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Abstract 

Thermal ablation procedures, such as high intensity focused ultrasound and radiofrequency ablation, are often used 
to eliminate tumors by minimally invasively heating a focal region. For this task, real-time 3D temperature visualiza-
tion is key to target the diseased tissues while minimizing damage to the surroundings. Current computed tomog-
raphy (CT) thermometry is based on energy-integrated CT, tissue-specific experimental data, and linear relationships 
between attenuation and temperature. In this paper, we develop a novel approach using photon-counting CT for 
material decomposition and a neural network to predict temperature based on thermal characteristics of base materi-
als and spectral tomographic measurements of a volume of interest. In our feasibility study, distilled water, 50 mmol/L 
 CaCl2, and 600 mmol/L  CaCl2 are chosen as the base materials. Their attenuations are measured in four discrete energy 
bins at various temperatures. The neural network trained on the experimental data achieves a mean absolute error 
of 3.97 °C and 1.80 °C on 300 mmol/L  CaCl2 and a milk-based protein shake respectively. These experimental results 
indicate that our approach is promising for handling non-linear thermal properties for materials that are similar or dis-
similar to our base materials.

Keywords Photon-counting computed tomography, Material decomposition, Computed tomography thermometry, 
Artificial intelligence, Deep learning, Neural network, Thermotherapy, Radiotherapy

Introduction
Annually, over 100000 patients undergo thermal abla-
tion procedures for a wide range of benign and malig-
nant tumors [1]. As a primary example, high intensity 
focused ultrasound (US), which heats a focal region 
using a concave transducer, is an effective non-inva-
sive treatment for prostate and other cancers [2, 3]. 
Currently, the delivery of the thermal dose is guided 
by invasive thermistors which can be fragile and only 

report temperatures from a limited number of points 
[4, 5]. Over the past decades, significant research efforts 
were devoted to extracting and analyzing thermal data 
from medical imaging modalities like US, magnetic 
resonance imaging (MRI), and computed tomogra-
phy (CT). Among these modalities, CT is particularly 
advantageous for its real-time acquisition, high spatial 
resolution, and full-body coverage. In contrast, MRI 
has significant drawbacks in scanning speed, geometric 
accuracy, and cost, while US suffers from strong arti-
facts and restricted penetration through hard tissues 
and across air-tissue interfaces [6, 7].

While ionizing radiation to the patient is the main 
problem associated with CT, solutions are being 
rapidly developed over the past years. For instance, 
interior tomography allows for targeted imaging of 
a region of interest [8]. Also, data-driven methods 
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(i.e., machine learning and deep learning) have been 
applied to low-dose image reconstruction and denois-
ing [9]. Synergistically, hardware-based innovations 
enabled photon counting CT (PCCT), which is a new 
frontier of medical imaging. PCCT can reduce radia-
tion dose by eliminating electron noise, minimizing 
sensitivity to beam hardening through optimal X-ray 
photon weighting, increasing spatial resolution with 
fine detector pitch, and performing multiple material 
decomposition beyond the capabilities of dual energy 
CT [10, 11]. With FDA approval, these advance-
ments have already been used in multiple clinical 
applications.

The ability for CT to measure temperature changes is 
based on the induced change in X-ray linear attenua-
tion coefficient (LAC) as the result of thermal expan-
sion. In general, heat applied to a tissue causes an 
increment in volume and thus decrement in density, 
which is observed as a drop in the LAC. The relation-
ship between CT number, which is a normalized meas-
ure of the LAC expressed in Hounsfield units (HU), and 
temperature is modeled as Eq. 1.

where T0 is an initial baseline temperature, and α is the 
material-specific thermal expansion coefficient [12]. The 
change in HU per degree Celsius is called the thermal 
sensitivity and is often approximated as a constant over 
the relevant temperature range (approximately 30 °C to 
approximately 90 °C). This linear trend is confirmed in 
the prior studies which examined substances including 
water, fat, liver, kidney, etc. [13, 14]. Overall, studies have 
shown that CT thermometry can reach an impressive 
accuracy of 3-5 °C, but only after calibration to a given 
material [1]. While the principle of CT thermometry is 
conceptually simple, the variability in thermal sensitivity 
between different tissues, different patients, and under 
different scanning protocols is a critical challenge [1]. It 
would be difficult or impossible to obtain these highly 
specific measures in vivo, and clearly there are substan-
tial differences between in  vivo and ex  vivo measure-
ments because of the different physiological conditions. 
Furthermore, exposure to intense heat during thermal 
ablation may alter the thermal properties of the target 
region, introducing additional errors.

To address these significant problems with CT ther-
mometry, here we present the first approach for PCCT 
thermometry that allows for superior material decom-
position and data-driven temperature mapping relying 
on basis material data that do not need patient-specific 
calibration. Using PCCT to simultaneously capture the 
LAC of a substance at several energy levels, we can per-
form material decomposition, which is demonstrated in 

(1)�CT (T ) ≈ −[1000+ CT (T0)]α�T

Eq. 2 for three base materials without loss of generality 
[15, 16].

μ1, μ2, and μ3 are the known energy-dependent LACs 
of the bases and V1, V2, and V3 are the correspond-
ing unknown volume fractions. Physically speaking, the 
LAC of a mixture of the base materials must be the lin-
ear combination of the LACs of the components with the 
corresponding volume fractions as the weighting factors.

Given the above, one might reasonably expect that 
thermal sensitivity could be linearly computed according 
to the material composition. In other words, given that 
μi(T) ≈ αi(T − T0) + μi(T0) where T0 is a reference temper-
ature and αi is the thermal sensitivity, a linear model for 
the LAC for n base materials would be as follows:

where α′ = n
i=1Viαi and β′ =

∑n
i=1Viµi(T0) are the 

volume fraction weighted thermal sensitivity and offset 
respectively. In reality, thermal sensitivity relies primar-
ily on thermal expansion, which is directly related to 
the strength of intermolecular bonds. Hence, the above 
linear model is generally inaccurate. Indeed, our experi-
mental data presented in Fig. 2g shows that thermal sen-
sitivity follows a quadratic/higher order relationship with 
the concentration of  CaCl2, indicating that data-driven 
modelling is suitable for PCCT thermometry. Since a 
fully connected neural networks with proper activations 
can approximate any continuous function, it is an ideal 
choice for non-linear prediction of temperature given 
spectrally resolved LAC values, which is essentially a 
multivariate regression task.

Methods
In our feasibility study, we selected (1) water and aque-
ous solutions of (2) 50 mmol/L  CaCl2 and (3) 600 mmol/L 
 CaCl2 as our three base materials since the human body 
is characteristically composed of water and bone. These 
substances were heated in a hot water bath with preci-
sion temperature control and immediately transferred to 
a custom-built rectangular cuboid phantom with a digital 
thermometer (DS18B20 thermometer, ± 0.25 °C) shown 
in Fig. 1a. The thermal expansion of the acrylic phantom 
container is negligible in comparison to the substances 
being measured. The LAC values of the homogene-
ous base substances were measured in four energy bins 
(8-33 keV, 33-45 keV, 45-60 keV, and 60-100 keV) dur-
ing transient cooling and at approximately every 5 °C 

(2)







µ(E1) = V1µ1(E1)+ V2µ2(E1)+ V3µ3(E1)
µ(E2) = V1µ1(E2)+ V2µ2(E2)+ V3µ3(E3)

1 = V1 + V2 + V3

(3)µ(T ) =
∑n

i=1
Viµi(T ) = α′(T − T0)+ β′
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temperature drop. The system consists of an X-ray source 
(SourceRay SB-120-350, 75 μm focus) and an X-ray 
photon-counting detector (ADVACAM WidePIX1x5, 
Medipix3, 55 μm pitch, 256 × 1280 pixels). In our experi-
ments, the source was operated at 100 kVp 100 μA with 
0.1 mm copper filtration. The detector was set to the 
charge-summing mode with two thresholds for each 
acquisition. After 1 h of stabilization, projections were 
collected at 8 keV and 45 keV thresholds followed by the 
same number of projections at thresholds of 33 keV and 

60 keV. All projections were captured within a 1.5 °C 
change of the digital thermometer reading.

Since the X-ray tube emits photons in a small-angle 
cone geometry, we cannot assume that all beam paths 
through the phantom are in parallel. Thus, a weak per-
spective method was used to compensate for beam 
divergence. This is illustrated in Fig. 1b and c. In the 2D 
projection after removal of a small proportion of unstable 
pixels (greater than 3 standard deviations from the aver-
age), we selected a horizontal LOI that spans the width of 

a) b) c)

Fig. 1 Illustration of the experimental setup and procedure. a Photo of the photon counting CT configuration used to take 2D projections 
(256 × 1280 pixels) of the phantom; b the 200th row in the projection is selected as the line of interest (LOI) and used to obtain the difference 
between the projection profiles of the phantom when it is filled and when it is empty. The projections have been contrast enhanced for better 
viewing and the vertical white lines corresponding to gaps between detector chips are removed during processing; c The difference in area 
between the projection profiles of the empty and filled phantom are used to determine the LAC of the liquid material

a) b) c)

d) e) f)

g)

Fig. 2 Graphs of attenuation data of all studied materials. a Attenuation vs energy plots for water compared to NIST values (we multiply the mass 
attenuations by the density of water, assumed to be 1.00 g/cm3 at 33 °C). The end points of the energy bins (33, 45, 60, and 100 keV) were selected 
for the figure. Compton scattering of high energy photons accounts for the observed attenuation discrepancy; b-f Attenuation vs temperature 
plots for all materials. The positive trend in the 33-45 keV bin is due to the effects of temperature on Compton scattering at high energies. The 
legend indicates the slope of the regression line for the color-coded trend; g Scatterplot summary of thermal sensitivities with error bars. Observe 
the non-linear trend between thermal sensitivity and composition for 0, 50, 300, and 600 mmol/L solutions of  CaCl2
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the phantom [17]. Using x to denote position along the 
LOI, the difference between the line integral profiles of 
the phantom when it is filled with liquid and when it is 
empty was computed according to Eq. 4.

where f stands for filled, e stands for empty, I are the raw 
photon counts, and L (254 mm) is the external side length 
of the square cross-section of the phantom. By taking the 
difference, the attenuation contribution of the phantom 
enclosure was eliminated. Finally, a sliding average over 
five pixels and a median filter over seven pixels were 
sequentially applied to remove noise from the profiles 
before the attenuation of the material is found in Eq. 5.

where the correction factor of 1.23 is the magnification, 
defined as the ratio of the distances from source to the 
phantom center (278.5 mm) and from source to detec-
tor (342.5 mm) and 55E-3 mm is the length of a detector 
pixel. The error in μmaterial is theoretically no more than 
3% compared to if it were measured with a parallel beam 
source. Note that our weak perspective method is rota-
tion-invariant and uses all data points in the LOI to yield 
a high signal to noise ratio. The variance of all measure-
ments was quantified by computing the LAC as the aver-
age of 10 adjacent LOI’s.

To predict the temperature changes, we designed a 
neural network with an input layer of eight nodes, two 

(4)

�p(x) = pf (x)− pe(x) = L ∗ µmaterial(x) = ln

(

Ie(x)

If (x)

)

(5)µmaterial =
0.055

L2

∫

�p(x)

1.23
dx

hidden layers of four nodes, and an output layer of 1 
node. The training examples were generated from the 
base material data. Shown in Eq. 6, the first four elements 
of the input are a material’s LACs at some temperature 
and the last four are the LAC residuals due to heating of 
the material above the 33 °C baseline. The multiplicative 
factor of 100 was introduced to scale the residuals into a 
similar range as the baseline. The network architecture is 
displayed in Fig. 3a.

In total, 333 unique training inputs representing a 
reasonable range of temperatures were generated for 
each of the three base materials where a small amount 
of Gaussian random noise was added to each input. The 
ReLU activation was used for all layers, mean squared 
error acted as the loss function, and stochastic gradi-
ent descent with a learning rate of 1E-5 was used as the 
optimizer. The dataset was split 80% for training and 20% 
for validation. The testing set consisted of data collected 
from 300 mmol/L aqueous  CaCl2, which is similar in 
composition to the base materials, and from a milk-based 
protein shake (30 g protein, 4 g carbohydrates, 2.5 g fat 
per 340 mL), which is organic and dissimilar to the base 
materials. The uncertainty of the temperature predictions 
is quantified by evaluating the network on the testing 

(6)input =



















µ1(T ,E1)
...

µ1(T ,E4)
[µ1(T ,E1)− µ1(T0,E1)] ∗ 100

...

[µ1(T ,E4)− µ1(T0,E4)] ∗ 100



















a) b)

Fig. 3 Summary of experiment results. a The fully connected neural network architecture used to non-linearly model the relationship between 
attenuation and temperature. The input to the network are the spectral attenuations of a material at a baseline temperature concatenated with the 
attenuation residuals due to heating; b Visualization for network performance for predicting temperature on 300 mmol/L  CaCl2 and a milk-based 
protein shake. The data points are labeled in the (xx, yy) format where xx is the predicted temperature and yy is the ground truth temperature 
synchronously measured with a digital thermometer. The 95%CI of temperature prediction is shaded. Data from the testing samples were not 
included in the training data
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data with randomly generated Gaussian noise. This noise 
is distributed according to the variance in attenuation 
obtained from 10 LOI’s in the corresponding projection. 
Hence, we realistically simulate the range of attenuation 
values that are measured in practice.

Results and discussion
All the collected data is illustrated in Fig. 2 and the raw 
data and code are made openly available [18]. Figure 2a 
depicts the trend of X-ray LAC with increasing energy 
levels, which is generally expected. However, at low ener-
gies, our measured attenuation coefficients for water are 
lower than those reported by NIST [19]. This discrepancy 
is due to Compton scattering of high energy photons 
from our polychromatic source which were recorded as 
low energy photons.

Figure 2b-f show the relationship between attenuation 
and temperature, which is a negative trend in all except 
the 33-45 keV channel. The reduced attenuation of a 
material due to thermal expansion leads to two compet-
ing effects: fewer high energy (45-60 keV and 60-10 keV) 
photons are Compton scattered while more low energy 
(33-45 keV) photons pass through. It is hypothesized 
that the former phenomenon has a greater effect since it 
occurs over a wider energy range. Hence, the net effect is 
that attenuation is increased with increasing temperature 
in the 33-45 keV bin. Despite this effect, the data in the 
33-45 keV channel is still informative and is incorporated 
into the network.

After 73 epochs of training, the MAE on the validation 
data smoothly converged from 43.13 °C to 3.40 °C. The 
network is evaluated by on the testing materials by taking 
a baseline scan and computing the residuals from heating 
in an identical fashion as described in Eq. 6 for the train-
ing data. On the testing set, the network achieves a MAE 
of 3.97 °C on 300 mmol/L  CaCl2 over a temperature range 
of 35 °C to 60 °C and an MAE of 1.80 °C on a milk-based 
protein shake over a temperature range of 38 °C to 50 °C. 
Note that 300 mmol/L  CaCl2 can be directly made from 
the bases (i.e., 50% water and 50% 600 mmol/L  CaCl2) 
while the protein shake must be indirectly modeled since 
it contains significant amounts of other substances. In 
both cases, the network is highly accurate. These results 
are displayed in Fig. 3b and c.

Conclusions
In future studies, an active temperature measure (as 
opposed to passive cooling) could be used to ensure 
better thermal accuracy of the data points. A bet-
ter calibrated PCD and increased source filtration can 
also reduce the adverse effects of fluorescence escape 
and beam hardening effects respectively [20, 21]. 

Additionally, more material bases can be incorporated 
for the neural network to cover more material types 
and better neural networks can be designed to improve 
temperature prediction. Furthermore, tomographic 
PCCT on human tissue samples are necessary before 
in  vivo studies can be planned. For preclinical evalua-
tion, mouse experiments can be used to compare the 
efficacy of thermal ablation using classical approaches 
(e.g., thermistors) and the novel PCCT thermometry 
imaging presented in this letter. Clearly, PCCT ther-
mometry will offer a thermal dimension to a spectral 
CT volume and may potentially bring new diagnostic 
and therapeutic tools to clinical practice. Furthermore, 
the idea of using material decomposition to improve 
thermometry may also be applied to phase contrast 
X-ray thermometry, which has been shown to be capa-
ble of volumetric thermal visualization [22].

In this study, we demonstrate a data driven PCCT 
thermometry algorithm that can accurately predict 
the temperature of unknown materials given spectrally 
resolved LACs of a set of known, base materials at vari-
ous temperatures. This is an important result toward 
surgical translation as it presents a solution for han-
dling variability in tissue property without direct cali-
bration to the tissue in vivo.

Abbreviations
CT  Computed tomography
US  Ultrasound
MRI  Magnetic resonance imaging
PCCT   Photon counting computed tomography
LAC  Linear attenuation coefficient
HU  Hounsfield units
LOI  Line of interest
MAE  Mean absolute error
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