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Enhancement by postfiltering for speech and audio
coding in ad hoc sensor networks

Sneha Das and Tom B€ackstr€om
Department of Signal Processing and Acoustics, Aalto University, 02230 Espoo, Finland

sneha.das@aalto.fi, tom.backstrom@aalto.fi

Abstract: Enhancement algorithms for wireless acoustic sensor networks (WASNs) are indispensable with the increasing
availability and usage of connected devices with microphones. Conventional spatial filtering approaches for enhancement in
WASNs approximate quantization noise with an additive Gaussian distribution, which limits performance due to the
non-linear nature of quantization noise at lower bitrates. This work proposes a postfilter for enhancement based on Bayesian
statistics to obtain a multidevice signal estimate, which explicitly models the quantization noise. The experiments using per-
ceptual signal-to-noise ratio, perceptual evaluation of speech quality, and MUSHRA (multistimulus with hidden reference
and anchors) scores demonstrate that the proposed postfilter can be used to enhance signal quality in ad hoc sensor networks.
VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/).

[Editor: Douglas D. O’Shaughnessy] https://doi.org/10.1121/10.0003208
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1. Introduction

The emergence of connected and portable devices like smartphones and the rising popularity of voice user-interfaces and
devices equipped with microphones enable the necessary infrastructure for ad hoc wireless acoustic sensor networks
(WASNs). The dense, ad hoc positioning and collaboration in a WASN leads to efficient sampling of the acoustic space,
thereby gaining higher quality signal estimates compared to single-channel estimates (Bertrand, 2011). Typical applications
of ad hoc WASNs use microphones on low-resource devices, such that we need low-complexity methods that use band-
width efficiently to compress and transmit the acoustic signals. This involves quantization at the encoder, whereby the
received signal at the decoder is usually degraded by quantization noise (B€ackstr€om and Fischer, 2016; B€ackstr€om and
Fischer, 2017; B€ackstr€om, 2017; Dragotti and Gastpar, 2009; Pradhan and Ramchandran, 2003).

Past works on WASN often overlook the variability in maximum capacity of sensors (Zahedi et al., 2015).
However, rate-constrained spatial filtering like beamforming and multichannel Wiener filtering have been used in binaural
hearing aids (HAs) (Doclo et al., 2009; Dragotti and Gastpar, 2009; Roy and Vetterli, 2008; Srinivasan and Den Brinker,
2009a, 2009b). A study on rate-constrained optimal beamforming showed the advantage of using spatially separated
microphones in HAs, although the method assumes that the joint statistics of signals are available at the processing nodes
(Roy and Vetterli, 2008). Subsequently, sub-optimal strategies for noise reduction that do not use the joint statistics at the
nodes have been proposed (Amini et al., 2019a,b; Doclo et al., 2009; Roy and Vetterli, 2008; Srinivasan and Den Brinker,
2009a, 2009b). While the above methods are effective in reducing noise, they are either limited to or are most efficient
with two nodes (HAs) only. In a recent work on multinode WASN, a linearly constrained minimum variance beamformer
was used to optimize rate allocation and sensor selection over nodes, based on spatial location and frequency content
(Amini et al., 2019a,b; Zhang et al., 2017). However, due to the dynamic nature of an ad hoc WASN, information about
sensor distribution, location, and number of targets and interference sources may be unavailable, or their exchange
between nodes further adds to the bandwidth consumption and communication complexity. Further, the above methods
assume an additive quantization noise model, which is accurate only at higher bitrates. Lastly, while all the above methods
are optimized on Wyner–Ziv coding, their suitability in combination with existing speech and audio coding has not been
demonstrated yet. Their performance in single-channel mode can therefore not compete with conventional single-channel
codecs.

In this paper, we propose a Bayesian postfilter for enhancement in ad hoc WASNs, which explicitly models the
quantization noise within the optimization framework of the filter and can be applied on top of existing codecs with mini-
mal modifications. Thus, the main contribution of the current work is the postfilter, which takes quantization into account
through truncation while retaining the conventional assumption of additive Gaussian background noise, thereby resulting
in a truncated Gaussian representation of the clean speech distribution. To evaluate the proposed methodology, we make
the necessary assumptions that the devices are dominantly degraded either by background noise and reverberation or by
coding noise due to quantization, and each device operates at its maximum capacity. In line with past works, we show
that by distributing the total available bitrate between the two sensors, the output gain of the WASN signal estimate is
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higher than the output gain of a low input SNR single sensor transmitting at full bitrate (Doclo et al., 2009; Roy and
Vetterli, 2008; Srinivasan and Den Brinker, 2009a,b). In addition, we present the advantages of incorporating the exact
quantization noise models within the optimization framework. To focus on the effect of the postfilter on quantization
noise, we apply the proposed method on the output of a codec (B€ackstr€om et al., 2018), which is specifically designed to
address multidevice coding. To the best of our knowledge, this is the first time a complete WASN system has been evalu-
ated with competitive performance also in a single-channel codec mode. Although we have not yet included models of
spatial configuration of sensors, room impulse responses, or multiple sources, we show that the proposed method already
yields large output gains.

2. Methodology

To focus on the novel aspects of the approach, we consider a simple WASN consisting of two devices with microphones:
(1) a low-resource device A with high input SNR and (2) a high-resource device B with low input SNR, as illustrated in
Fig. 1. An example application is a smartwatch that collaborates with a distant smart speaker. Let xðk; tÞ; nðk; tÞ be the per-
ceptual domain representations of the speech and noise signal, respectively, at the frequency bin k and time frame t
(B€ackstr€om, 2017); the perceptual domain representations are computed by dividing the frequency domain signals by the
perceptual envelope obtained from the codec (B€ackstr€om, 2017). These signals can be approximated by zero-mean Gaussian
distributions with variances r2x and r2n, whereby the random variables are correspondingly X � Nð0; r2xÞ; N � Nð0;r2nÞ
(Kim and Shevlyakov, 2008). Under the assumption of uncorrelated, additive background noise, the noisy signal yðk; tÞ
¼ xðk; tÞ þ nðk; tÞ is Gaussian distributed with Y � Nð0; r2yÞ and variance r2y ¼ r2x þ r2n (Kim and Shevlyakov, 2008). Our
goal is to estimate the distribution of clean speech, conditioned over the noisy observation PðXjYÞ, in other words, the
posterior distribution (S€arkk€a, 2013). We obtain estimates for every time-frequency bin and shall omit the time and fre-
quency subscripts in the rest of the section to aid readability. According to the Bayes rule, the posterior distribution can be
written as

PðXjYÞ ¼ PðXÞPðY jXÞ
PðYÞ / PðXÞPðY jXÞ; (1)

where P(X) and P(Y) are the prior distributions of the speech and observed signals and PðY jXÞ is the conditional likeli-
hood. However, our quantized observation, yqðk; tÞ, of the noisy signal gives more evidence about X; The true value of the
noisy signal Y lies within the quantization bin limits, yðk; tÞ 2 ½lðk; tÞ; uðk; tÞ�, and the lower and upper bin limits for the
quantization levels in a frame fl;ug 2 RK�1 are obtained from the observed quantized spectrum of a frame yq 2 RK�1

(Das and B€ackstr€om, 2018). Since the true noisy signal lies in the bounded field lðk; tÞ � Y � uðk; tÞ, we compute the
summation of the likelihood over the quantization bin limits to obtain the posterior distribution of speech,

PðXÞðl�Y�uÞ / PðXÞ
ðu
l
PðY jXÞdy; (2)

where / signifies equality up to a scaling factor. Eq. 2 can be rewritten as the difference between cumulative distributions,
PðXÞðl�Y�uÞ / PðXÞðFðuÞ � FðlÞÞ. The conditional likelihood can be represented as PðY jXÞ � N ðx; r2nÞ, thus resulting in
the final equation for the posterior distribution,

Fig. 1. Distribution of microphones in the ad hoc acoustic sensor network.
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where erf(�) is the error function. Note that due to the use of the exact quantization bin limits, PðXÞðl�Y�uÞ corresponds to
a truncated Gaussian (Barr and Sherrill, 1999). This is in contrast to past works, where the quantization noise is approxi-
mated by an additive Gaussian distribution, which is an accurate approximation only at high bitrates (Amini et al.,
2019a,b).

From Eq. (3), the single-channel posterior probability distribution function (PDF) of the clean speech in spatial
channel i is as follows:

PiðXÞðli�Yi�uiÞ / PiðXÞ 0:5 erf
ui � x

rni
ffiffiffi
2

p
� �

� erf
li � x

rni
ffiffiffi
2

p
 !( )" #

: (4)

Here we assume that the speech and noise energies at each channel are estimated in a pre-processing stage, for example,
using voice activity detection and minimum statistics (Martin, 2001). Additionally, to focus on the advantage of the pro-
posed enhancement approach, we assumed that the time-delay between microphones with respect to the desired sources
was known at the decoder, whereby the signals from the microphones were synchronized. We shall include time-delay
estimation within the enhancement framework in future work. Based on our setup, the environmental degradation and the
bitrate are different for the two channels. Hence, we can assume that Ni � Nðlni ;r2niÞ, and the quantization bin fl; ugi
offsets are uncorrelated and independent between the two channels. Therefore, when conditioned on Y, due to conditional
independence between the channels, the joint posterior PDF of speech over the network can be represented as
PðXÞY /

QM
i¼1 PiðXÞðli�Yi�uiÞ, where M is the number of microphones in the WASN. The posterior PDF of speech in a

two microphone network is thus

PðXÞY /
exp � 1

2

X2
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We obtain the multidevice signal estimate x̂MC, optimal in minimum mean squared error (MMSE) sense (S€arkk€a, 2013)
by computing the expectation of the PDF obtained from Eq. (5). Due to the product of error functions in Eq. (5), the
expectation does not have a known analytical formulation. Therefore, we approximate the expectation of the PDF via
numerical integration (McLeod, 1980); computing the Riemann sum using the midpoint rule over intervals n¼ 200 pro-
vided an approximate with sufficient accuracy in our experiments. Hence, the final equation is

x̂MC ¼ E XMC½ � �
Xn
j¼1

xjPðX ¼ xjÞY ; min
i¼1;2

flig � x � maxfuig: (6)

The system block diagram is depicted in Figs. 2(a) and 2(b), where Fig. 2(a) is the overview of the entire system,
from acoustic signal acquisition at the sensors to obtaining the time-domain estimate from multidevice signals. Note that
the postfilter is placed at the fusion center, directly after the decoder, which provides the decoded perceptual domain

Fig. 2. Block diagrams showing the overall system structure with the location of the postfilter (a) and an overview of the postfilter (b).
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signals to the postfilter. Fig. 2(b) shows the internal structure of the postfilter. After receiving the quantization bin limits
from the decoded signals, we compute the truncated Gaussian distribution for each channel and then compute the joint
posterior distribution as the product of the truncated distributions of the channels. The final point estimate, obtained as
the expectation of the posterior distribution, yields the multidevice signal estimate.

3. Experiments and results

To evaluate the performance of the proposed postfiltering approach, we determined the perceptual signal-to-noise ratio
(PSNR) and PESQ scores (B€ackstr€om, 2017) and conducted a subjective listening test using MUSHRA (multistimulus with
hidden reference and anchors) (ITU-R, 2014; Schoeffler et al., 2015). We considered two categories of degradation: (1)
additive background noise and (2) background noise with reverberation. For the background noises, from the QUT data-
set, we extracted the cafeteria scenario with babble noise (Dean et al., 2010). The clean speech samples were obtained
from the test set of the TIMIT dataset (Zue et al., 1990). We encoded the noisy samples and applied the proposed postfil-
ter to the decoded samples. Hence, the output signal is corrupted by both coding and environmental artefacts. To generate
noisy speech with reverberation, we considered a room of dimensions 7.5 � 5 � 2 m3, with one speech source at coordi-
nates (1, 2.5, 0.5) m and three noise sources placed at (6.5, 2.85, 0.5) m, (3.5, 4.5, 0.5) m, and (6, 0, 0.5) m. The locations
of the near and distant microphones are, respectively, (1.05, 2.55, 0.5) m and (2.25, 2.85, 0.5) m. An illustration of the
setup is presented in Fig. 1. The signals at the microphones for the described acoustic scenario were simulated using
Pyroomacoustics (Scheibler et al., 2018).

Let q and c represent the PSNR and PESQ scores, respectively, and R the total bitrate. The postfilter is applied
on the output of a codec that is specifically suitable for multidevice coding (B€ackstr€om et al., 2018). For a fair evaluation,
the single-channel enhancements from Eq. (6) are used as baselines. Furthermore, we employ the conventional multichan-
nel Wiener filter (MWF) with diagonalized covariance matrix to evaluate the advantage of the proposed method with
respect to a conventionally accepted baseline (Doclo and Moonen, 2002). The notations and their definitions are as fol-
lows. (1) x̂MC is the multidevice estimate using device A at the bitrate ¼ 1

4R and device B at the bitrate ¼ 3
4R; the PSNR

and PESQ scores of the estimate are qMC and cMC, respectively. (2) x̂BL B is the baseline posterior estimate (from Eq. 6) at
distant device B, encoding at full bitrate ¼ R; qBL B and cBL B are the objective measures. (3) x̂BL A is the baseline posterior
estimate (from Eq. 6) at device A using bitrate ¼ 1

4R, and qBL A and cBL A are the objective measures. (4) x̂MWF is the mul-
tichannel Wiener filter using noisy signals from device A and device B, and qMWF and cMWF are the objective measures.
We show the advantage of the proposed postfilter over the baseline methods using differential PSNR and PESQ scores;
their definitions are (1) qðMC�BL BÞ ¼ qMC � qBL B, (2) qðMC�BL AÞ ¼ qMC � qBL A, (3) qðMC�MWFÞ ¼ qMC � qMWF, (4)
cðMC�BL BÞ ¼ cMC � cBL B, (5) cðMC�BL AÞ ¼ cMC � cBL A, and (6) cðMC�MWFÞ ¼ cMC � cMWF.

The input SNR at device A was fixed to 40 dB and at device B, we used a range of input SNRs
2 f�5; 0; 5…; 30 dBg. From the test set of the TIMIT dataset, we randomly selected 100 speech samples (50 male and
50 female) and tested the postfilter over all the combinations of the bitrates, R 2 f16; 24; 32; 48; 64; 80; 96 kbpsg, and
the input SNRs for each speech sample. The objective results for the additive noise scenario are presented in Figs. 3(a)

Fig. 3. Illustration of differential PSNR and PESQ scores between the proposed multidevice estimate and single-channel baseline and multi-
channel Wiener filter at R ¼ f16; 32 kbpsg with 95% confidence intervals. qðMC�BL BÞ and cðMC�BL BÞ are the differential PSNR and PESQ of
the proposed multidevice estimate with respect to single-channel estimate of device B; qðMC�BL AÞ and cðMC�BL AÞ are the differential scores of
the multidevice estimate with respect to single-channel estimate of device A; qðMC�MWFÞ and cðMC�MWFÞ are the differential scores of the mul-
tidevice estimate with respect to the multichannel Wiener filter.

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 1 (1), 015206 (2021) 1, 015206-4

D
ow

nloaded from
 http://pubs.aip.org/asa/jel/article-pdf/doi/10.1121/10.0003208/14779198/015206_1_online.pdf

https://scitation.org/journal/jas


and 3(c). qðMC�BL AÞ, qðMC�BL BÞ, and qðMC�MWFÞ are shown in Fig. 3(a) for the listed SNRs and the total
bitrate 2 f16; 32 kbpsg; We found that the PSNR of the proposed method was better than all three baselines over all
SNRs and bitrates. For x̂MC relative to the single-channel estimate x̂BL B, the highest differential PSNR is
qðMC�BL BÞ � 22:5 dB. With respect to x̂BL A, the highest qðMC�BL AÞ � 6 dB is obtained at 30 dB input SNR and 16 kilo-
bits/s (kbps). In addition, we observe that qðMC�BL BÞ decreases with the increase in the input SNR at device B; also, it
increases with an increase in total bitrate due to lower degradation from coding noise, specifically at device A. In contrast,
qðMC�BL AÞ increases with an increase in the input SNR at device B but decreases with increase in the total bitrate. In
terms of PESQ, the largest differential PESQ for x̂MC relative to x̂BL B is cðMC�BL BÞ � 1:8 Mean Opinion Score (MOS),
attained at �5 dB and 32 kbps. However, at 16 kbps and above 15 dB, the negative MOS implied a decrease in quality.
With respect to x̂BL A, largest value is cðMC�BL BÞ � 1:1MOS at 30 dB input SNR at device B. Furthermore, the variations
of cðMC�BL AÞ and cðMC�BL AÞ relative to the input SNR and bitrate follow similar trends as differential PSNR. Without
exception, we observed similar trends for all the listed bitrates. The inverse variations of the differential scores with respect
to x̂BL A and x̂BL B support our expectation that the proposed postfilter optimally merges information from the two chan-
nels to obtain an enhanced multidevice estimate.

The test was repeated to include reverberation over a range of absorption coefficients, a ¼ f0:1; 0:3;…0:9g. The
results for R 2 f16; 32 kbpsg are illustrated in Figs. 3(b) and 3(d). While qðMC�BL BÞ is positive for both bitrates over all
the listed absorption coefficients, qðMC�BL AÞ is consistently negative. One reason for this could be that while the postfilter
reduces environment noise, as is reflected in the improvement with respect to x̂BL B, it may introduce some speech distor-
tion or be unable to completely remove reverberation due to the lack of reverberation model, which shows as a drop in
the PSNR with respect to x̂BL A. Nevertheless, both cðMC�BL AÞ and cðMC�BL BÞ are positive over both the bitrates and all a,
and they follow similar variation trends as in the additive noise scenario. Lastly, the positive differential objective scores
for both noise types with respect to the MWF indicate that the PSNR and PESQ gains of the proposed postfilter are larger
than the gains obtained using the multichannel Wiener filter. This supports our informal observation that Wiener filtering
is inefficient in capturing the essential features of speech signals.

The subjective MUSHRA listening test contained eight test items (four male and four female), four of which
included background noise with reverberation at a ¼ 0:3, while the remaining items were comprised of background noise
only at SNR ¼ 15 dB. Each test item consisted of five test conditions and the reference clean speech signal; a hidden refer-
ence and a lower anchor, which was the 3.5 kHz low-pass version of the reference signal, x̂MC; x̂BL B, and x̂BL A were pre-
sented as the test conditions; total bitrate was R ¼ 32 kbps. As post-screening, we retained the responses from only those
subjects who rated the hidden reference at more than 90 MUSHRA points for all items. Figure 4 presents the consolidated
differential MUSHRA, represented as g, from 13 participants who passed the post-screening; the boxplots show the
median and interquartile range of g. The background noise with reverberation is presented in items f1; 2; 3; 4g, and the
background-noise-only samples are items f5; 6; 7; 8g. Items f1; 2; 5; 6g are female, and the rest are male. gðMC�BL AÞ was
positive for all items, indicating that most subjects preferred x̂MC over x̂BL A. With respect to x̂BL B, the variations were
found to be gender dependent. While the median gðMC�BL BÞ points were positive for most male items (mean-M), they
were negative for females (mean-F). Further analysis of the samples revealed that while background noise was attenuated
in the x̂MC, speech distortions were introduced into the estimate, and those distortions were more prominent in the female
samples. This problem could potentially be addressed by using more informative speech priors and modifying the signal
model to incorporate the effects of reverberation.

To study the region of optimal performance of the postfilter, we analyzed the average cðMC�BL BÞ as a function of
bitrate and input SNRs and absorption coefficient a; the resulting contour plots are depicted in Fig. 5. For the additive
background noise scenario, the highest gains are at higher bitrates and low input SNRs. Furthermore, the negative

Fig. 4. Distribution of DMUSHRA points from the subjective listening test. gðMC�BL BÞ and gðMC�BL AÞ are the differential MUSHRA of multi-
device estimate with respect to signal-channel estimates at device B and device A, respectively. Mean-F and Mean-M are the average differen-
tial scores over the female and male items, respectively.
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cðMC�BL BÞ over 20 dB input SNR and below 32 kbps implies that the postfilter performs sub-optimally in this region; in
other words, we gain from a multidevice signal estimate when the additive degradation level is below 20 dB and the total
bitrate is greater than 32 kbps. In the presence of reverberation, we observed that while the total bitrate had an impact on
cðMC�BL BÞ, the improvement was fairly constant over the range of a at an arbitrary bitrate, and the improvement was pos-
itive over the considered input SNR range. This implies that the proposed postfilter can also be used to enhance signals
degraded by reverberation and is not especially sensitive to the amount of reverberation, despite the fact that the signal
model did not explicitly account for distortions from reverberation.

4. Conclusion

In this work, we proposed a postfilter to enhance speech in an ad hoc sensor network. The method explored the feasibility
of using sources degraded by two distinct noise types to obtain an enhanced estimate of the clean speech signal. We dem-
onstrated that by distributing the total available bandwidth between two sensors, we can achieve signal quality that is
higher than a single-channel estimate operating at full bitrate. Further work is needed to address the classic noise reduc-
tion vs speech distortion problem, by incorporating a signal model that takes into account the effects of reverberation,
although the objective and subjective results are already encouraging.
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