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Abstract: Charging piles in the bus depot provide charging services to multiple electric bus (EB)
routes operating in the area. As charging needs may overlap between independently operated routes,
EB fleets often have to wait in line for charging. However, affected by the ambient temperature, the
length of the waiting time will cause the battery temperature to change at the beginning of each
charging, thereby influencing the charging performance and charging time of the battery. To this
end, this paper considers the influence of ambient temperature on battery charging performance,
and collaboratively optimizes the number of charging piles in the bus depot and the scheduling
problem of EB charging. Aiming at minimizing the cost of laying charging piles in bus stations
and the charging costs of bus fleets, as well as minimizing the empty time of electric bus fleets and
waiting time for charging in queues, a mixed-integer nonlinear programming model is established,
and the immune algorithm is used to solve it. At last, an actual bus depot and four EB routes are
taken as examples for verification. The results show that by optimizing the charging waiting time
of the electric bus at the bus station, the rapid decline in charging performance caused by the sharp
drop in battery temperature is avoided. Without increasing the charging cost of the electric bus fleet,
the established method reduces the charging pile installation cost, improves the bus depot’s service
efficiency, and ensures the punctuality and integrity of the regional bus route operation.

Keywords: electric bus; bus depot; charging scheduling; ambient temperature; waiting time

1. Introduction

Sustainable, emission-free transportation is key to improving the quality of life in
cities. The energy-saving and environmental benefits of electric buses (EBs) are increasingly
recognized, leading to governments worldwide implementing policies to transition from
traditional fuel-powered bus fleets to electric fleets. China has established itself as a
leader in the EB market, with 419,500 pure EBs operating in Chinese cities at of the end
of 2021, accounting for 62.6% of the global total [1]. Global EB deployment is projected
to reach 4.5 million by 2030 [2]. However, the rapid expansion of the EB scale also brings
new challenges, especially regarding choosing the charging infrastructure that adheres to
techno-economic constraints to support the operational needs of routes [3]. Bus depots
are usually located on the property of the transit agency and have a lower up-front capital
cost, not requiring negotiations or leases of property around the service area [4]. Therefore,
a limited number of charging piles are usually built in one or more depots to provide
charging services for regional EB routes.

However, it is common for multiple EB routes sharing the same bus depot to operate in
an island mode. The scheduling and charging plans for these routes are often independent
of each other, which can result in overlapping charging demands. Consequently, EBs on
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certain routes may not be able to adhere to their charging plans due to charging piles
being occupied by EBs from other routes, which seriously impacts the punctuality of their
subsequent service trips. Additionally, EB fleets often have to wait in line for charging,
limited by the number of charging piles in the bus depot. Particularly in low-temperature
environments, prolonged charging waiting times could cause a decrease in the tempera-
ture and an increase in the internal resistance of the lithium-ion battery, leading to early
termination of the constant current stage and transition to the constant voltage stage. This,
in turn, can significantly extend battery charging time [5]. Under extreme low-temperature
conditions, the battery’s electrolyte may even freeze, rendering it impossible to charge.
These issues can significantly impact the integrity of the follow-up service for some EB
routes, resulting in interrupted service due to insufficient power. As a result, rational
planning of the number of charging piles in bus depots, as well as scientific allocation of
charging positions, queuing times, and charging times for the EB fleet, are essential to
improving the service efficiency of EB depots, ensuring punctuality and service integrity of
the route itinerary, and reducing the economic costs of bus companies.

This paper focuses on the collaborative optimization problem of charging pile configu-
ration and EB charging schemes. Firstly, the impact of EB charging queuing time on battery
temperature at the beginning of charging was quantified, taking into consideration different
ambient temperatures. Additionally, the functional relationship between the charging time
and charging amount is described under the influence of different battery temperatures for
the common constant current and constant voltage-charging mode. Subsequently, under
the scenario of known multi-route EB vehicle scheduling schemes and energy consumption
demand, a mixed-integer nonlinear programming model was developed with the objec-
tives of minimizing the deployment costs of charging piles, charging costs, deadhead time,
and queuing time of the EB fleet, and an immune algorithm was used to solve it. Finally,
the effectiveness of the proposed optimization method was verified through its practical
application to an actual bus depot and EB routes.

The subsequent sections of this paper are arranged as follows. Section 2 gives a review
of the relevant literature regarding EB charging-scheduling methods. In Section 3, we
develop a mixed-integer nonlinear programming model and devise a solution algorithm
to address the collaborative optimization problem of charging pile configuration and EB
charging schedule. Section 4 presents a case study based on an actual bus depot and EB
routes. Finally, the research conclusions and prospects for future research can be found in
Section 5.

2. Literature Review

In order to address the limited driving range of EBs and alleviate driver anxiety, it
is common practice for EBs to utilize idle time during off-peak electricity pricing periods
to recharge their batteries. In this context, a well-designed charging-scheduling scheme
can significantly improve the service quality of EB routes and reduce operating costs [6–9].
Existing research on charging scheduling for EB fleets can be broadly categorized into
three categories: single-route EB fleet charging scheduling, multi-route EB fleet charging
scheduling, and charging scheduling in depots.

In the charging-scheduling problem of a single-route EB fleet, the prevailing approach
was to develop optimization models that aimed to minimize costs, such as vehicle purchase
costs, charging costs, and charging pile deployment costs. For instance, He et al. [10]
proposed an optimization model that leverages the rolling horizon scheduling method to
solve the EB charging problem, which considers not only the costs of charging stations
and batteries but also a time-of-use electricity cost rate structure. Hu et al. [11] developed
an optimization model that takes the cost of extra waiting, time-varying electricity prices,
and various battery capacities into account, and solved it using a genetic algorithm. Jiang
et al. [12] presented a model to optimize the charging schedule with the objective of
minimizing the annualized total cost (including the fixed cost of EB and charging costs)
and developed a neighborhood search-based heuristic an algorithm considering charging
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and dispatching policies to solve it. He et al. [13] formulated the charging schedule
and management optimization model of EBs into a linear program that can minimize
both upfront investment and charging costs. To achieve the purpose of reducing the
overall charging and operating costs for city-scale EB fleets, Wang et al. [14] considered the
time-variant electricity pricing and designed an effective pricing-aware real-time charging-
scheduling system using a Markov Decision Process. Liu et al. [15] indicated the nonlinear
increase in energy consumption rate with the decrease in temperature and established a
charging-scheduling model considering time-of-use tariff and stochastic trip travel times.

However, in reality, charging piles built in one or more depots usually need to jointly
provide charging services for regional EB routes. However, when a relatively large number
of buses queue up for charging, the original charging schedule may not be executed as
planned, which can significantly impact the subsequent vehicle scheduling scheme [16].

In order to solve the aforementioned challenges, some scholars focused on the EB
fleets of multiple routes and limited the number of EBs simultaneously charged in the bus
depot, so as to optimize the charging plan of the multi-route EB fleets collaboratively. Zeng
et al. [17] coordinated charging events among multi-route fleets by transferring the start
time of scattered charging events, so as to realize the spatial–temporal balanced distribution
of charging demands for multi-route fleets. Wang et al. [18] established a mixed-integer
programming optimization model based on the technology of the fast-charging system
to jointly optimize the location, capacity, and charging plan of the charging facilities in
the public transportation system. Zhang et al. [19] incorporated the cost changes caused
by battery degradation and the nonlinear charging curve in the charging process into the
optimization framework to solve the charging-scheduling problem of multi-route buses.
Fang et al. [20] studied the charging plans of the EB fleet under different charging strategies
with the goal of minimizing the total construction cost in long-term operations. Ding
et al. [21] jointly optimized the charge–discharge plan of the energy storage system and the
charging scheme of EBs, aiming to minimize the total investment cost and charging cost
of the fast-charging electric public transportation system. However, most of the existing
literature has focused on optimizing the charging plan of bus fleets when the number
of charging piles in the bus depot(s) is known, lacking approaches addressing the joint
optimization of the bus depot capacity and the charging plan.

Charging scheduling in EB depots is another effective way to solve bus charging
conflicts on multi-route bus routes. Zheng et al. [22] took the uncertainty of overnight
charging time into account and designed a model with the objective of minimizing the
expected total charging cost (including the in-service cost, energy consumption cost, and
penalty cost due to overly low charging). Based on the night charging management method,
Houbbadi et al. [23] proposed a nonlinear programming model with the goal of minimizing
the cost of battery aging. Jahic et al. [24] proposed two charging-scheduling algorithms to
minimize the peak load for large bus depots, aiming at the problems of unevenly distributed
load profiles with high load peaks caused by multi-bus charging in the depot. Despite
some research efforts focusing on the charging-scheduling problems of EB fleets during
nighttime, where the start and end time of charging is relatively flexible and does not need
to guarantee punctual service trip departures after charging completion, limited attention
has been given to daytime charging-scheduling problems. Moreover, even in the few
existing works that consider daytime charging demands, they fail to account for the effect
of EB waiting times at depots on battery charging performance under different ambient
temperatures. Additionally, none of these works establishes a joint optimization method
for both the depot capacity and charging plan of the EB fleet.

3. Methodology
3.1. Problem Description

Public transit bus depots are usually equipped with several charging piles to facilitate
EBs docking and their replenishment during idle time. The number of regional bus depots
is denoted as M. These depots jointly serve multiple EB routes. Let n be the EB route



Sustainability 2023, 15, 7375 4 of 16

number, where n = 1, 2, . . . , N. The locations of the departure and terminal stations of
each EB route are fixed. Let Tdep

m,n represent the average deadhead time (unit: min) of the
EB between depot m and the departure station of route n, and Tterm

m,n represents the average
deadhead time (unit: min) of the EB between depot m and the terminal station of route n,
where m = 1, 2, . . . , M.

The trip chain of EBs on the route is known [25]. Let Dj
k represent the end time of

the trip before the j-th charge of EB k, and Bj
k represents the start time of the trip after the

j-th charge of EB k, where k = 1, 2, . . . , K, j = 1, 2, . . . , Jk. K denotes the EB fleet size;
Jk is the maximum possible charging times for EB k. Let the location state of EB k at time
Dj

k be Sj
k,n ∈ {0, 1}. If Sj

k,n = 1, and EB k is at the departure station of route n, otherwise

EB k is at the terminal station of route n. Similarly, let the location state of EB k at time Bj
k

be S̃j
k,n ∈ {0, 1}. If S̃j

k,n = 1, EB k is at the departure station of route n, otherwise it is at
the terminal station of route n. Moreover, the energy consumption on the bus route of the
EB between the j-th charging task and the j + 1-th charging task (excluding the deadhead
energy consumption of the EB between the depot and the departure/terminal stations) is
expressed as W j,j+1

k , with the unit being kWh. In particular, W0,1
k is the energy consumption

on the bus route of EB k from the start of operation to the start of the first charging task,
and W J,J+1

k is the energy consumption on the bus route of EB k from the end of the last
charging task J to the end of operation.

We define a binary decision variable xj
k,m ∈ {0, 1} to indicate whether EB k completes

the j-th charging task at the bus depot m. If xj
k,m = 1, EB k charges at the bus depot m,

otherwise it does not. Let the integer decision variable T̂ j
k,m be the queuing time (unit: s) of

EB k after arriving at the bus depot m and before the j-th charging, and T j
k,m represents the

j-th charging time of EB k at the bus depot m (unit: s). Apart from that, the integer decision
variable Um denotes the capacity of bus depot m, which represents the maximum number
of EBs that can be charged simultaneously in the bus depot m.

3.2. Charging Time Settings

To prevent the potential destruction of battery structure and subsequent battery failure
and explosion due to the internal polarization resulting from continuous battery voltage
increase, the constant current constant voltage (CC-CV) charging method is typically
employed [26]. During the CC stage, the charging current remains constant, resulting in a
linear increase in the battery’s SOC over time. During the CV stage, the battery terminal
voltage remains constant, and the current decreases exponentially, causing the battery SOC
to increase nonlinearly with a convex shape over time. The relationship between the SOC of
EBs and the charging time is complex and non-linear. In order to simplify the model, most
existing research utilizes a piecewise function to approximate the charging power and sets
the 80% SOC level as the turning point between the CC stage and the CV stage [19,27,28].

Actually, the charging performance of lithium-ion batteries can be influenced by both
the external ambient temperature and the internal temperature of the battery. Several
studies have demonstrated that, in comparison to room temperature environments, low-
temperature conditions cause the batteries to enter the CV phase earlier during the charging
process and prolong the overall charging time [29,30]. When xj

k,m = 1, we take a random
charging task of EB k in an outdoor low-temperature environment as an example, as shown
in Figure 1. In interval

[
Dj

k, t1

]
, when the EB returns to the depot without passengers, the

battery experiences discharge, leading to a rapid increase in temperature that exceeds the
ambient temperature; in interval [t1, t2], when EBs are queued up at the depot, there exists
a temperature difference between the battery temperature and the ambient temperature,
resulting in heat transfer, causing the battery temperature to gradually decrease; in interval
[t2, t4], the battery undergoes CC–CV charging, generating only a small amount of heat
through internal chemical reactions, resulting in a slow rise in battery temperature. In
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interval
[
t4, Bj

k

]
, battery charging is finished and waiting for the next service trip, resulting

in the battery temperature gradually cooling to the ambient temperature.

Figure 1. Illustration of electric bus battery temperature changing with time and ambient temperature.

The battery temperature of EB k when it arrives at the bus depot for the j-th charging
task is recorded as H j

k(t1) (unit: K), where t1 = Dj
k + Sj

k,n × Tdep
m,n +

(
1− Sj

k,n

)
× Tterm

m,n .

When H j
k(t1) is higher than the ambient temperature H0 (unit: K), the heat is transferred

from the battery to the environment, and the battery gradually cools naturally. Based on
Newton’s cooling law [31], the calculation method of the battery temperature H j

k(t2) of EB

k at the start of the j-th charging is shown in Equation (1), where t2 = t1 + T̂ j
k,m.

H j
k(t2) =

(
H j

k(t1)− H0

)
e−λT̂ j

k,m + H0, (1)

where λ is a positive constant; λ = hA/C, where h is the heat transfer coefficient of the
air-battery interface, W·m−2·K−1 [32]; A is the battery surface area, m2; and C is the battery
heat capacity, J/K.

In the CC charging stage, based on the law of battery energy conservation, the follow-
ing Equation (2) holds true:

θv

(
H j

k(t3)− H j
k(t2)

)
t3 − t2

=
∫ t3

t2

(
I2Rk(t) + IH j

k(t)×
dUov

k

dH j
k

)
dt− hA

(
H j

k(t3)− H j
k(t2)

)
, (2)

where t3 denotes the end time of CC charging stage; H j
k(t3) is the battery temperature at t3

of EB k, K; θ is the heat capacity of the battery units, J · kg−1 ·K−1 [32]; v represents battery
mass, kg; I is the charging current in the CC charging stage, A; Rk(t) is the battery internal
resistance of EB k at time t, Ω; and dUov

k /dH j
k is the entropic coefficient, V/K.

In the CV charging stage, also based on the law of battery energy conservation, the
following Equation (3) holds true:

θv

(
H j

k(t4)− H j
k(t3)

)
t4 − t3

=
∫ t4

t3

(
(Utm)

2

Rk(t)
+

UtmH j
k(t)

Rk(t)
×

dUov
k

dH j
k

)
dt− hA

(
H j

k(t4)− H j
k(t3)

)
, (3)

where Utm
k is the charging voltage in the CV charging stage, V; t4 is the end time of CV

charging stage; and H j
k(t4) denotes the battery temperature at time t4, K.

EBs need to drive to depots for charging between scheduled adjacent trip tasks. Due to
the limited number of charging piles in the depot, there may be EBs waiting in line, which
makes the available charging time of EBs limited. In addition, the electricity price during
the day is generally higher than that at night. On the premise of avoiding the interruption
of the service trip due to the exhaustion of the vehicle, reducing the charging time of the
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EB fleet during the day will help save the charging cost [33]. Therefore, EBs may not
necessarily be charged to the upper limit each time they are charged, or even go through
two stages of CC and CV voltage. Therefore, the relationship between the charging amount
wj

k,m and T j
k,m of the j-th charging task of EB k at the bus depot m is shown in Equation (4),

wj
k,m =


xj

k,m
3.6×106 ×

(∫ tj
k

t2
I2Rk(t)dt

)
tj
k ≤ t3

xj
k,m

3.6×106 ×
(∫ t3

t2
I2Rk(t)dt +

∫ tj
k

t3

(Utm
k )

2

Rk(t)
dt
)

t3 < tj
k ≤ t4

, (4)

where tj
k is the time when EB k finishes the j-th charging task, tj

k = t2 + T j
k,m.

3.3. Model Formulation

To optimize the charging-pile configuration, and to allocate charging positions, wait-
ing time, and charging time of the EBs in a scientific manner, we aim to minimize the
deployment costs of charging piles and the charging costs of the EB fleet (Equation (5)),
while considering the minimization of deadhead time and queue-waiting time of the EBs
as optimization objectives (Equation (6)). The following optimization model is established:

min z1 =
M

∑
m=1

CmUm +
M

∑
m=1

K

∑
k=1

Jk

∑
j=1

cj
mwj

k,m, (5)

min z2 =
M

∑
m=1

K

∑
k=1

Jk

∑
j=1

N

∑
n=1

xj
k,m

((
Sj

k,n + S̃j
k,n

)
× Tdep

m,n +
((

1− Sj
k,n

)
+
(

1− S̃j
k,n

))
× Tterm

m,n

)
+

M

∑
m=1

K

∑
k=1

Jk

∑
j=1

xj
k,mT̂ j

k,m, (6)

s.t.
M

∑
m=1

xj
k,m ≤ 1∀k, j, (7)

Dj
k + xj

k,m

((
Sj

k,n + S̃j
k,n

)
× Tdep

m,n +
((

1− Sj
k,n

)
+
(

1− S̃j
k,n

))
× Tterm

m,n + T̂ j
k,m + T j

k,m

)
≤ Bj

k ∀k, m, j, (8)

Wavl
k +

j

∑
j′=1

M

∑
m=1

wj′

k,m −
j

∑
j′=0

W j′ ,j′+1
k ≥Wmin

k ∀k, j, (9)

Wavl
k +

j

∑
j′=1

M

∑
m=1

wj′

k,m −
j−1

∑
j′=0

W j′ ,j′+1
k ≤Wmax

k ∀k, j, (10)

K

∑
k=1

γk,m(t) ≤ Um ∀m, t, (11)

Um ≤ Ũm ∀m, (12)

T j
k,m ≥ Tmin

k ∀k, j, m, (13)

Sj
k,n ∈ {0, 1} ∀k, j, n, (14)

T̂ j
k,m, T j

k,m, Um ∈ N ∀k, j, m, (15)

where Cm is the daily average cost of each charging pile deployed in the bus depot m,
CNY/pile. cj

m is the electricity price of the charging task j of the bus in the bus depot m,
CNY/kWh. Wavl

k is the available battery power of EB k when it starts to operate every day,
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kWh. Wmin
k and Wmax

k are, respectively, the lower and upper limits of the battery power

of EB k, kWh. When xj
k,m = 1, let γk,m(t) ∈ {0, 1} denote the charging state of EB k at

time t within depot m. If γk,m(t) = 1, the EB is charging; otherwise not. Ũm represents the
maximum number of charging piles allowed to be installed in the depot m. Tmin

k is the
minimum charging time of EB k, s.

Constraint (7) stipulates that each charging task of EBs can only be completed in one
depot. Constraint (8) requires that each charging task of an EB should be time-feasible to
ensure that the next trip departs on time. Constraint (9) restricts that the remaining battery
power of the EB should be greater than or equal to Wmin

k before the start of each charging
task, so to prevent the battery from being over-discharged and damaged. Constraint (10)
constrains that the battery power of the EB should be less than or equal to Wmax

k after
each charging task, so as to avoid potential safety hazards caused by battery overcharging.
Constraint (11) ensures that the number of EBs charging simultaneously in each bus depot
cannot exceed the capacity of the depot. Due to the limited land area of the bus depot, the
number of charging piles at each depot must not exceed Ũm, as shown in constraint (12). In
order to avoid frequent battery charging, constraint (13) stipulates that the charging time of
each EB should be greater than or equal to Tmin

k . Constraints (14) and (15) give the value
ranges of optimization variables.

3.4. Solution Algorithm

The mixed-integer nonlinear programming model proposed in this study for collabo-
rative optimization of charging-pile configuration and multi-route EB charging-scheduling
scheme is a challenging NP-hard problem that involves a large number of 0–1 variables and
integer variables. Section 3.2 of this study takes into account the impact of parameter T̂ j

k,m

on battery temperature and parameter T j
k,m. Equation (4) reveals that the indirect variable

wj
k,m is not only a nonlinear function of optimization variables T̂ j

k,m and T j
k,m, but also

involves the product of binary variable xj
k,m and integer variable T j

k,m, making linearization
difficult and the exact optimization methods challenging to apply.

Artificial intelligence optimization algorithms offer unique advantages for solving
problems that involve multiple variables, nonlinearity, discontinuity, and multiple con-
straints. However, certain algorithms encounter challenges such as slow convergence
speed and a tendency to fall into local optima. In contrast, the Immune Algorithm (IA)
is an intelligent optimization algorithm that has been artificially designed by mimicking
biological immune mechanisms and incorporating genetic evolution mechanisms. This
algorithm possesses the benefits of adaptability, randomness, parallelism, global conver-
gence, and population diversity (as highlighted in the work of reference [34]). Unlike
other optimization algorithms, the IA maintains population diversity and overcomes local
convergence problems by leveraging its unique characteristics, ultimately enabling the
attainment of globally optimal solutions [35].

Combined with practical problems, the key steps of the IA are designed as follows:
Step 1: Let the number of iterations g = 0 and carry out antigen recognition and

antibody coding. The antigen refers to the mathematical model of the problem being
solved, comprising optimization objectives and constraints as presented in Equations (5) to
(15). The effectiveness of the operator is directly dependent on the rationality of antibody
coding. Hence, a parallel integer coding approach is employed, whereby the immune
cell antibody consists of K gene fragments, each with a length of Y = 3× max

k=1,2,...K
(Jk), as

depicted in Figure 2.
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Figure 2. Illustration of immune antibody coding.

Step 2: Population initialization. The original population is generated randomly. It
should be noted that the gene node must be a valid node to join the initial population,
which satisfies the constraints (7) to (15). Set the initial population size to E.

Step 3: Determine whether g ≥ G, where G is the set maximum number of iterations.
If not, proceed to Step 4, otherwise the algorithm terminates.

Step 4: Calculate the affinity between antigen and antibody. Since there are two
optimization objectives in this paper, both of which are minimum value problems, we use
Equation (16) to calculate the affinity Z(a) between any antibody a and antigen.

Z(a) = −(α1z1(a) + α2z2(a)), (16)

where z1(a) and z2(a) represent the value of the first objective function (as shown in
Equation (5)) and the value of the second objective function (as shown in Equation (6)) of
antibody a, respectively. α1 and α2 are weight parameters for the optimization objective.

Step 5: Generate immune memory cells. Store the Q antibodies with the highest
affinity in the current population into the memory population.

Step 6: Assess the concentration of the population antibodies, which is employed
to gauge the diversity of the antibody population. When the antibody concentration is
excessive, it implies that a vast number of individuals within the population are highly
similar, thereby hindering global optimization. The concentration den(a) of any antibody a
can be computed using Equations (17) and (18).

den(a) =
1
E

E

∑
a=1

O(a, b), (17)

O(a, b) =


1 if

√
K
∑

k=1

Y
∑

i=1

(
ak,y − bk,y

)2
< δo

0 if

√
K
∑

k=1

Y
∑

i=1

(
ak,y − bk,y

)2
≥ δo

, (18)

where O(a, b) denotes the similarity between antibody a and antibody b; ak,y and bk,y are,
respectively, the values of the y-th fragment of the k-th dimension gene of antibody a and
antibody b; y = 1, 2, . . . , Y; δo is the similarity threshold.

Step 7: Compute the degree of antibody stimulation. The degree of stimulation of
an antibody indicates its quality and it is determined based on a combination of antibody
affinity and concentration. Typically, antibodies with high affinity and low concentration
receive greater stimulation degrees. Equation (19) illustrates the method for computing the
stimulation degree sim(a) of any given antibody a.

sim(a) = Z(a) · e−βden(a), (19)

where β is the computing parameter, which can be determined according to practical
circumstances.

Step 8: Conduct an immune operation on the antibody population by selecting the
antibodies with the top-η (unit: %) stimulation degrees and conducting cloning operations
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on them by replicating each of them F times. Next, the cloned antibodies undergo mutation
via the mutation operator to introduce affinity mutations and facilitate local searches.
When dealing with integer-encoded antibodies, the mutation operator can be represented
by Equation (20):

vat
(

a f
k,y

)
=

 a f
k,y + (rand− 0.5) · εk,y if rand < p0

a f
k,y others

, (20)

where a f
k,y is the value of the y-th fragment of the k-th dimension gene for the f -th clone of

antibody a, f = 1, 2, . . . , F; rand is a function used to generate random numbers in the
range 0 to 1; ε is the defined neighborhood range; and p0 is the mutation probability.

Step 9: The population refreshes. In this stage, antibodies failing to satisfy the con-
straints (7) to (15) after mutation are removed. If the population size still exceeds E,
antibodies with lower stimulation degrees are also eliminated. In case the population
size is less than E, a feasible solution is randomly generated and included to form a new
generation of antibodies. Next, Q antibodies with the highest affinity in the current iteration
process are chosen, compared, and replaced with those in the memory population. Finally,
the memory population is updated, and g = g + 1 to proceed to Step 3.

4. Case Study
4.1. Data Investigation

This study utilizes a depot and four EB routes in a specific Chinese city as a case study
and gathers operational data from 3 January 2023, to verify and analyze the proposed
optimization approach. The average ambient temperature during the data collection period
was −16 ◦C, equivalent to 257.15 K. The departure station (DS) for Routes I, II, and III is
located in the depot, which has nine charging piles. There is a deadhead time between both
the departure and terminal stations and the depot for Route IV, as depicted in Figure 3.

Figure 3. Sketch diagram of four electric bus routes.

The city implements a time-of-use electricity pricing policy, which has six time periods
throughout the day and three pricing tiers, namely peak, shoulder, and off-peak prices, as
presented in Table 1.



Sustainability 2023, 15, 7375 10 of 16

Table 1. Time-of-use electricity price schedule.

Index Period Electricity Price
(CNY/kWh) Index Period Electricity Price

(CNY/kWh)

1 5:00–7:30 1.0866 2 7:30–11:00 1.3574
3 11:00–15:30 1.0866 4 15:30–21:00 1.3574
5 21:00–22:00 1.0866 6 22:00–5:00 0.8158

Table 2 presents the fundamental characteristics of the four EB routes, which use the
lithium iron phosphate batteries with a rated capacity of 162 kWh. The EBs on Route I and
Route II were acquired in November 2020, whereas those on Route III and Route IV were
procured in March 2022, resulting in differences in the state of health (SOH) among the
vehicles serving different routes. Based on the historical charging data, the estimated SOH
for vehicles on Route I, Route II, Route III, and Route IV are 95.5%, 95.5%, 98%, and 97%,
respectively.

Table 2. Basic information of routes.

Route Route I Route II Route III Route IV

Number of vehicles 31 22 25 25
Uplink DS (downlink terminal) DS I DS II DS III DS IV
Uplink terminal (downlink DS) Terminal I Terminal II Terminal III Terminal IV

Operating hours of DS 4:50–21:30 5:30–19:00 5:30–20:00 5:20–18:30
Operating hours of terminal 5:20–22:00 6:10–19:35 6:10–20:50 5:30–19:10
Departure headway (min) 3-10 5-10 5-6 6-7

Route mileage (km) 9.4 13.2 11.6 16.8
Number of uplink trips 233 129 162 128

Number of downlink trips 233 129 162 133
Tterm

m,n (min) – – – 15
Tdep

m,n (min) 0 0 0 17
One-way average energy

consumption (kWh) 6.4 7.9 7.5 11.5

The EBs on the four routes have been numbered for convenience. Specifically, vehicles
numbered 1–31 correspond to Route I, vehicles numbered 32–53 correspond to Route II,
vehicles numbered 54–78 correspond to Route III, and vehicles numbered 79–103 corre-
spond to Route IV. The numbers of service trips and total operating mileage of each EB
on a given route are different. Some EBs can operate all day without requiring a charging
task, as their maximum available battery power is sufficient to meet their needs. During
the day, approximately 43.7% of the EBs in the bus network require charging, and these
tasks are concentrated in the shoulder electricity price period. Table 3 presents the available
charging time windows on the multi-route EBs’ trip chain, along with their arrival and
departure locations on the route before and after charging.

To ensure the performance and longevity of the battery system, the EB battery thermal
management system operates within a suitable temperature range [36]. In this study,
the battery temperature of EB k is set to 298.15 K when it arrives at the bus depot for
the j-th charging task. Previous research has shown that the internal resistance does not
significantly change when the battery operates within the range of 293–323 K [37]. Thus, if
the EB returns to the depot and can be charged immediately, the charging power during
the CC stage can be regarded as approximately equal to the nominal value of 100 kW.
Additionally, dUov

k (t)/dH j
k(t) is related to the electrochemical reaction, which is usually

considered a constant and set as 0.3 mV·K−1 [38].
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Table 3. Charging tasks of EB fleets.

Route No. EB No. Jk
[
Dj

k, Bj
k

] Arrival
Location

Departure
Location

Route I 1 3 [5:52, 6:30] [11:03, 14:05] [15:16, 15:39] DS I DS I
Route I 2 3 [6:02, 6:36] [11:11, 14:15] [15:26, 15:45] DS I DS I
Route I 3 2 [6:12, 6:42] [11:19, 14:30] DS I DS I
Route I 4 2 [6:22, 6:48] [11:27, 14:45] DS I DS I
Route I 5 2 [6:27, 6:54] [11:35, 15:00] DS I DS I
Route I 6 2 [6:38, 7:00] [11:43, 15:06] DS I DS I
Route I 7 2 [6:46, 7:06] [11:51, 15:18] DS I DS I
Route I 8 2 [6:51, 7:12] [11:59, 15:30] DS I DS I

Route III 54 3 [6:50, 7:50] [11:38, 12:30] [14:00, 14:35] DS III DS III
Route III 55 3 [6:56, 7:55] [11:44, 12:35] [14:05, 14:40] DS III DS III
Route III 56 3 [7:02, 8:00] [11:50, 12:40] [14:10, 14:45] DS III DS III
Route III 57 3 [7:08, 8:06] [11:56, 12:45] [14:15, 14:50] DS III DS III
Route III 58 3 [7:14, 8:12] [12:02, 12:50] [14:20, 14:55] DS III DS III
Route III 59 3 [7:20, 8:18] [12:08, 12:55] [14:25, 15:00] DS III DS III
Route III 60 3 [7:26, 8:24] [12:14, 13:00] [14:30, 15:06] DS III DS III
Route III 61 2 [12:30, 13:05] [14:35, 15:12] DS III DS III
Route III 62 2 [12:35, 13:10] [14:40, 15:18] DS III DS III
Route III 63 2 [12:40, 13:15] [14:45, 15:24] DS III DS III
Route III 64 2 [12:45, 13:20] [14:50, 15:30] DS III DS III
Route III 65 2 [12:50, 13:25] [14:55, 15:36] DS III DS III
Route IV 79 3 [6:20, 7:02] [11:20, 12:14] [14:02, 15:00] DS IV DS IV
Route IV 80 3 [6:26, 7:08] [11:26, 12:21] [14:09, 15:06] DS IV DS IV
Route IV 81 3 [6:32, 7:14] [11:32, 12:28] [14:16, 15:12] DS IV DS IV
Route IV 82 3 [6:38, 7:20] [11:38, 12:35] [14:23, 15:18] DS IV DS IV
Route IV 83 3 [6:44, 7:26] [11:44, 12:42] [14:30, 15:24] DS IV DS IV
Route IV 84 3 [6:50, 7:32] [11:50, 12:49] [14:37, 15:30] DS IV DS IV
Route IV 85 3 [6:56, 7:38] [11:56, 12:56] [14:44, 15:36] DS IV DS IV
Route IV 86 3 [7:02, 7:44] [12:02, 13:03] [14:51, 15:42] DS IV DS IV
Route IV 87 3 [7:08, 7:50] [12:08, 13:10] [14:58, 15:48] DS IV DS IV
Route IV 88 2 [12:14, 13:17] [15:05, 15:54] DS IV DS IV
Route IV 89 2 [12:20, 13:24] [15:12, 16:00] DS IV DS IV
Route IV 90 1 [12:26, 13:31] DS IV DS IV
Route IV 91 1 [12:32, 13:38] DS IV DS IV
Route IV 92 1 [12:38, 13:45] DS IV DS IV
Route IV 93 1 [12:45, 13:52] DS IV DS IV
Route IV 94 1 [12:52, 13:59] DS IV DS IV
Route IV 95 1 [12:59, 14:05] DS IV DS IV
Route IV 96 1 [13:06, 14:11] DS IV DS IV
Route IV 97 1 [13:13, 14:17] DS IV DS IV
Route IV 98 1 [13:20, 14:23] DS IV DS IV
Route IV 99 1 [13:27, 14:29] DS IV DS IV
Route IV 100 1 [13:34, 14:35] DS IV DS IV
Route IV 101 1 [13:41, 14:41] DS IV DS IV
Route IV 102 1 [13:48, 14:47] DS IV DS IV
Route IV 103 1 [13:55, 14:53] DS IV DS IV

The other essential input parameters in the model are shown in Table 4. Among
them, the daily average deployment cost of the charging pile is obtained by dividing the
deployment cost of the charging pile by the service life. The deployment cost of each
charging pile is 100,000 CNY/pile, and the service life is 10 years.
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Table 4. Values of input parameters in the model.

Parameters Values Parameters Values

Cm 27.4 CNY/pile A 2.06 m2

Wmax
k 145.8 kWh h 11 W·m-2·K−1

Wmin
k 48.6 kWh θ 1006.43 J · kg−1 ·K−1

Tmin
k 10 min v 183.0 kg

Ũm 9 λ 0.0012

4.2. Optimization Results

The model proposed in this paper was solved using Python 3.8 on a computer with a
2.90 GHz CPU and 16GB RAM. The weight coefficients were α1 = 0.3 and α2 = 0.7. The
initial population size E, the maximum number of iterations G, the mutation probability p0,
and the similarity threshold δo were set to 50, 200, 0.01, and 0.7, respectively. The algorithm
was able to find the optimal solution within 460 s.

The optimized number of charging piles in the depot was 5, and the daily charging
cost of the EB fleet z1, and the empty driving time of the fleet z2, were 1432.2 CNY and
375 min, respectively. Among them, the average daily deployment cost of charging piles
was found to be 137 CNY, and the cost of charging the EB fleet was 1295.2 CNY. The EB
fleet deadhead time was 375 min (all generated by the EBs of Route IV) and the EB queuing
waiting time was 0 min. The average daily deployment cost of charging piles was found to
be 137 CNY, and the charging plan generated by the algorithm is presented in Table 5.

The optimization approach proposed in this study has led to a reduction of 4 charging
piles in the depot, resulting in cost savings of 400,000 CNY for charging pile deployment
compared to the current setup. This paper also addresses the impact of temperature on
battery-charging power in the EB charging-scheduling problem, carefully manages the
queuing time of EBs at bus depots, and mitigates the risk of a rapid decline in charging
performance caused by a sharp drop in battery temperature. Consequently, it has enhanced
the operational efficiency of the bus depot without increasing the charging cost of the EB
fleet, and has ensured the punctuality and integrity of the regional bus routes.

Figure 4 depicts the charging-time distribution of the EB fleet, demonstrating that
all EBs can complete their charging task within 30 min. This can be attributed to the fact
that, under the background of time-of-use electricity price, the price of charging electricity
at night is low, so the EB fleet only needs to replenish enough electricity to complete the
operation tasks of the day during the day. Additionally, the total charging time is influenced
more significantly by the average charging power during the CV stage than the CC stage. To
address this issue, the proposed optimization solution enables the EBs to undergo a rapid
recharge with a constant power of approximately 100 kW during the CC stage without
transitioning to the CV stage.

Figure 4. Charging time distribution of electric bus fleet.
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Table 5. Charging plans for electric bus fleets.

Route No. EB No.
^
T

j

k,m (min)
[
t2, tj

k

]
Tj

k,m (min) wj
k,m (kWh)

Route I 1 0 [11:03, 11:19] 16 25.374
Route I 2 0 [11:11, 11:27] 16 26.374
Route I 3 0 [11:19, 11:38] 19 31.374
Route I 4 0 [11:27, 11:44] 17 27.374
Route I 5 0 [11:35, 11:53] 18 29.374
Route I 6 0 [11:43, 11:58] 15 23.374
Route I 7 0 [11:51, 12:09] 18 29.374
Route I 8 0 [11:59, 12:14] 15 23.374

Route III 54 0 [11:38, 11:50] 12 19.344
Route III 55 0 [14:05, 14:16] 11 17.344
Route III 56 0 [14:10, 14:22] 12 18.344
Route III 57 0 [11:56, 12:08] 12 19.344
Route III 58 0 [14:20, 14:33] 13 21.344
Route III 59 0 [14:25, 14:38] 13 21.344
Route III 60 0 [12:14, 12:27] 13 20.344
Route III 61 0 [14:35, 14:46] 11 17.344
Route III 62 0 [12:35, 12:46] 11 17.344
Route III 63 0 [12:40, 12:52] 12 18.344
Route III 64 0 [14:50, 15:03] 13 21.344
Route III 65 0 [14:55, 15:07] 12 18.344
Route IV 79 0 [11:35, 11:58] 23 38.216
Route IV 80 0 [14:24, 14:46] 22 35.216
Route IV 81 0 [14:31, 14:51] 20 33.216
Route IV 82 0 [14:38, 15:00] 22 36.216
Route IV 83 0 [14:45, 15:05] 20 33.216
Route IV 84 0 [12:05, 12:28] 23 38.216
Route IV 85 0 [12:11, 12:34] 23 37.216
Route IV 86 0 [15:06, 15:25] 19 31.216
Route IV 87 0 [12:23, 12:40] 19 30.716
Route IV 88 0 [12:29, 12:53] 24 39.216
Route IV 89 0 [12:35, 12:52] 17 28.216
Route IV 90 0 [12:41, 12:59] 18 28.716
Route IV 91 0 [12:47, 13:00] 13 24.716
Route IV 92 0 [12:53, 13:07] 14 26.716
Route IV 93 0 [13:00, 13:14] 14 26.716
Route IV 94 0 [13:07, 13:19] 12 23.716
Route IV 95 0 [13:14, 13:26] 12 23.716
Route IV 96 0 [13:21, 13:34] 13 25.716
Route IV 97 0 [13:28, 13:42] 14 26.716
Route IV 98 0 [13:35, 13:48] 13 24.716
Route IV 99 0 [13:42, 13:56] 14 27.716
Route IV 100 0 [13:49, 14:03] 14 27.716
Route IV 101 0 [13:56, 14:10] 14 27.716
Route IV 102 0 [14:03, 14:17] 14 26.716
Route IV 103 0 [14:10, 14:22] 12 23.716

Furthermore, the charging time of EBs varies across different routes due to the varying
operating distances and frequencies. Specifically, on Route I, the charging time of EBs is
concentrated within the range of 15 to 19 min, while on Route III, it is concentrated within
the range of 11 to 13 min. On Route IV, however, the charging time span is larger, ranging
from 12 to 24 min. This is because the number of daily trips for the EBs on Route IV differs,
and 44% of the buses require an additional trip. Additionally, random fluctuations in travel
time and average passenger capacity between stations of different buses on the same route
cause their daily energy consumption demand to fluctuate randomly, leading to variations
in their charging time within a certain range.
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Upon comparing Tables 3 and 5, it can be observed that the EB fleet can charge during
the two shoulder periods of 5:00–7:30 and 11:00–15:30 when electricity prices are low.
However, the optimized charging plan concentrates only on the period of 11:00–15:30. The
reason is that during the period from 5:00 to 7:30, the EB fleet has just begun operating
and there is still sufficient battery power remaining between trip chains. Therefore, even if
some EB batteries are fully charged, they do not meet the minimum charging time limit as
per constraint (13). Furthermore, the remaining EBs that satisfy the constraint (13) and can
be charged during 5:00–7:30 are not charged enough to ensure the integrity of the full-day
operation, and hence need to be replenished during 11:00–15:30. The optimized charging
plan presented in this paper results in fewer charging times as compared to multiple
frequent charges in a day, with the battery SOC at the beginning and end of charging closer
to 50%. This will help in prolonging the service life of the battery [39].

Figure 5 shows the charging pile utilization during the shoulder electricity price
period. The results demonstrate that in the time windows divided by 10 min, 74.1% of them
indicate the usage of three or more charging piles, whereas 22.2% indicate the utilization
of all five charging piles. The charging pile utilization rate is relatively high from 11:00 to
15:30. However, during the remaining time, the utilization rate is considerably low, and
most of the charging piles remain unused. If the charging piles during their idle period are
shared with social electric cars, it can not only improve the utilization rate of charging piles
and increase the income of the bus companies, but also provide charging opportunities for
social electric vehicles, and alleviate the shortage of social electric vehicle charging facilities.

Figure 5. Utilization of charging piles during the shoulder electricity price period.

5. Conclusions

Considering the impact of queuing time on battery charging performance under differ-
ent ambient temperatures, this study established a mixed-integer nonlinear programming
model to collaboratively optimize the charging pile configuration, and the charging loca-
tion, queuing time, and charging time of the EB fleet. The IA is implemented to solve the
model, and the effectiveness of the approach is demonstrated by applying it to a real-world
bus depot and four EB routes. The main conclusions are summarized as follows:

(i) This paper collaboratively optimizes the number of charging piles in the bus depot
and the charging plan of the EB fleet. The optimized charging pile deployment scheme
reduces the number of charging piles by 4, thereby leading to cost savings of around
400,000 CNY as compared to the existing charging pile layout scheme in the bus depot.

(ii) The charging performance of the battery is affected by the ambient temperature and
the queuing time of EBs at bus depots, which influences the battery temperature at
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the start of charging. The optimization method proposed in this paper can effectively
control the queuing time of EBs at the bus depot, thereby realizing the improvement
of the service efficiency of the bus depot without increasing the charging cost of the
EB fleet. Additionally, it ensures the punctuality and integrity of the regional bus
route operation.

(iii) Given the time-of-use electricity price context, the optimized EB charging plan pro-
posed in this study enables the charging time of the EB fleet to be concentrated in
a specific time window. Compared to frequent multiple charging sessions, the plan
minimizes the number of charging times and ensures that the battery SOC is closer to
50% at the beginning and end of charging. This approach is more favorable in terms
of prolonging battery life.

Nevertheless, the concentrated charging approach has resulted in a significant issue of
unequal usage of charging stations across various times of the day. Therefore, in the future,
we intend to model the charging selection behavior of electric vehicles under different time
periods or charging piles in the shared infrastructure scenario of EBs and private cars, and
rationally design the number of charging stations and service fees to enhance the utilization
rate of charging facilities and the revenue of bus companies.
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