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A B S T R A C T   

Information on forest structure is vital for sustainable forest management. Currently, airborne LiDAR remote 
sensing has been well established as an effective tool to characterize the structure of canopies and forest in-
ventory variables. Radiometry and geometry are highly intertwined in LiDAR remote sensing of forest vegetation 
and phenology influences the geometric-optical properties of deciduous and evergreen trees causing seasonal 
variation in LiDAR observations. This variation may be considered as a nuisance or exploited in for example tree 
species identification. Airborne LiDAR data are also influenced by sensor functioning, acquisition settings, scan 
geometry and the atmosphere. Reliable estimation of subtle phenological effects calls for data in which the 
impact of the external factors is minimal. We experimented with such data and explored LIDAR waveforms (WFs) 
in boreal trees in winter, early summer and late summer. Our objectives were to i) assess the match of the 
multitemporal LiDAR data for observing true changes in vegetation; ii) quantify the influence of phenology in 
deciduous and evergreen trees; iii) study the effect of varying scan zenith angle (SZA) and canopy age on WF 
features in different phenostates; iv) assess the temporal feature correlation in individual living and dead 
standing trees. A WF-recording pulsed LiDAR sensor unit operating at the wavelength of 1550 nm was used in 
repeated acquisitions. WF attributes such as energy, peak amplitude and echo width were derived for each pulse 
and were localized vertically to crown, understory and ground components. Silver and downy birch, black alder, 
European aspen, Siberian larch, Scots pine, Norway spruce and dead standing spruce formed our strata. Results 
showed that phenology caused more variation in WF features of deciduous trees compared to evergreen conifers. 
Deciduous trees displayed substantial between-species variation that was linked with differences in branching 
pattern, leaf orientation and bark reflectance. Pine displayed a possible winter-early summer anomaly in canopy 
backscattering that may be linked with changes in foliage clumping or with the role of stamens in early summer 
trees. Trees displayed positive temporal correlation in WF features and correlations were the strongest in 
evergreen and deciduous conifers and decreased with time. SZA had minor influence on WF features whereas age 
exercised a strong effect on many features with parallel variation between species and phenostates. Structural 
changes following death, i.e. ‘aging’ changed the geometric WF features of dead standing trees. Our results 
provide new insights for enhancing tree species identification by using WF LiDAR and for LiDAR time-series 
analysis of vegetation.   

1. Introduction 

Airborne pulsed LiDAR was quickly adopted in forest inventories 
following pioneering research (Hyyppä and Inkinen, 1999; Næsset, 

2002). LiDAR is an efficient tool for assessing canopy density and height, 
due to its unique capability of directly measuring the three-dimensional 
structure of the canopies. Despite ample research, imprecision of species 
identification and characterization of suppressed trees constitute topics 
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that call for improvement (Fassnacht et al., 2016; Venier et al., 2019). In 
addition, the need for field reference increases costs and has motivated 
attempts to improve the transferability of interpretation models between 
inventory areas (Toivonen et al., 2021). Understanding the factors 
influencing LiDAR observations is central for the success of such at-
tempts. Seasonal variation is an important factor to consider. 

Previous studies have mainly focused on the effects of phenology 
when using geometric features calculated from LiDAR point clouds (Kim 
et al., 2009; Simonson et al., 2018), but the phenological effects on 
LiDAR intensity and waveform (WF) features have received little 
attention (Salas, 2021). This is not an optimal situation, because the 
intensity and WF features have been shown beneficial for, e.g., tree 
species identification (Reitberger et al., 2008; Hollaus et al., 2009; 
Korpela et al., 2010a; Hovi et al., 2016). Understanding the phenological 
variations and the factors controlling them can help to determine 
optimal acquisition periods and to develop more general interpretation 
models for intensity and WF data. Quantifying the phenological effects 
on LiDAR WF signals can also help to understand the causes and con-
sequences of phenological effects in point cloud data, because the 
radiometry and geometry in LiDAR data are intertwined. 

Forest vegetation forms ‘soft’ targets in which the backscatter cross- 
section profile is deeper compared to ‘hard targets’ such as cables or 
road surfaces (Wagner, 2010; Hancock et al., 2015). Targets’ directional 
reflectance properties (Li et al., 2013), size and orientation all influence 
the backscatter cross-section profile (incl. Multiple scattering, Hovi and 
Korpela, 2013). The return signal entering the aperture is a convolution 
of the transmitted pulse with the backscatter profile of the illuminated 
targets. The shape of the recorded signal is further transformed by the 
receiver (Wagner et al., 2006; Wagner, 2010). Backscatter profile 
changes with the wavelength, angle of incidence (directionality of gaps 
and scattering elements) and footprint diameter (gap size distribution, 
Korpela, 2017). Shape of the transmitted pulse influences the pulse- 
target convolution and if the transmitted pulse is short, the return 
signal has more details. Spherical losses influence the signal enor-
mously, and the impact depends on the target geometry, which makes 
range-normalization an ill-posed task. It is possible to compensate 
spherical losses only if the targets’ geometry is identified first (Wagner, 
2010). Transmitted power influences linearly the received power, and 
high-quality transmitters display minimal between-pulse variation. In 
addition to range-induced losses, 2-way atmospheric attenuation causes 
signal losses. Radiometry and geometry are highly intertwined in LiDAR 
and for example, a small dry target may trigger the receiver, but remains 
undetected if the same target is wet or if the pulse intersects the target 
off the center of the pulse, where the irradiance is at maximum (Korpela 
et al., 2013). 

In using multitemporal LiDAR, a failure to address the many external 
factors that influence LiDAR backscattering may result in a false 
observation regarding vegetation changes. In this study, we use a 
waveform-(WF-)-recording LiDAR to detect changes in trees that are 
caused by phenology. Phenology can be considered a nuisance or it can 
for example be used to enhance tree species identification (Sayn-Witt-
genstein, 1978; Kim et al., 2009). The effects of phenology have not been 
extensively explored in WF data (Salas, 2021). WFs disclose the mea-
surement process in more detail compared to discrete-return (DR) data, 
which is beneficial in vegetation (Reitberger et al., 2008; Mallet and 
Bretar, 2009; Heinzel and Koch, 2011; Roncat et al., 2014; Hancock 
et al., 2015; Hovi et al., 2016; Anderson et al., 2016; Korpela, 2017; 
Korpela et al., 2020). Practical forest inventories often combine LiDAR 
datasets that are collected at different times of the year. Hence pheno-
logical variation is often present in the data. In boreal forests of Finland, 
deciduous trees are without leaves for nearly seven months and the 
development of new leaves in the early summer varies between species 
and is also influenced by micrometeorology. The needle mass in ever-
green conifers increases during the summer. In pine, even the distribu-
tion of needle orientation shows seasonal variation, because the needle 
angle varies with the age of the needles (Stenberg et al., 1994). Conifers 

bloom in the spring and drop the oldest needle cohorts in early autumn. 
Cones may change the reflectance properties of crowns and their weight 
may affect the orientation of the wintering branches. Even the water 
content of branches and leaves was shown to influence branch orien-
tation (Junttila et al., 2022). 

In Finland, Hovi et al. (2016) investigated multitemporal 1064-nm 
WF data acquired with a Leica ALS60 sensor. The acquisitions were 
done in June–August. They explored within-species WF feature vari-
ance. A species-dataset interaction term explained up to 10% of the 
variance and a part of this was deemed to be caused by sensor and 
acquisition settings that varied slightly from year to year. Hovi et al. 
(2016) however highlight a phenological effect between two campaigns, 
which differed less in acquisition settings. Namely, relative to spruce 
(Picea abies H. Karst), the return energy of pine (Pinus sylvestris L.) 
increased 3–4% during the summer and the authors linked this with the 
25–30-% increase in needle mass of pine. In deciduous trees the absence 
of leaves impacts pulse penetration and hence the point height distri-
butions, and, as shown by Davison et al. (2020) using discrete-return 
(DR) data, both leaf-on and leaf-off data have their benefits in 
describing structural diversity of forests in the UK. Combination of leaf- 
off and leaf-on DR data, although more expensive for the end-users, was 
shown to enhance species identification of broadleaved birch in seedling 
stands in Finland (Imangholiloo et al., 2020). And, studies conducted in 
forests dominated by evergreen needleleaf conifers in Norway, Finland 
and Canada have shown that LiDAR captured in leaf-off conditions 
performs nearly as accurately as leaf-on data in area-based estimation of 
stand density, biomass and height traits (Næsset, 2005; Villikka et al., 
2012; White et al., 2015). 

In this study we examined the effects of phenology on WF LiDAR data 
acquired at the wavelength of 1550 nm. The data were obtained from 
three repeated (winter, early summer, late summer) acquisitions over a 
boreal forest site in Finland. We aimed at minimizing all external factors 
that influence LiDAR observations to obtain accurate estimates of 
phenological effects on LiDAR WFs in trees. The experiment included 
observations of pine, spruce, silver birch (Betula pendula Roth), downy 
birch (Betula pubescens Ehrh.), European aspen (Populus tremula L.), 
black alder (Alnus glutinosa (L.) Gaertn.), Siberian larch (Larix sibirica 
Ledeb.) and dead standing spruce. Our general aim was to increase 
understanding of LiDAR observations for applications in forest moni-
toring and tree species classification. Our specific research questions 
(RQs) were: 

RQ1. What was the accuracy of the repeated LiDAR data for finding 
true signal changes caused by vegetation phenology? 

RQ2. What is the level of variation in winter, early summer and late 
summer WFs in deciduous and evergreen species? 

RQ3. What are the signal changes in the repeated LiDAR acquisitions 
in dead trees that are not influenced by phenology? 

RQ4. Which WF features correlate over time and do the correlation 
patterns vary with species or display phenological signals? 

RQ5. Are the WF features influenced by scan zenith angle or tree age 
and do the dependencies vary with phenology? 

2. Material and methods 

2.1. Outline of the experiments 

Fig. 1 shows the data and processing steps. There were three LiDAR 
acquisitions (11/2011, 5/2013, 8/2015) separated by 18 and 27 
months. They are referred to as ‘winter’, ‘early summer’ and ‘late sum-
mer’ and were captured in this order. Geometric and radiometric match 
of the datasets was tested systematically in non-tree targets (RQ1). Data 
were analyzed at stand and tree levels The plot-level analyses were 
conducted on circular plots in pine, spruce and birch stands. Tree-level 
analyses covered more species. WFs were assigned to individual trees 
using 3D pulse tracing in crown envelope models that were fitted to each 
tree. Pulse tracing enabled a partitioning of the return WF between 
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crown, understory and ground segments. Several WF attributes 
describing the shape and return energy were computed for each pulse. 
Many of the attributes were from Hovi et al. (2016). WF features of trees 
and plots were distribution metrics of pulse attributes. Each plot and tree 
had winter, early summer and late summer features, which were 
compared between acquisitions (RQ2, RQ3) and analyzed for correla-
tions (RQ4, RQ5). 

2.2. Hyytiälä study area and research infrastructure 

The experimented was conducted in Hyytiälä, Finland (61.85◦N, 
24.29◦E). The forests are dominated by pine and spruce. Birch (silver 
and downy birch) occurs mainly as a mixed species. These are the main 
tree species in Finland. Other species were aspen, alder and larch. The 
age structure of Hyytiälä forests is shaped by a clear-cut regime that 
began in 1950 and has favored pine and spruce. Birch was planted only 
after 1972. Deciduous trees are in full leaf from late May until mid- 
September (larch until mid-October). New needles develop in June. 
Pine drops the oldest needles in early September and 2–3 needle cohorts 
overwinter. Spruce has 6–9 needle cohorts. Depending on the site 
quality, pine and spruce attain the heights of 21–33 m at the age of 100 
years, while the growth of birch is slightly faster. Dominant trees are not 
harvested in intermediate fellings so that tree height correlates strongly 
with stand age. Elevation varies moderately (140–195 m above sea 
level). There have been systematic aerial imaging and laser scanning 
campaigns since 1985 and 2004, respectively. The oldest aerial images 
are from 1946. All images have been oriented (see Korpela, 2006) using 
bundle block adjustment to sub-pixel accuracy. We used a LiDAR 
elevation model in 1-m resolution, which has displayed an RMS- 
accuracy of circa 20 cm. Historic images were used for the estimation 
of stand age and high-resolution images (10–20 cm, 2004–2015) were 
used for assessing the time of death of individual trees. We used mete-
orological and sun-photometer observations of the SMEAR II station to 
evaluate between-campaign differences of atmospheric losses of LiDAR 
signals. 

2.3. Airborne LiDAR and concurrently captured image data 

The same Riegl LMS-Q680i sensor unit was used in all campaigns 
(Table 1). Sensor settings, trajectories and flying speed were kept un-
changed. The dates were Nov/15/2011 (09:54–10:35 UTC), May/28/ 
2013 (10:45–11:30) and Aug/18/2015 (09:03–09:50). An RGB camera 
was operated simultaneously. Dry weather had prevailed in the pre-
ceding days in all campaigns. Weather in summer acquisitions was 
comparable (humidity 50% and 40%; pressure 1000 and 1010 hpA; 
visibility 40 and 48 km). The winter acquisition in 2011 took place also 
under clear sky conditions. Air temperature at the flux tower was −3 ◦C 
at sunrise (06:35 UTC) and rose from −1.2 ◦C to +0.2 ◦C during the 
scanning (solar elevation 9.6◦, visibility 50 km). Sun-photometer was 
not operational in 2011, but in 2013 and 2015, the 1640-nm aerosol 
optical density values were very low (0.022 and 0.011) as were the es-
timates of precipitable atmospheric water (1.26 cm and 1.09 cm). 

LMS-Q680i saves a WF sample of the transmitted pulse and the 
received WF consisted of 1–3 sequences with 80, 160, 240 or 320 
amplitude values. There can be pauses between sequences, if the back-
scattering dims between the canopy and ground (Fig. 12). A 10–12-ns 
long buffer starts the first sequence, and each new sequence after a 

Fig. 1. Flowchart of the study.  

Table 1 
Campaign and sensor settings.  

Parameter Value 

Platform Helicopter 
Flying speed, m s−1 40 
Nominal flying height, m 750 
Sensor scan angle, degrees +/− 30 
Number of strips 8 + 1 
Strip overlap, % 75 
Wavelength, nm 1550 
Beam divergence (86.4%) 0.5 mrad 
Footprint diameter, cm 35–45 
Pulse length (FWHM), ns 4.5 
Pulse frequency, kHz 240 
WF sampling rate, ns 1 
WF amplitude bit depth 16 
Camera Hasselblad H4D 
Pixel size of RGB images, cm 10  
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pause. We considered the amplitude values as measurements of 
instantaneous received power. The receiver has two signal channels, 
which differ 6 dB in gain. The combination expands the dynamic range 
of the sensor. RiAnalyze (RiA) was used for processing the WFs into DR 
data. RiA applied a factory calibration to the DR intensity observations. 
DR points were essential for strip adjustment and for computing the 3D 
pulse vectors. Strip overlap was 75% and it means that a ground point 
was ‘viewed’ by four strips. Although the trajectories matched well 
(<30 m), the pulse geometries had minor differences between cam-
paigns. The scan zenith angle (SZA) distributions of the same ground 
points did not always match especially if an ‘oblique strip’ was missing 
in one campaign due to sensor sway and/or trajectory offset. Only the 
joint strips were accepted for trees to have the SZA distributions match. 

Phenology was observed during the campaigns. There was frost on 
many open surfaces in the winter data (2011), while canopies and sunlit 
surfaces had none. In early summer data (2013), birch was in full leaf, 
but aspen leaves were not entirely developed in some clones. New shoots 
in pine (with stamens) and spruce had started to grow the previous 
week. In August 2015, new shoots in pine and spruce were entirely 
developed and deciduous trees had dense green foliage. 

2.4. Radiometric match of the LiDAR datasets, RQ1 

It was important to verify that the repeated LiDAR observations of 
unchanged scene targets are similar so that observed signal differences 
in vegetation can be associated with deviations in their geometric- 
optical properties. We differentiated between ‘hard’ and ‘soft’ targets 
(Fig. 2) and the radiometric match was evaluated in hard targets. The 
threshold of peak amplitude (pA) that triggered the WF-storage was 
9–10 in all campaigns (Fig. 3). This showed in powerline cables, which 
were oriented in direction of the flight lines. This means that incidence 
angle effects were irrelevant because of the circular cross-section of the 
cables. Fig. 3 illustrates how a decreasing number of WFs was available 
as range (R) increased. The patterns imply that the amplitude scale is 
linear in weak signals, if an offset of 2 is applied (ratio-scale). Using the 
offset, pA of the strongest returns decreased at the rate of (R/Rref)3 (we 
used 750 m for Rref). In extended targets the rate was (R/Rref)2, which 
matches the theory (Wagner, 2010). If the amplitude values are not 
ratio-scale of observations of received power, range-normalization using 
the radar equation fails. 

Fig. 3 illustrates how pA in cables varied considerably, which is 
explained by the varying cable-pulse intersection geometry. The within- 
footprint energy profile of the transmitted pulse of LMS-680i was 
deemed Gaussian in Korpela et al. (2013) and WF-storage was triggered 
by the cable at R above 900 m only if the pulse was perfectly aligned 

with the cable. We estimated, by comparing pulses reflecting from 
bitumen and the highly reflective cables, that a 3–4-% silhouette area by 
green foliage (at the center of the pulse) triggered the WF-storage in 
LMS-Q680i at a R of 750 m. 

WFs in LMS-Q680i are characterized by ‘ringing’ (Fig. 2) (Korpela 
et al., 2020). WFs have false peaks following a strong signal at 11-ns 
delay. The pA of such pseudoechoes is 5–8 at maximum. Their 
strength correlates positively with the strength of the preceding true 
signal. Ringing creates false ‘below-ground’ and ‘weak second canopy 
echoes’ and causes bias in energy features (sums of amplitudes). We 
therefore applied a threshold (pA of 7) to distinguish ‘true backscat-
tering’ from ringing. 

All campaigns showed a similar influence by R in signal levels. Fig. 4 
shows data from gravel, in which quadratic spherical losses explained 
the decrease of signals, whereas in old asphalt, the signals fell more than 
spherical losses would explain, when SZA exceeded 15◦. A specular 
component was present and our between-campaign comparisons were 

Fig. 2. WFs of ‘hard’ and ‘soft’ targets. The two hard targets comprise of a linear target (cable, crossbar of a football goal) followed by a well-defined ‘hard’ surface 
(grass). Arrows point to pseudoechoes caused by ringing. The two ‘soft’ targets represent different canopies. 

Fig. 3. Peak amplitude values of cable WFs as a function of range. The dashed 
lines represent theoretical spherical losses in a linear target. The dotted line is 
the storage-triggering threshold of the receiver. 
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constrained to SZA < 20◦ in asphalt. 
Compensation of spherical losses (range normalization) was based 

on the assumption that the amplitudes are ratio-scale observations of 
instantaneous received power. Only an offset of two was applied to the 
data as the pA data were in linear relationship with laboratory- 
calibrated DR intensity. Amplitude values were multiplied by the term 
(R/750)2 (Ahokas et al., 2006). R was computed separately for each 
amplitude so that the normalization coefficient was larger at the base of 
the tree compared to the top. As noted earlier, the WF-storage threshold 
influenced the population of targets that remain in the data as R changes 
(Fig. 3), but this phenomenon of course could not be corrected for. 

The stability of returns WFs was assessed using echo width. The in-
fluence of SZA on echo width was examined in hard targets. Theoreti-
cally, an increase of incidence angle increases echo width as photons of 
an oblique pulse ‘arrive asynchronously at the target’. Echo width was 
unaffected by SZA in cables. Increase of SZA from 0 to 30◦ increased 
echo width in frost-covered bitumen and asphalt by 0.2 and 0.1 ns (4% 
and 2%), respectively. Other planar surfaces and campaigns showed no 
correlation. In pulses intersecting a vertical metal wall, FWHM increased 
by 1 (20%) and 0.5 ns (10%) at incidence angles of 70–73◦ and 60–63◦, 
respectively. All campaigns displayed the same dependence. In wooden 
benches (rise of 40 cm, Fig. 5), echo widths were 4.5–7.2 ns. Echo width 
thus measured depth variations correctly as one nanosecond corre-
sponds to a R of 0.15 m. Average echo width of planar surfaces was 4.5 
ns (<2% relative variation) in all campaigns. Thus, we concluded that 
the system WFs were stable. 

Between-campaign match of received power (peak amplitude, 

energy) was assessed in homogenous targets (Fig. 5). Some of the targets 
have been used for vicarious calibration of image and LiDAR data 
(Korpela et al., 2011; Korpela, 2017). Nadir hemispherical-conical 
reflectance factors (HCRF, ρ) of the targets were observed in June 
2009 at solar zenith angles of 46–50◦ and 60–55◦ and the ρ are thus off 
the hot-spot geometry of LiDAR: ρasphalt = 0.22, ρgrass = 0.21, ρfine sand =

0.4, ρgravel = 0.17, and ρbitumen = 0.06. Hence, reflectance calibration 
was not possible and relative match of campaigns was evaluated instead. 
Based on field photography and aerial images we found dry patches of 
asphalt, coarse gravel and powerline cables in the winter data. Targets 
that were covered by frost (bitumen, sand, grass) displayed 50–70% 
lower signals compared to summer. Wet patches of asphalt displayed 
20–30% lower signals compared to the dry areas. Similar offset was 
present in summer data, when comparing old asphalt with paving re-
pairs. The winter data matched the summer acquisitions in cables, dry 
asphalt and gravel sites such that the mean values deviated 3–7%. Dif-
ferences between summer acquisitions were below 5% except for grass 
(B and C in Fig. 5). 

2.5. Forest reference – plots and individual trees 

LiDAR data were collected for canopies inside circular plots and for 
individual trees (Fig. 6). Plots were selected among those used in Pant 
et al. (2014), who investigated hyperspectral images. Selected plots 
were constrained to represent pure pine (n = 47), spruce (n = 40) and 
birch (n = 19) canopies. Radius was 15–20 m. The age of stands was 
assessed in aerial images, but the estimates are not accurate in drained 
pine bogs and in old forests. Age of birch stands was 25–40 years, while 
the mean age of pine and spruce was 55 and 65 (20–120, 20–135), 
respectively. The selected stands had escaped thinning operations 
2011–2015. A separate set of 15 plots was placed in a 90-year-old pine 
forest in Lapinkangas. It is a homogenous sparsely populated stand that 
lacks an understory tree layer (Fig. 7) and was included for assessing the 
precision of the plot-level WF mean features in a homogenous forest. 
Lapinkangas was used in Korpela (2008) for analyzing 1064-nm LiDAR 
signals of ground lichens. The bottom flora consists of a few moss spe-
cies, reindeer lichens, heather, lingonberry and litter. 

Tree-level data was needed to expand the species list and to have 
more age variation in birch. We used trees of two field plots and addi-
tional trees, which were positioned (treetop coordinates by LiDAR 
monoplotting, see Fig. 1 in Korpela et al., 2009) using visual interpre-
tation of image and LiDAR data (Table 2). 

Field plots ‘Old Growth’ (OG, 1.1 ha, N61.8314◦, E24.3082◦) and 
‘Intermediate’ (IM, 0.7 ha, N61.8346◦, E24.3181◦) represent mature 
100–140-yr-old and 45–50-yr-old trees. Plots were established using a 
protocol in which treetops are first positioned in airborne data and later 
in the field using triangulation and trilateration (Korpela et al., 2007). 

Fig. 4. pA × SZA distribution in a 600-m-long gravel road and an asphalt road. 
In gravel, pA falls 18–20% at SZA of 25◦. The decrease is explained by quadratic 
losses. The sign denotes scan direction ‘left’ and ‘right’ of the helicopter. 

Fig. 5. Radiometric targets in winter images: A fine sand, B fertile lawn, C worn lawn, D gravel, E bitumen, F crossbar, G wooden benches, H asphalt and I powerline 
cables. Other calibration targets were powerline cables, asphalt, sand pits and gravel roads in different parts of the study area. The ground photo was taken during the 
winter LiDAR campaign in 2011 and shows frost-covered grass (C), wooden benches (G) and football goals (F). 
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Understory tree layer in both plots is sparse and consists of spruce, 
rowan (Sorbus aucuparia L.) and downy birch. Blueberry (Vaccinium 
myrtillys, L.) is the dominant shrub and a contiguous moss layer com-
prises of mosses such as the ‘stairstep moss’ (Hylocomium splendens, 
(Hedw.) Schimp). 

Tree sets collected by visual interpretation are referred to as VISU 
and DSP (Table 2). Set VISU has 30–125-yr-old pines, spruces and 
birches. Alders are from two planted stands and most larches are from 
five 25–100-yr-old stands. Aspen is rare and occur in small clones, which 
were identified in leaf-off aerial images of 2011. Set DSP consists of dead 
standing spruces in two groups. All dead spruces were determined the 
last time point when the tree was alive using a time-series of aerial 
images (Fig. 9). Trees of group DSP2011 represent 13–33-m-high domi-
nant trees (n = 159) in the vicinity of plots OG and IM and they were 
identified as dead in the first LIDAR campaign in 2011. A total of 57 
were felled or broken before the last campaign in 2015. DSP2015 trees (n 
= 362) are scattered across the scanned area and were identified as dead 
in the last LiDAR campaign of 2015. Of the DSP2015 trees 72 and 136 had 
died between the LiDAR campaigns. 

2.6. 3D crown models for tree-level analyses 

To assign WF sequences to each tree, we applied crown models that 
predict the crown radius at a given relative height (see details in Korpela 
et al., 2011, Korpela et al., 2023). LiDAR of 2013 was used for the 
modeling. The operator viewed multiple aerial images and pointed the 
tree’s apex in one to measure the 3D coordinates by monoplotting. Given 
height and species, an approximate envelope model was computed first 
and was then refined (weighted least squares regression) to the point 
cloud data. The operator altered iteratively the expected values of the 
model parameters until the model fitted the point cloud and crown in the 
image. The goodness of fit was evaluated visually. 

2.7. Extraction of WF attributes and computation of WF features for trees 
and plots 

Because the received WFs consisted of 1–3 sequences, we first formed 
a continuous WF for each transmitted pulse by concatenating the se-
quences. Pauses between sequences were assigned no-backscattering 
values (Fig. 12). The XYZ-coordinates of a WF amplitude were defined 
by a time offset (distance along the pulse vector) between the first 
amplitude and DR echo. These naïve coordinates were 10-cm accurate in 
hard targets, which justifies their use in 5–35-m-high trees. The binary 
LiDAR files had the time offsets. 

Each tree was searched for pulses that potentially had intersected the 
crown (Fig. 10). Given the crown model and the geometry of each pulse, 
it was possible to iteratively solve ray-surface intersections in 3D. These 
were used to split the WF between crown, understory and ground 

Fig. 6. Reference trees (small symbols) and circular plots (large symbols) in an 
aerial image from June 2015. White dotted lines represent flight lines of LiDAR. 
Field plots OG and IM and the Lapinkangas pine forest are marked separately. 

Fig. 7. Lapinkangas in August 2012.  

Table 2 
Tree reference data. OG and IM are field plots. VISU and DSP trees were 
measured by visual interpretation of aerial images and LiDAR. DSP tree set 
consists of 159 spruces that were identified as dead in 2011 (57 were broken or 
felled by 2015) and 362 spruces that were observed as dead in 2015 (of these 
226 and 154 were dead in 2013 and 2011, respectively).  

Tree 
set 

Type and time of 
observation 

Sample size by species 
class 

Height range by 
class, m 

OG Field plot, 2015 nPine = 102, nSpruce = 336, 
nBirch = 25 

20–30, 5–33, 
21–30 

IM Field plot, 2013 nPine = 153, nSpruce = 297, 
nBirch = 44 

13–22, 5–22, 
12–23 

VISU Visual, 2011–13 nPine = 352, nSpruce = 170, 
nBirch = 668 

12–35, 13–34, 
13–31   

nAlder = 148, nLarch = 366, 
nAspen = 167 

15–25, 14–32, 
15–31 

DSP Visual 2011, 2015 nDead2011 = 159, nDead2015 

= 362 
13–33, 10–40  

I. Korpela et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 293 (2023) 113618

7

segments. Because of the convolution, the segments had small overlap 
near Pexit and PGround as we did not carry out explicit WF decomposition 
(Roncat et al., 2014). For example, WFGround was assigned amplitude 
values at the height of ±1.25 m (elevation model). Because real crowns 
are not circular-symmetric opaque surfaces, there were pulses near the 
outer crown perimeter, which intersected the model, but displayed no 
backscattering and were rejected. Oblique pulses could show backscat-
tering preceding Penter due to a neighboring tree or a single distinct 
branch. Because we did not know the crown base height, we assumed a 
fixed crown ratio, which was 55% for spruce and 40% in other species 
(average values in the local forests). This is a compromise as relative 
crown length depends on the species and stand history. The crown 
models were likely too short in spruce (shade-tolerant) in sparse stands, 
whereas the models may exaggerate crown length in dense pine and 
birch (light-demanding) canopies. 

In circular plots, crown base height (CBH) was defined subjectively 
for each plot using height distributions of first returns of the 2013 LiDAR 
data (Fig. 11). 

Height distributions in Fig. 11 were computed using all pulses. 
However, most analyses regarding phenology were constrained to pulses 
that displayed crown backscattering. Table 3 lists WF attributes that 
were derived for each pulse and Fig. 12 illustrates them. We adopted 
many attributes from Hovi et al. (2016), who used 7.8–10.5-ns-long 
pulses and searched the WFs for so-called first-return noise-exceeding 
amplitude sequences (NEAS), which in their ALS60 data were fewer 
compared to LMS-Q680i. To maintain comparability, we implemented 
the NEAS approach also. Attributes MinRelDist, pADist, pARelDist and 
SZA were mainly included for control purposes. For example, average 
tree-level pADist was expected to correlate with crown diameter. Simi-
larly, the distribution of SZA was assumed to be affected by tree height 
as suppressed trees are more likely occluded at high SZA. Many of the 
attributes are correlated. For example, strong negative correlation of 
eCROWN and eGND was observed in stands that lack an understory and 
the tree layer has a single species. Fig. 13 shows their correlation in a 
larch stand. The correlations however differ between phenostates as the 
backscattering of leaf-off crowns and the wet ground differ substantially 
from the two summer phenostates, which display a similar dependence. 

The offset of 2 was subtracted from all amplitude values and noise 
was reduced by accepting only NEASs that were longer than 5 ns. Peak 
amplitude of 8 was required for a valid NEAS (due to ringing). Moderate 

low-pass filtering preceded the detection of local maxima (peaks). The 
number of peaks (nNEAS, nCROWN) and their mean distance (pDist) 
were based on the filtered WF. WF features were distribution metrics of 
the attribute values. For example, m_FWHM and s_FWHM are the 
arithmetic mean and standard deviation features of the echo width 
attribute in pulses that had intersected a plot or a tree. The WF attributes 
of Table 3 were compared between Leica ALS60 and LMS-Q680i in 
Korpela et al. (2023). 

3. Results of experiments 

3.1. Between-campaign differences of WF features in deciduous trees, 
RQ2 

3.1.1. 25–40-year-old birch plots 
In birch plots, winter features differed substantially from leaf-on data 

(Table 4). Height of points pA was 0.96 m lower in 11/2011 compared to 
5/2013, while the increase from 5/2013 to 8/2015 was 1.0 m. The 
annual height growth is 0.3–0.4 m, which implies that winter WFs un-
derestimate canopy height. The proportion of pulses reaching the 
ground was high in leaf-off canopy (54.2%) and decreased from 22.9% 
to 18.3% in the summer datasets because canopy closure increased be-
tween the acquisitions. 

Crown backscattering was the lowest in winter. eCROWN and eNEAS 
increased 108 and 160% from winter to early summer. Many of the birch 
stands have a spruce understory, which may explain why eUNDER did 
not vary between acquisitions. Average eCROWN of all pulses increased 
5% during the summer, but the increase was only 1% in pulses that 
displayed crown backscattering only. While eCROWN increased, pA 
decreased between summer acquisitions. The decrease was compensated 
by lNEAS. Leaf-off WF peaks were wider (FWHM) and had a ‘softer start’ 
(EQ50) compared to leaf-on WFs. FWHM increased 5% between summer 
campaigns. Feature pDist, which is the average distance between WF 

Table 3 
WF attributes of pulses intersecting crowns. Attributes marked with * are from 
Hovi et al. (2016). Attributes marked with ** were not available in circular plots 
as they use the crown model. Point pA is the XYZ-position of pA, the peak 
amplitude.  

Attribute Definition 

eTOTAL Total energy. Sum of amplitude values in the entire WF 
eCROWN Crown energy. Sum of amplitude values assigned to WFCrown 

eNEAS* Energy of the (first-return) noise-exceeding amplitude sequence, 
NEAS 

eUNDER Understory energy. Sum of amplitude values assigned to WFUnderstory 

eGND Ground energy. Sum of amplitude values assigned to WFGround 

nCROWN Number of local maxima in WFCrown 

nNEAS* Number of local maxima in the (first) NEAS 
pA* Maximum amplitude in the NEAS, ‘peak amplitude’ (>7 for a valid 

NEAS) 
FWHM* Width of the echo defined by pA, nanoseconds 
lNEAS* Length of the (first) NEAS, nanoseconds (constrained to be >5) 
pDist Mean distance between local peaks in WFCrown, meters 
MinRelDist** Minimum relative horizontal pulse-trunk distance inside the crown, 

0–1 
pADist** Horizontal distance between trunk and point pA, meters 
pARelDist** Horizontal distance between trunk and point pA, relative to crown 

radius, 0–1 
EQ50 Relative distance of the energy median from the start of the NEAS, 

0–1 
SZA Scan zenith angle, degrees  

Table 4 
Mean values of pulse proportions (P) and WF attributes in birch plots and their 
relative change (%) between winter and early summer (WE) and between early 
and late summer (EL). Values in parentheses are standard error (SE) estimates.   

Winter Early Late WE EL 

P(h < 2 m), all pulses, 
% 

54.2 (2.4) 21.9 (2.3) 17.3 (2.3) −60 −21 

Height, point pA, m 13.7 (0.5) 14.6 (0.5) 15.6 (0.5) 7 7 
P, crown only, % 8.5 (1.1) 44.1 (0.9) 47.3 (1.4) 419 7 
P, crown + gnd, % 58.2 (3.8) 33.2 (2.5) 30.4 (2.6) −43 −8 
P, crown + under, % 23.6 (1.9) 15.7 (1.5) 13.2 (1.1) −33 −16 
P, crown + under +

gnd, % 
9.7 (2.1) 7.1 (1.4) 9.1 (1.8) −27 28 

eTOTAL 467 (14) 746 (10) 739 (10) 60 −1 
eCROWN, crown- 

only 426 (16) 646 (6) 652 (7) 52 1 
eCROWN 258 (6) 537 (8) 564 (11) 108 5 
eNEAS 181 (4) 470 (8) 476 (9) 160 1 
eUNDER, no ground 168 (10) 142 (10) 138 (8) −15 −3 
eUNDER, with 

ground 126 (5) 153 (6) 169 (6) 21 10 
eGND, all 208 (9) 366 (9) 328 (10) 76 −10 
eGND, no understory 223 (8) 406 (6) 363 (10) 82 −11 
eGND, with 

understory 175 (11) 297 (10) 263 (8) 70 −11 
nCROWN 2.11 (0.04) 1.93 (0.03) 2.14 (0.03) −8 11 
pDist, m 2.54 (0.05) 2.28 (0.03) 2.35 (0.03) −10 3 
pA 24.0 (0.6) 63.7 (1.0) 60.1 (1.1) 165 −6 
FWHM, ns 8.34 (0.07) 7.12 (0.04) 7.46 (0.05) −15 5 
lNEAS, ns 12.1 (0.15) 16.1 (0.20) 17.2 (0.20) 33 7 
SZA crown-only, 

degrees 14.3 (0.70) 13.9 (0.69) 13.0 (0.46) −3 −7 
SZA, degrees 14.2 (0.5) 13.6 (0.6) 12.7 (0.4) −4 −7 

EQ50 
0.419 
(0.001) 

0.374 
(0.001) 

0.382 
(0.001) −11 2 

Pulses per plot 8002 16,385 16,178    
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peaks was the largest in winter (2.58 m) although trees were the shortest 
in this first campaign. 

eGND increased 70–80% between winter and summer and showed a 
similar 10% decrease from early to late summer, which was observed in 
pine and spruce plots (Table 8). Most likely this ‘summer decrease’ is 
explained by the 3-year growth of crowns (interlaced crowns change the 
traits of pulses reaching ground) rather than by reflectance properties of 
the bottom flora. 

3.1.2. Tree-level analyses 
Table 5 shows the results of mean WF attributes for aspen, alder, 

larch and birch. The mean values by species are compared in Table 6 and 
the relative changes between acquisitions are shown in Table 7. 

Winter backscattering in larch differed substantially from the other 
deciduous species. Leaf-off larch displayed the strongest single WFs of all 
datasets. Average eCROWN, pA and eNEAS increased only 7–34% from 
winter to early summer, while the increase in the other species was 
56–142%. Larch bark has a high 1550-nm reflectance (Rautiainen et al., 
2018). Table 7 illustrates also how aspen deviated from other deciduous 
species in how eCROWN, eNEAS and pA changed during the summer. In 
aspen, these features increased by 16–18% from early to late summer 
and the likely explanation is the delayed development of some aspen 
clones in the early summer LiDAR of 2013. In the other species, crown 
backscattering changed very little between the summer acquisitions. 

The return peaks were wider in leaf-off data (FWHM, 4–11%) 
compared to leaf-on data. An exception was aspen, which displayed the 
lowest FWHM in winter. Aspen has upright branches and highly vertical 
leaf orientation, which explains the anomaly i.e. explains the large 
FWHM. EQ50 peaked in the winter in all species. Leaf-off return pulses 
had a ‘slower rise’ compared to leaf-on pulses. Pulses also penetrate 
deeper into the crown in leaf-off crowns as indicated by features Min-
RelDist and pARelDist that show minima in winter. (Table 5, Table 6). 

Winter eGND was lower compared to summer, which is explained by 
the wet conditions. eUNDER in leaf-off data showed also high values in 
larch (Table 6), and is explained by the dead branches, which remain 
attached to the trunks. As shown in correlation analyses (Section 3.4), 
the number of return peaks (nCROWN) correlates strongly with tree 
height, while nNEAS is less affected by height. In larch, nNEAS was the 

highest in winter (Table 6), while the opposite was true for other de-
ciduous species. Again, the high reflectance of bark in larch likely ex-
plains this difference. 

3.2. Between-campaign differences of WF features in evergreen conifers 
and dead spruce, RQ2 and RQ3 

3.2.1. Pure pine and spruce canopies in circular plots 
There were 47 and 40 plots in pine and spruce stands and 15 plots in 

the 90-yr-old Lapinkangas (LK) pine forest. In all datasets, tree growth 
2011–2015 increased first-return heights and decreased pulse penetra-
tion to ground (Table 8). Although the campaigns were separated by 18 
and 27 months, the relative changes of WF features are given for two 
transitions – i) ‘winter to early summer’ and ii) ‘early summer to late 
summer’ (Table 9). 

In pine (Table 8, Table 9), ground energy (eGND) increased 
120–130% between winter and early summer. In Lapinkangas, the same 
was observed in pulses that did not intersect crowns (not tabulated). 
Because of high absorbance of the wet ground, the proportion of pulses 
that displayed crown-only scattering was high in winter. Total energy of 
the pulses (eTOTAL) was the lowest in winter because of the wet ground. 
Canopy backscattering increased 7–8% from winter to summer. How-
ever, following an increase, eCROWN, eNEAS and peak amplitude (pA) 
in pine decreased 5–9% from early to late summer. Hence, the winter 
and late summer canopy signals were at the same level. The geometric 
features (FWHM, EQ50, lNEAS, nCROWN, pDIST) exhibited very small 
differences between the three campaigns in pine. Center of gravity 
(EQ50) and echo width (FWHM) were the lowest in early summer. The 
length of the first-return NEAS (lNEAS) is in positive correlation with 
energy features and showed therefore a similar pattern of relative 
changes. 

Fig. 14 shows the relative frequency distributions of energy features 
in the 15 plots of the homogenous Lapinkangas forest (Fig. 7). The radius 
of the plots was 20 m, and there were approximately 44 dominant pines 
per plot (350 stems ha−1). In Lapinkangas, the average coefficients of 
variation of plot-level estimates of eCROWN, eTOTAL and eGND were 
2.2%, 2.6% and 4.8%, respectively. In the 47-plot heterogenous pine 
data, the corresponding estimates of precision were 7.7%, 8.0% and 

Table 5 
Average values of mean WF features in birch, aspen, alder and larch. Values in parentheses are standard error (SE) estimates. SEs of EQ50 (not tabulated) were all 
0.001–0.002.   

Winter Early summer Late summer 

Feature Birch Aspen Alder Larch Birch Aspen Alder Larch Birch Aspen Alder Larch 

n(trees) 620 167 148 365 620 167 148 365 539 167 148 364 
eCROWN 285 (3) 236 (7) 252 (4) 523 (8) 507 (2) 391 (6) 546 (6) 560 (3) 515 (2) 481 (6) 522 (7) 550 (4) 
eNEAS 206 (2) 177 (5) 199 (3) 455 (6) 457 (2) 344 (6) 496 (7) 523 (3) 459 (2) 434 (6) 488 (7) 504 (4) 
eTOTAL 543 (2) 559 (11) 514 (7) 870 (10) 680 (2) 589 (5) 765 (6) 738 (3) 667 (3) 634 (7) 674 (8) 767 (3) 
pA 26.3 (0.4) 27.1 (0.5) 26.9 (0.3) 47.8 (0.8) 59.3 (0.4) 48.2 (0.8) 65.1 (0.9) 68.4 (0.4) 56.9 (0.4) 58.9 (0.8) 66.6 (0.9) 61.9 (0.5) 
eUNDER 212 (2) 260 (6) 203 (4) 376 (6) 170 (2) 173 (3) 172 (3) 196 (2) 161 (2) 161 (3) 131 (3) 204 (3) 
eGND 198 (1) 188 (4) 191 (3) 175 (2) 290 (3) 227 (5) 264 (6) 284 (4) 254 (3) 211 (9) 218 (9) 280 (4) 

nCROWN 
2.28 
(0.01) 

2.07 
(0.03) 

2.18 
(0.02) 

2.37 
(0.02) 

2.01 
(0.01) 

2.18 
(0.02) 

2.27 
(0.02) 

2.04 
(0.01) 

2.14 
(0.01) 

2.20 
(0.02) 

2.13 
(0.02) 

2.18 
(0.01) 

nNEAS 
1.40 
(0.00) 

1.25 
(0.01) 

1.36 
(0.01) 

1.76 
(0.01) 

1.50 
(0.00) 

1.41 
(0.01) 

1.57 
(0.01) 

1.55 
(0.01) 

1.57 
(0.01) 

1.49 
(0.01) 

1.52 
(0.01) 

1.60 
(0.01) 

FWHM 
8.09 
(0.02) 

6.84 
(0.03) 

7.27 
(0.03) 

7.94 
(0.06) 

7.25 
(0.02) 

6.97 
(0.02) 

7.00 
(0.02) 

7.07 
(0.02) 

7.38 
(0.02) 

6.98 
(0.03) 

6.87 
(0.03) 

7.27 
(0.03) 

EQ50 0.421 0.417 0.421 0.423 0.374 0.393 0.376 0.378 0.377 0.385 0.380 0.387 

pDist 2.07 
(0.01) 

2.15 
(0.02) 

2.06 
(0.02) 

1.88 
(0.01) 

2.00 
(0.01) 

2.09 
(0.01) 

2.11 
(0.01) 

1.88 
(0.01) 

2.00 
(0.01) 

2.04 
(0.01) 

2.05 
(0.01) 

1.93 
(0.01) 

lNEAS 
13.0 
(0.06) 

10.2 
(0.14) 

11.8 
(0.13) 

18.5 
(0.18) 

16.7 
(0.06) 

14.0 
(0.13) 

16.9 
(0.14) 

17.3 
(0.10) 

17.4 
(0.07) 

15.9 
(0.16) 

16.4 
(0.19) 

17.7 
(0.14) 

MinRelDist 
0.48 
(0.002) 

0.50 
(0.005) 

0.51 
(0.003) 

0.49 
(0.003) 

0.53 
(0.002) 

0.54 
(0.002) 

0.54 
(0.002) 

0.53 
(0.002) 

0.54 
(0.002) 

0.55 
(0.003) 

0.53 
(0.004) 

0.53 
(0.003) 

pARelDist 0.63 
(0.002) 

0.63 
(0.006) 

0.67 
(0.004) 

0.62 
(0.004) 

0.75 
(0.002) 

0.74 
(0.003) 

0.77 
(0.003) 

0.74 
(0.003) 

0.79 
(0.003) 

0.80 
(0.004) 

0.89 
(0.006) 

0.78 
(0.003) 

SZA 14.7 
(0.08) 

14.4 (0.1) 12.5 (0.1) 16.6 (0.1) 15.3 
(0.09) 

14.8 (0.2) 12.8 (0.2) 16.5 (0.1) 15.4 
(0.10) 

15.3 (0.2) 15.0 (0.2) 15.0 (0.2)  
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Table 6 
Relative differences of mean WF attributes in aspen, alder, larch and birch. The differences were computed relative to birch.  

Feature Winter Early summer Late summer 

Birch Aspen Alder Larch Birch Aspen Alder Larch Birch Aspen Alder Larch 

eCROWN 1.00 0.83 0.89 1.84 1.00 0.77 1.08 1.10 1.00 0.93 1.01 1.07 
eNEAS 1.00 0.86 0.97 2.21 1.00 0.75 1.09 1.14 1.00 0.95 1.06 1.10 
eTOTAL 1.00 1.03 0.95 1.60 1.00 0.87 1.13 1.09 1.00 0.95 1.01 1.15 
pA 1.00 1.03 1.03 1.83 1.00 0.81 1.10 1.15 1.00 1.03 1.17 1.09 
eUNDER 1.00 1.22 0.96 1.77 1.00 1.02 1.01 1.15 1.00 1.00 0.81 1.27 
eGND 1.00 0.95 0.97 0.88 1.00 0.78 0.91 0.98 1.00 0.83 0.86 1.10 
nCROWN 1.00 0.91 0.96 1.04 1.00 1.08 1.13 1.01 1.00 1.03 1.00 1.02 
nNEAS 1.00 0.89 0.97 1.25 1.00 0.94 1.05 1.03 1.00 0.95 0.97 1.02 
FWHM 1.00 0.85 0.90 0.98 1.00 0.96 0.97 0.98 1.00 0.95 0.93 0.99 
EQ50 1.00 0.99 1.00 1.00 1.00 1.05 1.01 1.01 1.00 1.02 1.01 1.02 
pDist 1.00 1.04 0.99 0.91 1.00 1.05 1.06 0.94 1.00 1.02 1.03 0.97 
lNEAS 1.00 0.79 0.91 1.43 1.00 0.84 1.01 1.03 1.00 0.91 0.94 1.01 
MinRelDist 1.00 1.05 1.07 1.03 1.00 1.02 1.02 1.00 1.00 1.01 0.97 0.98 
pARelDist 1.00 1.00 1.07 0.99 1.00 0.99 1.03 0.99 1.00 1.01 1.12 0.98  

Table 7 
Relative change (%) of mean WF features in deciduous trees from winter to early summer (WE) and from early to late summer (EL).   

WE EL 

Feature Birch Aspen Alder Larch Birch Aspen Alder Larch 

eCROWN 94 62 56 7 2 16 −4 −2 
eNEAS 142 84 65 15 1 18 −2 −4 
eTOTAL 25 6 29 −19 −2 6 −12 4 
pA 122 78 79 34 −5 17 2 −11 
eUNDER −16 −43 −8 −106 −5 −7 −21 5 
eGND 49 20 42 38 −16 −6 −16 −2 
nCROWN −13 5 4 −16 6 1 −7 7 
nNEAS 8 12 12 −14 5 5 −3 3 
FWHM −12 2 −3 −12 2 0 −2 3 
EQ50 −11 −6 −11 −12 1 −2 1 2 
pDist −4 −3 3 0 0 −3 −3 3 
lNEAS 37 32 28 −7 5 11 −3 2 
MinRelDist 11 8 6 8 2 1 −3 0 
pARelDist 19 16 16 16 6 8 8 5  

Table 8 
Mean values and (standard errors) of pulse proportions (P) and WF attributes in pine and spruce plots. Proportion of pulses reaching the ground, P(h < 2 m), is 
computed using all pulses, while other entries are based on pulses with crown backscattering. ‘Winter’, ‘Early S’ and ‘Late S’ refer to the campaigns of 11/2011, 5/2013 
and 8/2015. ‘Crown only’ refers to pulses that did not display any understory (under) or ground (gnd) scattering.   

Spruce 20–135-year-old, 40 plots Pine 20–120-year-old, 47 plots Lapinkangas pine forest, 15 plots 

Variable/campaign Winter Early S Late S Winter Early S Late S Winter Early S Late S 

P(h < 2 m), all pulses, % 29.4 (2.0) 29.5 (1.6) 26.9 (1.6) 37.6 (2.2) 34.5 (2.2) 30.9 (2.2) 50.8 (2.0) 49.9 (2.2) 45.0 (2.1) 
Height, point pA, m 15.2 (0.6) 15.6 (0.6) 16.2 (0.6) 12.4 (0.5) 12.6 (0.5) 13.2 (0.5) 16.8 (0.2) 17.1 (0.2) 17.4 (0.2) 
P, crown only, % 64.2 (1.6) 58.4 (1.4) 59.9 (1.1) 39.3 (1.8) 30.8 (1.6) 33.7 (1.5) 53.9 (0.8) 40.5 (0.7) 39.2 (0.7) 
P, crown + gnd, % 15.0 (0.8) 24.4 (0.9) 24.5 (0.9) 35.3 (1.3) 42.6 (1.9) 42.2 (1.9) 40.5 (0.8) 54.2 (0.8) 54.6 (1.1) 
P, crown + under, % 12.6 (1.2) 12.6 (1.4) 11.4 (1.0) 18.5 (1.6) 22.5 (1.7) 19.4 (1.3) 3.9 (0.3) 4.5 (0.3) 4.7 (0.3) 
P, crown + under + gnd, 

% 8.2 (0.9) 4.6 (0.5) 4.2 (0.5) 7.0 (0.7) 4.1 (0.6) 4.7 (0.8) 1.7 (0.2) 0.9 (0.1) 1.5 (0.2) 
eTOTAL 613 (10) 649 (5) 622 (5) 558 (7) 752 (9) 688 (7) 597 (3) 786 (4) 727 (5) 
eCROWN, crown-only 603 (11) 584 (7) 562 (6) 569 (12) 616 (9) 559 (8) 635 (5) 695 (5) 640 (4) 
eCROWN 546 (10) 520 (7) 504 (6) 448 (7) 477 (5) 451 (5) 514 (4) 545 (4) 508 (3) 
eNEAS 444 (7) 417 (4) 403 (4) 400 (6) 427 (4) 398 (4) 440 (3) 471 (4) 434 (3) 
eUNDER, no gnd 132 (6) 123 (6) 123 (6) 110 (5) 114 (8) 125 (8) 145 (8) 176 (7) 158 (5) 
eUNDER, with gnd 182 (6) 157 (4) 158 (4) 124 (3) 133 (4) 143 (6) 130 (4) 143 (5) 135 (3) 
eGND, all 173 (5) 314 (4) 290 (5) 173 (3) 382 (7) 338 (6) 174 (3) 400 (4) 356 (5) 
eGND, no under 184 (5) 337 (4) 305 (5) 181 (3) 400 (7) 353 (6) 175 (3) 407 (3) 363 (4) 
eGND, with under 162 (6) 270 (5) 262 (7) 158 (3) 347 (8) 309 (8) 161 (4) 325 (10) 288 (11) 
nCROWN 2.11 (0.03) 2.11 (0.03) 2.12 (0.02) 1.94 (0.02) 1.94 (0.03) 1.97 (0.03) 2.12 (0.02) 2.07 (0.01) 2.11 (0.01) 
pDist, m 2.28 (0.04) 2.33 (0.04) 2.37 (0.04) 1.90 (0.01) 1.93 (0.01) 1.97 (0.01) 2.07 (0.01) 2.10 (0.01) 2.13 (0.01) 
pA 65.7 (1.2) 62.8 (0.7) 60.8 (0.7) 49.6 (1.1) 54.0 (0.8) 50.7 (0.8) 59.0 (0.6) 64.9 (0.7) 59.1 (0.7) 
FWHM, ns 6.49 (0.04) 6.45 (0.04) 6.47 (0.04) 7.42 (0.06) 7.28 (0.05) 7.29 (0.05) 6.80 (0.02) 6.69 (0.02) 6.78 (0.02) 
lNEAS, ns 14.6 (0.10) 14.2 (0.11) 14.0 (0.10) 16.3 (0.10) 16.6 (0.17) 16.2 (0.17) 15.9 (0.11) 15.9 (0.07) 15.5 (0.07) 
SZA crown only, degrees 15.1 (0.36) 14.4 (0.36) 14.0 (0.49) 15.5 (0.41) 15.1 (0.29) 14.9 (0.24) 12.2 (0.3) 12.7 (0.4) 12.5 (0.3) 
SZA, all, degrees 14.8 (0.3) 14.1 (0.3) 13.7 (0.5) 15.0 (0.41) 14.5 (0.25) 14.5 (0.23) 12.3 (0.3) 12.8 (0.3) 12.7 (0.4) 

EQ50 
0.385 
(0.001) 

0.387 
(0.001) 

0.388 
(0.001) 

0.383 
(0.001) 

0.376 
(0.000) 

0.379 
(0.000) 

0.377 
(0.001) 

0.372 
(0.000) 

0.377 
(0.001) 

Pulses per plot 12,008 12,184 11,780 12,005 11,767 12,137 8470 9004 10,349  
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12.4%. The histograms in Fig. 14 show the offsets between early and late 
summer, which were − 7, −8 and − 11% for eCROWN, eTOTAL and 
eGND, respectively. The relative change of eGND in pulses that reached 
the forest floor through canopy openings was −4% (not shown). Simi-
larly, asphalt and gravel surfaces in the vicinity displayed a relative 
change of −3% (not shown). These findings suggest that the decrease of 
signals between early and late summer in trees and the forest floor is not 
explained entirely by some sensor or atmospheric effect. We thus 
observed a small (3–6%) decrease of crown backscattering in pine 
during the summer. The 7–9-% increase of canopy backscattering be-
tween winter and early summer could not be corroborated by any local 
reference surface. The wet asphalt and gravel roads showed 45 and 17% 
lower values in winter compared to early summer. It is possible that the 
wintering pine shoots were moist. On the other hand, pine stamens were 
blooming during the early summer campaign, which may have caused 
‘an early summer peak’ in the return signals of pine. Lower winter sig-
nals could be explained by a lower silhouette area of pine needles 
(change of needle angles) in the winter, but we found no research to 
support this hypothesis. The dominance of older needle cohorts (with 
larger needle angles) in the winter phenostate (Stenberg et al., 1994) 
would create an opposite winter-early summer anomaly. 

In spruce, crown backscattering (eNEAS, eCROWN, pA) was the 
strongest in winter and the weakest in late summer. The relative 
decrease from winter to early summer was 5–7% and signals decreased 
further by 3–4% between early and late summer. The corresponding 
changes in pine were 6–9% (increase) and 5–9% (decrease). FWHM and 
EQ50 in spruce did not show differences between acquisitions. eUNDER 
increased 7–14% between winter and early summer and did not change 
during the summer. The presence of suppressed deciduous trees (rowan, 
downy birch) in spruce stands may in part explain this finding. In spruce, 
eTOTAL varied considerably less between acquisitions compared to 
pine. eGND increased 82% from winter to summer, which is less 
compared to pine (125%). In summer, eTOTAL was 10–14% higher in 
pine compared to spruce, while in winter spruce displayed a 10% higher 
eTOTAL. Differences of ground flora between pine and spruce are likely 
explanations, but the effect may also be due to between-species differ-
ences of (undetected) canopy transmission losses. 

Table 10 shows the relative differences of mean features between the 

two pine strata and between pine and spruce. Backscattering of the older 
pines of Lapinkangas was stronger compared to the 47-plot pine dataset. 
Similarly, the older Lapinkangas pines displayed lower FWHM (corre-
lation of WF features with age, see Section 3.4). Relative differences of 
crown backscattering between pine and spruce, were the largest in the 
winter data. In the summer datasets, average eNEAS did not differ be-
tween pine and spruce. In spruce, FWHM was lower compared to pine 
(see also Fig. 15) and displayed no differences between acquisitions. 

3.2.2. Tree-level results for pine, spruce and dead spruce 
The mean attribute values and their relative change between ac-

quisitions are presented in Table 11 for living pine and spruce. Table 12 
shows the results in dead standing spruce separately for sets DSP2011 
(observed dead in the images of 2011) and DSP2015 (observed dead in 
the images of 2015). In living spruce, changes of geometric WF attri-
butes between campaigns were very small. Crown backscattering 
(eCROWN, eNEAS, pA) decreased from winter to early summer (5–6%) 
and it decreased further from early to late summer (4%). The same 
pattern was observed in plot data (Table 9). In pine, crown backscat-
tering increased 1–4% from winter to summer and decreased 7–10% 
between early and late summer. In plot data, the corresponding changes 
were 6–9% and 5–9% (Table 9). Changes of geometric WF attributes 
between phenostates were small in pine. The 2–7-% increase of pAR-
elDist between campaigns is explained by the growth of crowns as the 
crown models were not altered between acquisitions. 

Dead standing spruce displayed much stronger canopy signals 
(eCROWN, eNEAS, pA) compared to living spruce. Echo width (FWHM) 
was larger in dead spruce compared to living spruce (6.47–6.51 ns vs. 
6.54–6.87 ns). WFs of dead spruce had more WF peaks (nNEAS, 
nCROWN) compared to living spruce. Pulses penetrate deeper into the 
crowns of dead spruce (pARelDist) and this ‘horizontal penetration’ has 
increased with time in Dead2011 trees, which is likely due to structural 
changes (loss of twigs and fine structures, Fig. 8) over time. In addition 
to pARelDist, also eCROWN, eNEAS, nNEAS, nCROWN, pA and lNEAS 
all decrease with time in the Dead2011 trees. eUNDER was higher in dead 
trees compared to living spruce, because the reflective low branches 
were visible to the LiDAR. eGND was also higher in dead spruce, which 
is likely due to lower canopy transmission losses, although changes of 
the ground flora in response to altered light conditions may also exercise 
an effect. The between-campaign differences of WF features are small in 
the Dead2015 tree set that were observed dead in the last campaign of 
2015. This dataset had 361 trees of which 226 and 154 were dead in the 
2013 and 2011 campaigns, respectively. In these trees ‘aging’ had thus a 
lesser effect. For example, eNEAS varied ±1%, and changes of eCROWN 

Table 9 
Relative change (%) of pulse proportions (P) and mean WF attributes from 
winter to early summer and from early to late summer in pine (P, LK) and spruce 
(S) plots.   

Winter → Early S Early S → Late S 

Feature S P LK S P LK 

P(h < 2 m), all pulses, % 0 −8 −2 −9 −10 −10 
Height, point pA, m 3 2 2 4 4 2 
P, crown only, % −9 −22 −25 3 10 −3 
P, crown + gnd, % 63 21 34 0 −1 1 
P, crown + under, % 0 22 15 −10 −14 4 
P, crown + under + gnd, % −44 −41 −47 −9 12 67 
eTOTAL 6 35 32 −4 −9 −8 
eCROWN, crown-only −3 8 9 −4 −9 −8 
eCROWN −5 6 6 −3 −5 −7 
eNEAS −6 7 7 −3 −7 −8 
eUNDER, no gnd −7 4 21 0 10 −10 
eUNDER, with gnd −14 7 10 1 8 −6 
eGND, all 82 121 130 −8 −12 −11 
eGND, no under 83 121 133 −9 −12 −11 
eGND, with under 67 120 102 −3 −11 −11 
nCROWN 0 0 −2 0 1 2 
pDist, m 2 2 2 2 2 1 
pA −4 9 10 −3 −6 −9 
FWHM, ns −1 −2 −2 0 0 1 
lNEAS, ns −3 2 0 −1 −2 −3 
SZA crown-only, degrees −5 −3 4 −3 −1 −2 
SZA, degrees −5 −3 4 −3 0 −1 
EQ50 1 −2 −1 0 1 1  

Table 10 
Relative differences (%) of mean attributes between the two pine strata (47 plots 
vs. Lapinkangas forest) and between pine and spruce plots. A negative value 
indicates that the value was smaller in the latter group. Wi, ES and LS denote 
winter, early and late summer, respectively.   

Pine, % Pine-spruce, % 

WF attribute Wi ES LS Wi ES LS 

eTOTAL 7 5 6 10 −14 −10 
eCROWN, crown-only 12 13 14 6 −5 1 
eCROWN 15 14 13 22 9 12 
eNEAS 10 10 9 11 −2 1 
eUNDER, no ground 32 54 26 20 8 −2 
eUNDER, with ground 5 8 −6 47 18 10 
eGND, all 1 5 5 0 −18 −14 
eGND, no understory −3 2 3 2 −16 −14 
eGND, with understory 2 −6 −7 3 −22 −15 
nCROWN 9 7 7 9 9 8 
pDist, m 9 9 8 20 20 20 
pA 19 20 17 32 16 20 
FWHM −8 −8 −7 −13 −11 −11 
lNEAS, ns −2 −4 −4 −10 −14 −14 
EQ50 −2 −1 −1 1 3 2  
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were < 3%. 

3.3. Correlation of WF features over time, RQ4 

Correlation of tree-level features was examined in three pairs: (1) 
Winter × Early summer, (4) Winter × Late summer, and (3) Early 
summer × Late summer. In these combinations, the number of growing 
seasons between acquisitions was 1, 4 and 3. Fig. 15 shows the positive 
correlation of FWHM between the winter and late summer (case 4) in 
pine and spruce trees. 

Table 13 shows the correlation coefficients by species and campaign 
combination. pADist displayed strong positive correlation in all species 
and acquisitions as the size of boreal 30–130-yr-old crowns does not 
change substantially in 1–4 years. In deciduous trees and evergreen 
conifers correlations were the strongest between leaf-on datasets (case 
3) and the weakest between winter and late summer datasets (case 4), 
which were separated by four growing seasons. This can be expected as 
structural similarity of a tree decreases with time. The dead trees in 
Table 13 were dead in the first LIDAR campaign and their structure 
changed in the 45 months that followed. In dead trees, strength of 
average correlation was lower (0.53, 0.48) in cases 1 and 4 (2011 ×

2013, 2011 × 2015) compared to case 3 (2013 × 2015, r = 0.73). The 

fine shoots had fallen in the first years following death and the structure 
remains more stable later on. 

Correlation of energy features (eNEAS, eCROWN) was on average 
0.34 between winter and summer (cases 1 and 4) in deciduous trees and 
0.78 in evergreen conifers. Correlation was 0.59 in dead spruce. Among 
deciduous alder, birch and aspen, the correlation of FWHM between 
leaf-off and leaf-on data (cases 1, 4) was low, 0.15–0.50, whereas it was 
0.69 and 0.82 in larch, which belongs to Pinaceae family together with 
pine and spruce. EQ50, which describes the shape of the NEAS showed 
negative correlation between leaf-on and leaf-off campaigns in decidu-
ous trees. 

3.4. Correlation of WF features with tree height (age), RQ5 

In pine and spruce, the correlations were assessed using both plot 
and tree-level features (Table 14), whereas only tree-level features were 
correlated with height in deciduous trees (Table 15). 

The plot-level correlations in Table 14 are stronger compared to tree- 
level correlations because the plot mean values were computed using a 
large number of pulses per plot (700–1200 m2/plot vs. 3–100 m2/tree). 
Plot data shows that the proportion of pulses that displayed crown-only 
backscattering increased with stand height, while the correlation was 

Table 11 
Average values of mean WF features and their (standard errors) in living pine and spruce in tree-level data and their relative change (%) from winter to early summer 
(WE) and from early to late summer (EL).   

Winter 2011 Early summer 2013 Late summer 2015 WE, % EL, % 

Feature Pine Spruce Pine Spruce Pine Spruce Pi Sp Pi Sp 

n(trees) 605 801 605 801 605 797     
eCROWN 484 (3) 503 (2) 491 (2) 475 (2) 455 (2) 456 (2) 1 −6 −7 −4 
eNEAS 436 (2) 424 (2) 444 (2) 399 (2) 410 (2) 384 (2) 2 −6 −8 −4 
eTOTAL 598 (2) 585 (2) 683 (3) 617 (2) 611 (3) 571 (2) 14 5 −11 −7 
pA 57.2 (0.4) 63.1 (0.4) 59.3 (0.4) 59.9 (0.4) 53.4 (0.4) 57.7 (0.3) 4 −5 −10 −4 
eUNDER 179 (2) 184 (2) 169 (2) 164 (2) 165 (2) 156 (2) −6 −11 −2 −5 
eGND 175 (1) 159 (1) 328 (3) 301 (3) 270 (3) 253 (2) 88 89 −18 −16 
nCROWN, n 1.97 (0.01) 2.06 (0.01) 1.96 (0.01) 2.06 (0.01) 1.98 (0.01) 2.06 (0.01) 0 0 1 0 
nNEAS, n 1.52 (0.00) 1.41 (0.00) 1.51 (0.00) 1.39 (0.00) 1.51 (0.01) 1.38 (0.00) −1 −1 0 −1 
FWHM, ns 7.05 (0.02) 6.47 (0.01) 6.98 (0.02) 6.48 (0.01) 7.09 (0.02) 6.51 (0.02) −1 0 2 0 
EQ50 0.378 (0.000) 0.387 (0.000) 0.372 (0.000) 0.389 (0.000) 0.376 (0.000) 0.390 (0.001) −2 1 1 0 
pDist, m 1.86 (0.01) 2.00 (0.01) 1.87 (0.01) 2.02 (0.01) 1.88 (0.01) 2.02 (0.01) 1 1 1 0 
lNEAS, ns 16.2 (0.06) 14.3 (0.05) 16.2 (0.06) 13.9 (0.05) 16.1 (0.07) 13.7 (0.06) 0 −3 −1 −1 
MinRelDist 0.53 (0.002) 0.50 (0.001) 0.53 (0.002) 0.50 (0.001) 0.52 (0.002) 0.51 (0.001) 1 0 −1 1 
pARelDist 0.70 (0.002) 0.67 (0.002) 0.73 (0.002) 0.68 (0.002) 0.78 (0.003) 0.71 (0.003) 4 2 7 5 
SZA, degr. 13.8 (0.08) 13.4 (0.07) 13.9 (0.09) 13.2 (0.08) 15.7 (0.09) 14.6 (0.08) 1 −2 13 11  

Table 12 
Average values of mean WF features in dead spruce and their relative change (%) from winter 2011 to early summer 2013 (11 → 13) and from early to late summer (13 
→ 15). Trees in groups Dead2011 and Dead2015 were identified as dead in the aerial images of 2011 and 2015, respectively. 56 trees in the Dead2011 set were felled or 
broken between 2013 and 2015. Similarly, 226 and 154 of the Dead2015 trees had died before 2013 and 2011, respectively. Values in parentheses are standard error 
estimates.  

Feature Dead2011 Dead2015 Dead2011 Dead2015 

2011 2013 2015 2011 2013 2015 11 → 13 13 → 15 11 → 13 13 → 15 

n(trees) 158 158 102 154 226 361 – – – – 
eCROWN 779 (11) 744 (6) 672 (9) 749 (11) 729 (8) 723 (6) −4 −10 −3 −1 
eNEAS 653 (12) 639 (6) 571 (9) 591 (11) 598 (7) 595 (5) −2 −11 1 −1 
eTOTAL 934 (11) 1050 (6) 998 (8) 921 (11) 1001 (9) 1012 (6) 12 −5 9 1 
pA 83.5 (1.1) 82.1 (0.8) 74.5 (1.1) 77.5 (1.2) 77.6 (0.8) 76.0 (0.6) −2 −10 0 −3 
eUNDER 235 (4) 269 (3) 279 (4) 254 (5) 262 (4) 268 (3) 14 4 3 2 
eGND 185 (4) 388 (6) 356 (7) 181 (4) 356 (5) 334 (4) 110 −8 97 −6 
nCROWN, n 2.55 (0.02) 2.19 (0.02) 2.10 (0.02) 2.61 (0.03) 2.32 (0.02) 2.29 (0.02) −14 −4 −11 −1 
nNEAS, n 1.70 (0.02) 1.56 (0.01) 1.51 (0.01) 1.63 (0.01) 1.56 (0.01) 1.56 (0.01) −8 −3 −4 0 
FWHM, ns 6.72 (0.03) 6.87 (0.03) 6.80 (0.04) 6.54 (0.02) 6.72 (0.02) 6.78 (0.02) 2 −1 3 1 
EQ50 0.379 (0.001) 0.385 (0.001) 0.390 (0.001) 0.384 (0.001) 0.387 (0.001) 0.387 (0.001) 2 1 1 0 
pDist, m 2.01 (0.01) 2.01 (0.01) 2.06 (0.02) 2.10 (0.01) 2.11 (0.01) 2.13 (0.01) 0 2 0 1 
lNEAS, ns 18.4 (0.24) 17.4 (0.15) 16.3 (0.20) 17.0 (0.23) 16.7 (0.13) 16.9 (0.11) −5 −6 −2 1 
MinRelDist 0.51 (0.002) 0.44 (0.003) 0.44 (0.003) 0.50 (0.003) 0.44 (0.005) 0.44 (0.004) −12 0 −12 0 
pARelDist 0.71 (0.004) 0.59 (0.004) 0.58 (0.005) 0.68 (0.006) 0.59 (0.008) 0.58 (0.005) −17 −2 −13 −2 
SZA 15.9 (0.1) 16.1 (0.1) 15.8 (0.2) 15.3 (0.2) 15.2 (0.2) 15.5 (0.2)      
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negative for the proportion of pulses that displayed both crown and 
understory signals. The likely explanation for the negative correlation is 
that the understory trees in Hyytiälä are typically cleared in interme-
diate thinning operations. 

In both pine and spruce, features pDist (average distance between 
WF peaks) and nCROWN (number of peaks) correlated strongly with 
canopy/crown height. High trees have longer and wider crowns, which 
increases the probability of pulses generating multiple return peaks. 
Variation in canopy height explained 65–71% of the plot-level variance 
of FWHM in pine plots and 38–49% in spruce plots. The correlation was 
positive, which means that the echoes of the older trees are ‘harder’ 
(FWHM, pA). This is also seen in Fig. 15. Correlation of EQ50 was 
negative, which means that echoes have a slower rise in young trees, 
especially in spruce. eNEAS, pA and eCROWN correlated positively with 
height in both conifers. Between-campaign differences in the correlation 
patterns are visible in eTOTAL, eNEAS (pine) and lNEAS (pine). eTOTAL 
increased with height in pine, whereas in spruce eTOTAL increased in 
the winter, but displayed a negative correlation with stand height in 
summer. The difference between pine and spruce can be explained in 
part by general differences of ground vegetation between young and old 

stands (forest succession), but a more likely explanation is the weak 
backscattering in spruce stands (deep crowns), which remained below 
the sensor’s WF storage threshold. When comparing the correlation 
patterns between plot and individual tree analyses, we can note differ-
ences that were likely caused by the different definition of crown base 
height between plot and tree-level data as well as the overall differences 
of the forests (all plots were in single-species forests). 

In deciduous trees (Table 15), alder was left out because of limited 
age variation. In leaf-off state, eNEAS and pA correlated positively with 
height in aspen and larch, while correlations were weak in leaf-on data. 
In birch we observed the opposite as height correlated negatively with 
energy features in leaf-on data (r = −0.22–0.54) and no correlation was 
observed in leaf-off data. Echo width (FWHM) decreases with tree height 
in larch in all acquisitions (r = −0.61, −0.46, −0.44), but FWHM did not 
correlate strongly with height in aspen or birch. The positive correlation 
of nCROWN and pDist with height that was observed in conifers applies 
to deciduous trees as well. nNEAS, which is the number of peaks in the 
first NEAS, was not correlated with tree height in deciduous trees. 

Fig. 8. Examples of tree crowns of different species. i) Leaf-on early summer birch and aspen, ii) leaf-off aspens, iii) old leaf-off birch, iv) recently died spruces, v) 80- 
year-old spruces, vi) 90-year-old leaf-off larch, vii) 40-year-old leaf-on larches, viii) 20-year-old pine and ix)100-year-old pine. 
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3.5. Correlation of WF attributes with scan zenith angle, RQ4 

We investigated the influence of SZA in pulse data of individual trees 
(Table 16). Alder was left out, because the samples were from two stands 
only. There were 52,000–195,000 pulses per species and campaign. The 
95-% confidence intervals for the coefficients are approximately r ±

0.01. As expected, SZA was in very strong positive correlation with 
range. Similarly, SZA was in negative correlation with Hrel, which is the 
relative height of point pA in the tree. This correlation means that as SZA 
increased, the first echoes were located higher in the tree, which can be 
explained by the occlusions caused by neighboring trees. 

Overall, the correlations between SZA and WF features are weak, 
because of the high between-pulse variation. To exemplify, in pine, the 
correlation between eCROWN and height in tree-level data was 0.55 
(late summer, Table 14), while it was only 0.16 in pulse data (not 
shown). Overall, SZA explained a small proportion of feature variance as 
R2 were mostly below 0.015 (−0.12 < r < 0.12). The largest effect was 
observed in dead standing spruce, in which nCROWN decreased with 
SZA with an R2 of 0.04–0.06 (−0.19 > r > −0.25). Vertical pulses 
yielded more peaks in dead spruce compared to oblique pulses, which is 
logical. The short and more ‘diffuse’ crowns of pines display much lower 
negative correlations for nCROWN. eCROWN was in weak positive 
correlation with SZA in spruce and showed negative correlation in larch 
and in leaf-on aspen. eNEAS (and pA) was in positive correlation with 
SZA in spruce and dead standing spruce and showed negative correla-
tion in leaf-on aspen. The correlations imply that spruce returns are 
stronger in oblique pulses, while the opposite is true in leaf-on aspen. 
eCROWN of leaf-off aspen did not correlate with SZA. Leaf-off and leaf- 
on correlations of eCROWN, eNEAS, pA and nCROWN differed also in 
birch. 

Negative correlation of both pARelDist and pADist with SZA implies 
that oblique pulses penetrated deeper into the crowns. eTOTAL was not 
systematically correlated with SZA. eGND however showed a systematic 
negative correlation, which means that oblique pulses display lower 
eGND, which could be due to larger transmission losses of the oblique 
pulses that travel a longer path inside the forest. 

4. Discussion and conclusions 

4.1. Major findings regarding research questions 1–5 

RQ1. Using non-tree targets, we confirmed that there were no sys-
tematic differences between the acquisitions. The sensor had functioned 

Fig. 9. Determination of the time of death for a spruce. The white line depicts the stem. Tree was alive in 2013 although parts of the crown were already defoliated. A 
neighboring birch was felled in February 2010. The images suggest that this tree grew 2.5 m in height in 10 years. 

Fig. 10. Illustration of the capture of WF segments of an oblique pulse that 
intersects the crown. Points Penter, Pexit and PGround are 3D intersection points. 
Ground-pulse intersection was solved iteratively using a digital elevation model 
in one meter resolution. 
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similarly, and range-normalization removed the signal variations such 
that the relative match of signal levels between campaigns was below 
5% in extended targets. We observed a substantial specular component 
in old asphalt at SZA above 20◦ when evaluating the radiometric match. 
We could not find studies, where the same was reported using a cali-
brated airborne sensor. Our experience shows that it is important to 
consider directional effects in selecting the radiometric control targets. 
Trees that had died recently displayed also marginal differences in signal 
levels (Table 12), but we cannot recommend their use as multitemporal 
radiometric control targets. 

RQ2. In deciduous trees, aspen, alder, larch and birch, the influence 
of phenology was substantial when contrasting leaf-off and leaf-on WFs. 

Comparison of early and late summer data displayed less pronounced 
effects, but there were some between-species differences. In needleleaf 
larch, the high reflectance of the bark made it different from the other 
deciduous species in winter LiDAR. The average crown signals in larch 
were nearly at the same level as in summer, while backscattering in 
other deciduous species was very low in the winter. Leaf-off larch 
actually gave rise to the strongest individual WFs in all datasets although 
very few pulses produced a single echo in leaf-off larch (Fig. 13). Leaf-off 
echoes were 4–14% wider compared to leaf-on data in broadleaved trees 
except for aspen, in which echo width did not vary between winter, early 
and late summer. The vertical branches and erectophile leaves of aspen 
explain the irregularity. In aspen, canopy signals also ‘increased during 

Fig. 11. Frequency distributions of first-return heights in two 40-yr-old birch plots, in two spruce (40- and 120-yr-old) plots and in two pine (50- and 90-yr-old) plots. 
Birch plots have a dense 1–5-m-high understory of spruce and the drained bog has pubescent birch in the understory. The percentages are the proportions of pulses 
echoing from below 2 m, i.e. pulse penetration. 

Fig. 12. WF of a 90-yr-old pine. Graph illustrates the three WF 
segments and their WF attributes. WFCrown has two peaks 
(nCROWN = 2) and the first peak (point pA) is 19 m (~130 ns) 
above the ground. The first-return NEAS has a single peak 
(nNEAS = 1, pA = 25, lNEAS = 7) with an echo width 
(FWHM) of 5.3 ns. The value of EQ50 (‘center of gravity’) is 
close to 0.5, because the first NEAS is quite symmetric. The 
distance between peaks in WFCrown (pDist) is 5.1 m. Crown 
energy (eCROWN) was contributed by two canopy echoes. The 
pulse likely intersected a stem near the ground (eUNDER =

170) and gave rise to a ground signal as well (eGND = 225). 
The WF consisted of two 80-sample-long sequences separated 
by a 25-ns pause in WF storage.   
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the summer’, which was most likely due to the delayed development of 
leaves during the early summer LiDAR acquisition. 

Evergreen conifers pine and spruce displayed only minor differences 
between acquisitions except for crown energy (eCROWN, eNEAS) and 
peak amplitude (pA), which varied 4–9-% between acquisitions. Crown 
backscattering in spruce was the strongest in winter and the lowest in 
late summer, whereas in pine the signals were the strongest in early 
summer and the winter signal levels did not deviate from late summer 
despite the 20–30-% increase of needle mass, which decreases the gap 

fraction during the summer (Lang et al., 2017). The relatively low winter 
backscattering in pine calls for an explanation, and we cannot rule out 
that the pine shoots were moist, when it was not observed in spruce. Nor 
can we rule out that pine stamens increased the backscatter reflectance 
of the early summer crowns and caused ‘an early summer peak’. Relative 
to spruce, we could argue that the 1550-nm backscattering in pine de-
creases during the summer. In 1064-nm LiDAR, Hovi et al. (2016) 
observed the opposite. Differences in needle clumping between winter 
and early summer could explain the signal differences in pine, but we 
did not find research that would show that pine shoots have lower 
silhouette area in the winter. Water content of wintering needles is lower 
compared to summer, but this would cause an opposite phenomenon in 
pine (stronger winter signals). In spruce, the signals also decreased 
during the summer despite a 10–15-% increase of needle mass. Signal 
decrease during the summer in both pine and spruce could also be 
explained by the decrease of the visible bark silhouette as bark has a 
higher 1550-nm reflectance compared to needles. 

RQ3. Inclusion of dead standing spruce in the experiments was partly 
motivated by their use as radiometric control targets. Only during the 
data analyses did we realize that the structure of dead standing spruce 
changes over time and we interpreted their history using historic aerial 
images. Our results imply that WF features of dead spruce change due to 
‘aging’ as the needles and small branches fall down in the first years 
following death. Further research is needed to verify the rate at which 
WF features change and if the phenomena depend for example on tree 
age (size) and species. When we contrasted WF features of the three 
campaigns in dead spruces, such that the influence of ‘aging’ was 
minimized, the WF features showed only small differences (<3%) in 
energy and pA and these small differences did not match the ‘pheno-
logical patterns’ observed in living pine or spruce. 

RQ4. As expected, the tree-level mean WF features correlated over 
time and the correlation was the weakest, when contrasting LIDAR data, 
which had the longest temporal lag. Feature correlation measures a ‘tree 

Fig. 13. Joint distributions of attributes eGND and eCROWN in pulses from a 
40-year-old larch stand. Larch is a deciduous conifer. 

Fig. 14. Relative frequency distributions of eCROWN, eGND and eTOTAL in the 15 plots of the 90-year-old Lapinkangas pine forest. Black = winter, Red = early 
summer, Green = late summer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Correlation of FWHM between winter and late summer data in spruce and pine individuals of plots OG (x) and IM (o).  
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effect’, i.e. something unique in the tree individual as indicated by a 
feature. Tree effect is strong in passive image data, especially in near- 
infrared signals (Korpela et al., 2014) and was quantified in 1064-nm 
WF data by Hovi et al. (2016). Our results showed that feature corre-
lation was much stronger in conifers compared to deciduous trees in 
which leaf-off and leaf-on features correlated poorly with the exception 
of (needleleaf) larch, in which some of the geometric features showed 
very high correlation even between leaf-off and leaf-on data. In ever-
green conifers, we contrasted old trees (plot OG) with 50-year-old trees 
(plot IM), which differ in height growth and therefore in shoot/crown 
structure. The feature correlation was slightly stronger in the old trees 
(results were left out). 

RQ5. Analyzing the correlation of scan zenith angle (SZA) and tree 
height on WF features was considered important as previous research 
has shown that they influence 1064-nm WFs in pine, spruce and birch 
(Hovi et al., 2016). Correlation with height explains also the consider-
able stand effect observed in Hovi et al. (2016). Differences in the in-
fluence of SZA and height between phenostates has also implications for 
species classification applications. In Hyytiälä, the height of dominant 
trees correlates positively with stand age owing to the thin-from-below 
thinning rule and thus the results concerning height apply to age as well. 
SZA and range were in strong positive correlation as the flying height 
was kept fixed and there was only moderate topographic variation. SZA 
was in weak positive correlation with eNEAS and pA in pine and dead 

Table 13 
Between-campaign correlation coefficients of tree-level mean features in deciduous trees and dead spruce. 1 = winter 2011 x early summer 2013, 4 = winter 2011 x 
late summer 2015, 3 = early summer 2013 x late summer 2015. The correlation in dead spruce was computed in trees which were dead in the first LiDAR and were 
standing trees in later campaigns. Colors denote sign and strength of correlation. 

Table 14 
Correlation coefficients between canopy/tree height and WF attributes in pine and spruce. In plot data, the correlations are given also for pulse 
proportions (P). ‘Crown only’ refers to pulses that did not display ground (gnd) or understory (under) backscattering. P(h < 2 m) is the proportion 
of first-returns below 2 m, i.e. ‘pulse penetration’, which measures canopy closure.’P, crown + gnd, %’ is the proportion of pulses that displayed 
both crown and ground signals. Wi, ES and LS refer to winter, early and late summer LiDAR data, respectively. Colors denote sign and strength of 
correlation. 
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spruce but showed no correlation in other species. SZA was in weak 
negative correlation with pARelDist feature, which implies that oblique 
pulses penetrated deeper into the crowns, which is logical. Height 
correlated positively with crown backscattering in pine and spruce and 
the correlation was negative in leaf-on birch. These findings are in line 
with Hovi et al. (2016) in 1064-nm data. In larch, tree height correlated 
strongly with eNEAS, eCROWN and pA, but only in leaf-off data. The 
thicker branches of older larches may explain the effect. The reflective 
bark in the larch branches was visible to the LiDAR in winter but not in 
leaf-on data. Height was in negative correlation with FWHM in all 
species and strongest correlation was observed in conifers pine, spruce 
and larch. Older trees comprise thus ‘harder’ LiDAR targets, which was 
also observed by Hovi et al. (2016) in 1064-nm data. 

Other interesting findings include the ‘phenology’ of eGND, which is 
the ground energy in pulses that displayed crown backscattering. Winter 
eGND was in most cases 40–60% lower compared to summer owing to 
the wet ground. We conclude that eGND is influenced by canopy 

transmission losses, which also depend on the tree species and cannot be 
deduced from canopy backscattering unless the tree species is known as 
shown in Fig. 13. The ground flora and its moisture in the winter data 
was probably also influenced by the species that formed the tree layer. 
Phenology of ground flora should be examined using pulses that are free 
from transmission losses (Korpela, 2008), but we excluded it except in 
the sparse Lapinkangas pine forest, where we contrasted changes of 
eGND between pulses that did not intersect with trees to pulses that 
displayed canopy scattering. 

4.2. Confines of the study 

This experimental study was based on observations collected in leaf- 
off (November) and in leaf-on (June and August) conditions. LiDAR data 
were collected for several purposes (Korpela et al., 2013, 2020, 2023) 
and the acquisitions were separated by one and three growing seasons. 
During this time trees grew in height, crown width and crown base 

Table 15 
Correlation coefficients between mean WF features and tree height in deciduous trees. Wi, ES and LS refer to 
winter, early and late summer, respectively. Colors denote sign and strength of correlation. 

Table 16 
Correlation coefficients between WF attributes and SZA in pulses intersecting individual trees. Hrel is the relative height of point pA in the tree (0.45–1). Range is the 
distance between the sensor and point pA (740–850 m). Wi, ES and LS refer to the winter, early summer and late summer, respectively. Colors denote sign and 
strength of correlation. 
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height and some trees died, were felled or broke. Then again, the tem-
poral lag made it possible to observe how structural changes in dead 
standing trees influence WF features. 

While we had observations of seven species classes, we did not have 
trees younger than 20 years and black alder was found in two stands 
only. Trees did not represent the full structural variation found in 
southern Finland, but in terms of phenology this should not pose a 
problem. Total number of plots was 102 (11.5 ha). Finding pure can-
opies of pine, spruce and birch was laborious, because we did not allow 
any species mixture and large plots (0.07–0.12 ha) assured reliable plot- 
level estimates. 

We were able to show that the relative match of the repeated LiDAR 
datasets was good, and hence the findings regarding even subtle changes 
during the summer are relevant. Placing large reflectance calibration 
targets such as reflectance tarps across the inventory area would have 
been optimal. Instead of temporary targets, we used road surfaces, sand 
pits, powerline cables and roof structures that were found in the study 
area. The sun-photometer observations unfortunately did not cover the 
winter acquisition as the sensor had been dismantled for winter. 

In range-normalization, we carried out a correction for quadratic 
losses and assumed that amplitude data represent ratio-scale (unitless) 
measurements of instantaneous at-sensor radiance. Only a small offset 
term was subtracted. Because SZA was strongly correlated with range, 
and because we did not know the directional reflectance properties of 
the used reference surfaces, we could only conclude that the normali-
zation removed most SZA effects in all other targets except for asphalt, 
which displayed a clear specular component at SZA >20◦. Range 
normalization can introduce substantial bias (as a function of target 
reflectance), if the assumptions regarding receiver response are not true 
(Korpela et al., 2010b). 

Our field observations indicated that birch was in full leaf in May 28, 
2013, whereas aspen leaves were not entirely developed in parts of the 
area. Because the isolated aspens were scattered across the 1000-ha 
area, we could not visit all of them and missed some of the phenolog-
ical variation. Nor could we observe the spatial variation in the flow-
ering of pine, which was at its peak during the early summer campaign. 

Estimates of crown base height (CBH) and terrain elevation were 
needed when splitting the WFs between the crown, understory and 
ground components. In tree-level analyses, we had to assume a fixed 
crown ratio. CBH determines the split of the WFs between crown and 
understory, whereas the NEAS attributes (pA, nNEAS, eNEAS and 
FWHM) are less influenced by crown depth. Estimation of CBH in LiDAR 
data is possible (Vauhkonen, 2010), but is prone to substantial errors. 
Because of the ringing in receiver of LMS-Q680i, we had to apply a 
threshold not to analyze noise. It would have been beneficial if there had 
not been pauses in WF storage when backscattering dimmed, because 
continuous WFs display better the weak scattering (and hence trans-
mission losses) as shown in Korpela (2017). 

4.3. Future perspectives 

Based on our findings in pine, we suggest research in the geometry of 
needle angles and shoot orientation in pine at temperatures below zero 
as clumping is an important parameter in radiative transfer models (Yan 
et al., 2021). Similarly, we suggest that the influence of early summer 
‘flowering’ by pine stamens is investigated further using for example 
UAV-based LiDAR remote sensing or by using static sensors that are 
placed above the canopy. 

The footprint size that we investigated was 35–40 cm. WF features 
are influenced by beam divergence as shown in an observational study 
by Korpela (2017), who compared footprint diameters 11, 22, 40 and 59 
cm in 1064-nm data. It is likely that the phenological patterns will 
exhibit variation when the scale changes as the canopy gap size distri-
bution depends on the species. The wavelength will also exercise an 
effect as the relative differences of bark and foliage reflectance vary 
between species (Rautiainen et al., 2018). Hence more studies using 

accurate simulators or experimental data are needed. The use of UAV- 
based systems or permanently installed laser scanners may help the 
experimenters. 

Based on our findings in dead spruce, we propose further research 
that explores how tree age and the ‘aging’ of dead standing trees in-
fluences WF features as these changes must be accounted for in the 
detection and species identification of dead standing trees. 

4.4. Conclusions 

Leaf-off deciduous trees did not display similar patterns of WF 
feature changes due to phenology, but the patterns were influenced by 
between-species differences of bark reflectance, branching pattern and 
leaf-orientation. This opens up possibilities for enhanced tree species 
identification in WF data using even the combination of leaf-off and leaf- 
on data. The ‘echo width anomaly’ in aspen, high 1550-nm reflectance 
of dead standing spruce, high winter reflectance of larch and low leaf-off 
signals in birch comprise features that may prove useful. However, the 
separation of pine and spruce in 1550-nm data may pose issues if that 
wavelength is used. Aspen is an ecologically important species, and the 
monitoring of tree mortality constitutes a topical issue. However, we 
only studied dead spruce and more research is needed in other important 
species. 

We showed that even subtle geometric-optical changes in vegetation 
can be observed if the (WF) LiDAR acquisitions are repeated in appro-
priate weather, and by using the same trajectories and sensor settings. 
The response of the sensor has to be known so that range-normalization 
successfully removes the effects by spherical losses that are substantial 
in LiDAR remote sensing. Phenology was found to influence WFs, even 
when contrasting early and late summer acquisitions. Especially 
regarding species identification using WF features, it is important that 
LiDAR data acquisition is not initiated until the ‘late species’, such as 
aspen in our study area, have reached full leaf. 
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