < 0.05, range: 0.60 – 0.97) confirming that social features 

with high ICC are perceived similarly between people. Hence, only five 

annotations were sufficient, and these independent annotations could 

be used to model the brain activity of the neuroimaging subjects. 

2.7. Dimension reduction of the social perceptual space 

The reliable 45 features were linearly correlated ( Fig. 2 ) and it is 

unlikely that each social feature is processed in different brain regions 

or networks. We performed dimension reduction with hierarchical 

clustering on the correlation matrix of selected features to define the 

perceptual dimensions that characterize different aspects of social 

interaction. Clustering was chosen over principal component analysis 

for easier interpretation of the dimensions, because it is likely more 

sensitive than principal component analysis (PCA) in finding perceptu- 

ally important social features, or their combinations, that do not share a 

large proportion of variance with other social features. Initially we chose 

Pearson correlation as the similarity measure because the co-occurrence 

of features measured in abstract and possibly not strictly continuous 

scale is more interesting than the absolute distance between them (con- 

sidered in PCA). Unweighted pair group method with arithmetic mean 

(UPGMA), as implemented in R, was used as the clustering algorithm 

( https://www.rdocumentation.org/packages/stats/versions/3.6.2/ 

topics/hclust ). Other average linkage clustering methods implemented 

in the R package (WPGMA, WPGMC and UPGMC) yielded highly similar 

clustering hierarchy. Hierarchical clustering requires a desired number 

of resulting clusters as an input for automatic definition of cluster 

boundaries from hierarchical tree ( Figure SI-2 ). To estimate the opti- 

mal number of clusters we chose three criteria that the clustering result 

should satisfy. These were cluster stability, theoretically meaningful 

clustering, and sufficient reduction in collinearity between the clusters. 

To assess the stability of clusters we conducted a consensus cluster- 

ing analysis with ConsensusClusterPlus R package ( Wilkerson and 

Hayes, 2010 ). Theoretically meaningful clustering was then assessed, 

and collinearity was measured using Pearson correlation and variance 

inflating factor (VIF). Detailed information of the cluster analysis and 

consensus clustering results can be found in Supplementary Materials 

(see also Figure SI-3 ). Cluster analysis grouped social features into six 

clusters and seven independent features not belonging to any cluster 

( Fig. 2 ) and these social dimensions formed the final model for social 

perception. The cluster regressors were created by averaging across the 

individual feature values in each cluster ( Figure SI-4 ). 

2.8. Modelling low-level sensory features 

Our goal was to map perceived social dimensions in the human 

brain. The stimulus clips were not balanced with respect to their 

low-level audiovisual properties, thus these were controlled statistically 

when estimating the unique contribution of social dimensions to the 

BOLD signal. We extracted 14 different dynamic audiovisual properties 
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Fig. 2. The results of the hierarchical clustering of reliably rated social features. The correlation matrix is ordered based on hierarchical clustering, and clustering 

results ( k = 13) are shown. The analysis suggested that the social perceptual space of the stimulus can be reduced to six clusters and seven individual features. 

from the stimulus movie clips including six visual features (luminance, 

first derivative of luminance, optic flow, differential energy, and spatial 

energy with two different frequency filters) and eight auditory features 

(RMS energy, first derivative of RMS energy, zero crossing, spectral 

centroid, spectral entropy, high frequency energy and roughness). Optic 

flow was estimated with opticalFlowLK -function with basic options 

( https://www.mathworks.com/help/vision/ref/opticalflowlk.html ). 

Custom functions were used for estimating the other visual features (see 

Code availability). Auditory features were extracted using MIRTool- 

box1.8.1 ( Lartillot et al., 2008 ). First eight principal components (PCs) 

explaining over 90% of the total variance were selected as regressors 

for low-level audiovisual features. As the stimulus movie clips included 

control clips with no human interaction, we created a “nonsocial ” block 

regressor by assigning a value of 1 to the time points where the stimulus 

did not contain people, human voice, or animals. A low-level model 

was formed by combining the eight audiovisual PCs, the nonsocial 

regressor and subjectwise mean signals from cerebrospinal fluid (CSF) 

and white matter (WM). See Figure SI-5 for correlations between 

low-level features and social dimensions. 

2.9. Univariate regression analysis of social perceptual dimensions 

2.9.1. Overview of the regression analysis 

Ridge regression ( Hoerl and Kennard, 1970 ) was used to estimate 

the contributions of the low-level features and cluster-based composite 

social dimensions to the BOLD signals for each subject. Ridge regres- 

sion was preferred over ordinary least squares (OLS) regression because 

even after dimension reduction, the social regressors were moderately 

correlated (range: − 0.38 – 0.32) and we wanted to include all percep- 

tual dimensions in the same model to estimate their unique contribu- 

tions to the BOLD signals. We also wanted to avoid overfitting while 

retaining generalizability of the results. To conservatively control for 

low-level features, the demeaned BOLD signals were first predicted with 

the low-level model and the residual BOLD signals were then used as in- 

put in the following regression analysis with the social stimulus model 

(see Fig. 1 ). The low-level regressors were still included as nuisance co- 

variates in the analysis of social dimensions for the possible interaction 

between the social dimensions and low-level features. In both consecu- 

tive analyses ridge parameter was optimized using leave-one-subject-out 
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cross-validation. Prior to statistical modelling the regressor time series 

were convolved with the canonical HRF and the columns of the design 

matrices were standardised ( 𝜇 = 0, 𝜎 = 1). 

2.9.2. Ridge regression optimization 

Optimization of ridge penalty for each voxel separately could have 

yielded in large differences in the penalty parameters values throughout 

the brain thus making it more difficult to interpret the regional differ- 

ences in the results. Thus, we selected an unbiased sample of grey matter 

voxels for the optimization by randomly sampling 20% ( ∼5000) of grey 

matter voxels uniformly throughout the brain. Only voxels within pop- 

ulation level EPI mask where the population level probability of grey 

matter was over 0.5 were available for sampling. Detailed description 

of ridge regression modelling is included in supplementary materials 

( Figure SI-6 ). 

2.9.3. Statistical inference in the regression analysis 

For the social perceptual model, the regression analysis was run both 

at voxel-level and at region-of-interest (ROI) level. The population level 

EPI mask was used in all analyses to include only voxels with reliable 

BOLD signal from each subject and thus brain areas including parts of or- 

bitofrontal, inferior temporal and occipital pole areas were not included 

in the analyses. In voxel-level analysis, subject-level 𝛽-coefficient-maps 

were subjected to group-level analysis to identify the brain regions 

where the association between intensity of each social dimension and 

haemodynamic activity was consistent across the subjects. Voxels out- 

side the population level EPI mask were excluded from the analysis. Sta- 

tistical significance was identified using the randomise function of FSL 

( Winkler et al., 2014 ). Voxel-level FDR with q-value of 0.05 was used 

to correct for multiple comparisons ( Benjamini and Hochberg, 1995 ). 

Anatomical ROIs were extracted from AAL2 atlas ( Rolls et al., 2015 ). 

ROIs with at least 50% of voxels outside the population level EPI mask, 

were excluded from the analysis and only voxels within population level 

EPI mask were considered for the included ROIs. This resulted in inclu- 

sion of 41 bilateral ROIs into the analysis. A parametric t-test on the 𝛽- 

weights of a ROI was used to assess statistical inference across subjects. 

ROI-analysis results were considered significant with p-value threshold 

of 0.05 Bonferroni corrected for multiple comparisons. The results for 

ROI analyses are reported as union of bilateral ROIs. 

2.10. Multivariate pattern analysis of social perceptual dimensions 

2.10.1. Overview of the multivariate pattern analysis 

To reveal the regional specialization in processing of different social 

features, between-subject classification of 11 perceptual dimensions 1 

was performed in Python using the PyMVPA toolbox ( Hanke et al., 

2009 ). The aim of the classification analysis was to complement univari- 

ate regression analysis by testing whether the human brain expressed 

regional specificity for distinct social dimensions. This approach was 

based on classification of discrete social dimensions from brain activity, 

rather than computationally more complex approach to predict actual 

values of multiple social predictors simultaneously based on brain activ- 

ity. The classification was performed by i) first labelling each time point 

with only one social label, ii) then splitting the stimulus into time win- 

dows and fitting general linear models separately for different social 

labels within each time window and iii) finally running the between- 

subject classification on the subject level beta images labelled with so- 

cial dimensions. 

1 Dimensions “Male ” and “Female ” were excluded from classification, because 

unlike the rest of the dimensions, they are genuinely binary features and thus 

not comparable with the other dimensions in the implemented classification 

framework (see Figure SI-4 ). 

2.10.2. Discrete social labelling for each stimulus time point 

For discrete classification from mixed signal, only one dimension la- 

bel for each time point (each TR) could be given. For the continuous 

signal, the currently most salient category is not always unambiguous, 

because more than one social feature could be present simultaneously 

and salient changes in social information may attract more attention 

( “Somebody starts crying ”) than those occurring frequently ( “People are 

talking ”). To resolve this issue, we first normalized the dimension rating 

time series ( 𝜇 = 0, 𝜎 = 1) and then, for each time point, chose the feature 

with the highest Z-score as the category label for that time point ( Figure 

SI-7 ). To ensure that the included time points would be representative 

of the assigned categories, we chose only time points where Z-scores 

for the chosen dimension were positive. This procedure ensured that 

each time is labelled with representative category and that infrequently 

occurring social information is weighted more than constantly present 

categories. 

2.10.3. Time window selection and general linear modelling before 

classification 

Classifying every time point separately would not be adequate since 

single EPI scans are noisy and it cannot be assumed that adjacent time 

points assigned with the same label would be independent from each 

other. Accordingly, we split the data into 29 time windows and all time 

points with the same label within a time window were considered as 

a single event of that class. The number of time windows was selected 

based on the response length of canonical HRF ( ∼30 s). Over 30 second 

time windows would be less dependant from each other than shorter 

time windows while the data would contain enough events for classi- 

fication. The time window boundaries were adjusted so that adjacent 

time points with the same label would not be interspersed to different 

time windows because temporal autocorrelation of adjacent time points 

may yield in artificial increase in the classification accuracy. After ad- 

justment, the average time window length was 39 s (range: 34 s – 49 s). 

The time windows were longer than the movie clips and therefore time 

points from different clips with similar social context could be judged as 

one event if they belong to the same time window. Altogether the data 

consisted of 87 events (Events: using an object: 16, communication: 15, 

antisocial behaviour: 11, feeding: 10, walking: 9, sexual & affiliative be- 

haviour: 8, body movement: 5, crying: 4, play: 4, running: 3 and search- 

ing: 2). 75 out of the total 87 events (86%) included only adjacent time 

points and the mean length of the events was ∼12 s. For generating 

input for between-subject classification an ordinary least squares (OLS) 

GLM without covariates was fit to the normalized ( 𝜇 = 0, 𝜎 = 1) residual 

BOLD time series (confound-controlled data) for each subject and each 

event. These subject-level beta-images and their social labels were used 

as input for the classifier (see Fig. 1 ). 

2.10.4. Classifier algorithm and cross-validation method 

A neural network (NN) model ( https://scikit-learn.org/stable/ 

modules/generated/sklearn.neural_network.MLPClassifier.html ) was 

trained to classify the perceptual dimensions using leave-one-subject- 

out cross-validation, where the model was trained on the data from 

all except one subject and tested on the hold-out subject’s data; this 

procedure was repeated N times so that each subject was used once as 

the hold-out subject. Such leave-one-subject-out cross-validation tests 

the generalizability of the results across the sample of the subjects. 

The analysis was performed using whole brain data (with non-brain 

voxels masked out) and regional data using anatomical ROIs. In the 

whole-brain analysis, an ANOVA feature selection was applied to the 

training set within each cross-validation and 3000 voxels with the 

highest F-score were selected. The regional MVPA was first performed 

using data form all voxels within a region. To control for the effect 

of ROI size to the classification accuracy the regional MVPA was also 

performed with an ANOVA feature selection where the size of the 

smallest ROI (lateral orbitofrontal cortex, 119 voxels) was selected as 

the number of features for the feature selection. 
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2.10.5. Classifier hyperparameter tuning 

Hyperparameters of the NN algorithm were optimized within a lim- 

ited set of predefined hyperparameter values in the whole brain analy- 

sis. Hyperparameter values reflecting the best prediction accuracy with 

acceptable runtime were used in both full brain and ROI analyses (see 

Table SI-3 for hyperparameter tuning). The optimized NN included two 

hidden layers with 100 nodes in each (alpha = 1.00, max_iter 500, other 

hyperparameters set to default). In the model learning process, the or- 

der of events was shuffled in each training iteration which minimized 

the model’s ability to learn the order of the events in the stimulus. A 

support vector machine (SVM) classifier had similar classification accu- 

racy in the whole brain analysis, but NN model was chosen because the 

computation time was shorter and the variance of classification accu- 

racies between subjects were lower with NN model compared to SVM 

classifier. 

2.10.6. Outcome measures of the classification analysis and statistical 

significance testing 

Classification accuracy was quantified by computing the propor- 

tion of correctly classified events relative to the total number of events 

(i.e., recall). To estimate the null distribution, the following proce- 

dure was repeated 500 times: we 1) randomly shuffled social class la- 

bels; 2) ran the whole-brain MVPA with 97 leave-one-subject-out cross- 

validations, where the classifier was trained on the data with shuf- 

fled labels from N-1 subjects and tested on data with correct labels 

from the remaining subject; and 3) calculated the classification accu- 

racies on each of the 500 iterations. The null distribution estimation 

was computationally prohibitive as one iteration took approximately 

one hour, and we decided that 500 iterations would be sufficient to as- 

sess the statistical significance of our findings. If the true accuracy was 

larger than 99% of the accuracies obtained with the randomly shuf- 

fled labels, the true accuracy was considered significant with an al- 

pha of 0.01. We cannot assume that the null distribution of classifi- 

cation accuracies for each class is equal and centre around the naïve 

chance level because the number of events is unbalanced between 

classes. For this reason, we only report if the total accuracy of the 

classification is statistically significant. In the whole-brain classification 

we also report the precision of the classifications which is the num- 

ber of correct predictions for a class divided by the total number of 

predictions into that class. In ROI analyses, the statistical differences 

between regional classification accuracies were tested using paired t- 

tests between subjectwise classification accuracies between each pair of 

regions. 

2.11. Intersubject correlation analysis 

Watching movies synchronizes brain activity between different indi- 

viduals particularly in the occipital, temporal, and parietal regions of the 

brain and the synchronization of brain activity can be quantified with 

intersubject correlation (ISC) analysis ( Hasson et al., 2004 ). As the only 

variable factor in the experiment is the time-varying audiovisual stim- 

ulus, ISC analysis captures the shared stimulus-dependant activation in 

the brain. It is well known that ISC is greatest on the sensory cortices, 

but an important yet unresolved question is which variables drive the 

degree of synchronization of BOLD response. Some prior studies suggest 

that emotions and top-down perspectives play a role ( Lahnakoski et al., 

2014 ; Nummenmaa et al., 2014 ), but the role of social features remains 

unknown. As a post hoc analysis, we assessed whether the regional differ- 

ences in brain response profiles for social dimensions relate to the inter- 

subject response reliability of BOLD response. To this end, we calculated 

the ISC across subjects over the whole experiment and compared the 

regional ISC with the results from regression and MVPA analyses. ISC- 

toolbox with default settings was used for ISC calculations ( Kauppi et al., 

2014 ). 

3. Results 

3.1. How people perceive the social world? 

A total of 45 out of the 112 social features had sufficient inter-rater 

reliability and occurrence rate (see Figure SI-1 ). Hierarchical cluster- 

ing identified six clusters that were labelled as “antisocial behaviour ”, 

“sexual & affiliative behaviour ”, “communication ”, “body movement ”, 

“feeding ” and “play ”. Seven perceptual dimensions did not link with any 

cluster and were analysed separately. These dimensions were “using an 

object ”, “crying ”, “male ”, “female ”, “running ”, “walking ” and “search- 

ing ”. Fig. 2 shows the clustering of the dimensions. Median pairwise cor- 

relation between any two of the 13 dimensions was 0.02 (range: − 0.38 

– 0.32) and the maximum variance inflation factor (VIF) in the design 

matrix excluding nuisance covariates was 3.3 (male regressor) while the 

median VIF value was 1.3. These diagnostics indicate that regression co- 

efficients for the dimensions will be stable in linear model estimations, 

and they could thus be included in the same model. See Figure SI-4 for 

visualized time series of social dimensions and Figure SI-5 for correla- 

tions matrices for low-level features and social dimensions. 

3.2. Cerebral topography of social perception 

Regularized ridge regression was used to establish the full-volume 

activation patterns for the 13 perceptual social dimensions ( Fig. 3 ). So- 

cial information processing engaged all brain lobes and both cortical 

and subcortical regions. Robust responses were observed in occipital, 

temporal, and parietal cortices ( Fig. 4 ). There was a clear gradient in 

the responses, such that posterior temporal, occipital and parietal re- 

gions showed the strongest positive association with most of the social 

dimensions, with significantly less consistent activations in the frontal 

lobes and subcortical regions. Yet, frontal, and subcortical activations 

were also observed for some dimensions such as sexual & affiliative be- 

haviour, antisocial behaviour, and feeding. 

In ROI analysis, broadly tuned responses for social dimensions were 

observed in STG and MTG with strongest responses for communication 

and antisocial behaviour, respectively. In parietal lobe, all regions ex- 

cept angular gyrus and paracentral lobule responded to a wide range 

of perceptual dimensions. In frontal regions the associations between 

social dimensions and haemodynamic activity were less consistent than 

in more posterior regions, yet still statistically significant in some of 

the regions including IFG, cingulate cortex and precentral gyrus. Most 

consistent frontal effects were found for sexual & affiliative and antiso- 

cial behaviour. For subcortical regions the observed associations were 

generally weak. Most notable subcortical associations with perceptual 

dimensions were seen in amygdala and thalamus. Consistent negative 

associations were restricted to occipital lobe and were observed for com- 

munication, crying, body movement and running. 

3.3. Cerebral gradients in social perception 

Fig. 5 a shows the cumulative brain activation maps for all 13 per- 

ceptual dimensions. There was a gradient in the regional selectivity for 

social dimensions. Posterior temporal and occipital cortices as well as 

parietal cortices responded to most social dimensions, while responses 

become more selective in the frontal cortex although IFG, precentral 

gyrus and the frontal part of the medial superior frontal gyrus (SFG) had 

some consistency in their response profiles. Because the same stimulus 

was used across the subjects, we hypothesized that the brain activation 

in the areas with the broadest response profiles would be temporally 

most synchronized across subjects. We thus calculated the ISC of brain 

activation over the whole experiment ( Fig. 5 b ) and correlated the re- 

gional ISC values with corresponding response selectivity values (i.e. 

number of social features resulting in significant activations in each re- 

gion). Scatterplot in Fig. 5 c shows the association between ISC and cor- 
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Fig. 3. Brain regions showing increased BOLD activity for the social dimensions. Results show the voxelwise T-values (FDR-corrected, q = 0.05) of increased BOLD 

activity for each social dimension from the multiple regression analysis. The results are also visualized on inflated cortical surfaces in Figure SI-8 . 

responding brain response selectivity for perceptual dimensions (Pear- 

son r = 0.86). 

3.4. Multivariate pattern analysis 

Finally, we trained a between-subject neural network model to de- 

code presence of perceptual social dimensions from the spatial haemo- 

dynamic activation patterns to reveal which social dimensions are con- 

sistently represented in each cerebral region. Whole brain classifica- 

tion was performed in 3000 voxels that passed through the ANOVA 

feature selection. Most of the selected voxels ( Fig. 6 a ) localized into 

temporal (STG, MTG, Heschl gyrus and superior temporal pole), oc- 

cipital (calcarine and lingual gyri, cuneus, FG, superior occipital gyrus 

(SOccG), middle occipital gyrus (MOccG) and inferior occipital gyrus 

(IOccG)) and parietal cortices (supramarginal, superior parietal gyrus 

(SPG) and inferior parietal gyrus (IPG)). The permuted chance level 

for the total classification accuracy in the whole brain analysis was 

0.128 which is above naïve chance level ( 1 11 ≅ 0.09). At the whole 

brain level, the NN model was able to classify all 11 social dimen- 

sions significantly above chance level with the total classification ac- 

curacy of 0.52 ( p < 0.01). Classification accuracies/precisions for each 

social dimension were: walking: 0.49/0.51, using an object: 0.53/0.50, 

searching: 0.70/0.69, running 0.56/0.62, sexual & affiliative behaviour 

0.45/0.48, play 0.53/0.51, feeding 0.46/0.48, crying 0.46/0.51, com- 

munication 0.55/0.55, body movement 0.52/0.50 and antisocial be- 

haviour 0.55/0.53 ( Fig. 6 a ). 

The classification was also performed within anatomical ROIs 

( Fig. 6 b ). Most accurate classifier performance was observed in lingual 

gyrus (0.34, p < 0.01), calcarine gyrus (0.33, p < 0.01), cuneus (0.29, p 

< 0.01), SOccG (0.29, p < 0.01), MOccG (0.27, p < 0.01), STG (0.27, p < 

0.01) and MTG (0.25, p < 0.01). Although the prediction accuracies were 

statistically significantly above permuted chance level for each ROI, the 

gradient in brain responses for social perception was also observed in 

the classification accuracies so that highest accuracy was observed in 

occipital and temporal areas, followed by parietal cortices and frontal 

and cingulate cortices. Lowest accuracies were found in the subcorti- 

cal regions. ( Fig. 6 b ). We also validated that this gradient was not an 

artefact stemming from the sizes of the ROIs, as similar gradient was ob- 

served in the regional classification with ANOVA feature selection lim- 

ited to the number of voxels in the smallest ROI ( Fig. 6 c ). Figure SI-9 

shows the statistical differences of the classification accuracies between 

all pairs of ROIs confirming the observed gradient in classification accu- 

racies. Occipital and temporal areas (excluding temporal pole) showed 

significantly higher classification accuracy than frontal and subcortical 

regions. 

3.5. Relationship between classification accuracy and ISC 

Regional classification accuracy and ISC were positively correlated 

(Pearson r = 0.85, Fig. 7 a ). Most occipital regions, STG and MTG showed 

high synchrony (ISC > 0.1) and high classification accuracy (acc > 0.25). 

Most parietal regions showed average ISC and average classification ac- 

curacy while frontal and subcortical regions showed low ISC and low 

classification accuracies. The most notable exception to this pattern was 

Heschl gyrus which had high ISC (0.28) yet average classification accu- 

racy (acc = 0.22). Fig. 7 b summarizes the results from separate regres- 

sion, ISC and classification analyses where the findings overlap most in 

temporal and occipital cortices. 

4. Discussion 

Our findings provide the currently most detailed map of the social 

perceptual mechanisms in the human brain using naturalistic stimuli. 
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Fig. 4. Regional results from the multiple regression analysis. The heatmap shows T-values for regression coefficients for each ROI and social dimension. Statistically 

significant ( p < 0.05, Bonferroni-corrected for each dimension independently) ROIs are marked with an asterisk. 

The behavioural data established that 13 social dimensions reliably cap- 

ture the social perceptual space contained in the video stimulus. The 

cerebral topography for social perception was organized along an axis, 

where posterior temporal and cortical regions served a central general- 

purpose role in social perception, while the regional selectivity for social 

dimensions increased towards frontal and subcortical regions. Multivari- 

ate pattern recognition established that particularly occipito-temporal 

and parietal regions carry detailed and spatially dimension-specific in- 

formation regarding the social world, as evidenced by the highest classi- 

fication accuracies in the multi-class classification approach. Both clas- 

sification accuracy and consistency of the responses for specific social 

dimensions were the highest in the brain regions having most reliable 

(indicated by ISC) activation patterns throughout the experiment. These 

effects were observed although low-level sensory features were statisti- 

cally controlled for. Altogether these results show that multiple brain 

regions are jointly involved in representing the social world and that 

different brain regions have variable specificity in their spatial response 

profiles towards social dimensions. 

4.1. Dimensions of social perception 

The behavioural experiment established that the observers used con- 

sistently a set of 45 descriptors when evaluating the social contents of 

the movies. Dimension reduction techniques further revealed that these 

45 features could be adequately summarized in 13 social dimensions. 

The largest clusters were organized along the valence dimension of the 

social interaction containing sexual & affiliative (e.g., kissing, touching, 

sexuality) versus antisocial (hurting others, yelling) behaviors indicating 

a close link between emotion and social interaction. Social communica- 

tive behaviors (e.g., eye contact, talking) and body movements (e.g., 

waving, moving a foot) also formed large clusters. Play-related behav- 

iors (laughing, playfulness) as well as feeding-related actions (e.g., tast- 

ing, eating) were also represented into smaller clusters. Notably, some 

features such as presence of males versus females, walking, and using 

objects remained independent of any of the clusters. Average hierarchi- 

cal clustering algorithm was used because it yields clearly interpretable 

clusters and because feature similarity could be measured with correla- 

tion instead of absolute distance. Further research could establish how 

behavioural clusters found with hierarchical clustering relate to, for ex- 

ample, principal components off the same data and how the clusters 

generalize to other naturalistic stimuli. 

The stimulus movie clips cannot portray all possible social scenarios 

and Hollywood movies are only a proxy of real-life social interaction. 

Still, 99 of the predefined 112 social features had sufficient occurrence 

rate in the stimulus video clips ( Figure SI-1 ) which indicate that the 

stimulus contains a broad range of social information. The average du- 

ration of movie clips was ∼10 s and we acknowledge that this timescale 

does not allow examination of social processes occurring at slower tem- 

poral frequencies such as pair bonding and long-term impression for- 

mation. However, social perception can be astonishingly fast. Semantic, 

social, and affective categorization may happen in few hundred millisec- 

onds ( Nummenmaa et al., 2010 ) and the judgements do not significantly 

change from the initial judgments after longer consideration ( Willis and 

Todorov, 2006 ). Electroencephalography (EEG) has also confirmed reli- 
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Fig. 5. (a) Cumulative activation map for social dimensions. Voxel intensities indicate how many social dimensions (out of 13) activated the voxel statistically 

significantly (FDR-corrected, q = 0.05). White lines indicate the localizations of major gyri. (b) Significant ISC (FDR-corrected, q = 0.05) across subjects over the 

whole experiment (c) Scatterplot showing the association between regional ISC values and tuning for social perceptual dimensions. ISC is plotted in Y-axis and the 

X-axis shows the number of social dimensions (out of 13) associated significantly with the BOLD response. Regional values are calculated as the average over all 

regional voxels. CARET software ( Van Essen, 2012 ) was used for mapping results from ICBM 152 Nonlinear Asymmetrical template version 2009c space to the 

flatmap surface. 
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Fig. 6. Results from the multivariate pattern analysis of social dimensions. (a) Whole brain classification accuracies and the voxels used in the whole brain classifi- 

cation analysis (based on ANOVA feature selection). (b) Regional classification accuracies compared with the whole brain classification accuracy (the righmost black 

bar). The permuted chance level accuracy (acc = 0.128) is shown as a horizontal line. The mean prediction accuracy was significantly ( p < 0.01) above the chance 

level accuracy in the whole brain analysis and for each region-of-interest. (c) Regional classification accuracies using only 119 voxels (the size of the smallest region) 

with the highest F-scores as input for the classifier. 

able associations between social perceptual features and brain response 

already 400 ms after the stimulus ( Dima et al., 2022 ) concluding that 

short video clips can capture some temporal scales of social perception. 

However, the temporal resolution of fMRI is limited to the TR of the 

scanner (2.6 s in this study) and the social features were rated in approx- 

imately 4 second time intervals. Therefore, our study do not measure in- 

stantaneous brain responses for perceptual social features. Additionally, 

the haemodynamic response ( ∼ 30 s) is longer than the average length 

of the movie clips, but the convolution of the predictors accounts for the 

delayed response. 

Data-driven models for characterising social perception 

( Adolphs et al., 2016 ) constitute an important and complemen- 

tary alternative for the theory-based models for separate taxonomies of 

person, situation, and action perception since i) the clusters observed in 
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Fig. 7. (a) Scatterplot showing the relationship between regional ISC and classification accuracy. (b) Additive RGB map summarizing the main findings. The overlap 

between activation patterns for perceptual dimensions in regression analysis is shown as blue (areas where at least 3 dimensions expressed FDR-corrected brain 

activation). Significant (FDR-corrected, q = 0.05) ISC across subjects is shown as red and the ANOVA selected voxels for the whole brain classification are shown as 

green. 

our data are based on the actual perception of the social context, ii) the 

data-driven model does not separate persons, situations, and actions 

and is based on the subjects’ net percept of the stimulus and iii) only 

dimensions actually present in the stimulus are considered. Importantly, 

this data-driven model for social perception has many similarities with 

previously proposed taxonomies. The largest observed clusters (sexual 

& affiliative and antisocial behaviour) closely relate to the emotional 

valence which is at the core of human emotions ( Russell, 1980 ) and is 

also considered in taxonomies describing persons ( Simms, 2007 ) and 

situations ( Parrigon et al., 2017 ; Rauthmann et al., 2014 ). Clusters 

pertaining to play and feeding closely relate to dimensions “humour ”

from situation taxonomy ( Parrigon et al., 2017 ) and “food ” from 

action domain ( Thornton and Tamir, 2022 ), respectively. Mapping 

of the neural space for social perception requires the social features 

to be consistently rated amongst the independent set of annotators. 

61 of the total 112 rated social features showed low between-rater 

agreement (ICC < 0.5, Figure SI-1 ) which is an important finding in 

itself regarding the consistency of the perceptual taxonomy individuals 

use for describing social events. The exclusion of these features had the 

effect that more abstract, or idiosyncratically judged dimensions cannot 

be addressed in this experiment and pushed the studied perceptual 

processes towards action and situation domains. Further research 

should nevertheless investigate the shared versus idiosyncratic social 

evaluations across individuals, as this would be informative regarding 

what are the core building blocks of the social environment that are 

shared across most observers. 

4.2. Cerebral gradient in social perception 

The univariate BOLD-fMRI analysis based on social dimensions re- 

vealed that a widely distributed cortical and subcortical networks en- 

code the social contents of the video stimuli. Most dimensions activated 

LOTC, STS, TPJ, as well as other occipitotemporal and parietal regions. 

There was a gradual change from these unselective social responses in 

occipitotemporal and parietal regions towards more selective responses 

in frontal and subcortical regions, suggesting that social perception is 

mainly processed in lateral and caudal parts of the brain. This effect 

was also confirmed by the ROI analysis. Most consistent responses were 

observed in all occipital regions and in temporal regions STG and MTG 

(which outline STS) and Heschl gyrus. In parietal cortex, most consistent 

responses were observed in supramarginal gyrus (a part of TPJ), SPG and 

precuneus. The responses were less consistent in frontal cortex, although 

brain activity in IFG, precentral gyrus and frontal part of medial SFG as- 

sociated with a limited number of dimensions including sexual & affilia- 

tive behaviour, antisocial behaviour, feeding and using an object. These 

data are consistent with previous univariate studies addressing social 
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functions for LOTC ( Downing et al., 2001 ; Lingnau and Downing, 2015 ; 

Wurm and Caramazza, 2019 ; Wurm et al., 2017 ), STS ( Deen et al., 2015 ; 

Isik et al., 2017 ; Lahnakoski et al., 2012 ; Walbrin et al., 2018 ), TPJ 

( Carter and Huettel, 2013 ; Saxe and Kanwisher, 2003 ), and MFC ( de la 

Vega et al., 2016 ). The results were controlled with an extensive set of 

PCA rotated audiovisual features. A non-social regressor was also built 

from the stimulus time points where no social interaction was present, 

and this feature was added to the low-level model. The fMRI data were 

collected in one scan, hence ruling out the possibility to control for low- 

level features by cross-validation across scans. Therefor the separation 

of social perceptual features from all possible low and mid-level fea- 

tures is not possible. However, higher-level information such as body 

parts and actions have already been shown to associate with BOLD re- 

sponse better than low-level visual features in occipital cortex outside 

V1 ( Tarhan and Konkle, 2020 ). Additionally, it has been shown that so- 

cial features of actions explain more variance of EEG responses to videos 

than low-level visual features ( Dima et al., 2022 ) further supporting the 

conclusion that the results reflect social information processing rather 

than low-level audiovisual perception. 

4.3. Decoding of perceptual social dimensions from brain activation 

patterns 

The univariate analysis revealed the overall topography and regional 

brevity of the tuning for different social signals. However, this analy- 

sis cannot determine whether a single anatomical region activated by 

multiple social dimensions reflects responses to shared features across 

all the dimensions (such as biological motion perception or intention- 

ality detection; Allison et al., 2000 ; Nummenmaa and Calder, 2009 ), 

or spatially overlapping yet dimension-specific processing. Multivari- 

ate classification analysis revealed that the answer to this question de- 

pends on the region. The ANOVA feature selection for the whole-brain 

classification retrieved voxels from STS, LOTC, TPJ and FG ( Fig. 6 and 

Fig. 7 ) yielding classification accuracy exceeding 50% for the multi-class 

classification. Regional classification confirmed that occipital, tempo- 

ral and parietal regions showed average to high classification accura- 

cies, whereas the classification accuracies diminished towards chance 

level in frontal and subcortical regions. These results show that even if 

the regional univariate responses for social dimensions were overlap- 

ping, the specificity of the spatial activation patterns was different be- 

tween regions. Interestingly, the ANOVA selected voxels found to best 

discriminate social features closely resemble the network proposed for 

social aspects of human actions in a recent study ( Tarhan and Kon- 

kle, 2020 ) with the exception that our results are more bilateral. Pre- 

vious multivariate studies have also shown that individual social fea- 

tures are represented in these regions. For example, specific response 

patterns to pictures of faces versus animals, houses or man-made ob- 

jects can be found in FG and LOTC ( Haxby et al., 2001 ) and semantic 

information from different human actions judged from static images are 

represented in LOTC ( Tucciarelli et al., 2019 ). Subsequent classification 

studies have shown that, for example, different facial expressions can 

be classified from activation patterns in FG, and STS ( Said et al., 2010 ; 

Wegrzyn et al., 2015 ) and goal-orientated actions in LOTC and interior 

parietal lobe ( Smirnov et al., 2017 ; Wurm and Lingnau, 2015 ). Impor- 

tantly, our results show that BOLD-fMRI can be used for classification 

of multiple overlapping event categories from continuous naturalistic 

stimulation. Previous multivariate pattern analyses of social categories 

have used block designs and categorical stimuli matching the a priori cat- 

egory labels. In addition, these studies have only focused on a certain 

detailed aspect of socioemotional processing. The present results thus 

underline that even with high-dimensional naturalistic stimulus, the re- 

sponse properties of certain brain areas show high degree of category 

specificity. 

The results from the classification analysis complement the results 

from the regression analysis with some limitations. To minimize the 

autocorrelation between successive events while preserving sufficient 

number of events for classification the data were split into 29 time win- 

dows and the time points with the same social label were combined as 

one social event within each time window. The time window approach 

in combination with the Z-score method for labelling each time point 

split the data into clearly consecutive events (86% events included only 

adjacent time points) rather than dispersed the social labels within the 

time window. The mean duration of the events was ∼12 s. These findings 

indicate that this data-driven approach split the data into representative 

social events that could be used as input for classification. Nevertheless, 

the capability of this event generating method is dependent on the tem- 

poral dynamics of the stimulus and the time window length should be 

adjusted accordingly at the same time limiting the temporal closeness 

between two events with the same label. The results are an important 

first proof of concept for this type of category classification during nat- 

uralistic and uninterrupted perception. 

The video clips were shown in the same order for all subjects, which 

may artificially boost classification accuracy, although the model should 

not learn the actual order of the events since the data were shuffled in 

each learning iteration. Regardless, the observed differences in classi- 

fication accuracies in different brain regions should not be due to the 

order of the stimulus which is more interesting than the actual classifica- 

tion accuracies. It is likely that people focus attention in the most salient 

social details in the stimulus movies instead of continuously monitor- 

ing for multiple sources of information with possibly low importance. 

Hence, we chose a classification approach where each time point was 

labelled with the social dimension of the highest relative intensity in- 

stead of trying to predict the values of all social features simultaneously. 

Future studies could aim to predict multiple intensities from multiple 

categories in the stimulus set. Due to naturalistic and uncontrolled stim- 

uli the classification dataset was unbalanced. Even in regions with near 

chance level total accuracy, some classes with large number of events 

were classified with relatively high accuracy ( Figure SI-10 ) which may 

reflect the differences in the number of events in these classes and might 

not reflect the actual social information processing in the brain. Conse- 

quently, regional differences in the prediction accuracies to individual 

classes cannot be addressed. 

4.4. Reliability versus specificity of responses to social perceptual 

dimensions 

We observed robust intersubject correlation of brain activity in tem- 

poral and occipital regions while subjects viewed the video clips. Previ- 

ous studies have found that the ISC is in general the strongest in sensory 

regions, and it progressively becomes weaker towards the polysensory 

and associative cortices ( Hasson et al., 2010 ). Regional ISC has been 

shown to depend on features such as emotions conveyed by the film 

( Nummenmaa et al., 2012 , 2014 ). The spatial ISC patterns also depend 

on the structure of the narrative presented in the stimulus. Structured 

films with clear plot result in significantly larger ISC than unstructured 

videos that merely contain social signals ( Hasson et al., 2010 ). Our data 

revealed that the strength of the ISC was contingent on the number 

of social features each region responded to in the univariate analysis 

( r = 0.86, Fig. 5 c ) and regional ISC was also associated with the corre- 

sponding regional classification accuracy ( r = 0.85, Fig. 7 a ). These data 

highlight the relevance of the social domain to the cortical information 

processing, as the consistency of the regional neural responses was as- 

sociated with the brevity of the tuning for social signals in each region. 

In other words, regions responding to multiple social signals also do so 

in a time-locked fashion across subjects. Importantly, this effect was not 

just an artefact of the consistency of sensory cortical responses to social 

signals but was also observed in higher-order associative areas including 

LOTC and STS. The results indicate that social perception is a key fac- 

tor in synchronizing brain responses across individuals, supporting the 

idea that “mental resonance ” underlies mutual understanding of social 

environment and supports the centrality of social interaction in human 

brain function ( Hari et al., 2015 ). 
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4.5. Functional organization of social perception networks in the human 

brain 

The regional response profiles towards social signals can be sum- 

marized based on the combination of the regional response consistency 

(univariate regression analysis), the spatial response pattern specificity 

(MVPA) and the reliability of the BOLD signal across subjects (ISC). First, 

posterior temporal and occipital regions responded consistently to most 

social dimensions, while the presence of specific social dimensions could 

also be classified accurately from these regions. High classification ac- 

curacy suggests that these regions already hold dimension-specific and 

integrated information regarding the social world. Additionally, these 

regions responded consistently to the social stimuli (as indicated by 

high ISC) across subjects. LOTC, STS, TPJ, FG and occipital regions thus 

constitute the most fundamental hubs for social perception in the hu- 

man brain and are likely involved in integration of the multisensory 

information and semantic representations regarding the social events 

( Allison et al., 2000 ; Lahnakoski et al., 2012 ). 

Second, Heschl gyrus, the site of the auditory cortex ( Da Costa et al., 

2011 ), responded consistently to social dimensions but the classifica- 

tion accuracy was only moderate in that region while the ISC of the 

response was the highest of all regions. This suggests that Heschl gyrus 

processes domain-general social (most likely auditory) information but 

does not carry detailed information about the distinct social dimensions, 

as evidenced by the relatively low classification accuracy in the region. 

Third, parietal regions especially precuneus, supramarginal gyrus and 

SPG showed consistent responses with numerous social dimensions and 

yet their ISC and classification accuracies were only moderate. Previ- 

ously, precuneus has been linked with attention and memory retrieval 

( Cavanna and Trimble, 2006 ), supramarginal gyrus with phonological 

( Hartwigsen et al., 2010 ) and visual ( Stoeckel et al., 2009 ) process- 

ing of words, and SPG in visuospatial processing and working mem- 

ory ( Koenigs et al., 2009 ). These parietal regions thus likely respond to 

some general features of the social signals or idiosyncratic brain states 

associated with social dimensions. 

Frontal and subcortical regions responded only to a limited num- 

ber of social dimensions, and classification accuracy and ISC remained 

low. The regression analysis showed some consistency in IFG, precentral 

gyrus, the frontal part of the medial SFG, amygdala and thalamus, yet 

the classification accuracies remained low. MFC has previously been as- 

sociated with higher-level social and affective inference such as linking 

social processing with decision making, affective processing and theory 

of mind ( Amodio and Frith, 2006 ; de la Vega et al., 2016 ). However, 

previous classification studies have not found specificity for responses 

to social perceptual dimensions in the frontal cortex ( Haxby et al., 2001 ; 

Oosterhof et al., 2012 ; Wegrzyn et al., 2015 ; Wurm and Lingnau, 2015 ). 

Thus, frontal areas may subserve higher-order social process by linking 

low-level social perception into more complex and abstract cognitive 

processes such as making predictions of the next actions or linking per- 

ception with the brain’s affective system. Indeed, there is evidence that 

MFC could be responsible in giving affective meaning for the ongoing ex- 

periences and that MFC processing is highly idiosyncratic ( Chang et al., 

2021 ). Limbic regions such as amygdala and thalamus in turn have been 

linked with processing of (negative) emotions ( Karjalainen et al., 2019 ) 

and accordingly, they showed reliable responses primarily to percep- 

tion of antisocial behaviours. Finally, frontal regions and thalamus have 

been associated with felt, but not perceived emotions while general so- 

cial hubs TPJ, STS, and LOTC associated with both perceived and felt 

emotions establishing distinction between emotion perception and emo- 

tional experience in the human brain ( Saarimaki et al., 2023 ). 

The present study focused on the functional organization of social 

perception. Still, passive observation is different from active engage- 

ment in social interaction. Recently, this difference between spectator 

accounts versus truly interactive models of neural basis in social cog- 

nition has been highlighted and researchers are increasingly interested 

in measuring real interactive social processes in the brain ( Redcay and 

Schilbach, 2019 ). An important yet challenging future question would 

thus be mapping the organization of the building blocks of active social 

interaction in the human brain. 

5. Conclusions 

Using a combination of data-driven approaches and multivariate pat- 

tern recognition we established the perceptual space for social features 

and mapped the cerebral topography of social perception that can be 

adequately described with 13 perceptual dimensions. Social perceptual 

space of the video stimuli included clusters of social features describing 

sexual & affiliative and antisocial behaviour, feeding, body movement, 

communication, and playfulness, as well as individual dimensions male, 

female, running, walking, searching, crying, and using an object. Clear 

gradient in response selectivity was observed from broad response pro- 

files in temporal, occipital and parietal regions towards narrow and se- 

lective responses in frontal and subcortical regions. Perceptual social 

dimensions could be reliably decoded from regional activation patterns 

using multivariate pattern analysis. Both regression analysis and multi- 

variate pattern analysis highlighted the importance of LOTC, STS, TPJ 

and FG and other occipitotemporal regions as dimension-specific so- 

cial information processors, while parietal areas and Heschl’s gyrus pro- 

cess domain-general information from the social scenes. Additionally, 

regional response profiles for social perception closely related to the 

overall reliability of the BOLD responses. Altogether these results high- 

light the distributed nature of social processing in the brain as well as 

the spatial specificity of brain regions to social dimensions. 
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