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Abstract. The field of materials science and engineering is constantly evolving, and new methods 
are being developed to improve our understanding of the relationship between microstructure and 
properties. One such method is crystal plasticity (CP) modeling, which is widely used for 
predicting the mechanical properties of crystals and phases. However, determining the constitutive 
parameters for CP models has been a significant challenge, with current methods relying on either 
direct chemical composition or inverse fitting, both of which can be time-consuming and lack 
accuracy. In this study, we propose an automated, advanced, and more efficient method for 
determining constitutive parameters by using a genetic algorithm (GA) optimization method 
coupled with machine learning. Our proposed method is applied to two widely used CP models, 
and the reference data for the calibration is the stress-strain curve from tensile tests. The results of 
the automated calibration process are then compared to numerical simulation results of CP models 
with known parameters, demonstrating the efficiency and accuracy of our proposed method.  
Introduction 
In the field of materials science and engineering, the integrated computational materials and 
engineering (ICME) approach provides a comprehensive and quantifiable description of the 
relationship between microstructure and properties. One such approach is crystal plasticity (CP) 
modeling, which is widely employed for predicting the crystal and phase-level mechanical 
properties of materials. The CP model has been successfully used to predict the number of ears 
formed during the cupping process, the anisotropic deformation behavior, the yield locus, the 
hardening curves, and the residual stress formation during deformation. Currently, there are two 
prominent crystal plasticity constitutive laws: the phenomenological (PH) and the dislocation-
based (DB) constitutive laws. These laws diverge in explaining the dislocation evolution and the 
interaction laws between slip planes at the microscopic level [1]. In other words, the two laws 
define the strain-hardening process differently with their own set of equations and resultant fitting 
parameters. Both constitutive laws aim to define the kinetic equation for the shear rate γ̇ on the 
slip system α. The phenomenological law defines the shear rate formula through empirical 
observation [2], while the law based on dislocation density derives the shear rate from physical 
kinetic equations that depend on material properties [3, 4].  

Previous studies have used these two CP models to predict different types of nonlinear loading 
deformation with varying success [5-9]. However, the process of determining the constitutive 
parameters for CP models has been a significant challenge, with current methods relying on either 
direct chemical composition [10,11], which may lack a certain level of accuracy for specific 
applications, or inverse fitting of fitting constitutive parameters via a manual procedure that relies 
on the researcher's experience and is highly subjective and time-consuming.  

In light of these challenges, several recent studies attempted to determine the optimal 
constitutive parameters by different optimization algorithms[12,13]. It is shown that the 
optimization algorithms, e.g., genetic algorithm (GA), could provide very accurate parameter 
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calibration for both models. However, the procedure to use the GA for the optimization process of 
CP models is not straightforward and a manual process shall be involved in formulating an 
empirical function serving as the response surface to save the computational time for GA.  

Therefore, in the current study, it is aimed to formulate an automated, advanced, and more 
efficient method for determining constitutive parameters by using the GA optimization method. 
The main focus is to improve the efficiency and simplify the formulation of the response surface 
that is needed in the GA optimization process. A machine-learning-based approach is proposed for 
this purpose to be coupled with GA. The new method is applied to both CP models: four fitting 
parameters (τ0, α, h0, τsat) in the phenomenological law and six fitting parameters (𝑑̂𝑑𝛼𝛼, islip, Ω, p, q, 
τsol) in the dislocation-density-based law [5,9]. The reference data for the calibration is the stress-
strain curve from tensile tests, which is also the most used case for single-phase materials [14]. In 
the study, numerical simulation results of CP models with known parameters are used as the target 
or “experimental” curve, which can be used to verify and compare the results of the parameters by 
the automated calibration process. 
Methodology 
The response surface methodology (RSM) is a frequently used mathematical model to analyze the 
response of interest [15]. RSM aims to accurately predict the response variables given an unknown 
set of explanatory variables. For example, in CP parameter calibration, the explanatory variables 
are the fitting parameters (four in PH law and six in DB law) and the response variables are the 
corresponding stress values. Therefore, the essential aspect of RSM is the true reflection of 
regional continuity around the global optima. This study uses the multilayer perceptron (MLP) as 
the RSM for the genetic algorithms. An MLP is a feedforward artificial neural network comprising 
an input layer, several hidden layers, and an output layer. The MLP structure used in this project 
consists of three layers: the input layer (parameters) with 4-6 neurons and the output layer (stress 
values) with varying neurons depending on the number of interpolated stress values. There is only 
one hidden layer, and the number of nodes in the hidden layer is calculated as: 

𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(2
3
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)                                                                                                   (1) 

The approximation depends on the hidden layer, where each neuron is the weighted linear sum 
of the neurons in the previous layer or the input layer. The output layer derives from the 
transformation of the hidden layer by the activation function, whose outputs depend on whether 
the inputs pass their respective thresholds. Rectified Linear Unit (ReLU) is used as the activation 
function for its common usage and exemplary performance in neural networks: 

ReLU(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 0)                                                                                                                          (2) 

where x is the value in the hidden nodes. The function returns 0 if x is negative. 
Optimization of complex functions with unknown structures is a challenging problem to solve. 

The genetic algorithm, a commonly used hyperparameter optimization algorithm, is applied in this 
research to tackle this problem. This algorithm is based on the theory of evolution by Charles 
Darwin, where survival of the fittest is regarded as the best outcome. A study by Himani Panwar 
[16] finds that the natural selection process is simulated by choosing the best individuals 11 from 
each generation determined by the fitness function. According to Sedighiani [12], GA can 
converge to the global optimum of the objective functions instead of being stuck in local optima 
like the gradient-based searching methods. For this reason, GA is a robust optimization algorithm 
that guarantees to find the optimal solution in a probabilistic fashion of biological evolution. 
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Fig. 1 shows the structure of GA is mainly based on the work of Sedighiani et al. [12], which 
features eight steps that simulate biological evolution. The goal of GA is to maximize the fitness 
functions in one iteration. 

 
Fig. 1. GA workflow comparison in each iteration. 

Objective, Fitness, and Stop Criteria Functions  
In this study, a multi-objective optimization approach was developed to improve the precision of 
simulation results. The optimization process was divided into two stages, with the first stage 
focusing on optimizing the parameters that control yield strength and the second stage focusing on 
optimizing the parameters that control hardening behavior.  

 

 
Fig. 2. Overview of the multi-objective optimization approach functions. 

 
Fig. 2 shows all the functions of the optimization, which are the objective, fitness, and stop 

criteria functions. In the first stage of optimization, two objective functions were employed to 
evaluate the accuracy of simulated yield strength. The first objective function, Y1, measured the 
absolute difference between the experimental and simulated yield strength values, while the second 
objective function, Y2, calculated the slope of yield strength.  

Y1(𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = �𝜎𝜎𝑒𝑒𝑒𝑒 − 𝜎𝜎𝑠𝑠𝑠𝑠�                                                                                                                          (3) 
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Y2(𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = �𝜎𝜎′𝑒𝑒𝑒𝑒 − 𝜎𝜎′𝑠𝑠𝑠𝑠�                                                                                                                        (4) 

where 𝜎𝜎𝑒𝑒𝑒𝑒 and 𝜎𝜎𝑠𝑠𝑠𝑠 are the yield strength of the experiment and simulation curves, and 𝜎𝜎′𝑒𝑒𝑒𝑒 and 
𝜎𝜎′𝑠𝑠𝑠𝑠 are the slope of the yield strength of experiments and simulation, respectively. As shown in 
the fitness function later, a linear combination of these two objective functions, Y1 and Y2, was 
used to minimize the deviation between the experimental and simulated yield strength values, as 
well as the deviation in the slope of the yield strength. This approach helped to quantify the yield 
strength accuracy more precisely and take into account the increasing trend of the experimental 
and simulated yield strength.  

In the second stage of optimization, four objective functions were utilized to evaluate the global 
fitness of the simulated hardening behavior. The first objective function measured the normalized 
Euclidean distance between the experimental and simulated hardening curves, while the second 
objective function measured the normalized slope difference between the two curves. This helped 
to determine whether the simulated and experimental hardening curves shared the same global 
shape.  

H1(𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = �∑ (𝜎𝜎𝑒𝑒𝑒𝑒−𝜎𝜎𝑠𝑠𝑠𝑠)2𝑁𝑁
𝑖𝑖
∑ 𝜎𝜎𝑒𝑒𝑒𝑒

2𝑁𝑁
𝑖𝑖

                                                                                                                     (5) 

H2(𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = �∑ (𝜎𝜎′𝑒𝑒𝑒𝑒−𝜎𝜎′𝑠𝑠𝑠𝑠)2𝑁𝑁
𝑖𝑖
∑ 𝜎𝜎′𝑒𝑒𝑒𝑒

2𝑁𝑁
𝑖𝑖

                                                                                                                        (6) 

In the two objective functions, the subscript i stand for each data point in the hardening part of the 
stress–strain curves for both experiments and simulations, and N represents the total number of 
data points.  

To further penalize the maximum distance and slope difference between the curves, two 
additional objective functions, H3 and H4, were employed which delivered the maximum value 
point of H1 and H2, respectively. These objective functions helped to account for the maximum 
deviation and slope difference between the experimental and simulated curves. A linear 
combination of these four objective functions was used to converge to the global optimum and 
avoid getting stuck in local optima. 

H3(𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = max
𝑖𝑖
��(𝜎𝜎𝑒𝑒𝑒𝑒−𝜎𝜎𝑠𝑠𝑠𝑠)2

∑ 𝜎𝜎𝑒𝑒𝑒𝑒
2𝑁𝑁

𝑖𝑖
�                                                                                                            (7) 

H4(𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = max
𝑖𝑖
��

(𝜎𝜎′𝑒𝑒𝑒𝑒−𝜎𝜎′𝑠𝑠𝑠𝑠)2

∑ 𝜎𝜎′𝑒𝑒𝑒𝑒
2𝑁𝑁

𝑖𝑖
�                                                                                                          (8) 

The fitness function for each optimization stage was the weighted sum of all objective functions. 
In the first stage, the yield stress fitness function was the weighted sum of Y1 and Y2, while the 
hardening fitness function in the second stage was the weighted sum of the hardening objective 
functions. The weights could be manually tuned to improve the results in each stage when certain 
fitness aspects required emphasis. The sum of the weights was defined to be one, with the 
difference in the weights being due to the unequal importance and result scale of the objective 
functions. 

F𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝜔𝜔,𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = 𝜔𝜔1𝑌𝑌1 + 𝜔𝜔2𝑌𝑌2                                                                                                          (9) 

Fℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝜔𝜔,𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠) = ∑ 𝜔𝜔𝑗𝑗𝐻𝐻𝑗𝑗(𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑠𝑠), 𝑗𝑗 = 1,2,3,44
𝑗𝑗=1                                                           (10) 
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The optimization process was halted when the stopping criteria were met. In the first stage, the 
process stopped when the simulated yield strength value was within a specified deviation from the 
experimental value, as defined in YDev. A rather small tolerance, 2% is chosen for this case to 
ensure very good fitness on the yield strength. In the second stage, the process stopped when all 
simulated stress values were within a specified deviation, 5%, of the experimental stress values, 
as defined in the HDev function. These stopping criteria ensured that the final simulation results 
met the desired precision and accuracy.  

YDev(𝜎𝜎𝑒𝑒 ,  𝜎𝜎𝑠𝑠) = �
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      𝑖𝑖𝑖𝑖 𝜎𝜎𝑠𝑠𝑦𝑦 ∈ �0.98𝜎𝜎𝑒𝑒𝑦𝑦 ,  1.02𝜎𝜎𝑒𝑒𝑦𝑦�  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖𝑖𝑖 𝜎𝜎𝑠𝑠𝑦𝑦 ∉ �0.98𝜎𝜎𝑒𝑒𝑦𝑦 ,  1.02𝜎𝜎𝑒𝑒𝑦𝑦�
                                                                        (11) 

HDev(𝜎𝜎𝑒𝑒 ,  𝜎𝜎𝑠𝑠) = �
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      ∀𝑖𝑖.𝜎𝜎𝑠𝑠𝑖𝑖 ∈ �0.95𝜎𝜎𝑒𝑒𝑖𝑖 ,  1.05𝜎𝜎𝑒𝑒𝑖𝑖� 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓    ∃𝑖𝑖.𝜎𝜎𝑠𝑠𝑖𝑖 ∉ �0.95𝜎𝜎𝑒𝑒𝑖𝑖 ,  1.05𝜎𝜎𝑒𝑒𝑖𝑖�

                                                                         (12) 

Experimental and simulated data were used in this process and precise yield stress values and 
similar global shapes to the target curves were obtained, which will be shown in the next section. 
In Table 1, the default weights for the fitness functions used in this study are shown. The developed 
optimization approach was effective in improving the precision of simulation results and could be 
applied to various optimization problems in the field. Additionally, the approach allowed for 
manual tuning of the weights for the objective functions to emphasize specific aspects of the 
fitness, providing more flexibility in the optimization process.  

 
Table 1. Default weights for two fitness functions. 

 Fyield Fhardening 
ωy1 ωy2 ωh1 ωh1 ωh1 ωh1 

weight 0.999 0.001 0.9 0.025 0.05 0.025 

Resutls and Discussion  
Before the optimization, we must ensure our target curve and search space for the optimizer. 
Instead of the experimental data, the target strain-stress curves are taken from the CP simulation 
for a better comparison of the quality of the fitted parameters by the optimization approach. To 
prove the general validity of the proposed approach for different types of materials, not only one 
simulation but three simulation results with very different parameter sets were selected as the target 
curves to compare the difference between the initial parameter values with the optimal parameters 
delivered by the calibration process. Next, we need to determine the parameter ranges and step 
sizes. The range allows the optimizer to limit the search space, and the step size allows for the 
discretization of continuous parameter values. Therefore, the algorithms only search within the 
range by the defined step size. 

The CP model calibration process begins with converting the true stress-true strain curve into 
the flow curve in the preprocessing stage. Next, initial simulations are performed, which will yield 
the final optimal parameters that are dependent on the parameters of the initial simulations. Good 
initial simulations help direct the optimizing algorithm to the location of the true parameter set. 
The number of initial simulations in this work is 30. To improve the precision of both yield stress 
and hardening parameter predictions, the range of all simulated yield stresses must cover the 
experimental yield stress and the boundaries should cover the experimental global curve. 
Additionally, the neighboring simulated curves should have a similar global shape to that of the 
target curve. Fig. 3 shows the relationship between the initial guess simulations and target curves.  
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(a) Good initial simulations (b) Bad initial simulations 
Fig. 3. Good (a) and bad (b) initial simulations and experimental curve. 

 
The first stage of the optimization process involves adjusting the yield stress parameters, which 

are represented by τ0 for the PH model and p, q, and τsol for the DB model. The hardening 
parameters are not altered during this stage. The results of this stage are illustrated in Fig. 4a for 
the PH model, where it can be observed that in the first iteration, the simulated yield stress (σsy) is 
approximately 123.5 MPa at τ0 = 52. In the following iteration, the genetic algorithm predicts τ0 = 
51, resulting in a further increase in σsy. The optimization process concludes in the third iteration, 
where τ0 = 54 and σsy deviates by 2% from the experimental yield stress (σey) whose true value is 
τ0 = 55. It is important to note that the algorithm does not always produce better results in each 
iteration; instead, it demonstrates an improvement trend, with simulated yield stress values 
progressively approaching the experimental yield stress. This is because the algorithm explores 
different parts of the search space in each iteration, gradually honing in on the true parameter set. 
Similarly, for the DB model, the optimized parameters are (p, q, τsol) = (0.2, 1.3, 0.3), which results 
in a 2% deviation in the yield stress from the true parameters (p, q, τsol) = (0.2, 1.8, 0.4) as shown 
in Fig. 4b. Despite not being exact, the results are still satisfactory due to the non-uniqueness of 
optimal parameters. This means that even if one parameter is changed, another varying parameter 
can exist to balance the outcome.  

 

 

 

 
(a) Yield control optimized by GA of PH (b) Yield control optimized by GA of DB 

Fig. 4 Strain-stress curve of σy at ε = 0.002 in the first optimize stage of PH (a) and DB (b). 
 

In the second stage of the optimization process, the algorithms focus on adjusting the hardening 
parameters. For the PH model, these parameters are represented by α, h0, and τsat, while for the DB 
model, they are represented by 𝑑̂𝑑𝛼𝛼, islip, and Ω. The values of the yield stress adjusting parameters 
are obtained from the first stage of the optimization process. The results of this stage are illustrated 
in Fig. 5 for both the PH and DB models.  
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(b) Hardening behavior optimization of PH (b) Hardening behavior optimization of DB 

Fig. 5 Strain-stress curve in the second optimization stage of PH (a) and DB (b). 
 

The quality of the fitting simulation curve is evaluated based on two criteria: the loss distance 
and the number of intersections with the experimental curve. The goal is to achieve a minimum 
distance loss and to have the simulated curve globally above, below, or exactly overlapping the 
experimental curve. This is because these conditions indicate that the simulated and experimental 
curves share the same increasing trend, which is a good indication of the accuracy of the 
simulation. On the other hand, if the simulated curve intersects with the experimental curve, it 
indicates contrasting material performance and a loss of the simulated prediction meaning. In the 
last iteration (7th) of the PH1 model, the simulated curve shares two intersections with the 
experimental curve, while in the DB1 model, the last iteration (9th) shares no intersections, making 
the final simulation result of DB1 better than PH1 in terms of the above-mentioned criteria.  

Following the procedures demonstrated above, the performance of the final iteration results of 
the parameter calibration program under GA was then compared and illustrated in Fig. 6. The GA 
demonstrates good and stable calibration quality for the three initial target curves of both the PH 
and DB model. Similar conclusions were also observed in the results of the DB laws. Table 2 
below records all optimal parameter solutions predicted by GA. It is important to note that in some 
cases, more than one parameter controls the same aspect of the simulation, and their effects can 
balance each other out. For example, only τ0 controls the yield point of PH, while other parameters 
control the hardening curve, and a and h0 have opposite effects on the hardening curve. 
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(a) PH1  (b) PH2  (c) PH3  

 

(d) DB1  (e) DB2  (f) DB3  
Fig. 6. Final iteration of parameter calibration for target curves in PH and DB laws. 

 
Table 2. Final fitting parameter calibration results for two CP models. 

 τ0 a h0 τsat  𝑑𝑑�𝛼𝛼 islip Ω p q τsol 
PH1 54 1.3 700 130 DB1 1 27 3 0.45 1.6 0.10 
True 55 1.6 600 150 True 1 25 3 0.20 1.8 0.40 
PH2 71 1.2 750 390 DB2 0.35 95 0.04 0.23 1.65 2.60 
True 70 1.9 800 500 True 0.80 80 0.80 0.20 1.10 1.20 
PH3 30 0.5 750 92 DB3 2 140 10 0.85 1.10 1.20 
True 30 0.8 1000 90 True 2 180 15 0.90 1.10 1.20 

 
Fig. 7 shows the comparison of the yield point error and the root means square error (RSME) 

of the hardening behavior between experimental data and optimized results. As seen in Fig. 7a, the 
error analysis of GA at the yield point shows relatively small values, within a 2% deviation from 
the experimental ones. Meanwhile, in Fig. 7b, the RSME values for the hardening behavior also 
indicate that the fitting quality for the three cases shows very good quality. 

  

(a) Yield stress error comparison (b) Root mean square error comparison 
Fig. 7. Error analysis of the final iteration of parameter calibration for the three target curves. 

Summary 
The optimization workflow presented in this study solves well the problem of parameter 
calibration for three chosen target stress-strain curves, which traditionally relies on educated 
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guessing by experts. Additionally, the use of machine learning-assisted methodology in this article 
has led to a fully automated process for identifying fitting parameters. Despite the success of the 
calibration process in identifying optimal fitting parameters, certain challenges and limitations also 
exist in the current workflow. These include: 

• Choosing an appropriate parameter range: If the true parameters do not lie within the 
specified range, the optimization algorithm may not converge to the correct solution unless 
the optimal solution is non-unique and another candidate within the range behaves 
similarly to the target curve.  

• Poor initial simulations: Initial simulations should be regenerated when the yield stress is 
not covered in the range of simulated yield stress values. 

• Nonconvergence of simulations in the DB model: Not all combinations of DB fitting 
parameters result in successfully converging simulations. This problem usually arises from 
large 𝑑̂𝑑𝛼𝛼 and very small p values. 

• Nonconvergence of the MLP regressor: This issue can occur due to a large number of data 
points in the target curve and can be solved by loading point interval omission.  

These limitations and challenges present in the current workflow can be overcome by certain 
adjustments, such as adjusting the chosen parameters, and are currently being solved in a more 
general and automated matter in ongoing studies.  
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