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Learning optimal control policies directly on physical systems is challenging. Even a single 
failure can lead to costly hardware damage. Most existing model-free learning methods 
that guarantee safety, i.e., no failures, during exploration are limited to local optima. 
This work proposes GoSafeOpt as the first provably safe and optimal algorithm that can 
safely discover globally optimal policies for systems with high-dimensional state space. 
We demonstrate the superiority of GoSafeOpt over competing model-free safe learning 
methods in simulation and hardware experiments on a robot arm.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The increasing complexity of modern dynamical systems often makes deriving mathematical models for traditional 
model-based control approaches forbiddingly involved and time-consuming. Model-free reinforcement learning (RL) meth-
ods [1] are a promising alternative as they learn control policies directly from data. To succeed, they need to explore the 
system and its environment. Without a model, this can be risky and unsafe. Since modern hardware such as robots are ex-
pensive and their repairs are time-consuming, safe exploration is crucial to apply model-free RL in real-world problems. This 
paper proposes GoSafeOpt, a model-free learning algorithm that can search for globally optimal policies while guaranteeing 
safe exploration with high probability.

1.1. Related work

Advances in machine learning have motivated the usage of model-free RL algorithms for obtaining control policies [2–
6]. However, directly applying these methods to policy optimization presents two major challenges: (i) Machine learning 
algorithms often require large amounts of data. In learning control, such data is often gathered by conducting experiments 
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Fig. 1. Illustrative example with disjoint safe regions in the policy space. The blue line depicts the objective, and the orange line is the constraint function. There 
are two safe regions that are marked in green. SafeOpt cannot explore the global optimum if it is initialized in the left region. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

with physical systems, which is time-consuming and wears out the hardware. (ii) Learning requires exploration, which can 
lead to unwarranted and unsafe behaviors.

Challenges (i) and (ii) can be addressed jointly by Bayesian optimization (BO) with constraints. BO [7] is a class of 
black-box global optimization algorithms, that has been used in a variety of works [8–11] to optimize controllers in 
a sample-efficient manner. In constrained BO, there are two main classes of methods. On the one hand, approaches 
like [12–15] find safe solutions but allow unsafe evaluations during training. Herein, we focus on approaches that guar-
antee safety at all times during exploration, which is crucial when dealing with expensive hardware. SafeOpt [16] and 
safe learning methods that emerged from it, e.g., [17–19], guarantee safe exploration with high probability by exploiting 
properties of the constraint functions, e.g., regularity. Unfortunately, these methods are limited to exploring a safe set con-
nected with a known initial safe policy. Therefore, they could miss the global optimum in the presence of disjoint safe 
regions in the policy space (see Fig. 1). Disjoint safe regions appear when learning an impedance controller for a robot 
arm, as we show in our experiments and in many other applications [8,20,21]. To address this limitation [21] proposes
GoSafe, which can provably and safely discover the safe global optimum in the presence of disjoint safe regions under 
mild conditions. To achieve this, it learns safe backup policies for different states and uses them to preserve safety when 
evaluating policies outside of the safe set. Specifically, it switches between actively exploring local safe regions in the 
state and policy space and safe global exploration. However, the active exploration in the state and policy space requires 
a coarse discretization of the space and is infeasible for all but the simplest systems with low-dimensional state spaces, 
[22] argues that dimension d > 3 is already challenging. As a result, GoSafe cannot only handle most real-world dynami-
cal systems, and is restricted to impractical systems with low-dimensional state spaces. The concept of switching between 
two exploration stages is also pursued in the stagewise safe optimization algorithm proposed in [23]. However, also [23]
is restricted to an optimum connected to a safe initialization. Lastly, the general idea of learning backup policies is related 
to safety filters and control barrier functions [24–26]. Nevertheless, those methods require either availability or learning 
of a dynamics model besides learning the policy and are, therefore, model-based. In this work, we focus on a model-free 
approach.

1.2. Contributions

This work presents GoSafeOpt, the first model-free algorithm that can globally search optimal policies for safety-critical, 
real-world dynamical systems, i.e., systems with high-dimensional state spaces. GoSafeOpt does not discretize and actively 
explores the state space. Therefore, it overcomes the main shortcomings and restrictions of GoSafe, while still performing 
safe global exploration. This makes GoSafeOpt the first and only model-free safe global exploration algorithm for real-world 
dynamical systems. Crucially, GoSafeOpt leverages the Markov property of the system’s state to learn backup policies which 
it uses to guarantee safety when evaluating policies outside the safe set. This novel mechanism for learning backup policies 
does not depend on the dimension of the state space. We provide high-probability safety guarantees for GoSafeOpt and 
we prove that it recovers the safe globally optimal policy under assumptions that hold for many practical cases. Finally, 
we validate it in both simulated and real safety-critical path following experiments on a robotic arm (see Fig. 2), which is 
prohibitive for GoSafe, the only competing model-free global safe search method. Further, we show that GoSafeOpt achieves 
considerably better performance than SafeOpt, a state-of-the-art method for local model-free safe policy search, and its 
high-dimensional variants. Table 1 compares GoSafeOpt to SafeOpt and GoSafe in terms of safety guarantees, scalability, 
global exploration, and sample efficiency. It shows that GoSafeOpt is the only method that can perform sample-efficient 
global exploration in high-dimensional systems while providing safety guarantees.
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Fig. 2. Franka Emika Panda; seven degrees of freedom robot arm used for our evaluations.

Table 1
Comparison of GoSafeOpt and prior work on safe exploration based on their safety guarantees, scalability, global 
exploration, and sample efficiency.

Safe exploration State space with 
dimension d > 3

Global exploration Sample efficient

SAFEOPT [18] ✓ ✓ ✗ ✓

GOSAFE [21] ✓ ✗ ✓ ✗

GOSAFEOPT (ours) ✓ ✓ ✓ ✓

2. Problem setting

We consider a Lipschitz-continuous system

dx(t) = z(x(t), u(t))dt, (1)

where z(·) represents the unknown system dynamics, x(t) ∈X ⊂Rs is the system state and u(t) ∈ U ⊂Rp is the input we 
apply to steer the system state to follow a desired trajectory xdes(t) ∈X for all t ≥ 0. We assume that the system starts at 
a known initial state x(0) = x0.

The control input u(t) we apply for a given state x(t) is specified by a policy π : X ×A → U , with u(t) = π (x(t),a) :=
πa(x(t)). The policy is parameterized by a ∈A ⊂Rd , where A is a finite parameter space.1 We encode our goal of following 
the desired trajectory xdes(t) through an objective function, f : A → R. Note, the trajectory of a deterministic system (1)
is fully determined by its initial state x0 and the control policy. Therefore, the objective is independent of the state space 
X . We seek for a controller parametrization a ∈ A that optimizes f for a constant initial condition x0. Since the dynamics 
of the system in Eq. (1) is unknown, so is the objective f . Nonetheless, we assume we obtain a noisy measurement of 
f (a) at any a ∈ A by running an experiment. We aim at optimizing f from these measurements in a sample-efficient way. 
Additionally, to avoid the deployment of harmful policies, we formulate safety as a set of unknown constraints over the 
system trajectories that must be satisfied at all times. Similar, as for f , these constraints only depend on the parameter a
and hence take the form gi : A → R for each constraint function gi , where i ∈ {1, . . . , q} := Ig and q ∈ N . The resulting 
constrained optimization problem with unknown objective and constraints is:

max
a∈A f (a) subject to gi(a) ≥ 0,∀i ∈ Ig . (2)

We represent the objective and constraints using a scalar-valued function in a higher dimensional domain, proposed by [18]:

h(a, i) =
{

f (a) if i = 0,

gi(a) if i ∈ Ig,
(3)

with Ig = {1, . . . , q}, I := {0, 1, . . . , q}, and i ∈ I . This representation will later help us in learning the unknown function.
In summary, our goal is to find the optimal and safe policy parameter for the system starting from the nominal initial condition 

x0. We refer to the solution of Eq. (2) as the safe global optimum a∗ . Note, finding the optimal policy for a fixed initial 
condition x0 is a common task in episodic RL [1].

Solving this problem without a dynamics model and without incurring failures for generic systems, objectives, and con-
straints is hopeless. The following section introduces our assumptions to make this problem tractable.

1 Infinite parameter spaces can be handled via discretization (e.g., random subsampling).
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2.1. Assumptions

To solve the problem in Eq. (2) safely, we assume to have at least one initial safe policy to start data collection without 
violating constraints. This initial policy could be derived from available simulators, first principles models, or by performing 
controlled experiments on the hardware directly. This policy can be conservative and sub-optimal. For instance, for mobile 
robots, a policy that barely moves the robot could be an initial safe policy.

Assumption 2.1. A set S0 ⊂ A of safe parameters is known. That is, for all parameters a in S0 we have gi(a) ≥ 0 for all 
i ∈ Ig .

In practice, similar policies often lead to similar outcomes. In other words, the objective and the constraints exhibit 
regularity properties. We capture this by assuming that the function h, Eq. (3), lives in an reproducing kernel Hilbert space 
(RKHS) [27] and has bounded norm in that space.

Assumption 2.2. The function h lies in an RKHS associated to a kernel k and has a bounded norm in that RKHS ‖h‖k ≤ B . 
Furthermore, the objective f and constraints gi are Lipschitz continuous with known constants.

Without Assumption 2.2, the constraint and reward functions can be discontinuous making it impossible to infer the 
safety of a policy before evaluating it and to provide safety guarantees. In practical applications, such behavior is undesirable, 
and therefore rare. For further discussion on the practicality of this assumption, we refer the reader to [28].

Next, we formalize our assumptions on the measurement model.

Assumption 2.3. We obtain noisy measurements of h with the measurement noise independent and identically distributed 
(i.i.d.) σ -sub-Gaussian. That is, for a measurement yi of h(·, i), we have yi = h(a, i) +εi with εi σ -sub-Gaussian for all i ∈ I .

Assumptions 2.1, 2.2, and 2.3 are common in the safe BO literature [16–18]. However, these approaches treat the evalu-
ation of a policy as a black box. In contrast, we monitor the rollout of a policy to intervene and bring the system back to 
safety, if necessary. This can be achieved for a Markovian [29] system, like the one we consider in Eq. (1) (see Proposition A.3
in the appendix).

To monitor the rollouts, we assume that we receive a state measurement after every �t seconds and that in between 
discrete time steps, the system cannot arbitrarily jump, i.e., its movement within these (typically small) time intervals is 
bounded. Note, for many robotic systems this assumption is valid. Especially, since we can choose the sampling time �t . 
However, estimating this bound can be challenging. A conservative value for the bound may be estimated by performing 
controlled experiments, e.g., with the safe initial policy from Assumption 2.1, directly on hardware. Simulators or first 
principle models, if available, can also be leveraged.

Assumption 2.4. The state x(t) is measured after every �t seconds. Furthermore, for any x (t) and ρ ∈ [0, 1], the distance to 
x(t + ρ�t) induced by any action is bounded by a known constant �, that is, ‖x(t + ρ�t) − x(t)‖ ≤ �.

Remark: Implicitly, we here assume noise-free measurements of the state for simplicity. Our method also works for the 
noisy case (see Appendix A.1.1), which is typical in the real world.

Triggering a backup policy for a Markovian system is not sufficient to guarantee the safety of the whole trajectory for a 
generic constraint. Consider the case where safety is expressed as a constraint on a cost accumulated along the trajectory. 
Even if we are individually safe before and after triggering a backup policy, we might be unsafe overall. Therefore, we limit 
the types of constraints we consider.

Assumption 2.5. We assume that, for all i ∈ {1, . . . , q}, gi is defined as the minimum of a state-dependent function ḡi along 
the trajectory starting in x0 with controller πa . Formally:

gi(a) = min
x′∈ξ(0,x0,a)

ḡi(x′), (4)

with ξ(0,x0,a) := {x0 + ∫ t
0 z(x(τ ); πa(x(τ ))dτ } the trajectory of x(t) under policy parameter a starting from x0 at time 0.

An example of such a constraint is the minimum distance of the system to an obstacle. We can now provide a formal 
definition of a safe experiment.

Definition 2.6. An experiment is safe if, for all t ≥ 0 and all i ∈ {1, . . . , q},

ḡi(x(t)) ≥ 0. (5)
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This is a more general way of defining safety for the optimization problem from Eq. (2). In particular, where Eq. (2)
only considers trajectories associated with a fixed policy parameter a, Definition 2.6 also covers the case in which different 
portions of the trajectory are induced by different controllers.

3. Preliminaries

This section reviews Gaussian processes (GPs) and how to use them to construct frequentist confidence intervals, as well 
as relevant prior work on safe exploration (SafeOpt).

3.1. Gaussian processes

We model our unknown objective and constraint functions using Gaussian process regression (GPR) [30]. In GPR, our 
prior belief is captured by a GP, which is fully determined by a prior mean function2 and a covariance function k 

(
a,a′). 

Importantly, if the observations are corrupted by i.i.d. Gaussian noise with variance σ 2, i.e., yi = f (ai) + vi , and vi ∼
N (0, σ 2), the posterior over f is also a GP whose mean and variance can be computed in closed form. Let us denote with 
Yn ∈Rn the array containing n noisy observations of f , then the posterior of f at ā is f (ā) ∼N

(
μn (ā) ,σ 2

n (ā)
)

where

μn (ā) = kn (ā) (Kn + Inσ
2)−1Yn, (6a)

σ 2
n (ā) = k (ā, ā) − kn (ā) (Kn + Inσ

2)−1kT
n (ā) . (6b)

The entry (i, j) ∈ {1, . . . , n} × {1, . . . , n} of the covariance matrix Kn ∈ Rn×n is k 
(
ai,a j

)
, kn (ā) = [k(ā, a1), . . . , k(ā, an)] cap-

tures the covariance between x∗ and the data, and In is the n × n identity matrix.
Eq. (6) considers the case where f is a scalar function. To model the objective f and constraints gi , we use the selector 

function from Eq. (3).

3.2. Frequentist confidence intervals

To avoid failures, we must determine the safety of a given policy before evaluating it. To this end, we reason about 
plausible worst-case values of the constraint gi for a new policy a. We use the posterior distribution over the objective and 
constraints given by Eq. (6) to build frequentist confidence intervals that hold with high probability, i.e., at least 1 − δ, and 
are of the form:

|μn−1(a, i) − h(a, i)| ≤ β
1/2

n σn−1(a, i), ∀i ∈ I. (7)

For functions fulfilling Assumption 2.2 and 2.3, [31,32] derive an appropriate value for βn . This value depends on δ, n and 
the maximum information gain γn , cf., [33].3

3.3. SafeOpt for model-free safe exploration

SafeOpt leverages the confidence intervals presented in Section 3.2 to solve black-box constrained optimization problems 
while guaranteeing safety for all the iterates with high probability. It ensures safety by limiting its evaluations to a set 
of provably safe inputs. In particular, SafeOpt defines the lower bound of the confidence interval ln as ln(a, i) = max{
ln−1(a, i),μn−1(a, i) − β

1/2

n σn−1(a, i)}, with l0(a, i) = 0 for all a ∈ S0, i ∈ Ig and −∞ otherwise, and the upper bound un as 
un(a, i) = min{un−1(a, i),μn−1(a, i) + β

1/2

n σn−1(a, i)} with u0(a, i) = ∞ for all a ∈ A, i ∈ I . Given a set of safe parameters 
Sn−1, it then infers the safety of nearby parameters by combining the confidence intervals with the Lipschitz continuity of 
the constraints:

Sn :=
⋂

i∈Ig

⋃
a′∈Sn−1

{a ∈ A | ln(a
′, i) − La

∥∥a − a′∥∥ ≥ 0}, (8)

with La the joint Lipschitz constant of f (a), gi(a). This leads to a local expansion of the safe set. Thus, in the case of 
disconnected safe regions, the optimum discovered by SafeOpt may be local (see Fig. 1).

2 Assumed to be zero without loss of generality (w.l.o.g).
3 The maximum information gain is γn := max

A⊂D:|A|=n
I(y A ; f A), where I(y A; f A) is the mutual information between f A evaluated at points in A and the 

observations y A , that is the amount of information y A contains about f [33].
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Algorithm 1 Local Safe Exploration (LSE).
Input: Safe set S , set of backups B, dataset D
1: Recommend parameter an with Eq. (9)
2: Collect R = ⋃

k∈N
{an, x(k)} and h(an, i) + εn

3: B = B ∪R, D = D ∪ {an,h(an, i) + εn}
4: Update sets S , G , and M //Eq. (8), Appendix D Definitions D.1 and D.2

Return: S , B, D

4. GOSAFEOPT

In this section, we present our algorithm, GoSafeOpt, which combines the sample efficient local exploration of SafeOpt

with global exploration to safely discover globally optimal policies for dynamical systems. To the best of our knowledge,
GoSafeOpt is the first model-free algorithm that can globally search for optimal policies, guarantee safety during exploration, 
and is applicable to complex hardware systems.

4.1. The algorithm

GoSafeOpt consists of two alternating stages, local safe exploration (LSE) and global exploration (GE). In LSE, we explore 
the safe portion of the parameter space connected to our current estimate of the safe set. Crucially, we exploit the Markov 
property to learn backup policies for each state we visit during LSE experiments. During GE, we evaluate potentially unsafe 
policies in the hope of identifying new, disconnected safe regions. The safety of this step is guaranteed by triggering the 
backup policies learned during LSE whenever necessary. If a new disconnected safe region is identified, we switch to a LSE
step. Otherwise, GoSafeOpt terminates and recommends the optimum a∗ = arg max

a∈Sn

ln(a, 0).

In the following, we explain the LSE and GE stages in more detail and provide their pseudocode in Algorithms 1 and 2, 
respectively. Algorithm 4 presents the pseudocode for the full GoSafeOpt algorithm.

4.1.1. Local safe exploration
Similar to SafeOpt, during LSE we restrict our evaluations to provably safe policies, i.e., policies in the safe set, which is 

initialized with the safe seed from Assumption 2.1 and is updated recursively according to Eq. (8) (line 4 in Algorithm 1). 
We focus our evaluations on two relevant subsets of the safe set introduced in [16]: the maximizers Mn , i.e., plausibly 
optimal parameters, and the expanders Gn , i.e., parameters that, if evaluated, could optimistically enlarge the safe set. For 
their formal definitions, see [16] or Appendix D. During LSE, we evaluate the most uncertain parameter, i.e., the parameter 
with the widest confidence interval, among the expanders and the maximizers:

an = arg max
a∈Gn∪Mn

max
i∈I

wn(a, i), (9)

where wn(a, i) = un(a, i) − ln(a, i).
As a by-product of these experiments, GoSafeOpt learns backup policies for all the states visited during these rollouts 

by leveraging the Markov property. Intuitively, for any state x(t) visited when deploying a safe policy a starting from x0, 
we know that the sub-trajectory {x(τ )}τ≥t is also safe because of Assumption 2.5. Moreover, this sub-trajectory is safe 
regardless of how we reach x(t) since the state is Markovian. Thus, a is a valid backup policy for x(t).

This means we learn about backup policies for multiple states during a single LSE experiment. To make them available during
GE, we introduce the set of backups Bn ⊆A ×X . After running an experiment with policy a, we collect all the discrete state 
measurements in the rollout R = ⋃

k∈N
{a, x(k)} and add it to the set of backups, Bn+1 = Bn ∪R (see Algorithm 1 line 3).

We perform LSE until the connected safe set is fully explored and the optimum within the safe set is discovered. 
Intuitively, this happens when we have learned our constraint and objective functions with high precision, i.e., when the 
uncertainty among the expanders and maximizers is less than ε , and yet the safe set does not expand any further,

max
a∈Gn−1∪Mn−1

max
i∈I

wn−1(a, i) < ε and Sn−1 = Sn. (10)

Note, GoSafeOpt, like SafeOpt, only explores the connected safe set in the parameter space and learns backup policies via 
the Markov property.

4.1.2. Global exploration
GE aims at discovering new, disconnected safe regions. In particular, during a GE step, we evaluate the most uncertain 

parameter, i.e., with the highest value for maxi∈Ig wn(a, i), outside of the safe set, a ∈ A \ Sn . As this parameter is not in 
our safe set, it is not guaranteed to be safe. Therefore, we monitor the state during the experiment and trigger a backup 
policy, learned during LSE, if we cannot guarantee staying in a safe region of the state space when continuing with the 
current choice of policy parameters (cf. Fig. 3).

6
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x(t)
mini∈Ig gi(x) = 0

Trigger backup at x(t)

Fig. 3. Illustration of the boundary condition. The backup policy is triggered at x(t) if we cannot guarantee with high probability that all states in a ball around x(t)
are safe (see Assumption 2.4 and Section 4.1.2).

Algorithm 2 Global Exploration (GE).
Input: Safe set S , confidence intervals C , set of backups B,
dataset D, fail sets: E , XFail

1: Recommend global parameter an with Eq. (11)
2: a = an , xFail = ∅, Boundary = False
3: while Experiment not finished do //Rollout policy

4: x(k) = x0 +
kT∫

t=0
z (x(t),π(x(t);a))dt

5: if Not Boundary then //Not at boundary yet
6: Boundary, a∗

s = Boundary Condition(x(t), B)
7: if Boundary then //Trigger backup policy
8: a = a∗

s , xFail = x(k)

9: E = E ∪ {an}, XFail = XFail ∪ {xFail} //update fail sets
10: Collect R = ⋃

k∈N
{an, x(k)}, and h(an, i) + εn

11: if Not Boundary then //Successful global search
12: B = B ∪R and D = D ∪ {an,h(an, i) + εn}
13: S = S ∪ a, C(a, i) = C(a, i) ∩ [0, ∞] for all i ∈ Ig .

Return: S , C , B, D, E , XFail

Algorithm 3 Boundary Condition.
Input: x,Bn

1: if ∀(as, xs) ∈ Bn, ∃i ∈ Ig , ln(as, i) − Lx (‖x − xs‖ + �) < 0 then
2: Boundary = True, Calculate a∗

s (Eq. (12))
3: else
4: Boundary = False, a∗

s = {}
return: Boundary, a∗

s

If a backup policy is triggered when evaluating the parameter a, we mark the experiment as failed. To avoid repeating 
the same experiment, we store a and the state xFail where we intervened in sets E ⊂ A and XFail ⊂ X , respectively (see 
line 9 in Algorithm 2). Thus, during GE, we employ the following acquisition function

an = arg max
a∈A\(Sn∪E)

max
i∈Ig

wn(a, i). (11)

This picks the most uncertain parameter, i.e., the parameter with the widest confidence interval, that is not provably safe but 
that has not been shown to trigger a backup policy. If the experiment was run without triggering a backup, we know that a
is safe. Therefore, we add the observed values for gi and f to the dataset and the rollout R collected during the experiment 
to our set of backups Bn , i.e., Bn+1 = Bn ∪ R. Furthermore, we add the parameter a to our safe set and update its lower 
bound, i.e., ln(a, i) = 0, ∀i ∈ Ig (see lines 12 and 13 in Algorithm 2). Then, we switch to LSE to explore the newly discovered 
safe area. Note, the lower bound is updated again before the LSE step, i.e., ln+1(a, i) = max{ln(a, i), μn(a, i) − β

1/2

n+1σn(a, i)}
for all i ∈ Ig (see Algorithm 4 line 6).

If A \ (Sn ∪ E) = ∅, there are no further safe areas we can discover and GE has converged.

4.1.3. Boundary condition
Throughout each GE experiment, we monitor the state evolution, and, whenever a state measurement is received, 

we evaluate online a boundary condition to determine whether a backup policy should be triggered. Ideally, it must (i)
guarantee safety, (ii) be fast to evaluate even for high-dimensional dynamical systems, and (iii) incorporate discrete-time 
measurements of the state. To fulfill requirement (i), the boundary condition leverages Lipschitz continuity of the constraint. 

7
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Algorithm 4 GoSafeOpt.
Input: Domain A, k(·, ·), S0, C0, D0, κ , η

1: Initialize GP h(a, i), E = ∅, XFail = ∅, B0 = {(a, x0) | a ∈ S0}
2: while Sn expanding or A \ (Sn ∪ E) �= ∅ do
3: for x ∈ XFail do //reevaluate fail sets
4: if Not Boundary Condition(x, Bn) then //Algorithm 3
5: E = E \ {a}, XFail = XFail \ {x} //Update fail sets
6: Update Cn(a, i) := [ln(a, i), un(a, i)] ∀ a ∈ A, i ∈ Ig //see Section 3.3
7: if LSE not converged (Eq. (10)) then //Perform LSE (Algorithm 1)
8: Sn+1, Bn+1, Dn+1 = LSE(Sn, Bn, Dn)
9: else //Perform GE (Algorithm 2)

10: Sn+1, Cn+1, Bn+1, Dn+1, E, XFail = GE(Sn, Cn, Bn, Dn, E, XFail)

return: arg max
a∈Sn

ln(a,0)

In particular, when we are in x (t) , we check if there is a point (as, xs) in our set of backups Bn such that xs is sufficiently 
close to x (t) to guarantee that as can steer the system back to safety for any state we may reach in the next time step.

Boundary Condition: During iteration n, we trigger a backup policy at x if there is no point in our set of backups (as, xs) ∈ Bn

such that ln(as, i) ≥ Lx (‖x − xs‖ + �) for all i ∈ Ig . In this case, we use the backup parameter a∗
s with the highest safety 

margin, that is

a∗
s = max

{as∈A|∃xs∈X ;(as,xs)∈Bn}
min
i∈Ig

ln(as, i) − Lx ‖x − xs‖ . (12)

Since we already calculate ln(as, i) for all i ∈ Ig and as ∈ Sn offline to update the safe set (see Eq. (8)), we only need to 
evaluate ‖x − xs‖ online, which is computationally tractable for most real-world systems (e.g., O(s) for the 2-norm, where 
s is the dimension of X ). Thereby, it satisfies requirement (ii) and enables the application of our algorithm to complex 
systems with high sampling frequencies. The boundary condition is summarized in Algorithm 3.

Updating Fail Sets. Parameters for which the boundary condition is triggered, i.e., parameters evaluated unsuccessfully during
GE, are added to the fail set E . However, when LSE is repeated after discovering a new region during GE, we can learn new 
backup policies, which makes the boundary condition less restrictive. Hence, it may happen that a parameter a for which 
a backup policy was triggered during a previous GE step, i.e., a ∈ E , we would not trigger a backup policy after LSE step 
has converged in the new safe region. Thus, after learning new backup policies during LSE, we re-evaluate the boundary 
condition (line 3), and update E and XFail accordingly. These states may then be revisited during further GE steps.

In summary, GoSafeOpt involves two alternating stages, LSE and GE. LSE steps are similar to SafeOpt, nonetheless, they 
additionally leverage the Markov property of the system to learn backup policies. These backup policies are then used in GE
for global exploration. The only model-free safe exploration method that explores globally is GoSafe. However, it evaluates 
a completely different and expensive boundary condition, which relies on a safe set representation in the parameter and 
state space. This safe set is actively explored. Because of the active exploration, and expensive boundary condition, GoSafe

becomes restricted to only systems with low-dimensional state spaces.

Remark. GoSafeOpt is devised for the episodic RL setting where the initial state x0 is fixed and known. In several appli-
cations, the initial state is not known apriori and instead sampled i.i.d. from a state distribution ρ . Our formulation can 
also be extended to this setting by treating the initial state as a context variable, cf. [34]. Moreover, to guarantee safety in 
this setting, Assumption 2.1 has to be modified such that the parameters in the initial safe seed S0, are safe for all initial 
states in the support of ρ , i.e., x′

0 ∈ supp(ρ). Then, given a context/initial state x′
0, the acquisition function for LSE or GE

is optimized for the context. This is similar to the contextual SafeOpt algorithm [18]. The boundary condition can also 
be extended to incorporate the context. Finally, for a continuous state space, supp(ρ) can be discretized similarly to as in
GoSafe.

4.2. Theoretical results

This section provides safety (Section 4.2.1) and optimality (Section 4.2.2) guarantees for GoSafeOpt.

4.2.1. Safety guarantees
The main safety result for our algorithm is that GoSafeOpt guarantees safety during all experiments.

Theorem 4.1. Under Assumptions 2.1 – 2.5 and with βn as defined in [18]. GoSafeOpt guarantees, for all n ≥ 0 and any δ ∈ (0, 1), 
that experiments are safe as per Definition 2.6 with probability at least 1 − δ.

The proof of this theorem is provided in Appendix A.1. Intuitively, we can analyze the safety of LSE and GE separately. 
For LSE, we can leverage the results in [18], which studies it extensively. Therefore, novel to our analysis is the safety of GE. 

8



B. Sukhija, M. Turchetta, D. Lindner et al. Artificial Intelligence 320 (2023) 103922

We show that while running experiments during GE, we can guarantee that if our boundary condition triggers a backup, 
we are safe, and if a backup is not triggered, then the experiment is safe, i.e., we discovered a new safe parameter.

4.2.2. Optimality guarantees
Next, we analyze when GoSafeOpt can find the safe global optimum a∗ , which is the solution to Eq. (2). During LSE, 

we explore the connected safe region. For each safe region we explore, we can leverage the results from [18] to prove local 
optimality. Furthermore, due to GE, we can discover disconnected safe regions and then repeat LSE to explore them. To this 
end, we define when a parameter a can be discovered by GoSafeOpt (either during LSE or during GE).

Definition 4.2. The parameter a ∈ A is discoverable by GoSafeOpt at iteration n, if there exists a set A ⊆ Sn such that 
a ∈ R̄c

ε(A). Here, R̄c
ε(A) is the largest safe set we can safely reach from A (see Eq. (A.13) in Appendix A.2 or [18,21]).

Next, we show that if the safe global optimum (solution of Eq. (2)) is discoverable as per Definition 4.2, then we can 
approximate it with ε-precision.

Theorem 4.3. Let a∗ be a safe global optimum. Further, let Assumptions 2.1 – 2.5 hold, βn be defined as in [18]. Assume there exists 
a finite integer ñ ≥ 0 such that a∗ is discoverable at iteration ñ (see Definition 4.2). Then, for any ε > 0, and δ ∈ (0, 1), there exists a 
finite integer n∗ ≥ ñ such that with probability at least 1 − δ,

f (ân) ≥ f (a∗) − ε, ∀n ≥ n∗ (13)

with ân = arg maxa∈Sn
ln(a, 0).

In practice, GoSafeOpt tends to find better controllers than SafeOpt, which converges after LSE. This is formalized in the 
following proposition.

Proposition 4.4. For SafeOpt, a∗ is discoverable at iteration n > 0, if and only if, it is discoverable at iteration n = 0.

Proposition 4.4 states that if the parameter a∗ does not lie in the largest safe set reachable from S0, SafeOpt will not 
find it. GoSafeOpt does not suffer from the same restriction because of global exploration. In Appendix A.2.2, Lemma A.18
we provide additional conditions under which GoSafeOpt can find the safe global optimum. The performance benefits for
GoSafeOpt are then empirically shown in Section 5.

Remark. The safety threshold δ is used to pick the designer’s appetite for unsafe evaluations. For a large value of δ, more pa-
rameters are available for sampling at each iteration. Accordingly, the method converges faster, however, while also allowing 
more unsafe evaluations, see [18] for more detail.

4.3. Practical modifications

In practice, we can further improve the sample and computational efficiency by introducing minor modifications. While 
they do not guarantee optimality, they yield good results for our evaluation in Section 5. Furthermore, all the proposed 
modifications do not affect the safety guarantees of the method, and thus can be safely applied in practice.

4.3.1. Fixing iterations for each stage
In Algorithm 4, we perform a global search, i.e., GE, after the convergence of LSE. Nonetheless, it may be beneficial to 

run LSE for a fixed amount of steps and then switch to GE, before LSE’s convergence. This heuristic allows for the early 
discovery of disconnected safe regions, which may improve sample efficiency. Moreover, this allows “jumping” between 
different safe regions of the domain that, even though would be connected if we ran the current LSE to convergence, are 
currently disconnected. To this end, we apply the following heuristic scheme: (i) run LSE for nLSE steps, (ii) run GE for nGE
steps or until we have discovered new safe parameters, and (iii) if GE discovers a new region, return to (i). Else, return 
to (i) after GE completion, but with reduced nLSE. Note, the proposed scheme still retains optimality because we do not 
restrict the total number of iterations with the system. However, in practice, we additionally impose an upper bound on 
the interactions, and therefore nLSE, and nGE influence the budget of global and local exploration, this affects optimality (cf., 
Appendix C).

4.3.2. Updated boundary condition
If required, the boundary condition can be further modified to reduce computation time by considering only a subset 

of the states collected from experiments. The updated boundary condition reduces the online computation time at the 
expense of a more conservative boundary condition. Due to this conservatism, we lose our optimality guarantees. In practice, 
however, we still achieve good results (see Section 5).
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Fig. 4. Setup for our evaluation in Section 5. We consider a safety-critical path following problem where deviations from the desired path (blue) could cause the robot 
to hit the wall (red box) and incur damage.

Definition 4.5. Consider ηl ∈R and ηu ∈R such that ηl < ηu . The interior set �I,n and marginal set �M,n are defined as

�I,n = {xs ∈ X | (a, xs) ∈ Bn : ∀i ∈ Ig, ln (a, i) ≥ ηu}
�M,n = {xs ∈ X | (a, xs) ∈ Bn : ∀i ∈ Ig, ηl ≤ ln (a, i) < ηu}.

The interior set contains the points in our set of backups Bn that are safe with high tolerance ηu , whereas the points in 
the marginal set are safe with a smaller tolerance ηl . We use those sets for the updated boundary condition.

Updated Boundary Condition: Consider dl ∈ R and du ∈ R such that dl < du . We trigger a backup policy at x if there is not 
a point xs ∈ �I,n such that ‖x − xs‖ ≤ du or there is not a point x′

s ∈ �M,n such that 
∥∥x − x′

s

∥∥ ≤ dl . In this case, we use the 
backup parameter a∗

s

a∗
s = max{as∈A|(as,xs)∈Bn} ln(as, i); with xs = min

x′∈�I,n∪�M,n

∥∥x − x′∥∥ . (14)

Intuitively, we define distance tolerances du , and dl for points in Bn based on their safety tolerances ηu, ηl . As for Theo-
rem 4.1, we can derive appropriate values for ηu, du , respectively ηl, dl to guarantee safety.

5. Evaluation

We evaluate GoSafeOpt in simulated and real experiments on a Franka Emika Panda seven degree of freedom (DOF) 
robot arm4 (see Fig. 2 and 4). The objective of our experiments is to demonstrate that GoSafeOpt (i) can be applied to 
systems with high dimensional state spaces, (ii) is successful in safely tuning control parameters in common robotic tasks 
such as path following with manipulators, and (iii) is superior to the existing state-of-the-art method, SafeOpt, for safe 
control parameter tuning of real-world robotic systems.

Accordingly, in our results, we show that GoSafeOpt can scale to high dimensional systems, jump to disconnected safe 
regions while guaranteeing safety, and is directly applicable to hardware tasks with high sampling frequencies. In this work, 
we do not consider very high dimensional parameter spaces, which are in themselves challenging to tackle for methods 
such as SafeOpt. Methods in [35] and [22] alleviate this challenge and can be integrated with our algorithm easily. Thus, we 
concentrate on the novelty of our method, which is its globally safe parameter exploration, unlike SafeOpt, and scalability 
to high-dimensional state spaces compared to GoSafe. Specifically, the state space of systems we consider in this section is 
too large for GoSafe and it cannot be applied to any of our problems.

Details on the objective and constraint functions are provided in Appendix B. The hyperparameters of our experiments 
are listed in Appendix E.

In all experiments with the robot arm, we solely control the position and velocity of the end-effector. To this end, we 
consider an operational space impedance controller [36] with impedance gain K (see Appendix B). The state space for 
our problem is six-dimensional. This is prohibitively large for GoSafe (struggles with state space greater than three [22]). 
Therefore, we compare our method with SafeOpt.

Impedance controllers for manipulators are usually tuned manually. This is often a tedious and time-consuming process. 
Accordingly, we show in our results that GoSafeOpt can be used to automate this tuning safely.

5.1. Simulation results

We first evaluate GoSafeOpt in a simulation environment based on the Mujoco physics engine [37].5 For this we consider 
two distinct tasks, (i) reaching a desired position, and (ii) path following. We determine the impedance gain through an 

4 A video of our hardware experiments and link to code are available: https://sukhijab .github .io /GoSafeOpt /main _project .html.
5 The URDFs and meshes are taken from https://github .com /StanfordASL /PandaRobot .jl.
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Fig. 5. Comparison of the safe set for simulation task between SafeOpt and GoSafeOpt after 200 iterations. The yellow regions represent the safe sets. In each 
figure, the optimum is represented by a blue triangle.

approximate model of the system and perform feedback linearization [36]. For the resulting linear system, we design a 
linear-quadratic regulator (LQR) [38] with quadratic costs that are parameterized by matrices Q ∈ Rn×n and R ∈ Rp×p . 
Since the model is inaccurate, the feedback linearization will not cancel all nonlinearities and the LQR will not be optimal. 
Thus, our goal is to tune the cost matrices Q and R to compensate for the model mismatch. This approach is similar to [9]. 
We evaluate our methods over twenty independent runs of 200 iterations.

5.1.1. Task 1: reaching a desired position
We select a target xdes ∈ R3 for the robot. For this task, we parameterize the matrices Q and R by two parameters 

(qc, r) ∈ [2, 6] × [−3, 3], that trade-off accurate tracking, i.e., large qc , and small inputs, i.e., large r. We choose the objective 
function to encourage reaching the target as fast as possible while penalizing large end-effector velocities and control 
actions (see Appendix B.1 for details). Thus in total, we have an eight-dimensional task (six-dimensional state space and 
two-dimensional parameter space). For analysis purposes, we run a simple grid search, that we could not run outside of 
simulation, to get an estimate of the safe set and the global optimum. Fig. 5 depicts the ε-precise (ε = 0.1) safe set observed 
via grid search. From the figure, we observe that there is a disconnected safe region.

Evaluation: Fig. 5 depicts the safe sets of SafeOpt and GoSafeOpt after 200 learning iterations. We see that SafeOpt cannot 
discover the disconnected safe region and hence is stuck at a local optimum. On the other hand, GoSafeOpt discovers 
the disconnected regions and can jump within connected safe sets. The learning curve of the two methods is depicted 
in Fig. 7. Our method performs considerably better than SafeOpt. The optimum found by our method is 0.007 (less than 
ε = 0.1) close to the optimum found via the grid search. SafeOpt cannot significantly improve over the initial policy. This 
is because the initial safe seed S0 already contains a near-optimal policy from the connected region SafeOpt explores, i.e., 
maxa∈S0 f (a) ≈ maxa∈R̄c

ε (S0) f (a). Lastly, our method also achieves comparable safety to SafeOpt (on average 99.9% compared 
to 100%). We encounter the failures during LSE, which corresponds to SafeOpt, one could also expect similar behavior from
SafeOpt if it were initialized in the upper region.

Remark. We can increase βn to encourage conservatism and avoid all unsafe evaluations. However, this also influences the 
algorithm’s convergence rate. Hence, in practice, based on the task and appetite for unsafe evaluations βn has to be selected.

5.1.2. Task 2: path following task
For this experiment we define a parameterized path for the robot arm to follow xd(ρ(t)). Here, we define ρ(t) as a state 

to indicate progress along the trajectory, i.e., xd(0) = x0, xd(1) = xdes. The evolution of ρ(t) ∈ [0, 1] is controlled by a param-
eter aρ ∈ [0, 1], that is, ρ(t) = min{t(aρ (1/100 − 1/500) + 1/500), 1}. The objective is to find optimal control parameters for Q , R , 
and aρ such that we progress on xd(·) as fast as possible while ensuring that 

∥∥x − xd
(
ρ(t)

)∥∥
2 ≤ ζ . In this example, we model 

Q , R using three parameters, qc, r, κd , where κd ∈ [0, 1] is used to weigh the velocity cost with respect to the positional cost 
of our state in the Q matrix (cf. Appendix B.1). Together with aρ as a parameter, this task is eleven-dimensional, with seven 
states (including ρ) and four parameters. This problem incorporates a challenging trade-off between fast trajectories and 
high-tracking performance. We compare it to SafeOptSwarm [35], a scalable version of SafeOpt for larger parameter spaces 
that use adaptive discretization. The results are presented in Fig. 8. Our results again show that GoSafeOpt performs con-
siderably better than SafeOpt, specifically SafeOptSwarm. Furthermore, both SafeOpt and GoSafeOpt give 100% safety over 
all 20 runs. We also compare our method with expected improvement with constraints (EIC) [12] in Fig. 9. EIC discourages 
potentially unsafe regions but allows for unsafe evaluations. Our results show that EIC, and GoSafeOpt attain similar per-
formance. However, EIC has considerably more unsafe evaluations (on average greater than fifteen) than GoSafeOpt, which 
has none.
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Fig. 6. Illustration of triggering the backup policy during GE. During the global search, the policy directs the robot towards the wall in (a) and (b). A backup policy is 
automatically triggered by our boundary condition, once the robot gets too close to the wall. The backup policy directs the robot away from the wall (see green arrow in 
(c)).

Fig. 7. Mean normalized objective with standard error for SafeOpt and GoSafeOpt for the eight-dimensional simulation task (20 runs).

5.2. Hardware results

While the simulation results already showcased the general applicability of GoSafeOpt to high dimensional systems and 
its ability to discover disconnected safe regions, we now demonstrate that it can also safely optimize policies on real-world 
systems.

Control Task: We consider a path following task (see the experimental setup in Fig. 4), and model the impedance gain K as

K = diag
(

Kx, K y, Kz,2
√

Kx,2
√

K y,2
√

Kz

)
,

where Kx =αx Kr,x with Kr,x >0 a reference value used for Franka’s impedance controller and αx ∈ [0, 1.2] the parameter 
we would like to tune (same for y, z). Accordingly, αx,y,z = 1 corresponds to the impedance controller provided by the 
manufacturer. The parameter space we consider for this task is [0, 1.2]3. We require the controller to follow the known 
desired path while avoiding the wall depicted in Fig. 4.

Optimization Problem: We choose our objective function to encourage tracking the desired path as accurately as possible 
and impose a constraint on the end-effector’s distance from the wall (see Appendix B.2 for more details). We receive a 
measurement of the state at 250 Hz and evaluate the boundary condition during GE at 100 Hz.

Evaluation: The parameter space for this task is three-dimensional. Therefore, we compare our method to SafeOptSwarm

[35] and run only 50 iterations for each algorithm in three independent runs. We choose a0 = (0.6, 0.6, 0.6) as our initial 
policy. During our experiments, both GoSafeOpt and SafeOptSwarm provide 100% safety in all three runs. For GoSafeOpt, 
safety during GE is preserved by triggering a backup policy if required. One such instance is shown in Fig. 6. We see 
in Fig. 10 that GoSafeOpt performs considerably better than SafeOptSwarm. In particular, even if we cannot prove the 
existence of disconnected safe regions for this task, GoSafeOpt still finds a better policy due to GE. Interestingly, the optimal 
value suggested by GoSafeOpt for both αx , and αy is 1.2. Therefore, in the direction of our path, GoSafeOpt suggests 
aggressive controls to reduce tracking error. Moreover, the controller suggested by GoSafeOpt is more aggressive than the 
manufacturers’ reference controller (αx = 1.0, αy = 1.0), and tracks the trajectory better.

5.2.1. Choosing hyperparameters
GoSafeOpt, like many safe exploration BO algorithms such as SafeOpt and GoSafe, makes assumptions on prior knowl-

edge of the system (see Section 2.1). These assumptions are crucial for theoretical guarantees. In practice, they are 
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Fig. 8. Mean normalized objective with standard error for SafeOpt and GoSafeOpt for the eleven-dimensional simulation task (20 runs).

Fig. 9. Comparison of the normalized rewards with standard error and number of unsafe evaluations (numbers on top of the bars) between SafeOptSwarm, 
EIC, and GoSafeOpt for the eleven-dimensional simulation task (20 runs).

Fig. 10. Mean normalized objective with standard error for SafeOptSwarm and GoSafeOpt for the hardware task (3 runs). The approximate location of the 
jump during GE is visible and indicated with a cyan cross.

hard to verify. Yet, safe exploration BO methods have been successfully and safely applied to a large breath of appli-
cations [23,39–42]. In our case, we leverage the available simulator to obtain a range for the hyperparameters: kernel 
parameters, βn , and distance metric for the boundary condition. Lastly, with βn fixed, we fine-tune the remaining param-
eters by performing controlled safe experiments with the hardware. Even though this approach gives good results, recent 
work from [43] investigates the hyperparameter selection problem for safe BO more systematically. In general, there are a 
few other works which investigate the gap between theory and practice [28,44]. Nonetheless, given the potential of these 
algorithms for reliable and safe artificial intelligence (AI), we acknowledge that future research on bridging this gap is 
needed.
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6. Conclusion

This work proposes GoSafeOpt, a novel model-free learning algorithm for global safe optimization of policies for complex 
dynamical systems with high-dimensional state spaces. We provide for GoSafeOpt high probability safety guarantees and 
show that it provably performs better than SafeOpt, a state-of-the-art model-free safe exploration algorithm. We demon-
strate the superiority of our algorithm over SafeOpt empirically through our experiments. GoSafeOpt can handle more 
complex and realistic dynamical systems compared to existing model-free learning methods for safe global exploration, 
such as GoSafe. This is due to a combination of an efficient passive discovery of backup policies that leverages the Markov 
property of the system and a novel and efficient boundary condition to detect when to trigger a backup policy. Future ex-
tensions could design hybrid algorithms that leverage the Markov property and actively explore the state space. Moreover, 
GoSafeOpt is designed for efficient and safe controller tuning. We believe it can be applied to other dynamical systems, e.g., 
in legged robotics, where controller parameter tuning is a crucial component [45].
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Appendix A. Proofs of theoretical results

In this section, we provide proof for the theoretical results stated in the main body of the paper. In the following, we 
denote by k discrete time indices and with t continuous ones. This difference is important because, while we obtain state 
measurements at discrete times, we need to preserve safety at all times. Moreover, similarly to the notation in GoSafe [21], 
we denote by ξ(t,x(t),a) = {x(t) +∫ t′

t z(x(τ ); πa(x(τ )))dτ | t′ ≥ t} all the states in the trajectory induced by the policy a starting 
from x(t) at time t .

A.1. Safety guarantees

In the following, we prove Theorem 4.1, which gives the safety guarantees for GoSafeOpt. Since GoSafeOpt has two 
stages, LSE and GE, we can study their safety separately. For LSE, [18] provides safety guarantees. Therefore, here we focus 
on the safety guarantees for GE and then show that combining both will guarantee the safety of the overall algorithm. To 
this end, we first make a hypothesis on our safe set Sn and confidence bounds ln(a, i) and un(a, i).

Hypothesis A.1. Let Sn �= ∅. The following properties hold for all i ∈ Ig , n ≥ 0 with probability at least 1 − δ:

∀a ∈ Sn : gi(a, x0) ≥ 0, (A.1)

∀a ∈ A : ln(a, i) ≤ gi(a, x0) ≤ un(a, i). (A.2)

We leverage this hypothesis to prove that we are safe during GE and then we show that it is satisfied for GoSafeOpt. 
Particularly, during LSE, [18] proves that our hypothesis is fulfilled. Hence, before GE, the safe set and the confidence 
intervals satisfy it. In the following, we show the updates of the safe sets and the confidence intervals implemented by GE
also satisfy our hypothesis, which is sufficient to conclude that the hypothesis is satisfied for all n ≥ 0 (we will make this 
concrete in Lemma A.9).
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During GE, we receive measurements of the state in discrete times and evaluate our boundary condition to trigger a 
backup policy if necessary. Therefore, we first show that even with discrete-time measurements, we can still guarantee 
safety in continuous time.

Lemma A.2. Let Assumptions 2.4 and 2.5 hold and let k+ ≥ k− ≥ 0 be arbitrary integers. If, for all integers k ∈ [k−, k+], there exists 
as ∈A such that gi(as, x(k)) ≥ Lx� for all i ∈ Ig , then ḡi(x(t)) ≥ 0, for all t ∈ [k−�t, (k+ + 1)�t] and i ∈ Ig .

Proof. By choice of the sampling scheme, we have that the state x(k) measured in discrete time, corresponds to the state 
x(k�t) in continuous time. Hence, gi(as, x(k)) = gi(as, x(k�t)). Consider some k ≥ 0 and as ∈ A such that gi(as, x(k�t)) ≥
Lx�. For any t ∈ [k�t, (k + 1)�t] we have

gi(as, x(k�t)) − gi(as, x(t)) ≤ Lx ‖x(k�t) − x(t)‖ (Lipschitz continuity (Assumption 2.2))

≤ Lx�. (Assumption 2.4)

Now, since gi(as, x(k�t)) ≥ Lx�, we have, for all t ∈ [k�t, (k + 1)�t] and i ∈ Ig ,

gi(as, x(t)) ≥ gi(as, x(k�t)) − Lx� ≥ 0. (A.3)

For our choice of constraints (Assumption 2.5) this implies ḡi(x(t)) ≥ 0 for all i ∈ Ig and t ∈ [k�t, (k + 1)�t]. Finally, since 
this holds for all integers k with k− ≤ k ≤ k+ , it also holds for all t ∈ [k−�t, (k+ + 1)�t]. �

Now we have established a condition that guarantees for a given time interval that ḡi(x(t)) ≥ 0 for all i ∈ Ig .
We collect parameter and state combinations during rollouts in our set of backups Bn . The intuition here is that for a 

Markovian system, all states visited during a safe experiment are also safe. This is important as it allows GoSafeOpt to learn 
backup policies for multiple states without actively exploring the state space. We formalize this in the following proposition.

Proposition A.3. Let Assumption 2.5 hold. If (a, x0) is safe, that is, minx′∈ξ(0,x0,a)
ḡi(x′) ≥ 0 for all i ∈ Ig , then, for all t1 ≥ 0, (a, x(t1))

is also safe, that is minx′∈ξ(t1,x(t1),a)
ḡi(x′) ≥ 0 for all i ∈ Ig .

Proof. The system in Eq. (1) is Markovian, i.e., for any x(t1) ∈ ξ(0,x0,a) and x(t2) ∈ ξ(0,x0,a) with t2 > t1 > 0,

x(t2) = x0 +
t1∫

0

z(x(t);πa(x(t))dt +
t2∫

t1

z(x(t);πa(x(t))dt

= x(t1) +
t2∫

t1

z(x(t);πa(x(t))dt.

Therefore, a trajectory starting in x(t1) will always result in the same state evolution, independent of how we arrived at 
x(t1). Combining this and Assumption 2.5, we get

gi(a, x(t1)) = min
x′∈ξ(t1,x(t1),a)

ḡi(x′) Assumption 2.5

≥ min
x′∈ξ(0,x0,a)

ḡi(x′) Markov Property

= gi (a, x0) Assumption 2.5

≥ 0. �
In the following, we show that gi(as, x0) is a lower bound for all points (as, xs) in Bn , i.e., gi(as, xs) ≥ gi(as, x0). This will 

play a crucial role in showing that we preserve safety whenever we trigger a backup policy.

Corollary A.4. Let Assumption 2.5 hold. For all points (as, xs) in Bn, gi(as, xs) ≥ gi(as, x0) for all i ∈ Ig .

Proof. Each point (as, xs) in Bn is collected during a safe experiments (see Algorithm 1 line 3 and Algorithm 2 line 12). 
Therefore, xs ∈ ξ(0,x0,as) . The result then follows from Proposition A.3. �
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Corollary A.4 shows that ln(as, i) is a conservative lower bound on gi(as, xs). Crucially, if we can observe not just the 
rollouts but also the constraint values gi(as, xs), we could model them with a GP to obtain a potentially less conservative 
lower bound. However, in our work, we only assume that we can measure gi(as, x0) (Assumption 2.3).

Proposition A.3 and Corollary A.4 formalize how we collect our backup policies and leverage them in our boundary 
condition. In the following, we prove that experiments, where we trigger a backup policy, are safe. First, we show that if 
the boundary condition is triggered at a time step k∗ , then we are safe up until k∗�t , i.e., time of trigger.

Lemma A.5. Let the assumptions from Theorem 4.1 and Hypothesis A.1 hold. If, during GE, the boundary condition from Algorithm 3
triggers a backup policy at time step k∗ > 0, then, for all t ≤ k∗�t and i ∈ Ig , ḡi(x(t)) ≥ 0 with probability at least 1 − δ.

Proof. Consider k < k∗ . Since the boundary condition (Algorithm 3) did not trigger a backup policy at k, we have

∃(as, xs) ∈ Bn such that ln(as, i) ≥ Lx (‖x(k) − xs‖ + �) ,∀i ∈ Ig . (A.4)

By Lipschitz continuity of g , we have

gi(as, xs) − gi(as, x(k)) ≤ Lx ‖x(k) − xs‖ , (A.5)

which implies

gi(as, x(k)) ≥ gi(as, xs) − Lx ‖x(k) − xs‖
≥ gi(as, x0) − Lx ‖x(k) − xs‖ Corollary A.4

≥ ln(as, i) − Lx ‖x(k) − xs‖ Hypothesis A.1

≥ Lx� (A.4)

for all i ∈ Ig and k < k∗ . Therefore, we can use Lemma A.2 to prove the claim by choosing k− = 0 and k+ = k∗ − 1. �
Lemma A.5 shows that up until the time we trigger our boundary condition, we are safe with enough tolerance (Lx�) to 

guarantee safety. In the following, we show that if we trigger a safe backup policy at k∗ , we will fulfill our constraints for 
all times after triggering.

Lemma A.6. Let the assumptions from Theorem 4.1 and Hypothesis A.1 hold. If during a GE experiment with parameter aGE at time 
step k∗ ≥ 0, our boundary condition triggers the backup policy a∗

s defined as (see Eq. (12))

a∗
s = arg max

{a∈A|∃x∈X ;(a,x)∈Bn}
min
i∈Ig

ln(a, i) − Lx
∥∥x − x(k∗)

∥∥ . (A.6)

Then for all t ≥ k∗�t, ḡi(x(t)) ≥ 0 for all i ∈ Ig with probability at least 1 − δ.

Proof. We want to show that Eq. (A.6) finds a parameter a∗
s such that gi(a∗

s , x(k∗)) ≥ 0. For k∗ = 0, this follows by definition 
because Bn consists of safe rollouts (see Algorithm 1 line 3 and Algorithm 2 line 12) and thus, for all parameters as in Bn

and i ∈ Ig , we have gi(as, x0) ≥ 0.
Let us now consider any integer k∗ > 0. Let (as, xs) ∈ Bn be arbitrary. Following the same Lipschitz continuity-based 

arguments as in Lemma A.5, we have for all i ∈ Ig :

gi(as, x(k∗)) ≥ ln(as, i) − Lx
∥∥xs − x(k∗)

∥∥ same as Lemma A.5

≥ ln(as, i) − Lx
(∥∥x(k∗ − 1) − xs

∥∥ + ∥∥x(k∗) − x(k∗ − 1)
∥∥)

(Triangle inequality)

≥ ln(as, i) − Lx
(∥∥x(k∗ − 1) − xs

∥∥ + �
)

(Assumption 2.4)

≥ 0, (A.7)

where the last inequality follows from the fact that the boundary condition was not triggered at time step k∗ − 1 (see 
Section 4.1.2). Furthermore, from Eq. (A.7) we can conclude that there exists as ∈A such that for some xs ∈X , (as, xs) ∈ Bn , 
and ln(as, i) − Lx ‖xs − x(k∗)‖ ≥ 0 for all i ∈ Ig . Therefore, we have for a∗

s recommended by Eq. (A.6):

max
{a∈A|∃x∈X ;(a,x)∈Bn}

min
i∈Ig

ln(a, i) − Lx
∥∥x − x(k∗)

∥∥ ≥ 0.

Hence, gi(a∗
s , x(k∗)) ≥ 0 for all i ∈ Ig with probability at least 1 − δ, which proves the claim. �
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Lemmas A.5 and A.6 show that, if we trigger a backup policy during GE, we can guarantee the safety of the experiment 
before and after switching to the backup policy, respectively.

Next, we prove that, if the backup policy is not triggered during GE with parameter aGE , then aGE is safe with high 
probability.

Lemma A.7. Let the assumptions from Theorem 4.1 and Hypothesis A.1 hold. If, during GE with parameter aGE, a backup policy is not 
triggered by our boundary condition, then aGE is safe with probability at least 1 − δ, that is, gi(aGE, x0) ≥ 0 for all i ∈ Ig .

Proof. Assume the experiment was not safe, i.e., there exists a t ≥ 0, such that for some i ∈ Ig ḡi(x(t)) < 0. Consider the 
time step k ≥ 0 such that t ∈ [k�t, (k +1)�t]. Since the boundary condition was not triggered during the whole experiment, 
it was also not triggered at time step k. This implies that (see Section 4.1.2) there exists a point (as, xs) ∈ Bn such that

ln(as, i) − Lx (‖xs − x(k)‖ + �) ≥ 0, (A.8)

for all i ∈ Ig . Therefore, we have gi(as, x(k)) ≥ Lx� (Hypothesis A.1). Hence, from Lemma A.2 we have ḡi(x(t)) ≥ 0 for all 
i ∈ Ig . This contradicts our assumption that for some t ≥ 0 and i ∈ Ig , ḡi(x(t)) < 0. �

The following Corollary summarizes the safety of GE.

Corollary A.8. Under the assumptions from Theorem 4.1 and Hypothesis A.1 GoSafeOpt is safe during GE, i.e., for all t ≥ 0, ḡi(x(t)) ≥ 0
for all i ∈ Ig .

Proof. Two scenarios can occur during GE, (i) a backup policy is triggered at some time step k∗ ≥ 0, (ii) the experiment is 
completed without triggering a backup policy. For the first case, Lemma A.6 guarantees that we are safe after triggering the 
backup policy, and Lemma A.5 guarantees that we are safe before we trigger the backup. For second scenario, Lemma A.7
guarantees safety. �

We have now shown that under the assumptions of Theorem 4.1 combined with Hypothesis A.1, we can guarantee that 
we are safe during GE, irrespective of whether we trigger a backup policy or not. We leverage this result to show that 
Hypothesis A.1 is satisfied for GoSafeOpt.

Lemma A.9. Let the assumptions from Theorem 4.1 hold and βn be defined as in [18]. Then, Hypothesis A.1 is satisfied for GoSafeOpt, 
that is, with probability at least 1 − δ for all i ∈ Ig and n ≥ 0

∀a ∈ Sn : gi(a, x0) ≥ 0, (A.9)

∀a ∈ A : ln(a, i) ≤ gi(a, x0) ≤ un(a, i). (A.10)

Proof. We use induction on n.

Base case n = 0: By Assumption 2.1, we have, for all a ∈ S0, gi(a, x0) ≥ 0 for all i ∈ Ig . Moreover, the initialization of the 
confidence intervals presented in Section 3.3 is as follows: l0(a, i) = 0 if a ∈ S0 and −∞ otherwise, and u0(a, i) = ∞ for 
all a ∈A. Thus, it follows that l0(a, i) ≤ gi(a, x0) ≤ u0(a, i) for all a ∈A.
Inductive step: Our induction hypothesis is ln−1(a, i) ≤ gi(a, x0) ≤ un−1(a, i) and gi(a, x0) ≥ 0 for all a ∈ Sn−1 and for all 
i ∈ Ig . Based on this, we prove that these relations hold for iteration n.

We start by showing that ln(a, i) ≤ gi(a, x0) ≤ un(a, i) for all a ∈ A. To this end, we distinguish between the different 
updates of the two stages of GoSafeOpt, LSE and GE. During LSE, we define ln(a, i) and un(a, i) as

ln(a, i) = max(ln−1(a, i),μn(a, i) − βnσn(a, i)),

un(a, i) = min(un−1(a, i),μn(a, i) + βnσn(a, i)).

We know that gi(a, x0) ≥ ln−1 by induction hypothesis and gi(a, x0) ≥ μn(a, i) − βnσn(a, i) with probability 1 − δ from 
[18]. This implies gi(a, x0) ≥ ln . A similar argument holds for the upper bound.

During GE, we update ln(a, i) if the parameter we evaluate induces a trajectory that does not trigger a backup pol-
icy (see Algorithm 2 line 13). For this parameter, the induction hypothesis allows us to use Lemma A.7 and conclude 
gi(a, x0) ≥ 0. Therefore, the update of the confidence intervals during GE also satisfies Eq. (A.10) for iteration n, thus 
completing the induction step for the confidence intervals.

As for the confidence intervals, we distinguish between the different updates of the safe set implemented by LSE and
GE. In the case of GE, we update the safe set by adding the evaluated policy parameter a only if it does not trigger a 
backup, i.e., Sn = Sn−1 ∪ {a}. Following the same argument as above, we can conclude gi(a, x0) ≥ 0 for all i ∈ Ig . This 
together with the induction hypothesis means gi(a, x0) ≥ 0 for all i ∈ Ig and a ∈ Sn in case of a GE update.
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Now we focus on LSE. We showed Eq. (A.10) holds for n. Moreover, we know by induction hypothesis gi(a, x0) ≥ 0
for all a ∈ Sn−1 and for all i ∈ Ig with high probability. The update equation for the safe set (Eq. (8)) gives for all 
a′ ∈ Sn \ Sn−1, there exists a ∈ Sn−1 such that for all i ∈ Ig

ln(a, i) − La
∥∥a − a′∥∥ ≥ 0. (A.11)

We show that this is enough to guarantee with high probability that gi(a′, x0) ≥ 0. Due to the Lipschitz continuity of the 
constraint functions, we have

gi(a
′, x0) ≥ gi(a, x0) − La

∥∥a − a′∥∥ ,

≥ ln(a, i) − La
∥∥a − a′∥∥ ≥ 0. (Eq. (A.11))

Therefore, gi(a′, x0) ≥ 0 for all i ∈ Ig and a ∈ Sn with probability at least 1 − δ also in case of an LSE step. �
Lemma A.9 ensures that Hypothesis A.1 holds for GoSafeOpt. We also know that under the same assumption as The-

orem 4.1 and Hypothesis A.1, we are safe during GE (see Corollary A.8). Hence, we can now guarantee safety during GE. 
Finally, we prove Theorem 4.1, which guarantees safety for GoSafeOpt.

Theorem 4.1. Under Assumptions 2.1 – 2.5 and with βn as defined in [18]. GoSafeOpt guarantees, for all n ≥ 0 and any δ ∈ (0, 1), 
that experiments are safe as per Definition 2.6 with probability at least 1 − δ.

Proof. We perform GoSafeOpt in two stages; LSE and GE. In Lemma A.9, we proved that for all parameters a ∈ Sn , 
gi(a, x0) ≥ 0 for all i ∈ Ig with probability at least 1 − δ. During LSE we query parameters from Sn (Eq. (9)). Therefore, 
the experiments are safe. During GE, Corollary A.8 proves that when assumptions from Theorem 4.1 and Hypothesis A.1
hold, we are safe during GE for our choice of βn . Furthermore, in Lemma A.9 we proved that Hypothesis A.1 is satisfied for
GoSafeOpt. Hence, we can conclude that if the assumptions from Theorem 4.1 hold, we are safe during GE at all times. �
A.1.1. Proof of boundary condition for noisy measurements

Lemma A.10. Assume at each time step k we receive a noisy measurement of the state to evaluate our boundary condition, i.e., y =
x + ε and ε i.i.d. Specifically, assume P (‖ε‖ ≤ d/2) ≥ √

1 − δ2 . If we have for some (as, ys) ∈ Bn (ys = xs + εs)

ln(as, i) − Lx(‖y − ys‖ + � + d) ≥ 0,

then with probability at least 1 − δ2 we have

ln(as, i) − Lx(‖x − xs‖ + �) ≥ 0.

Proof. We would like to show that

ln(as, i) − Lx(‖y − ys‖ + � + d) ≤ ln(as, i) − Lx(‖x − xs‖ + �).

This implies that d ≥ ‖x − xs‖ − ‖y − ys‖.
Accordingly,

‖x − xs‖ − ‖y − ys‖ ≤ ‖x − xs − (y − ys)‖ (reverse triangle inequality)

= ‖εs − ε‖ ≤ ‖ε‖ + ‖εs‖
≤ d � (with probability at least 1 − δ2.)

Following the lemma, we can come up with a more conservative boundary condition (with one step jump bound �′ =
� + d) which still guarantees safety. However, the price we pay for not measuring our state perfectly is the additional 
probability term 1 − δ2. Lastly, here we only look at the influence of noisy state measurements on the boundary condition. 
Nevertheless, if the policy π uses some form of feedback, the noise also enters the dynamics. In this work, we assume that 
this influence is captured by our observation model, see Assumption 2.3.

A.2. Optimality guarantees

In this section, we prove Theorem 4.3 which guarantees that the safe global optimum can be found with ε-precision 
if it is discoverable at some iteration n ≥ 0 (see Definition 4.2). Then, we show in Lemma A.18 that for many practical 
applications, this discoverability condition is satisfied.
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A.2.1. Proof of Theorem 4.3
We first define the largest region that LSE can safely explore for a given safe initialization S and then we show that we 

can find the optimum with ε-precision within this region. To this end, we define the reachability operator Rc
ε (S) and the 

fully connected safe region R̄c
ε (S) by (adapted from [18,21])

Rc
ε(S) := S ∪ {a ∈ A | ∃a′ ∈ S such that gi(a

′, x0) − ε − La
∥∥a − a′∥∥ ≥ 0,

∀i ∈ Ig}, (A.12)

R̄c
ε(S) := lim

n→∞
(

Rc
ε

)n
(S). (A.13)

The reachability operator Rc
ε(S) contains the parameters we can safely explore if we know our constraint function with 

ε-precision within some safe set of parameters S . Further, (Rc
ε )

n(S) denotes the repeated composition of Rc
ε (S) with itself, 

and R̄c
ε(S) its closure. Next, we derive a property for the reachability operator, that we will leverage to provide optimality 

guarantees.

Lemma A.11. Let A ⊆ S, if R̄c
ε(A) \ S �= ∅, then Rc

ε(S) \ S �= ∅.

Proof. This lemma is a straightforward generalization of [18, Lem. 7.4]. Assume Rc
ε(S) \ S = ∅, we want to show that this 

implies R̄c
ε(A) \ S = ∅. By definition Rc

ε(S) ⊇ S and therefore Rc
ε(S) = S . Iteratively applying Rc

ε to both the sides, we get in 
the limit R̄c

ε(S) = S . Furthermore, because A ⊆ S , we have R̄c
ε(A) ⊆ R̄c

ε(S) [18, Lem. 7.1]. Thus, we obtain R̄c
ε(A) ⊆ R̄c

ε(S) = S , 
which leads to R̄c

ε(A) \ S = ∅. �
In the following, we prove that our LSE convergence criterion (see Eq. (10)) guarantees that for the safe initialization S , 

we can explore R̄c
ε(S) during LSE in finite time.

Theorem A.12. Consider any ε > 0 and δ > 0. Let Assumptions 2.2 and 2.3 hold, βn be defined as in [18], and S ⊆ A be an initial 
safe seed of parameters, i.e., g(a, x0) ≥ 0 for all a ∈ S. Assume that the information gain γn grows sublinearly with n for the kernel k. 
Further let n∗ be the smallest integer such that (cdf. the convergence criterion of LSE in Eq. (10))

max
a∈Gn∗−1∪Mn∗−1

max
i∈I

wn∗−1(a, i) < ε and Sn∗−1 = Sn∗ . (A.14)

Then we have that n∗ is finite and when running LSE, the following holds with probability at least 1 − δ for all n ≥ n∗:

R̄c
ε(S) ⊆ Sn, (A.15)

f (ân) ≥ max
a∈R̄c

ε (S)

f (a) − ε, (A.16)

with ân = arg max
a∈Sn

ln(a, 0).

Proof. We first leverage the result from [18, Thm. 4.1] which provides the following worst-case bound on n∗

n∗

βn∗γ|I|n∗
≥ C1

(
R̄c

0(S)
) + 1

ε2
, (A.17)

where C1 = 8/ log(1 + σ−2) and n∗ is the smallest integer that satisfies Eq. (A.17). Hence, we have that n∗ is finite. The 
sublinear growth of γn with n is satisfied for many practical kernels, like the ones we consider in this work [31]. Next, 
we prove Eq. (A.15). For the sake of contradiction, assume R̄c

ε (S) \ Sn∗ �= ∅. This implies, Rc
ε(Sn∗) \ Sn∗ �= ∅ (Lemma A.11). 

Therefore, there exists some a ∈A \ Sn∗ such that for some a′ ∈ Sn∗ = Sn∗−1 (Eq. (A.14)), we have for all i ∈ Ig

0 ≤ gi(a
′, x0) − ε − La

∥∥a − a′∥∥ ,

≤ un∗−1(a
′, i) − La

∥∥a − a′∥∥ . (Lemma A.9)

Therefore, a′ ∈ Gn∗−1 (see [18] or Appendix D Definition D.1) and accordingly, wn∗−1(a′, i) < ε . Next, because 
wn∗−1(a′, i) < ε , we have for all i ∈ Ig

0 ≤ gi(a
′, x0) − ε − La

∥∥a − a′∥∥ ≤ ln∗−1(a
′, i) − La

∥∥a − a′∥∥ . (A.18)

This means a ∈ Sn∗ (Eq. (8)), which is a contradiction. Thus, we conclude that R̄c
ε(S) ⊆ Sn∗ and because Sn∗ ⊆ Sn for all 

n ≥ n∗ (Proposition A.13), we get R̄c
ε(S) ⊆ Sn .
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Now we prove Eq. (A.16). Consider any n ≥ n∗ . Note, wn∗−1(a′, i) < ε , implies wn(a′, i) < ε (see Algorithm 1 line 4 or 
Algorithm 2 line 13). For simplicity, we denote the solution of arg maxa∈R̄c

ε (S) f (a) as a∗
S . We have

un(a
∗
S ,0) ≥ f (a∗

S) (Lemma A.9)

≥ f (ân) (by definition of a∗
S )

≥ ln(ân,0) (Lemma A.9)

= max
a∈Sn

ln(a,0). (by definition of ân)

Therefore, a∗
S is a maximizer, i.e., a∗

S ∈ Mn (see Appendix D Definition D.2) and has uncertainty less than ε , that is, 
wn(a∗

S , i) < ε . Now, we show that f (ân) ≥ f (a∗
S ) − ε . For the sake of contradiction assume,

f (ân) < f (a∗
S) − ε. (A.19)

Then we obtain,

ln(a
∗
S ,0) ≤ ln(ân,0) (by definition of ân)

≤ f (ân) (Lemma A.9)

< f (a∗
S) − ε (by Eq. (A.19))

≤ un(a
∗
S ,0) − ε (Lemma A.9)

≤ un(a
∗
S ,0) − wn(a

∗,0) (because wn(a∗
S ,0) ≤ ε)

= ln(a
∗
S ,0), (by definition of wn(a∗

S ,0))

which is a contradiction. Therefore, we have f (ân) ≥ f (a∗
S ) − ε . �

Theorem A.12 states that for a given safe seed S , the convergence of LSE (Eq. (10)) implies that we have discovered its 
fully connected safe region R̄c

ε (S) and recovered the optimum within the region with ε-precision.
Based on the previous results, we can show that if the safe global optimum is discoverable for some iteration n ≥ 0 (see 

Definition 4.2), then we can find an approximately optimal safe solution. However, to prove optimality, what we also require 
is that if a∗ ∈ Sn then a∗ ∈ Sn+1.

Proposition A.13. Let the assumptions from Theorem 4.1 hold. For any n ≥ 0, the following property is satisfied for Sn.

Sn ⊆ Sn+1, (A.20)

Proof. The safe set provably increases during LSE [18, Lem. 7.1]. During GE, the safe set is only updated if a new safe 
parameter is found. The proposed update also has the non-decreasing property (see Algorithm 2, line 13). Hence, we can 
conclude that Sn ⊆ Sn+1. �

Proposition A.13 shows that if the safe global optimum a∗ ∈ Sn , then a∗ ∈ Sn+1. Next, we prove that if a new safe region 
A is added to our safe set Sn , we will explore its largest reachable safe set R̄c

ε (A).

Lemma A.14. Consider any integer n ≥ 0. Let Sn be the safe set of parameters explored after n iterations of GoSafeOpt and let βn

be defined as in [18]. Consider A = Sn+1 \ Sn. If A �= ∅, then there exists a finite integer n̄ > n such that R̄ε
c (A) ∪ R̄ε

c (Sn) ⊆ Sn̄ with 
probability at least 1 − δ.

Proof. First, if R̄ε
c (A) \ Sn̄ = ∅ and R̄ε

c (Sn) \ Sn̄ = ∅ then R̄ε
c (A) ∪ R̄ε

c (Sn) ⊆ Sn̄ . We now show that R̄ε
c (A) \ Sn̄ = ∅. Assume 

that R̄ε
c (A) \ Sn̄ �= ∅. We know that A ⊆ Sn+1 ⊆ Sn̄ (Proposition A.13). This implies Rc

ε(Sn̄) \ Sn̄ �= ∅ (Lemma A.11). Since 
A �= ∅, the safe set is expanding. For GoSafeOpt, this can either happen during LSE or during GE when a new parameter 
is successfully evaluated, i.e., the boundary condition is not triggered. In either case, we perform LSE till convergence. Let 
n̄ > n be the smallest integer for which we converge during LSE, i.e., for which

max
a∈Gn̄−1∪Mn̄−1

max
i∈I

wn̄−1(a, i) < ε and Sn̄−1 = Sn̄ (A.21)

holds. From Theorem A.12, we know that n̄ is finite. Consider a ∈ Rc
ε(Sn̄) \ Sn̄ . Then we have that there exists a′ ∈ Sn̄

such that 0 ≤ gi(a′, x0) − ε − La
∥∥a − a′∥∥ (see Eq. (A.12)). Furthermore, Sn̄−1 = Sn̄ , means a′ ∈ Sn̄−1. Hence, we also have 0 ≤

un̄−1(a, i) − La
∥∥a − a′∥∥, which implies that, a′ ∈ Gn̄−1 (Appendix D Definition D.1) and therefore, wn̄−1(a′, i) < ε . This implies 
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that 0 ≤ ln̄−1(a′, i) − La
∥∥a − a′∥∥. Therefore, according to Eq. (8), a ∈ Sn̄ , which is a contradiction. Hence, R̄ε

c (A) \ Sn̄ = ∅. We 
can proceed similarly to show that R̄ε

c (Sn) \ Sn̄ = ∅. Since we have R̄ε
c (A) \ Sn̄ = ∅ and R̄ε

c (Sn) \ Sn̄ = ∅, we can conclude that 
R̄ε

c (A) ∪ R̄ε
c (Sn) ⊆ Sn̄ . �

In Lemma A.14 we have shown that for every set A that we add to our safe set, we will explore its fully connected safe 
region in finite time. This is crucial because it allows us to guarantee that when we discover a new region during GE, we 
explore it till convergence. Finally, we can now prove Theorem 4.3.

Theorem 4.3. Let a∗ be a safe global optimum. Further, let Assumptions 2.1 – 2.5 hold, βn be defined as in [18]. Assume there exists 
a finite integer ñ ≥ 0 such that a∗ is discoverable at iteration ñ (see Definition 4.2). Then, for any ε > 0, and δ ∈ (0, 1), there exists a 
finite integer n∗ ≥ ñ such that with probability at least 1 − δ,

f (ân) ≥ f (a∗) − ε, ∀n ≥ n∗ (13)

with ân = arg maxa∈Sn
ln(a, 0).

Proof. Since, a∗ is discoverable at iteration ñ, there exists a set A∗ ⊆ Sñ such that a∗ ∈ R̄c
ε(A∗). Furthermore, we have 

R̄c
ε(A∗) ⊆ R̄c

ε(Sn̄) (Lemma A.14), therefore, a∗ ∈ R̄c
ε(Sn̄). Theorem A.12 shows that we can find the optimum in the safe 

region with ε precision in finite time n∗ ≥ ñ. Hence, there exists a finite integer n∗ such that

f (ân) ≥ f (a∗) − ε, ∀n ≥ n∗, (A.22)

with ân = arg maxa∈Sn
ln(a, 0). �

A.2.2. Requirements for discovering safe sets with GE
In the previous section, we showed that if a safe global optimum a∗ is discoverable at some iteration ñ, we can then 

find it with ε-precision. In this section, we show that if for a parameter aGE in A \ Sn , we have backup policies for all the 
states in its trajectory, then aGE will be eventually added to our safe set of parameters. Finally, we conclude this section by 
showing that for many practical cases, a∗ fulfills the discoverability condition.

Now, we derive conditions that allow us to explore new regions/parameters during GE. To this end, we start by defining 
a set of safe states X s

n , i.e., the states for which our boundary condition does not trigger a backup policy.

Definition A.15. The set of safe states X s
n is defined as

X s
n :=

⋃
(a′,x′)∈Bn

{
x ∈ X

∣∣∣ ∥∥x′ − x
∥∥ ≤ 1

Lx
min
i∈Ig

ln(a
′, i) − �,

}
. (A.23)

Intuitively, if a trajectory induced by a parameter being evaluated during GE lies in X s
n , then the boundary condition will 

not be triggered for this parameter. Now we will prove that this set of safe states X s
n is non-decreasing. This is an important 

property because it tells us that GoSafeOpt continues to learn backup policies for more and more states.

Lemma A.16. Let the assumptions from Theorem 4.1 hold. For any n ≥ 0, the following property is satisfied for X s
n .

X s
n ⊆ X s

n+1. (A.24)

Proof. The lower bounds ln(a, i) are non-decreasing for all i ∈ I by definition (see Algorithm 1 line 4 or Algorithm 2
line 13). Additionally, because we continue to add new rollouts to our set of backups, we have Bn ⊆ Bn+1 (see Algorithm 1
line 3 or Algorithm 2 line 12). For each x ∈ X s

n , there exists (as, xs) ∈ Bn , such that ln(as, i) − Lx (‖x − xs‖ + �) ≥ 0 for all 
i ∈ Ig . Because Bn ⊆ Bn+1 and ln+1(as, i) ≥ ln(as, i), x ∈X s

n+1. �
Next, we state conditions under which a parameter aGE ∈ A \ Sn will be discovered during GE, i.e., no backup policy 

would be triggered during GE, in finite time.

Lemma A.17. Consider any n ≥ 0. Let Sn be the safe set of parameters explored after n iterations of GoSafeOpt and aGE a parameter 
in A \ Sn. Further, let the assumptions from Theorem 4.3 hold and βn be defined as in [18]. If, for all k ≥ 0, xaGE (k) ∈X s

n , where, xaGE(k)

represents the state at time step k for the system starting at x0 with policy πaGE(·), then there exists a finite integer ñ > n, such that 
aGE ∈ Sñ.
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Proof. Assume that there exists no finite integer ñ > n such that aGE ∈ Sñ . This would imply that aGE ∈ A \ Sñ for all ñ > n. 
Thus, because aGE will never be a part of our safe set, it will never be evaluated during LSE. However, from Theorem A.12
we know that LSE will converge in a finite number of iterations after which we will perform GE. Since aGE is not a part of 
the safe set, it can only be evaluated during GE, where parameters outside of the safe regions are queried. The parameter 
space A is finite and any parameter that was evaluated unsuccessfully, i.e., boundary condition was triggered, will be added 
to E and therefore not evaluated again (see Eq. (11) and Algorithm 2 line 9). This implies that aGE will be evaluated for 
some n′ with n < n′ < ñ (since Sn′ ⊆ Sñ , see Proposition A.13). Furthermore, X s

n ⊆ X s
n′ (Lemma A.16) and, therefore, for all 

k ≥ 0, xaGE (k) ∈ X s
n′ . If when aGE is evaluated, the experiment is unsuccessful, i.e., we were to trigger a backup policy, this 

would imply that for some k′ and i ∈ Ig , there is no (as, xs) ∈ Bn′ such that

ln′(a, i) ≥ Lx(
∥∥xaGE(k′) − xs

∥∥ + �).

Thus, we had xaGE (k′) /∈ X s
n′ , which contradicts our assumption. Therefore, aGE ∈ Sn′+1 ⊆ Sñ (Proposition A.13), which is a 

contradiction. Consequently, we have aGE ∈ Sñ after a finite number of iterations ñ. �
Lemma A.17 guarantees that, if the trajectory of parameter aGE lies in X s

n , then it will eventually be added to our safe 
set, either during LSE or during GE. We utilize this result to provide a condition for the safe global optimum a∗ to be 
discoverable at iteration ñ by GoSafeOpt.

Lemma A.18. Consider any n ≥ 0. Let Assumptions 2.1 – 2.4 hold, βn be defined as in [18], and let a∗ ∈ A be the safe global optimum. 
If there exists aGE ∈A \ Sn such that

(i) for all k ≥ 0 and some n ≥ 0, xaGE (k) ∈X s
n , where xaGE(k) is the state visited by the system starting at x0 under the policy πaGE(·)

at time step k, and
(ii) a∗ ∈ R̄c

ε({aGE}),

then a∗ is discoverable at iteration ñ ≥ n by GoSafeOpt with probability at least 1 − δ.

Proof. Since, for all k ≥ 0, xaGE (k) ∈ X s
n , there exists a finite integer ñ > n such that aGE ∈ Sñ (Lemma A.17). Furthermore, 

because a∗ ∈ R̄c
ε({aGE}), we can conclude that a∗ is discoverable at iteration ñ (see Definition 4.2). �

The condition here is interesting because empirically, for many practical cases, it is fulfilled. Crucially, optimal or near-
optimal parameters tend to visit similar states as other safe policies. We add rollouts from safe policies to our set of 
backups Bn and therefore have backup policies for their trajectories and other trajectories that lie close to them. Therefore, 
the trajectories of (near-)optimal parameters lie in X s

n and in this case, the safe global optimum fulfills the discoverability 
condition from Theorem 4.3.

Appendix B. Additional information on experiments

For all our experiments in Section 5, we consider a controller in the operational space. The operational space dynamics 
of the end-effector are given by [36]

u(x(t)) = �(q)s̈ + �(q, q̇)ṡ + η(q), (B.1)

where s represents the end-effector position, q the joint angles, and �(q), �(q, ̇q), η(q) are nonlinearities representing 
the mass, Coriolis, and gravity terms, respectively. The state we consider is x(t) = [sT (t), ̇sT (t)]T . We apply an impedance 
controller:

u (x(t)) = −K (x − xdes(k)) + �(q, q̇)ṡ + η(q), (B.2)

with K being the feedback gain. The torque τ applied to each of the joints can be calculated via τ = J T u(x(t)), with J the 
Jacobian.

For our experiments, we can directly measure g(a, x(k)), where k denotes a discrete time step. Therefore, instead of 
using ln(as, i) for the boundary condition in Section 4.3.2, we take a lower bound over all the tuples in our set of backups, 
Bn , i.e., ln(as, xs, i), which could potentially reduce the conservatism of the boundary condition. Therefore, we define a GP 
over the parameter and state space, which contains all the points from Bn . The set Bn consists of rollouts from individual 
experiments, we typically add 50 − 100 data points from each experiment to Bn . As the data points of our GP increase, 
inference becomes prohibitively costly. To this end, we use a subset selection scheme to select a small subset of points 
(a, x) from Bn at random with a probability that is proportional to exp (−mini∈Ig l2n(a, x, i)). Crucially, we want to retain 
points that have a small lower bound such that we have low uncertainty around these points. We perform this subset 
selection once our GP has acquired more than nmax data points. Then, we select a subset of m < nmax points. Lastly, as 
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described in Section 5.2.1, for the boundary condition from Section 4.3.2, we define the distances du , dl using covariances 
κu , κl , respectively. Particularly, we pick du such that k(du) ≥ κu for the stationary isotropic kernel k that we use to model 
our GP (same for dl). This makes the choice of du more intuitive since it directly relates to the covariance function of our GP.

B.1. Simulation

For the simulation task, we determine the impedance K using an infinite horizon LQR parameterized via

Q =
[

Q r 0
0 κd Q r

]
, Q r = 10qc I3,

R = 10r−2 I3, A =
[

0 I3
0 0

]
, B =

[
0
I3

]
.

The matrices A, B are obtained assuming that we use a feedback linearization controller [36]. However, because we instead 
use an impedance controller, there are nonlinearities and imprecisions in our model. The parameters qc , r, κd are tuning 
parameters we would like to optimize. We define the desired path xdes(k) as

xdes(k) = [pT
0 + k

Ttraj
(pdes − s0)

T ,01x3]T (8D task)

xdes(k) = xdes(ρ(k)) (11D task)

Here, ρ(·) is used to parameterize a cubic spline from x0 to xtarget. The constraint is:

ḡ (x(t)) = ‖s(t) − sdes‖2 − ‖s(0) − sdes‖2

‖s(0) − sdes‖2
− α, α = 0.08 (8D task)

ḡ
(
x(t)

) = ζ − ∥∥x(t) − xd
(
ρ(t)

)∥∥
2 . (11D task)

The stage rewards, i.e., rewards received at each time step [1], are

R (x(t)) = −‖s(t) − sdes‖2
2 /‖s(0) − sdes‖2

2

− 1

25
‖tanh ṡ(t)‖2

2 − 1

25
‖tanh u (x(t))‖2

2

(8D task)

R
(
x(t)

) = −νρ(ρ(t) − 1)2 − νx
∥∥x(t) − xd

(
ρ(t)

)∥∥
2 − νu

∥∥∥∥ u

umax

∥∥∥∥
2
. (11D task)

Additionally, to encourage fast behavior in the eight-dimensional task, we only sample parameters for which the eigen-
values of A − B K are less than a fixed threshold: eig(A − B K ) ≤ −10. Although this constraint is independent of the state, 
it can be evaluated before each experiment and parameters can be rejected if the criterion is not fulfilled. The value for 
κd is heuristically set to 0.1 for the first experiment (8D task). For the eleven-dimensional task, κd is also tuned. In the 
eight-dimensional task, we observe that the underlying functions f , gi exhibit non-smooth behavior. Therefore we use the 
Matérn kernel [30] with parameter ν = 3/2 for our GP. For the remaining tasks, we use the squared exponential (SE) kernel.

B.2. Hardware

For the hardware task, we define the subsequent objective and constraint functions:

R (x(t)) = −‖s(t) − sdes(t)‖2 ,

ḡ (s(t)) = ‖s(t) − sw‖P ,∞ − ψ,

where sw represents the center of the wall in Fig. 4 and ‖s − sw‖P ,∞ ≤ dw defines the rectangular shaped outline around 
the wall and ψ > dw .

Appendix C. Sensitivity to LSE and GE steps

We analyze the sensitivity of the practical version of GoSafeOpt with respect to nLSE and nGE on a simple one-
dimensional toy example. The toy example consists of a one-dimensional system that has the following dynamics, stage 
reward, and constraint:

s(k + 1) = 1.01
√|s(k)| − 0.2

√|ay(k)| + v(k), with y(k) = s(k) + w(k)

R(s) = −s2,

ḡ(s) = s2 − 0.81,

23



B. Sukhija, M. Turchetta, D. Lindner et al. Artificial Intelligence 320 (2023) 103922

Fig. C.11. Toy Example results. (a) Objective function with the safe set. (b) Performance of GoSafeOpt for different nLSE and nGE .

with v(k), w(k) ∼ N (0, 10−4) and a ∈ [−6, 5] the control parameter we would like to optimize. We consider a regulation 
problem, i.e. we start at x0 = 0 and we would like our system to remain close to x0. We run GoSafeOpt for twenty iterations 
over twenty seeds for different nLSE and nGE values. Fig. C.11 depicts the safe set and the performance of GoSafeOpt

for different nLSE and nGE . In this example, we have two disconnected safe sets and a∗ = −6 is the global optimum. To 
show the advantage of global exploration, we initialize GoSafeOpt in the safe region which does not contain a∗ . For all 
our experiments, we obtain 100% safety. Furthermore our results show, for nLSE = 5, we get faster convergence than for 
nLSE = 10. This is because we explore the region with the global optimum earlier. However, when we do not perform 
enough LSE steps then global exploration also fails and we are stuck at a bad optimum (see for instance nLSE = 1 and 
nGE = 10). This simple example highlights the trade-off between local exploration and global exploration steps.

Appendix D. Additional definitions

In this section, we present some of the definitions from SafeOpt for completeness.

Definition D.1. The expanders Gn are defined as Gn := {a ∈ Sn | en(a) > 0} with en(a) = |{a′ ∈ A \ Sn, ∃i ∈ Ig : un(a, i) −
La

∥∥a − a′∥∥ ≥ 0}|.

Definition D.2. The maximizers Mn are defined as Mn := {a ∈ Sn | un(a, 0) ≥ maxa′∈Sn ln(a′, 0)}.

Appendix E. Hyperparameters

The hyperparameters of our simulated and real-world experiments are provided in Table E.2.

Table E.2
Table of hyperparameters.

8D task Simulation 11D task Simulation Hardware task

SafeOpt GoSafeOpt SafeOptSwarm GoSafeOpt SafeOptSwarm GoSafeOpt

Iterations 200 200 200 200 50 50
β

1/2

n 4 4 3 3 3 3
a lengthscale 0.12,0.12 0.12,0.12 0.067,0.2,0.13,0.2 0.067,0.2,0.13,0.2 0.1,0.1, 0.1 0.1,0.1, 0.1
κ for f and g 1,1 1, 1 1,1 1, 1 1,1 1, 1
σ for f and g 0.1,0.1 0.1,0.1 0.1,0.1 0.1,0.1 0.05,0.3 0.05,0.3
x lengthscale - 0.3,0.3,0.3, 

2.5,2.5,2.5
- 0.5,0.5,0.5, 

0.6,0.6,0.6, 10
- 0.3,0.3,0.3, 

0.5,0.5,0.2
ε - 0.1 - 0.1 - 0.01
max LSE steps - 30 - 100 - 20
max GE steps - 10 - 10 - 5
κl - 0.90 - 0.90 - 0.90
κu - 0.94 - 0.94 - 0.94
ηl - 0.4 - 0.3 - 0.9
ηu - 0.6 - 0.75 - 1.1
nmax - 1000 - 1000 - 1000
m - 500 - 500 - 500
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