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a b s t r a c t 

This article concerns a variant of moving target travelling salesman problem where the number and lo- 

cations of targets vary with time and realizations of random trajectories. Managerial objectives are to 

maximize the number of visits to different targets and to minimize the total travel distance. Employing 

a linear value function for finding supported Pareto-efficient solutions, we develop a two-stage stochastic 

programming model. We propose an iterative randomized dynamic programming ( RDP) algorithm which 

converges to a global optimum with probability one. Each iteration in RDP involves a randomized back- 

ward and forward recursion stage as well as options for improving any given schedule: swaps of targets 

and optimization of timing for visits. An integer linear programming (ILP) model is developed and solved 

by a standard ILP solver to evaluate the performance of RDP on instances of real data for scheduling 

an environmental surveillance boat to visit ships navigating in the Baltic Sea. Due to a huge number 

of binary variables, the ILP model in practice becomes intractable. For small to medium size data sets, 

the Pareto-efficiency of solutions found by RDP and ILP solver are equal within a reasonable tolerance; 

however, RDP is significantly faster and able to deal with large-scale problems in practice. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

This article addresses a case study problem arising from a real- 

world application of a surveillance boat measuring greenhouse gas 

emissions of ships (targets) navigating during a given time hori- 

zon in a specific sea area called the work area . The boat performs 

mobile measurements when it is in the vicinity of a ship. Gener- 

ally we are interested in as many ships to be measured as possi- 

ble in an itinerary; in practice, measuring all ships appearing in 

the work area during one working shift is not possible. On the 

other hand, we aim to find the minimum cost of operation which 

is in conflict with maximizing measurements. Therefore, we need 

to find the largest possible subset of ships to be visited in an opti- 

mal sequence, such that it leads to minimum possible cost (travel 

distance). The trajectories and the velocities of the ships during 

the day are predicted shortly before the measurement tour starts; 

however, predicted locations often have deviations from actual lo- 

cations over the day. Major deviations in the predicted locations 

may make the predetermined itinerary impossible to implement 
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especially when the schedule is tight. To deal with the uncertainty 

involved in this problem, we introduce a new stochastic moving 

target travelling salesman problem (MT-TSP) based stochastic pro- 

gramming (SP), and propose a method for finding an optimal rout- 

ing of the surveillance boat which maximizes the number of mea- 

surement visits and minimizes the total travel distance via maxi- 

mizing the expected value of a linear value function. 

The deterministic bi-criteria integer linear programming (ILP) 

model underlying our case problem is introduced by Maskooki & 

Nikulin (2020) based on predicted trajectories of moving targets; 

it is an extension of the time dependent TSP (TD-TSP) by Picard 

& Queyranne (1978) . The Pareto optimal frontier of the determin- 

istic MT-TSP can be efficiently estimated by a customized genetic 

algorithm introduced by Maskooki, Deb, & Kallio (2022) . Regarding 

the uncertainty of the deterministic optimization, Maskooki, Virjo- 

nen, & Kallio (2021) assess the prediction uncertainty by employ- 

ing a risk measure in a mean-risk framework ( Ruszczynski & Van- 

derbei (2003) ). The risk measure helps the decision maker evalu- 

ate alternative a priori itineraries based on predictions, and make 

a balanced risk-adjusted decision. However, the plan is adopted for 

implementation independent of the realized locations observed af- 

terwards. Instead, we extend the deterministic model by providing 

https://doi.org/10.1016/j.ejor.2023.01.009 
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SP based decision support to the manager at the time of choosing 

an itinerary plan. 

The deterministic version of our problem pertains to a spe- 

cific type of MT-TSP introduced by Kryazhimskiy & Savinov (1995) . 

Their work was followed, for instance, by Hammar & Nilsson 

(2002) ; Hassoun, Shoval, Simchon, & Yedidsion (2020) ; Helvig, 

Robins, & Zelikovsky (2003) ; Jiang, Sarker, & Abbass (2005) , and 

Choubey (2013) ; all of these instances assume that targets move 

linearly with constant velocities. Although there is a vast body of 

literature on dynamic TSPs, MT-TSP variant is quite rarely discussed 

in literature. Bourjolly, Gurtuna, & Lyngvic (2006) ; Groba, Sartal, & 

Vázquez (2015) , and Viel, Vaultier, Wan, & Jaulin (2019) consider 

some variants of the problem, where the target locations can be 

defined arbitrarily, and propose problem specific methods. MJHB 

(2006) reports a case study on maritime surveillance proposing on- 

line search heuristics adapted for a dynamic environment. How- 

ever, the problem formulations in the above MT-TSPs differ from 

our deterministic model version. 

The deterministic version of our problem also shares some of 

the elements of the orienteering problem ( Golden, Levy, & Vohra, 

1987 ), prize-collecting TSP ( Balas, 1989 ), and time-dependent TSP 

(TD-TSP) ( Abeledo, Fukasawa, Pessoa, & Uchoa, 2013; Donati, Mon- 

temanni, Casagrande, Rizzoli, & Gambardella, 2008; Furini, Per- 

siani, & Toth, 2016; Malandraki & Daskin, 1992; Malandraki & Dial, 

1996; Picard & Queyranne, 1978; Vu, Hewitt, Boland, & Savels- 

bergh, 2019 ). In the orienteering problem the goal is to visit as 

many nodes as possible subject to a given resource restriction on 

the tour. In a prize-collecting version the problem is to construct 

a tour which maximizes the sum of prizes collected (from visits 

to targets) minus the total travel cost. The time varying version of 

orienteering and prize-collecting TSPs, as well as standard TD-TSP 

formulation however cannot be used directly in our case. Since in 

those models target locations are fixed and the time to traverse a 

given arc varies, depending on the departure time from the origin 

node; in other words, the travel cost between two targets depends 

on the ordinality of targets in the sequence of visits and, unlike in 

our problem, real time is not considered. Furthermore, a commonly 

used objective function for TD-TSP models is to minimize the du- 

ration of the tour without permitting waiting at a node during its 

time window. 1 Therefore, as an assumption, a later departure can- 

not lead to an earlier arrival. However, in the case of moving tar- 

gets, such assumption does not hold. 

The literature includes a large number of probabilistic variations 

of TSP as well. The uncertainty and dynamic features in the under- 

lying TSP can refer, for instance, to customer demand, customer lo- 

cations, travel time, dynamically revealed random edge costs, sub- 

set of nodes to be visited, and delivery times of goods to a sup- 

plier’s distribution system; see e.g., Bertsimas (1992) ; Bertsimas & 

Ryzin (1991) ; Jaillet (1988) ; Laporte, Louveaux, & Mercure (1992) ; 

Toriello, Haskell, & Poremba (2014) , and Archetti, Feillet, Mor, & 

Speranza (2020) . 

There are two basic approaches to deal with uncertainty in op- 

timization. First, in a priori optimization ( Florio, Hartl, & Minner, 

2020; Zhang, Ohlmann, & Thomas, 2014 ) the planner chooses the 

route based on probabilistic information and the plan is adopted 

independent of the realizations of the uncertainties observed af- 

terwards. Second, in adaptive optimization a dynamic response fol- 

lows observed realizations of random events. A priori approaches 

include chance-constrained programming ( Blackmore, Ono, & 

Williams, 2011 ) and robust optimization ( Ben-Tal, El Ghaoui, & Ne- 

mirovski, 2009; García & Peña, 2018; Zhang, Jia, Zhu, Adulyasak, 

& Ma, 2023 ). A large share of studies focuses on adaptive setting 

1 Waiting occurs only if the arrival time at a location is before the beginning of 

its time window. 

where random realizations are revealed over time while travelling 

along the chosen route. Such plan may be stated in terms of an 

optimal policy which defines state-dependent optimal choices for 

the problem; see e.g., Toriello et al. (2014) . 

Toriello et al. (2014) address a fairly similar stochastic prob- 

lem to our case. They formulate their problem as a valid dynamic 

programming (DP) problem following Bellman (1962) , and Held & 

Karp (1962) . The state (node in the network) indicates the target, 

the set of remaining targets to be visited and the realized cost from 

the current target to all remaining targets. Approximate linear pro- 

gramming is proposed for solving their problem. Similarly, we have 

random costs (distances) associated to subsequent visits of targets, 

but unlike in Toriello et al. (2014) , we cannot assume that at the 

time of arrival to a target, the distances to the remaining targets 

(not yet visited) are deterministic. Besides, the DP for an ordinary 

TSP in Bellman (1962) ; Held & Karp (1962) is intractable for all but 

the smallest instances, and the dynamics and uncertainty in our SP 

make the situation even worse. 

A different restricted DP algorithm is proposed in Malandraki 

& Dial (1996) for solving TD-TSP to avoid the explosion of time 

and storage requirements by the exact DP. At each stage of the 

recursion, the method in Malandraki & Dial (1996) retains only 

the most promising partial tours, and the number of such partial 

tours is a user specified parameter. The heuristics of Malandraki 

& Dial (1996) does not guarantee optimality. In our randomized 

DP method, we use empirical probabilities to restrict the choice of 

nodes, but allow asymptotic convergence. 

For modeling uncertainty a widely used method is stochastic 

programming (SP) proposed by Dantzig (1955) ; for subsequent de- 

velopments, see e.g., Birge & Louveaux (2011) ; Shapiro, Dentcheva, 

& Ruszczy ́nski (2009) . In SP a limited number of scenarios with 

their occurrence probabilities are generated to fit given distribu- 

tions. In multi-stage SP the scenarios form a tree where branches 

originating from nodes reveal accumulating information on re- 

alizations of uncertainty over time stages. Choices are contin- 

gent to such information and the expected value of the objec- 

tive function is determined based on the scenarios. Input data 

for SPs may be continuous distributions or a large data set pro- 

viding an empirical discrete distribution of realizations. For sce- 

nario generation methods, see e.g. Kaut & Wallace (2007) . Most 

of the stochastic vehicle routing problems can be modeled as 

two-stage SPs Oyola, Arntzen, & Woodruff (2018) , see for in- 

stance studies by Adasme, Andrade, Leung, & Lisser (2016) for TSP 

with both deterministic and uncertain edge weights, Beraldi, Ghi- 

ani, Musmanno, & Vocaturo (2010) on probabilistic multi-vehicle 

pickup and delivery problem, and Jabali, Rei, Gendreau, & Laporte 

(2014) on capacitated vehicle routing problem with stochastic 

demands. 

As discussed above, the problem of our interest is a new 

stochastic MT-TSP which shares some of the elements of the vari- 

ants mentioned above but differs fundamentally from these mod- 

els. First, in our MT-TSP, the locations of nodes (targets) are non- 

stationary and random; second, each target is only accessible in a 

given time window which can also be random; third, all targets 

need not be visited. We adopt two-stage stochastic programming 

to model uncertainty in target trajectories of our MT-TSP. To deal 

with the two criteria, we employ a linear value function whose ex- 

pected value is maximized. 

Our two-stage SP is in harmony with conventional multi-stage 

SP where new information is revealed at the end of the first stage 

and subsequent choices in the model account for such information. 

While using multi-stage SP, the decision maker is primarily inter- 

ested in finding best choices in the first stage; at the end of the 

first stage period, the model is revised based on updated informa- 

tion. Likewise, our two-stage SP is proposed for use in a rolling 

horizon basis where the second stage only serves for choosing a 
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good solution for the first stage to be implemented; at the end of 

the first stage, the subsequent model with refreshed information is 

considered. 

In the state space formulation by Bellman (1962) ; Held & Karp 

(1962) and Toriello et al. (2014) , the role of the set of remaining 

targets is to ensure that each target will be visited (at most) once. 

We propose to deal with this condition differently. As suggested 

by Stieber & Fügenschuh (2022) we use a discrete time formula- 

tion. We let the state (node in the network) indicate the location 

of the target in a (discrete) time slot and use recursions similar to 

DP for finding a tour; however, to avoid duplicate visits to targets, 

we need to keep track of the set of targets recursively chosen for 

visits. Thereby, standard stochastic DP (SDP) recursion can be used 

to produce a feasible solution for our SP; however, the conditions 

required for DP ( Bellman, 1957 ) to yield an optimal solution are vi- 

olated, and consequently, such SDP solution can be far from opti- 

mal. To overcome this drawback, unlike in SDP, we propose an iter- 

ative randomized dynamic programming ( RDP ) algorithm with al- 

ternating and interacting backward and forward recursions where 

subsets of nodes (states) are randomly drawn at each stage of the 

recursions. In backward recursions, such random draws employ the 

statistics of best tours produced by forward recursion (and vice 

versa). We provide a proof that the best solution found over it- 

erations converges with probability one to an optimal solution in 

theory. We also show that a near optimal solution can be expected 

in early iterations of RDP . 

We formulate an ILP model for our two-stage SP and solve it 

by an ILP solver, in order to evaluate RDP solutions in terms of the 

quality with respect to the run time RDP takes to return such so- 

lution. It also helps estimate the average rate of convergence to 

the optimal solution in general. For generating scenarios of tar- 

get trajectories, we introduce an antithetic simulation based on a 

stochastic model of deviations of realized trajectories from pre- 

dicted ones. We employ instances of real data for scheduling a 

surveillance boat to visit ships navigating in the Baltic Sea. For 

large-scale test instances, due to a large number of binary vari- 

ables, the ILP model could not be solved to be used for qual- 

ity evaluation. However For small to medium size data sets, the 

Pareto-efficiency of solutions found by RDP and ILP solver are 

equal within a reasonable tolerance; Furthermore, RDP is signif- 

icantly fast and able to deal with large-scale problems in prac- 

tice. In addition, based on the experimental results, we show that 

an efficient solution (an optimal or a near optimal solution suffi- 

cient for practical purposes) can be expected in early iterations of 

RDP . 

An important and general aspect of the proposed RDP approach 

is that it shows how dynamic programming can be modified to 

solve large-size network optimization problem formulations, which 

violate the necessary conditions for standard DP to yield an opti- 

mal solution. In particular, our numerous (over 200) test instances 

with RDP on real-world problems show a highly promising perfor- 

mance and usefulness in practical applications. 

The rest of the paper is organized as follows. Section 2 de- 

fines the deterministic routing problem, two-stage stochastic pro- 

gramming for the routing problem, and ILP model for the two- 

stage stochastic programming. Sections 3 and 4 introduce the 

solution method ( RDP ). It begins with the concept and for- 

mulation used for the deterministic case, followed by discus- 

sion on how it is extended for solving the two-stage stochastic 

version. Section 5 presents numerical results using real-life in- 

stances.Finally, a conclusion briefly summarizing the main contri- 

butions and anticipated future work is given in Section 6 . An Ap- 

pendix in the supplementary material includes the convergence 

proof for RDP , optional improvement steps for RDP solutions, a dis- 

cussion on a trajectory prediction approach, and a stochastic model 

for scenario generation. 

2. Optimal routing in a dynamic network 

As mentioned, the problem of our case study arises from a real- 

world application of an emission control boat measuring green- 

house gas emissions of ships in the work area. We introduce a 

new version of MT-TSP with the following features: (i) The num- 

ber of targets change over time. (ii) Targets have time windows 

during which they can be visited; the window starts when the 

ship enters the work area and ends when it leaves the area. (iii) 

The trajectories of the moving targets and their varying velocities 

can be defined freely. (iv) The total number of targets to be visited 

is endogenous, and in general, visiting all targets is not possible 

given the time windows of targets, the time horizon, limited work 

area and the speed of the surveillance boat. (v) The problem is bi- 

criteria: maximize the number of measurement visits and mini- 

mize the total travel distance of the boat. (vi) Due to prediction 

errors, trajectories of the targets involve uncertainty. 

Given a set of moving targets passing through the work area in 

a given day we consider a time horizon T = [ t 0 , t 2 ] . For two-stage 

SP, we further subdivide the horizon into the first stage [ t 0 , t 1 ] and 

second stage [ t 1 , t 2 ] . The predicted locations in early hours of the 

planning horizon are more precise than in later hours. Therefore, 

we assume known target locations over the first stage [ t 0 .t 1 ] , and 

use a finite number of scenarios for trajectories over the second 

stage [ t 1 , t 2 ] . To deal with the two criteria, we employ a linear 

value function 2 and maximize its expected value given the set of 

scenarios. Even though we use the value function as a single cri- 

terion, we solve a bi-criteria problem. Consequently, all targets are 

not necessarily visited. 

The problem can be cast as an ILP model; however, even the 

deterministic case may well be intractable, and thus impractical 

for large-size real-world data sets; for examples, see Table B.3 in 

Maskooki et al. (2022) . To avoid the curse of dimensionality in the 

ILP problem, we develop a randomized dynamic programming ap- 

proach ( RDP ), employing iteratively interacting backward and for- 

ward recursions. Our case study in Section 5 shows that such in- 

teractive exchange of information is essential for RDP to work at 

best for our SP. 

Although the focus of our article is on stochastic programming 

for optimal routing, it is convenient to begin by introducing RDP 

for the deterministic case. Therefore, Section 2.1 states the deter- 

ministic routing problem, then Section 2.2 presents the two-stage 

SP problem and Section 2.3 its ILP formulation. Thereafter, RDP is 

introduced in Sections 3 and 4 . 

2.1. The deterministic routing problem 

Consider the time span T with a set N = { 1 , 2 , . . . , n } of n tar- 
gets i present in the work area during this time span. Let i = 0 re- 

fer to the depot. In order to formulate and solve the problem, we 

discretize the time horizon into m time slots k = 1 . . . m of equal 

length w , where mw = t 2 − t 0 and time slot k refers to the inter- 

val [ t 0 + (k − 1) w, t 0 + kw ) . Let the time slot k = 0 denote the ini- 

tial time t 0 . Thus, the time s k at the beginning of time slot k is 

s k = t 0 + (k − 1) w, for k > 0 , and s 0 = t 0 . 

Since the length w is chosen relatively small compared to T and 

the speeds of the targets (ships) are modest, for the sake of sim- 

plicity in the model, we assume the location of targets remain un- 

changed during each time slot. 

2 Only supported Pareto points can be generated using a linear value function; 

however, for our scheduling problems in practice, the efficient frontier is expected 

to be almost convex; for deterministic examples, see Maskooki et al. (2022) where 

only some least interesting Pareto points associated with a small number of visits 

are missed by a linear value function. 
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Fig. 1. Part of a directed network with time slots k = 1 , 2 , 3 and nodes v ik for i = 

1 , 2 , 3 . Edges from and to the depot are not shown. 

We define a network flow model over a layered graph, where 

each layer corresponds to a given time slot k , k = 0 , 1 , 2 , . . . , m , and 

consists of nodes v ik ∈ R 2 , for i ∈ N ∪ { 0 } present at time slot k . Each 

node v ik is a coordinate vector stating the location of target i in the 
work area at time slot k ; for an illustration, see Fig. 1 . Let S i be the 

set of time slots when target i is present in the work area. The de- 

pot node is present in all layers k ; hence S 0 = { 0 , 1 , . . . , m } and the 
traveler can initiate from and return to the depot at any time to 

complete the tour. However, for notational convenience and with- 

out loss of generality, we assume the tour starts at time slot k = 0 

and ends at time slot k = m . Each arc (ik, jl) from node v ik to v jl 
connects nodes in distinct layers k and l, k < l. The length of time 

slots is chosen short enough not to include more than one process- 

ing (measurement in our case). Hence, the nodes of the graph in 

the same layer are not connected. 

For the deterministic model, we assume the locations of n tar- 

gets are based on accurate predictions within the time horizon. 

The length of each arc (ik, jl) is defined by the Euclidean distance 

d 
jl 

ik 
= ‖ v ik − v jl ‖ . The speed of the boat is assumed to be limited 

by a fixed value c. Therefore, corresponding to each distance d 
jl 

ik 
there is a minimum travel time with a speed c which is denoted 

by t 
jl 

ik 
= d 

jl 

ik 
/c. Visiting target i needs a processing time p i before 

leaving and visiting the next target; let p i = p, for all i ∈ N and let 

p 0 = 0 , for the depot. 

The arc (ik, jl) indicating travel from node v ik to v jl is defined 
only if i � = j and both nodes v ik and v jl are in the work area: k ∈ S i 
and l ∈ S j . Furthermore, the arc (ik, jl) is not feasible 3 if s k + p i + 

t 
jl 

ik 
≥ t 0 + wl. In such instances, the arc (ik, jl) is omitted from the 

network. Formally, we define the set � of admissible arcs in the 

network as follows: 

� = { ( ik , jl ) | i, j ∈ N ∪ { 0 } , i � = j, k ∈ S i , l ∈ S j , 

k < l, s k + p i + t jl 
ik 

< t 0 + wl} . (1) 

For the two criteria, we denote the number of nodes (targets) 

visited during the time horizon T by α, and the total travel dis- 

tance from the depot to the targets to be visited and back to the 

depot by z. One may solve the problem by determining the effi- 

cient frontier first and letting the user choose the most preferred 

solution thereafter; see Maskooki & Nikulin (2020) and Maskooki 

et al. (2022) . Instead, for finding supported Pareto-optimal solu- 

tions, we employ a linear value function λα − z to be maximized; 

it is a linear combination of the two objectives with a weight- 

ing parameter λ > 0 defining preferences in terms of trade-off

among the objectives. Hence, we employ the standard weighted 

sum method for our bi-criteria problem. 

3 Even if the processing of target i starts at time s k , at the beginning of time slot 

k , the arrival time in the location v jl is beyond the time slot l, given the maximum 

speed of the boat. 

Definition 1 (Feasible deterministic tours) . A deterministic tour 

π = { v ik } is an ordered set (a sequence) of nodes defining an 

itinerary plan starting with node v 00 at the depot, visiting a num- 

ber of targets i ∈ N in time slots k in locations v ik and returning to 
the depot at v 0 m 

. A tour π is feasible, if each target is visited at 

most once, and the arcs along the tour π are in the admissible set 

�. Given a feasible tour π , σ (π ) denotes the ordered set defining 

the sequence of targets i � = 0 visited in tour π . 

For a feasible tour π , let α(π) be the number of targets vis- 

ited, z(π ) the total travel distance and V (π ) the value function. 

Given the weight λ, the problem is to find a tour π in the set �

of feasible tours to maximize the linear value function: 

max 
π∈ �

V (π ) = λα(π ) − z(π ) . (2) 

We assume that the weight λ reflects the user’s trade-off pref- 

erences. It can be estimated by a simple trade-off question: Given 

α and z, how many extra kilometres δ is accepted by the user at 

most in return to an extra ship visited. The parameter λ is then de- 

termined by indifference equation λ(α + 1) − (z + δ) = λα − z and 

thus λ = δ as a reward in kilometer per one extra visit. To tackle 

the problem (2) , an ILP formulation is possible (see Section 2.3 ) 

but in practice it suffers from a huge number of binary variables. 

Instead, we adopt concepts of DP to develop an alternative solution 

method applicable in practical situations. 

2.2. Two-stage stochastic programming for the routing problem 

Next, we introduce the two-stage SP problem for optimal rout- 

ing. For the locational uncertainties, we note that target locations 

during early hours in T 0 = [ t 0 , t 1 ] , t 0 < t 1 < t 2 , of the planning hori- 

zon are known with a higher precision than during later hours in 

T 1 = [ t 1 , t 2 ] . Thus, we assume accurate predictions for target loca- 

tions over early hours t 1 − t 0 . For the rest of the day we use a set 

of M equally likely scenarios s , s ∈ C = { 1 , . . . , M} , of trajectories for 
targets. As in Section 3 , we assume there is at least one visit in the 

deterministic period T 0 at an optimum. 

For two-stage SP, we use our previous discretization of the time 

horizon into m time slots k of length w and let time slot k = 0 

refer to time t 0 . The deterministic time span [ t 0 , t 1 ] , is such that 

t 1 = t 0 + wk ∗, for some positive integer k ∗ < m . Hence, k ∗ is the last 

time slot in T 0 . For the deterministic time period T 0 , let N 0 be the 

set of targets expected to appear in the work area and the coordi- 

nate vector v ik , the location of target i ∈ N 0 at time slot k , is given 

by the prediction. 

Again, we define a network flow model over a layered graph, 

where each layer corresponds to a given time slot k , k = 

0 , 1 , 2 , . . . , m . For the first stage T 0 , layer k includes nodes v ik , for 
targets i ∈ N 0 ∪ { 0 } present in the work area at time slot k . For the 

second stage T 1 , let N s be the set of targets appearing in the work 

area in scenario s . The graph involves a sub-layer for each sce- 

nario s consisting of nodes v (s ) ik , for i ∈ N s present at time slot 

k > k ∗. Additionally, the layer at k ∗ at the end of T 0 may contain 

of dummy nodes v (without a target) serving as possible transition 

nodes from T 0 to the scenarios in T 1 ; it may be desirable to travel 

to a location v even though there is no target but that may be 

close to many potential target sites by the time the realized sce- 

nario is observed. Then the location v is subject to optimization as 

well. However, we tested real-world problems with such a transi- 

tion formulation and conclude that instead it is justified to use a 

relaxation to be defined and justified below. 

As before, let S i be the set of time slots when target i ∈ N 0 is 

present in the work area during T 0 . For each scenario s , let S si be 

the set of time slots when target i ∈ N s is present in the work 

area during T 1 . The depot node is present in all layers k ; hence 

S 0 = S s 0 = { 0 , 1 , . . . , m } and the boat can initiate from and return 
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to the depot at any time to complete the tour. However, as in the 

deterministic case, for notational convenience and without loss of 

generality, we assume the tour starts at time slot k = 0 and ends 

at time slot k = m . 

For T 0 , let an arc (ik, jl) , where i, j ∈ N 0 ∪ { 0 } with i � = j, j � = 0 

and 0 ≤ k < l ≤ k ∗, indicate travelling from node v ik to v jl . The set 
� of admissible arcs accounting for timing requirements is given 

by 

� = { ( ik , jl ) | i ∈ N 0 ∪ { 0 } , j ∈ N 0 , i � = j, k ∈ S i , l ∈ S j , 

k < l, s k + p i + t jl 
ik 

< t 0 + wl} . (3) 

A similar definition holds for the second stage T 1 during each 

scenario s , where v (s ) ik indicates the location of target i at time 

slot k in scenario s . Given scenario s ∈ C, let arc (ik, jl) with i, j ∈ 

N s ∪ { 0 } , i � = j, i � = 0 and l > k > k ∗ corresponds to travelling from 

node v (s ) ik to node v (s ) jl . Furthermore, definitions of travel dis- 

tance and travel time between two consecutive targets become 

scenario dependent accordingly, i.e. d(s ) jl 
ik 

= ‖ v (s ) ik − v (s ) jl ‖ and 
t(s ) jl 

ik 
= d(s ) jl 

ik 
/c are the travel distance and time, respectively, be- 

tween the two locations (nodes) v (s ) ik and v (s ) jl . For scenario s , 
the set �(s ) of admissible arcs in T 1 is 

�(s ) = { ( ik , jl ) | i ∈ N s , j ∈ N s ∪ { 0 } , i � = j, k ∈ S si , l ∈ S s j , 

k < l, s k + p i + t(s ) jl 
ik 

< t 0 + wl} . (4) 

For modeling the transitions from the first stage T 0 to scenario 

s ∈ C of the second stage T 1 we use a relaxation to be explained 

shortly. We let the transition occur from time slot k ≤ k ∗ to time 

slots l > k ∗ of scenario s , and define a distinct arc (ik, jl) where 

i ∈ N 0 , j ∈ N s ∪ { 0 } and i � = j to indicate travelling from coordinate 

v ik to v (s ) jl ; the distance of the transition is d ′ (s ) jl 
ik 

= ‖ v ik − v (s ) jl ‖ , 
the travel time is t ′ (s ) jl 

ik 
= d ′ (s ) jl 

ik 
/c and the set �′ (s ) of admissible 

arcs is given by 

�′ (s ) = { ( ik , jl ) | i ∈ N 0 , j ∈ N s ∪ { 0 } , i � = j, k ∈ S i , 

l ∈ S s j , s k + p i + t(s ) jl 
ik 

< t 0 + wl} . (5) 

A tour π in our SP formulation is a tree, connecting the root 

node v 00 to the terminal nodes v (s ) 0 m 
for all scenarios s ∈ C; π

defines a sequence of nodes (visits) in T 0 as well as in each sce- 

nario s ∈ C of period T 1 . Arcs along the tour π are in the set � in 

T 0 and in �(s ) in T 1 for each scenario s ∈ C. At the time of tran- 

sition from a node in T 0 to a node in scenario s ∈ C, the arc is in 

�′ (s ) . 

Definition 2 (Feasible tours for SP) . Tour π is feasible, if the arcs 

along the tour are admissible (defined by (3) –(5) ), each target is 

visited at most once during the entire time horizon T , and there is 

a unique transition node v ˆ i ̂ k in T 0 from which transition occurs to 

some node v (s ) jl of scenario s , for all s ∈ C. The node v ˆ i ̂ k is the last 
node to be visited in T 0 with ˆ i ∈ N 0 and ˆ k ≤ k ∗. 

The value function in (2) is replaced by the expected value 

V (π ) of the linear value function with equal probabilities over M

scenarios. Given a tour π , let α0 and αs denote the number of vis- 

its in T 0 and in scenario s ∈ C, respectively; similarly, let z 0 and z s 
denote the travel distance in T 0 and in scenario s (starting from 

the transition node), respectively. Given the set � of feasible tours 

π and a weight λ > 0 for the value function, the problem of maxi- 

mizing the expected value of the linear value function is as follows 

max 
π∈ �

V (π ) = λα0 (π ) − z 0 (π ) + (1 /M) 
∑ 

s 

(λαs (π ) − z s (π )) . (6) 

As mentioned, our formulation for transition from T 0 to T 1 in- 

volves a relaxation. In principle, the transition occurs at the end of 

T 0 from some node v where the scenario realization is observed. 

Such a dummy node v , may reside anywhere in the work area and 

the coordinate vector v is subject to optimization along with the 

rest of the tour. To see how and why we use a relaxation, consider 

a tour π which may or may not include a dummy transition node 

v . Suppressing targets and time slots, let v 0 in π denote the last 

node (with a target) in T 0 and let node v s in π be the first node 

in scenario s , for all s . Suppose π = π̄ is an optimal tour with an 

optimal dummy node v and let V̄ = V ( ̄π) be the optimal value. In 

this tour, the travel from location v 0 to v s proceeds first from v 0 to 
v and then from v to v s . To avoid excessive computations related to 

optimal choice of the dummy node v , we use a relaxation of trav- 

elling directly from v 0 to v s , for all s . The shortcuts from v 0 to v s in 
π̄ lead to a feasible tour π ′ for our relaxed problem with a value 

V (π ′ ) ≥ V̄ . If V ∗ is the optimal value for the relaxed problem, then 

V ∗ ≥ V (π ′ ) ≥ V̄ and 	V = V ∗ − V̄ ≥ 0 is the relaxation error. 

Our relaxation is justified as follows. (i) In an optimal tour π of 

the relaxed SP the last node v 0 in T 0 often is at the end of T 0 , and 
v = v 0 is optimal for the non-relaxed problem as well. (ii) Similarly, 

if the node v 0 in the optimal tour π of the relaxed SP is such that 

the surveillance boat can wait at v 0 until the end of T 0 , and there- 
after there is sufficient time to reach each node v s , then v = v 0 is 
optimal for the non-relaxed problem too. (iii) In other cases the 

relaxation error is expected to be small because the time slot of 

visiting v 0 in real-world problems with many targets is likely to be 

close to the end of T 0 . (iv) At the end of Section 5 we estimate the 

relaxation error in 153 case study problems; on average the error is 

found negligible. (v) We also explore the extra computational effort 

due to optimizing the location of the dummy node. Using a grid 

of 1320 alternative dummy nodes covering the work area, the ILP 

approach is intractable for all but the smallest problem instances 

with time horizon | T | = 4 hours. For RDP employing the same grid 

for dummy nodes, the computing time for | T | = 4 , . . . , 12 hours 

and M = 6 , . . . , 100 increases by a factor ranging from 4 to 12 de- 

pending on T and M. 

2.3. ILP model for two-stage stochastic programming 

For the formulation of the two-stage problem of Section 2.2 as 

an ILP problem, we define the set of binary variables by admissi- 

ble arcs defined by (3) –(5) . Hence, in stage T 0 , for all (ik, jl) ∈ �

we have a binary variable x 
jl 

ik 
, in stage T 1 for scenario s ∈ C and for 

all (ik, jl) ∈ �(s ) , we have a binary variable x (s ) jl 
ik 
, and for tran- 

sition from T 0 to scenario s ∈ C, for all (ik, jl) ∈ �′ (s ) we have a 

binary variable x ′ (s ) jl 
ik 
. The value of a binary variable is 1 if and 

only if the corresponding arc is included in the tour. For sum- 

mation over binary variables it is convenient to use the dot no- 

tation: a dot replacing an index means summation over the in- 

dex it replaces. For example, for binary variables x 
jl 

ik 
for stage T 0 , 

x ••
ik 

= 

∑ 

jl x 
jl 

ik 
where the set of pairs of indices jl is defined by the 

requirement (ik, jl) ∈ �. Similarly, dot notation applies to binary 

variables x (s ) jl 
ik 

and x ′ (s ) jl 
ik 
. 

As mentioned above, we assume that the optimal plan over 

T = [ t 0 , t 2 ] is such that the number of visits during T 0 = [ t 0 , t 1 ] is 

positive. The following constraint ensures exactly one departure 

from depot i = 0 : 

x ••
0 • = 1 (7) 

Given that exactly one tour is chosen for each scenario s , there is 

exactly one arc (ik, 0 l) chosen to enter the depot for each scenario. 

This is achieved by the following terminal constraint: 

x ′ (s ) 0 m 

•• + x (s ) 0 m 

•• = 1 ∀ s ∈ C. (8) 

If the first component in the left side of Eq. (8) is equal to 1 for 

a scenario s , then there are no visits to targets during T 1 in that 

scenario. 
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We define the intermediate flow constraints in T 1 = [ t 1 , t 2 ] for 

each scenario s and nodes v (s ) ik as follows: 

x ′ (s ) ik •• + x (s ) ik •• = x (s ) ••
ik ∀ i ∈ N s , k ∈ S si , s ∈ C. (9) 

Here the right side is always 0 or 1 by (8) and (9) . In case it is 

1, there are two possibilities for each scenario s ; either (i) node 

v (s ) ik is the first node visited when entering scenario s in period 

T 1 (then the first component on the left side is equal to 1 so the 

second component must be 0) or (ii) node v (s ) ik is not the first 
node visited during the period T 1 (then the second component on 

the left side is 1 and the first is 0). 

In T 0 = [ t 0 , t 1 ] , the intermediate flow constraints for node 

v ik , i ∈ N 0 , k ∈ S i ( 0 < k ≤ k ∗) is as follows: the immediate prede- 

cessor target j ∈ N 0 ∪ { 0 } is visited at time slot l < k with l ≥ 0 and 

j � = i , and for the immediate successor target, either (i) there is a 

j ∈ N 0 visited at time slot l > k with l ∈ S j and j � = i , or (ii) for all 

s ∈ C, there is j ∈ N s ∪ { 0 } visited at time slot l ∈ S s j and j � = i . This 

is ensured by the following flow conservation constraints: 

x ik •• = x ••
ik + x ′ (s ) ••

ik ∀ i ∈ N 0 , k ∈ S i , s ∈ C. (10) 

Here the left side is always equal to 0 or 1 by (7) and (10) . If the 

left side is 1, then either (i) node v ik is not the last node visited 
during T 0 , the first component on the right side is 1 and the second 

component on the right side must be 0 or (ii) node v ik is the last 
node visited during T 0 , the first component on the right is 0 and 

the second component x ′ (s ) ••
ik 

must be 1 for all scenarios s ∈ C. 

We also guarantee that each target i is visited at most once by 

the following inequality which should hold for each i ∈ N and for 

each scenario s ∈ C: 

x i ••• + x (s ) ••
i • ≤ 1 ∀ i ∈ N, s ∈ C. (11) 

Here the first component counts arrivals to target i ∈ N 0 (0 if i �∈ 

N 0 ) the second component counts departures from target i in sce- 

nario s (0 if i �∈ N s ). Note that if the first component on the left 

side of (11) is 1, then target i is only visited during T 0 ; otherwise 

either target i is visited later during T 1 in the scenario s , so that 

the second component is equal to 1, or target i is left non-visited, 

in which case both components are zero. 

The objective is to maximize the expected value of the linear 

value function with equal scenario probabilities as follows: 

Maximize V = λα0 − z 0 + 

1 

M 

∑ 

s ∈ C 
(λαs − z s ) (12) 

where λ is a weighting parameter reflecting the decision maker’s 

trade-off preferences. The component α0 is the number of targets 

visited during T 0 . It counts arrivals to all targets i ∈ N 0 as follows 

α0 = x ••
•• (13) 

The component αs is the number of targets visited in scenario s 

during T 1 , 

αs = x (s ) ••
•• ∀ s ∈ C (14) 

counting departures from all targets i ∈ N s . The component z 0 is 

the travel distance in the deterministic period T 0 , 

z 0 = 

∑ 

( ik , jl ) ∈ �
d jl 
ik 
x jl 
ik 

(15) 

and finally the travel distance z s for scenario s from the transition 

node to depot node during T 1 is as follows: 

z s = 

∑ 

( ik , jl ) ∈ �′ (s ) 
d ′ (s ) jl 

ik 
x ′ (s ) jl 

ik 
+ 

∑ 

( ik , jl ) ∈ �(s ) 

d(s ) jl 
ik 
x (s ) jl 

ik 
. (16) 

3. RDP for the deterministic case 

In this section, we consider the deterministic problem of 

Section 2.1 . We begin by discussing some DP-based concepts, and 

thereafter, we present the basic steps of the RDP algorithm for 

which the supplementary Appendix B introduces optional im- 

provement steps. Notations and concepts used in RDP for the de- 

terministic case are subsequently adopted in Section 4 to the two- 

stage SP model as well. 

3.1. Some DP considerations 

Based on the classical DP formulations for TSP ( Bellman, 1962; 

Held & Karp, 1962 ), our problem is in theory solvable using DP in 

a network specified as follows. Let (ik, I) be a node (state) where 

ship i in time slot k is in the location given by coordinate vector 

v ik , and I is the set of ships left for possible later visits. Initially, 

at the root node ik = 00 and I = N. At the end of T , ik = 0 m and 

I is an empty set or a set of ships not to be visited at all during 

T . Consider an arc, a transition, from node (ik, I) to node ( jl, J) . If 

travelling from node v ik to node v jl is admissible then we have 

(i j, kl) ∈ � in (1) and J = I\{ i } . Using DP backward recursion is 

straightforward. However, it is well known that such DP for an or- 

dinary TSP ( Applegate, Bixby, Chvâtal, & Cook, 2006 ) is intractable 

for all but the smallest instances, and alternative time slots k of 

the nodes of each ship i makes the situation even worse. 

In the DP formulation above, the role of the set I at node (ik, I) 

is to ensure that each ship i can be visited at most once. We deal 

with this condition differently. Our network is defined by nodes 

v ik , and a transition from node v ik to node v jl is admissible if the 

arc (ik, jl) ∈ �. The initial node is v 00 and the terminal node is 

v 0 m 
. In this network, we may carry out a standard DP backward re- 

cursion steps employing the linear value function as follows. Let V ik 
denote the value at node v ik based on the chosen sub-tour from v ik 
to v 0 m 

. At the terminal node, define V 0 m 
= 0 . Working backwards 

for k = m − 1 , m − 2 , . . . , 0 , at time stage k < m we assume the val- 

ues V jl have been evaluated for all j and l > k (such that node v l j 
is in the work area), and additionally, we have recorded the set of 

ships I jl which have been chosen for a visit in a sub-tour starting 

from node v jl and ending at v 0 m 
. When a transition is chosen at 

node v ik to an admissible node v jl , we require i �∈ I jl . The succes- 

sor node chosen by the standard DP rule maximizes the value V ik . 

At the root node V 00 is the value of the feasible tour produced by 

standard DP. 

The latter DP formulation shows how a feasible tour for (2) can 

be found. However, standard DP generally does not produce a 

global optimum for our routing problem (2) . The reason is that the 

conditions for applying DP are violated: while choosing a successor 

node at a node v ik , if node v jl is selected, it is possible that ship 
j in the global optimum is scheduled for a visit before time slot k 

(not after as DP would suggest). Thus, the violation of DP condi- 

tions is that the best choice at a node v ik can depend on choices 
preceding time slot k . This applies to both of our deterministic and 

stochastic cases. In the case study of Section 4.3 we show the sig- 

nificant average loss of optimality while applying the standard DP 

backward recursion for producing feasible solutions. 

3.2. Randomized dynamic programming (RDP) 

To avoid the drawback with standard DP, in RDP we use ran- 

domization and iterations to achieve asymptotic convergence to 

some optimal solution. In each iteration τ of RDP we perform (i) 

a backward recursion Br, (ii) a forward recursion F r and (iii) op- 

tional improvement steps (discussed in Appendix B).Recursion Br

( F r) is executed similarly as in standard DP; however, in RDP at 

node v ik the choice of a successor (predecessor) node is based on 
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Fig. 2. Empirical probabilities P τ
f 
( j, k ) (left) and P τ

b 
( j, k ) (right) for a ship j are represented schematically over time horizon k = 0 , . . . , m (after a number of iterations). At 

node v ik in Br ( F r), a feasible node v jl with l > k ( l < k ) is accepted as a candidate if r j > P f ( j, k ) ( r j > P b ( j, k ) ) for a random draw r j from U(- δ, κ). 

maximization of the value function over a set of candidate nodes 

which is a randomly drawn subset of feasible nodes used in the stan- 

dard DP. 

At the end of iteration τ , πτ denotes the best tour produced in 

iteration τ resulting from Br , F r or from the improvement steps; 

ˆ πτ is the best tour found in iterations 1 , 2 , . . . , τ and ˆ V τ = V ( ̂  πτ ) 

is its respective value. In the sequel, for other notation we fre- 

quently suppress τ . For instance, V ik and I ik in iteration τ stand for 

the value and the set of ships, respectively, in the sub-tour chosen 

in Br from node v ik to v 0 m 
; similarly in F r, V ′ 

ik 
is the value and I ′ 

ik 
is the set of ships in the sub-tour from the root node v 0 m 

to v ik . 
Due to randomization, these values and sets vary over iterations τ . 

i) Backward recursion: For Br in iteration τ , while choosing a 

successor node at v ik , for 1 < k < m and k ∈ S i , the depot node v 0 m 

is always accepted as a candidate provided it is admissible. For 

ships j � = 0 , we use randomization employing parameter P f ( j, k ) 

which is an empirical probability for ship j to be visited at time 

slot k or earlier . Let φik = { v jl | (ik, jl) ∈ �, i �∈ I jl } denote the set 
of feasible successor nodes at node v ik . The set of feasible targets 
is J ik = { j| v jl ∈ φik for some l} . At node v ik , for each j ∈ J ik , nodes 

v jl ∈ φik are accepted as candidates if r j > P f ( j, k ) , where r j is an 

independent random draw from the uniform distribution U(−δ, κ) 

and δ > 0 , κ > 1 are pre-specified parameters; 4 otherwise nodes 

v jl of ship j are rejected. Intuitively, a high probability P f ( j, k ) 

means a small chance for ship j appearing in an optimal sequence 

after time slot k and nodes v jl with l > k are likely to be rejected; 

for an illustration, see the left curve in Fig. 2 . At node v ik , ran- 
domization further restricts the choice of a successor node v jl , in 
addition to the requirements (ik, jl) ∈ � and i �∈ I jl . For all i , the 

distribution P f is updated in each iteration τ based on tours from 

F r; we discuss such updating shortly. 

Formally, the backward recursion Br begins at terminal node 

v 0 m 
, and ends at the initial node v 00 . For node v 0 m 

, the value is 

V 0 m 
= 0 and the set I 0 m 

is empty. For time slots k = m − 1 , . . . , 1 

and i ∈ N such that k ∈ S i , we carry out the random selection of 

the candidate nodes to succeed node v ik . From the set of candi- 

dates, we choose the one which yields the maximum value V ik . If 

a node v jl is chosen, then the value V ik is obtained by adding an 
immediate reward to V jl as follows 

V ik = λ − d jl 
ik 

+V jl and I ik = I jl ∪ { i } . (17) 

If no candidate is found, then V ik = −∞ and I ik = { i } . At the starting 
node v 00 , all admissible nodes v jl are eligible candidates. Given the 
best admissible node v jl , we obtain 

V 00 = −d jl 
00 

+ V jl and I 00 = I jl . (18) 

4 For most empirical tests in Section 5 , we use δ = 0 . 01 and κ = 1 . 2 . 

Fig. 3. An illustration of a Br recursion. Consider successive time slots k , l, q and m , 

s.t. 0 < k < l < q < m , and ships i and j. Thick edges are chosen by Br and dashed 

edges are other feasible edges. For the choice at node v ik , there were three feasi- 

ble successor nodes v jl , v jq and v 0 m . Nodes v jl and v jq belong to a cluster of ship j
shown in the dashed circle. While the depot v 0 m is automatically a candidate node, 

the cluster is subject to randomization. Based on the probability P f ( j, k ) , a single 

random draw determines whether the nodes in the cluster are accepted as candi- 

dates. In this case, the draw was favorable and the node v jl was the best choice 

at node v ik . - If the dashed edge joining v jl and v iq had been chosen at v jl , then 
v jl would not be a feasible choice at v ik , because ship i would be in the sub-tour 

starting at v jl . 

In Br of iteration τ , for each node v ik , we record the value V ik , the 

chosen successor node v jl as well as the set of targets I ik . The best 

tour from Br in iteration τ is denoted by πb for which the value 

V (πb ) is given by (18) . An illustration of Br is shown in Fig. 3 . 

ii) Forward recursion: The forward recursion F r of RDP is a 

mirror image of Br; replacing in Fig. 3 the terminal node v 0 m 
by 

the root node v 00 and P f ( j, k ) by P b ( j, k ) , the figure illustrates F r
with 0 < q < l < k < m . Random choices in F r employ parameters 

P b ( j, k ) which yield an empirical probability for targets j appearing 

in the itinerary at time slot k or later . The probabilities P b are ob- 

tained from tours produced by Br. For each node v ik , the value V ′ ik 
in F r is obtained from the sub-tour from the root node v 00 to v ik 
and I ′ 

ik 
is the set of ships in this sub-tour. At the root node v 00 , 

V ′ 
00 

= 0 and I ′ 
00 

is empty. For k = 1 , 2 , . . . , m − 1 and i such that 

k ∈ S i , the set of admissible arcs entering node v ik are ( jl, ik ) ∈ �. 

At node v ik , the depot node v 00 is always accepted as a candidate 

provided it is admissible. For ships j � = 0 , candidate nodes are ob- 

tained by random draws using empirical distributions P b and em- 

ploying the same principles used in Br. Hence, the larger is P b ( j, k ) 

the smaller is the chance of node v jl being chosen as a predeces- 
sor node at v ik ; see the right curve in Fig. 2 . The best candidate 
maximizes the value V ′ 

ik 
at node v ik . For k = m , if ( jl, 0 m ) ∈ � then 

v jl is a candidate node at v 0 m 
. The best tour from F r in iteration τ

is denoted by π f . If V (π f ) > V (πb ) , then replace π
τ by π f . 

iii) Empirical probability distributions: The empirical proba- 

bility distributions P b and P f are based on best tours produced by 
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Br and F r, respectively, in iterations 1 , 2 , . . . , τ . Thus, Br borrows 

data from F r and vice versa. In Section 5.3 , we test empirically 

that such interaction of Br and F r indeed pays off. Next, we give 

the formal definition of the empirical probabilities. 

For P f , initially we set P f (i, k ) = 0 for k < m and P f (i, m ) = 1 , 

for all i ∈ N. In each iteration τ , if tour π f is the best one found 

by F r, then another tour π from F r in iteration τ is η-optimal if 

V (π f ) −V (π ) ≤ η, where η > 0 is a given tolerance. Distributions 

P f are updated based on the set of η-optimal tours �τ
f 
generated 

by F r. The cumulative statistics of ν f (i, k ) (suppressing τ ) counts 
the number of times ship i is visited in time slot k taking into ac- 

count all tours in �τ ′ 
f 

for all τ ′ ≤ τ . At the end of iteration τ , if 
∑ 

l ν f (i, l) � = 0 the updated empirical probabilities for i and for all k 

are given by P f (i, k ) = 

∑ 

l≤k ν f (i, l) / 
∑ 

l ν f (i, l) ; otherwise, P f (i, k ) = 

0 for all k < m and P f (i, m ) = 1 . For P b similarly, if νb (i, k ) counts 
the visits to ship i in time slot k taking into account η-optimal 

tours produced by Br, then P b (i, k ) = 

∑ 

l≥k νb (i, l) / 
∑ 

l νb (i, l) . For all 
i , we have P f (i, k ) increasing and P b (i, k ) decreasing in k over iter- 

ations. 

iv) Optional improvements: Given πτ , the best of the tours 

produced by Br and F r in iteration τ , we may carry out improve- 

ment updates on πτ ; see Appendix B. At the end of iteration τ , we 

observe ˆ πτ , the best tour found over all iterations 1 , 2 , . . . , τ . 
To summarize, the schematic picture of RDP for solving the de- 

terministic problem (2) is given by the following steps: 

• Initialization . Let ˆ V 0 = −∞ ; for all i , P f (i, k ) = 0 for k < m and 

P f (i, m ) = 1 , P b (i, k ) = 0 for k > 0 and P b (i, 0) = 1 ; choose pa- 

rameters δ > 0 , κ > 1 , tolerance η > 0 , iterations limit τ̄ , and 
set τ = 1 . 

• Br: Backward recursion . 

◦ For all k = m − 1 , . . . , 0 and i ∈ N such that k ∈ S i , 

- At node v ik , choose the best successor node based on the 
randomly drawn candidates. 

- Record the backward value V ik , the chosen successor node 

and the set I ik . 

• ◦ Let πb denote the best tour from Br in iteration τ ; let πτ = 

πb . 
• ◦ Using η-optimal tours from Br update the distribution P b (i, ·) 

for all i . 

• Fr: Forward recursion . 

◦ For all k = 1 , . . . , m and i ∈ N such that k ∈ S i , 

- At node v ik , choose the best predecessor node based on the 
randomly drawn candidates. 

- Record the forward value V ′ 
ik 
, the chosen predecessor node 

and the set I ′ 
ik 
. 

• ◦ Let π f denote the best tour from F r in iteration τ ; if V (π f ) > 

V (πb ) , then π
τ = π f . 

• ◦ Using η-optimal tours from F r update the distribution P f (i, ·) 
for all i . 

• Improvements . (For optional steps, see Appendix B). 

◦ Optimal timing. Revise πτ by finding optimal timing for the 

sequence σ (πτ ) . 

◦ Swaps. For some pairs of targets i, j in σ (πτ ) , 

- Update πτ if the swap i, j improves the tour. 

• If V (πτ ) > ˆ V τ−1 , record ˆ πτ = πτ and ˆ V τ = V (πτ ) , the best 

tour found so far. 
• Termination . If τ < τ̄ , increment τ by 1 and return to step Br; 

otherwise, stop. 

Next, letting the iterations limit τ̄ increase without limit, we 

state the asymptotic convergence result for RDP in the determin- 

istic case;for the two-stage SP problem in Section 4 the result is 

omitted for brevity, since the same convergence arguments apply 

in both cases. The proof is in the supplementary Appendix A. 

Theorem 1. Assume an optimal tour π ∗ = { v ∗
ik 
} exists for problem 

(2) with α∗ = α(π ∗) targets to be visited and with an optimal value 

of V ∗ = V (π ∗) . Given κ > 1 and δ > 0 , let ˆ πτ = { ̂ v τ
ik 
} with ˆ V τ = 

V ( ̂  πτ ) denote the best tour found by the end of iteration τ of RDP . 

Then ˆ πτ converges with probability one to some optimal tour ˆ π with 

value V ( ̂  π) = V ∗. 

4. RDP for two-stage stochastic programming 

Next, we explain how RDP presented in Section 3 is adopted for 

solving the two-stage SP of the optimal routing in Section 2.2 . The 

implementation of RDP for SP is as follows: 

Again, each iteration τ of RDP involves Br and F r recursions as 

well as optional improvements. Similarly, ˆ πτ denotes the best tour 

found by the end of iteration τ . We avoid repetition of details of 

RDP which are fully explained in Sections 3 , and describe the ex- 

tensions thematically. For randomization, for instance, we only dis- 

cuss the definition of the empirical probabilities; random choice of 

the candidate nodes is done as explained in Section 3 . 

• Backward recursion Br: 

◦ In the second stage, for each s ∈ C, k = m, . . . , k ∗ + 1 , i ∈ N s 

with k ∈ S si , and nodes v (s ) ik , the Br recursion is as defined 

in Section 3 . The value is V (s ) ik and the set of targets is I(s ) ik 
in the chosen sub-tour from node v (s ) ik to v (s ) 0 m 

. 

◦ In the first stage, for k = k ∗, . . . , 1 , i ∈ N 0 with k ∈ S i , and 

nodes v ik , we consider two cases. First, we find the best suc- 

cessor candidate node v jl in T 0 (as in Section 3 ) and denote 
the resulting value at v ik by V 0 ik 

. Second, for each s ∈ C, we 

find the best successor candidate v (s ) jl in scenario s (as in 
Section 3 ), denote the resulting value at v ik by V (s ) ik , and 
obtain the expected value V 1 

ik 
= (1 /M) 

∑ 

s V (s ) ik . If V 
0 
ik 

< V 1 
ik 
, 

then the tour transits from node v ik to the second stage T 1 , 
the value at v ik is V ik = V 1 

ik 
and I ik = (∪ s ∈ C I(s ) jl ) ∪ { i } where 

the pairs jl refer to best choices in each scenario s . If V 0 
ik 

≥
V 1 
ik 
, then the value at v ik is V ik = V 0 

ik 
and I ik = I jl ∪ { i } . 

◦ For the starting node v 00 , assuming there is at least one visit 

in T 0 , we only consider the successor nodes v jl in T 0 (without 

randomization). Thereafter, we are ready to recover the tour 

πb from Br and its value V (πb ) = V 00 . 

• Forward recursion F r: 

◦ In the first stage, for k = 1 , . . . , k ∗, i ∈ N 0 with k ∈ S i , and node 

v ik we proceed as in F r recursion of Section 3 to obtain value 

V ′ 
ik 

and the set I ′ 
ik 

of targets in the sub-tour from node v ik 
backwards to v 00 . 

◦ In the second stage, for all s ∈ C, k = k ∗ + 1 , . . . , m , i ∈ N s with 

k ∈ S si , and node v (s ) ik , we also proceed as in F r of Section 3 . 

As predecessor node candidates, we consider both nodes 

v (s ) jl in scenario s and nodes v jl in the first stage T 0 . The 
best choice determines the value V ′ (s ) ik and the set I ′ (s ) ik 
of targets in the sub-tour from the node v (s ) ik in scenario s 
backwards to the root node v 00 . 

◦ If the transition node in T 0 is not uniquely determined (but 

depends on the scenario) in a tour π , then π is not feasible. 

In case of infeasibility, we choose a single transition node v ˆ i ̂ k 
for all scenarios based on the best value V ′ 

ik 
among the nodes 

v ik which served as transition nodes to different scenarios. 

Thereafter, the steps of F r are repeated for all s ∈ C but con- 

sidering v ˆ i ̂ k as the only predecessor candidate in T 0 . In case 
no feasible solution arises for scenario s , we define the value 

V ′ (s ) 0 m 
= −∞ . 

◦ For a tour π f from F r, the expected value is V (π f ) = 

(1 /M) 
∑ 

s V 
′ (s ) 0 m 

. 
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• In iteration τ , for the tour πτ (the better one among πb and 

π f ), the improvement steps in Appendix Bare adopted sepa- 

rately for the deterministic stage T 0 and for each scenario in the 

stage T 1 . That is, in T 0 the starting and ending nodes v 00 and v ˆ i ̂ k 
are considered frozen (unchanged in location and time). Simi- 

larly for each scenario s in T 1 , the starting (transition) node v ˆ i ̂ k 
and ending nodes v 0 m 

(s ) are frozen. Thus the transition node 

( ̂ i , ̂  k ) is not subject to changes in improvements. For numerical 

tests in Section 5 , using a tolerance η > 0 , we carry out the im- 

provement steps in iteration τ only if V (πτ ) ≥ ˆ πτ−1 − η; i.e., if 
the best tour πτ from Br and F r appears promising. 

• To define the empirical probabilities P b (i, k ) (for i ∈ N 0 and k ≤
k ∗) and P b (s )(i, k ) (for all s ∈ C, i ∈ N s and k > k ∗) used by F r
for randomization, let �τ

b 
be the set η-optimal tours π gen- 

erated by Br in iteration τ . For all π ∈ �τ
b 

and s ∈ C, let πs 

denote a path in π connecting the terminal node v (s ) 0 m 
of 

scenario s to the root node v 00 . The cumulative statistics of 

νb (s )(i, k ) (suppressing τ ) counts the number of times ship i 

is visited in time slot k in path πs of π taking into account 

all tours in π ∈ �τ ′ 
b 

for all τ ′ ≤ τ . At the end of iteration τ , 
if 

∑ 

k νb (s )(i, k ) � = 0 then the empirical probabilities for i ∈ N, 

and for all k ∈ { 0 , 1 , . . . , m } and s ∈ C are given by P b (s )(i, k ) = ∑ 

l≥k νb (s )(i, l) / 
∑ 

l νb (s )(i, l) . Thereafter, for the deterministic 

period T 0 , the probabilities P b (i, k ) , for all i ∈ N 0 and k ≤ k ∗, 
are averages over scenarios; i.e., P b (i, k ) = 1 /M 

∑ 

s ∈ C P b (s )(i, k ) . 
- Similarly, we define the empirical probabilities P f (i, k ) and 

P f (s )(i, k ) , for all s , i and k based on sets of η-optimal paths 

πs produced by F r in iterations τ . 

5. Experimental results 

In this section we discuss computational results using the RDP 

procedure of Section 4 on real-world multi-scenario data sets. First, 

in Section 5.1 we present test setting and data related to seven 

days of our case study. Then in Section 5.2 we evaluate the per- 

formance of RDP compared with ILP solutions based on model 

(7) –(16) in Section 2.3 for the stochastic optimal routing in a dy- 

namic network. 5 All implementations are done in AMPL environ- 

ment with Mosek version 9.2 as an IP solver in a standard HP-Z230 

work station (4 threads, 3.4 GHz, 8 Gb RAM) operating under Linux. 

Finally, in Section 5.3 we discuss diverse topics, including the role 

of interaction of Br and F r in RDP , the impact of increasing the 

number of scenarios, and the value of stochastic solution. 

5.1. Data and instances for numerical test 

The trajectory prediction model described in the supplemen- 

tary Appendix C is trained using historical data gathered dur- 

ing May–July, 2018. The model is used to estimate trajectories of 

the ships present in the work area over a 12-hour time horizon 

7 am–7 pm during one week of August 6–12, 2018. Each predicted 

trajectory is interpolated with w = 5 minutes time spacing. We 

use the predicted data separately for time horizons T = 4 , 6 , 8 , 10 

and 12 hours. We set the duration of deterministic stage T 0 to 

3 hours and range the duration of stochastic stage T 1 over the set 

1,3,5,7,9 hours. 

To evaluate the performance of RDP against ILP solution on a 

range of medium to large size data sets, we made 6 batches of 

instances each containing 35 problems (totally 210 problems). The 

5 The comparison with an exact solver is solely for evaluating the quality of so- 

lutions obtained by RDP in a reasonable time for different size of instances. To the 

best of our knowledge, there were no alternative algorithm to be used for compar- 

ison. Using one of the many existing heuristic approaches poses the difficulty that 

problem formulations differ from our deterministic model version; see our discus- 

sion in the Introduction. 

35 instances relate to estimated trajectories of the 7 days with 5 

values for the length of time horizon T . To create the instances 

we had 2 hyper-parameters to tweak, number of scenarios (M) and 

the weighting parameter λ of the value function (6) . Each batch of 

instances is solved for a pair of parameters in the ranges M = 6 , 10 

and λ = 5 , 10 , 30 . Setting big λ values leads to longer sequences of 

ships to be visited, and thus a more complex problem. 

For scenario generation we employ the approach presented in 

the supplementary Appendix C. Model estimation is based on (C.2) 

using data of August, 2018. An even number of trajectories (scenar- 

ios) are generated independently for each ship using (C.6) with an- 

tithetic sampling. Each scenario of ship i starts from the last node 

v ik ∗ of the predicted (or realized) trajectory in the first stage T 0 . The 

parts of trajectories which fall outside the work area are omitted. 

Figure 5 illustrates two examples with predicted trajectories shown 

by solid red lines and four scenarios by dashed lines. In Fig. 5 , ship 

6 which is travelling toward northeast, is not in the work area dur- 

ing T 0 . One of the four scenarios falls completely outside the work 

area and thus, it is omitted. 6 Ship 7 is travelling toward southwest, 

it is in the work area at the end of T 0 and parts of all four scenar- 

ios intersect the work area. 

For time discretization, the length of a time slot is w = 

5 / 60 hours and the number of time slots is m = | T | /w = 

48 , 72 , . . . , 144 for | T | = 4 , 6 , . . . , 12 hours. The processing time by 

the surveillance boat is 3 / 60 hours and the speed of the boat is 

c = 46 . 3 kilometers per hour. For randomization in RDP , the val- 

ues of parameters δ and κ are determined using a grid search over 

the search space of { 0 , . 02 , . 04 , . . . , 0 . 10 } for δ and { 1 . 1 , 1 . 2 , 1 . 3 } 
for κ , and set to δ = 0 . 02 and κ = 1 . 20 . In each iteration of RDP , if 

the better tour resulting from Br and F r is within a 10 kilometers 

tolerance as good as or better than the best value encountered by 

the current iteration, then the improvements of Appendix B are ap- 

plied separately for the deterministic stage T 0 as well as for each 

scenario in T 1 . 

Using (7) –(16) we formulated 210 instances (6 batches of 7 × 5 

problems related to M = 6 , 10 scenarios and λ = 5 , 10 , 30 ) as ILP 

problems, a large share of which could be solved by a standard 

solver in a reasonable time. The dimension of ILP instances for 

M = 10 are summarized in Fig. 4 in terms of the number of bi- 

nary variables and constraints of the respective ILP models. From 

Fig. 4 we can see even for the number of scenarios as few as 10, 

the ILP problem can be huge. The biggest size problems are related 

to | T | ≥ 10 for August 9 and 12 data with more than one million 

binary variables and thousands of constraints. We will show in the 

next sub-section that RDP method can perform efficiently on such 

large dimensional problems in terms of accuracy and run time. For 

the number of scenarios 20 or more, the ILP solver is mostly in- 

capable of finding a solution in a reasonable time; therefore, such 

instances are discussed below separately without ILP solutions. 

5.2. Performance of RDP 

We solved the 210 numerical examples by both ILP and RDP 

methods. All ILP problems are solved using Mosek solver with 1% 

relative gap tolerance and 2 hours time limit 7 along with other de- 

fault settings. We use plain Mosek simply to enhance transparency 

in comparing RDP with an ILP solver. The iterations limit for RDP 

6 In practice, it is possible that some ships are predicted to pass through the work 

area, but they do not appear, or their realized trajectories fall partly or completely 

outside the area. In this situations, the target cannot be visited at those locations, 

and thus the location points could be omitted. 
7 In a practical setting, the surveillance-boat operator is expected to have at most 

2 hours to find a reasonably good schedule, before launching the trip from the har- 

bor; therefore, we limit our solver time to two hours. For 1% of problem instances, 

we increase the time limit to 10 hours because no feasible solution was found in 

2 hours. 
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Fig. 4. Dimensions of the test problems for M = 10 in terms of number of binary variables and constraints, with 35 model configurations using each pair of hyper-parameters, 

horizon T and the days: the five groups of problems relate to | T | = 4 , 6 , 8 , 10 , 12 , each containing seven problems related to August 6–12, 2018. 

Fig. 5. Representation of trajectories related to August 7 for ships 6 and 7. Ship 6 (left figure) presents only during the second stage T 1 . Ship 7 (right figure) presents during 

both stages T 0 , T 1 . Solid lines show the predicted route over part of the time horizon. In each figure, the four dashed lines show different scenarios in T 1 . The rectangle 

depicts the work area. Those trajectory points which fall outside the work area are omitted from two-stage SP. 

is set to 200 iterations. Table 1 reports the results. The numbers in 

the sub-tables show absolute errors V ILP −V RDP (kilometer) of final 

RDP solution value compared with ILP solution, for six batches of 

instances with different model configurations each using a pair of 

parameters λ, M from the range λ = 5 , 10 , 30 and M = 6 , 10 . 8 For 

small values λ = 5 and M = 6 , both methods could solve all 35 in- 

stances to optimality. However, for λ = 5 and M = 10 , ILP solver 

hit the 2 hours time limit in 20% of the cases (figures with ‘ ∗’ 
sign in Table 1 ) but provided a feasible solution. We notice that, 

even if the solver does not hit the time limit, the error for RDP 

can be negative (positive) meaning that the solution found by the 

RDP algorithm is more (less) efficient than the final optimal so- 

lution returned by the ILP solver. This is due to the fact that, the 

solver guarantees optimal value up to 1% , and RDP returns a higher 

(lower)objective value within 1% gap. By increasing the values of 

λ, the complexity increase because more ships will be visited. Ac- 

cording to Table 1 , for λ = 10 and λ = 30 , there is an increasing 

number of cases with negative error values or runs hitting the time 

limit of ILP solution. 

8 Relative errors could be used as well. However, noting that the unit of the 

weighted objective λα − z is kilometers, we are interested in the absolute differ- 

ence, which is more intuitive in practical application than the relative errors. Be- 

sides, in cases where the differences are small, the relative difference is not appro- 

priate for the actual gain or loss in the objective value. 

Table 2 summarizes error statistics presented in Table 1 for 

the comparison of solutions found by RDP and ILP. The sample in 

Case 1 includes all 210 test problems. In Case 2 the 153 problems 

are those for which an optimal solution was found by ILP within 

1% gap tolerance and 2 hours time limit. In Case 2 , the mean er- 

ror −0.06 is negative but the hypothesis of zero mean error is not 

rejected at a significance level 0.01; hence, setting aside the com- 

puting time taken by RDP and ILP, we conclude that RDP and ILP 

perform equally well for problems solvable within the 2 hours time 

limit. In Case 1 the mean error is negative with t = 4 . 3 e − 5 and 

significant at p < 0 . 01 . - Results of average values of (α, z) over 

seven days obtained by RDP are reported for each case λ, M and T 

in Table 3 . 

In principle, we might apply some stopping criterion for RDP it- 

erations, for instance, based on the improvement in a given num- 

ber of iterations. However, in our tests we wanted to study the 

progress over a long sequence of 200 iterations. Therefore, regard- 

ing the execution time, we provide a speed-up ratio as a func- 

tion of iteration number τ to measure the efficiency of RDP run- 

ning time relative to the total execution time by the ILP solver. 

Given iteration τ , the speed-up is the total run time of ILP solver 

t ILP divided by the run time t RDP (τ ) of RDP in τ iterations; where 

t RDP (τ ) = τ×(time per iteration by RDP ). The execution time (av- 

eraged over days) per RDP iteration for the instances with respect 

to each pair of parameters T , M are shown in Table 4 . Thereby, 
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Table 1 

Errors for time horizon | T | = 4 , 6 , 8 , 10 , 12 (hour), λ = 5 , 10 , 30 , and M = 6 , 10 using data of August 6–12, 2018; error (kilo- 

meter) is the difference between the objective function value produced by ILP and RDP; n = number of ships (average over 

seven days) in the work area during [0 , T ] ; ∗ = case where ILP solution time exceeds 2 hours limit; ◦ = case where ILP so- 

lution time exceeds 10 hours limit. In summary, problems are increasingly hard with large M and λ and thereby the relative 

merits of RDP increase. 

| T | = 4 | T | = 6 | T | = 8 | T | = 10 | T | = 12 | T | = 4 | T | = 6 | T | = 8 | T | = 10 | T | = 12 

n 11.3 16.6 19.1 22.1 23.0 11.3 16.6 19.1 22.1 23.0 

M = 6 λ = 5 M = 10 λ = 5 

Aug 6 0.00 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 0.00 

Aug 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 

Aug 8 0.00 −0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Aug 9 0.02 0.00 0.08 0.57 0.11 0.05 0.01 ∗ 0.00 ∗ 0.04 0.07 ∗

Aug10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 

Aug11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Aug12 0.00 0.00 0.00 0.00 0.00 0.00 −0.02 ∗ −0.09 ∗ −0.75 ∗ −0.44 ∗

M = 6 λ = 10 M = 10 λ = 10 

Aug 6 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 ∗ −0.80 ∗ −1.13 ∗

Aug 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.03 −0.05 ∗ −0.43 ∗

Aug 8 0.00 0.00 0.00 0.00 −0.02 0.00 −0.11 −0.22 −0.68 ∗ −0.59 ∗

Aug 9 0.00 −0.02 −0.35 −0.03 0.39 ∗ −0.11 0.15 0.25 −1.91 ∗ −1.12 ∗

Aug10 0.00 0.00 0.00 0.00 −0.03 ∗ 0.00 −0.05 −0.01 0.00 ∗ −1.36 ∗

Aug11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.19 ∗ −0.48 ∗ −1.61 

Aug12 0.00 0.00 −2.72 ∗ −2.12 ∗ −5.84 ∗ 0.00 −3.42 ∗ −7.54 ∗ −1.00 ◦ −15.86 

M = 6 λ = 30 M = 10 λ = 30 

Aug 6 −0.03 −0.48 −1.00 −0.56 −1.31 0.00 −0.61 −0.08 ∗ −0.48 −0.42 

Aug 7 0.00 0.40 ∗ −3.04 ∗ −0.55 ∗ −0.32 0.00 1.03 ∗ 0.58 ∗ −0.75 ∗ −2.64 ∗

Aug 8 0.00 −1.06 −0.76 −0.30 −0.87 0.00 −0.09 −0.59 −0.47 −17.65 ∗

Aug 9 0.15 1.41 −0.69 0.45 −0.50 0.55 −2.11 0.31 1.21 ∗ −3.74 ∗

Aug10 −0.65 0.00 0.51 −0.61 0.87 ∗ 0.00 −0.58 0.48 −1.77 ∗ −7.47 ∗

Aug11 0.00 0.15 0.03 1.06 ∗ −2.14 ∗ 0.35 −0.01 −0.46 ∗ −3.63 ∗ −1.88 ∗

Aug12 0.00 −0.57 ∗ −1.63 ∗ −6.75 ∗ −7.70 ∗ 0.00 −5.56 ∗ −9.32 ∗ −10.38 ◦ −23.16 ∗

Table 2 

Statistics of absolute errors in kilometers presented in 

Table 1 . Case 1 includes all 210 problems; Case 2 includes 

problems with an optimal ILP solution under relative gap 

tolerance 1%. 

Sample Size Mean std t -value p -value 

Case 1 210 −0.79 2.73 −4.18 4.3e −5 

Case 2 153 −0.06 0.33 −2.39 0.018 

we can track the trade-off between the accuracy and execution 

time of RDP over iterations. Such comparisons on the average ab- 

solute error (over seven days) versus the average speed-up factor, 

for the six batches of instances with time horizon | T | = 8 hours of 

Table 1 are illustrated in Fig. 6 (a)–(f). Note that after 10 iterations, 

RDP reaches an average error of 0.1 kilometer or less in all cases, 

except for the case λ = 30 , M = 10 where the error drops below 

Table 4 

Average time per RDP iteration (in seconds) over seven days for 

problems with λ = 30 ; for λ < 30 the results are roughly the 

same. The time per iteration increases fast with increasing time 

horizon | T | and and the number of scenarios M. 

M | T | = 4 | T | = 6 | T | = 8 | T | = 10 | T | = 12 

6 0.6 2.5 4.0 5.2 5.8 

10 0.9 4.3 7.0 8.6 10.1 

20 1.8 8.1 13.5 16.7 19.6 

100 9.4 40.3 68.8 87.1 98.2 

0.1 at iteration 14. In 100 iterations, the gain in terms of kilome- 

ters compared to early iterations is quite small. Therefore, an effi- 

cient solution is obtained at early iterations. According to Table 4 , 

10 iterations for cases with M = 6 , 10 are done in a range of 6 to 

100 seconds (averaged over seven days). The average speed-up rate 

Table 3 

Expected number of visits and expected travel distance (α, z) (averages over seven days) by λ, M

and T . In general, for each horizon T and weight λ, the criteria values (α, z) are robust with respect 

to the number of scenaris M. 

λ M | T | = 4 | T | = 6 | T | = 8 | T | = 10 | T | = 12 

5 6 6.3 52.7 9.2 54.4 10.8 57.2 11.2 58.2 11.8 58.9 

5 10 6.3 52.8 9.0 55.8 10.4 56.3 11.1 57.0 10.5 56.4 

5 20 6.2 52.3 9.2 55.1 10.5 56.5 11.4 57.8 11.8 58.3 

5 100 6.2 52.4 9.2 55.2 10.8 57.5 11.4 58.0 11.7 58.3 

10 6 8.0 63.0 12.2 73.8 14.0 78.3 15.4 87.7 15.8 85.9 

10 10 8.1 63.7 12.8 78.4 12.4 75.5 14.5 80.8 14.4 82.3 

10 20 8.0 63.2 12.2 74.9 13.9 79.1 15.2 82.8 15.5 83.5 

10 100 8.0 63.2 12.1 74.5 14.2 80.3 15.1 83.0 15.7 85.2 

30 6 8.9 78.1 13.6 94.8 16.0 110.2 17.8 126.5 18.4 128.2 

30 10 9.0 78.6 13.9 97.2 15.7 111.4 17.6 122.8 17.6 132.2 

30 20 8.9 78.6 13.8 98.0 16.1 111.8 17.6 122.1 18.5 131.3 

30 100 8.9 78.9 13.7 98.3 16.3 113.8 17.7 126.8 18.6 134.2 
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Fig. 6. Comparisons on the average absolute error (over seven days) versus the average speed-up factor over RDP iterations for time horizon | T | = 8 . Figures (a)–(f) relates 

to six batches of instances with M = 6 , 10 shown in Table 1 , based on the total execution time and best solutions returned by the ILP solver. Figures (g) and (h) show for 

two batches of instances with λ = 30 and M = 20 , 100 the daily average difference of the best solution obtained by RDP by iteration 100 and the current iteration. 

are shown in Fig. 6 starting at iteration 10 onward up to iteration 

100. As an example, regarding the case λ = 30 , M = 10 , RDP at it- 

eration 20 returns a feasible set of solutions for seven days with 

an absolute average error e = −0 . 50 kilometer within an execution 

time, on average, 15 times faster than the ILP solver for solving 

the same problems. Speed-up curves show that,as the problem size 

and complexity increase, the efficiency of RDP tends to improve 

compared to ILP solver. 

5.3. Further analysis of RDP algorithm and two-stage SP 

Next, we discuss a number of items concerning RDP and its ap- 

plication to two-stage SP: increasing the number of scenarios, de- 

terminants of execution time, the interaction of Br and F r, the im- 

pact of tour improvements, testing the performance of standard DP 

for producing feasible solutions, and the value of stochastic solu- 

tion. 

5.3.1. Increasing the number of scenarios 

For large values of number of scenarios M, ILP solutions are 

not attempted.However, we ran RDP on the case examples with 

M = 20 , 100 , | T | = 4 , . . . , 12 and λ = 5 , 10 , 30 as well. Fig. 6 (g) and 

(h) illustrates the convergence for time horizon | T | = 8 hours in 

case of λ = 30 and M = 20 , 100 . In these cases, errors (compared 

with ILP solution) are not available, instead, value function differ- 

ences are calculated at each iteration based on the best solutions 

obtained by RDP in 100 iterations. Time per iteration is shown 

in Table 4 and results on daily average expected values of (α, z) 

are shown in Table 3 . According to Table 3 , the expected number 

of visits and the corresponding travel distance during each time 

horizon T , mainly depend on the choice of parameter λ and re- 

main robust with increasing the number of scenarios. We see in 

Fig. 6 (g) and (h) similar performance in terms of convergence for 

cases with M = 20 , 100 and for cases with a smaller number of 

scenarios. Therefore, with a large number of scenarios, we may 

expect the speed-up factors further improve. As an instance, the 

ILP model with August 9 data, 100 scenarios and time horizon of 

12 hours has over 14 million binary variables and over 33 thou- 

sand constraints. RDP returns a feasible solution at each iteration 

in about 100 seconds. 

5.3.2. Determinants of execution time 

From the experiments we observed that the execution times 

per iteration of RDP algorithm ( Table 4 ), is not sensitive to param- 

eter λ. However, the problem complexity resulting from increased 

λ may call for a larger number of iterations. Furthermore, we al- 

ready pointed out based on Table 3 , that the optimal solution in 

terms of expected values of the two criteria, α and z, is rather in- 

sensitive to an increase in the number of scenarios. Thus, weight λ
is the decisive parameter for a given time horizon. 

5.3.3. Interaction on Br and F r

In the alternating Br − F r iterative procedure, one method (say 

Br) may choose a node later than its optimal position in a se- 

quence. However, this error may be less likely to happen in the 

counter method ( F r) using a counter directed procedure in time. 

More precisely, in Br the optimization problem at node v ik be- 
comes harder when k decreases, because the remaining time slots 

to the end of time horizon increase. On the contrary, smaller k 

leads to an easier problem in F r. Passing the information via dy- 

namic values of probabilities P f can increase the chances of choos- 

ing the correct node in the later choices of the counter method Br

and finally leads to the optimal choice. Memorizing the previously 

found tour orderings in terms of the probabilities of visiting times, 

turns out to be effective in speeding up the convergence to the op- 

timal solution. Based on our experiments, random selection of the 

successor node with constant probabilities (e.g., 0.5 chance of re- 

jection) replacing the empirical probabilities, showed poor perfor- 

mance for the problem instances in Table 1 ; for brevity, reporting 

is omitted. 

Using the 210 test problem instances discussed in Section 5.2 , 

we also tested the impact of omitting the F r stage from RDP and 

calculating the probabilities P f based on tours produced by Br. For 

the sample Case 2 in Table 2 , the average error increased from - 

0.06 to 0.61 and the omission of F r leads to a statistically signif- 

icant decrease in performance at p -value less than 0.01. A sim- 

ilar test for omitting Br resulted in an average error 0.25; also 
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Table 5 

Expected loss (kilometer) from using deterministic optimization instead of stochastic optimization. Time horizon is | T | = 

4 , 6 , 8 , 10 , 12 hours, with a 3 hours first period T 0 ; weight λ = 5 , 10 , 30 ; number of scenarios M = 6 , 10 ; data of August 

6–12, 2018; a v e = average expected loss over the seven days of August; max = maximum expected loss over seven 

days. The expected loss increases with increasing time horizon | T | and weight λ but sensitivity with respect to M is less 

significant. 

| T | = 4 | T | = 6 | T | = 8 | T | = 10 | T | = 12 | T | = 4 | T | = 6 | T | = 8 | T | = 10 | T | = 12 

M = 6 λ = 5 M = 10 λ = 5 

a v e 0.04 0.52 1.45 0.97 1.71 0.04 0.64 0.72 1.13 1.46 

max 0.26 1.93 7.51 2.23 6.50 0.24 2.04 3.71 4.43 6.06 

M = 6 λ = 10 M = 10 λ = 10 

a v e 0.12 1.52 1.89 3.71 2.21 0.05 1.46 1.90 2.39 2.20 

max 0.72 2.76 6.13 12.86 4.72 0.50 4.71 7.25 6.45 6.34 

M = 6 λ = 30 M = 10 λ = 30 

a v e 0.29 0.75 2.28 3.31 2.52 0.49 1.71 2.29 2.09 2.25 

max 1.78 1.50 4.96 8.13 4.84 3.20 8.28 6.11 6.19 5.39 

showing similarly statistically significant decreasein performance. 

Hence, the interaction of Br and F r via empirical probabilities has 

a positive impact on the performance of RDP . Besides, for the fruit- 

ful interplay of Br and F r in RDP , a possible explanation is that the 

absolute errors obtained from Br and F r are uncorrelated making 

both Br and F r valuable. 

5.3.4. The impact of tour improvements 

As mentioned earlier, RDP is frequently able to discover the 

subset of ships included in the optimal solution, even for large 

sequences and often at early iterations, but in a different order 

compared to optimal. RDP usually ends with the correctly ordered 

blocks of sub-sequences. Intuitively it seems to be enough to run 

the swapping method to fix the ordering and run DP r for adjust- 

ing the new order to the optimal time slots. Good performance 

of combined swapping and DP r explains why in Figure B.7 (Ap- 

pendix B) an optimal solution is frequently found in one itera- 

tion. Swapping is effective in a majority of cases although there are 

cases where it fails, since the method does not swap the blocks of 

sub-sequences. 

5.3.5. Testing the performance of standard DP 

Using standard DP (one iteration of Br without randomization) 

for producing feasible solutions, we get the following results. For 

the sample Case 2 (for which optimal solutions are known for ILP 

models) in Table 2 , the average absolute error increased consid- 

erably from the level −0.06 kilometer of RDP to 4.0 kilometers of 

DP.The error often exceeds 20 kilometers for the 42 most difficult 

problems 9 with | T | ≥ 8 and λ = 30 . The values obtained from DP 

lag behind those from RDP by 15.5 kilometers on average. 

5.3.6. Testing the impact of the transition node relaxation 

In Section 4 we discussed the relaxation of the transition 

node employed in our formulation. First, using the 153 instance- 

sof Case 2 in Table 2 , the average of the relaxation error 	V is be- 

low 0.1 kilometer; hence, the error is negligible given the expected 

travel distance for a tour ranges from 50 kilometers to 130 kilo- 

meters in Table 3 . The small error is explained by frequent occur- 

rence problem instances where the relaxed SP already solves the 

non-relaxed SP involving optimization of the location of a dummy 

transition node along with the rest of the tour. Second, to assess 

the excess computational effort due to optimal choice of a dummy 

transition node, we employed a grid of 1 × 1 square kilometers 

covering the work area with 1320 alternative dummy nodes. Us- 

ing test instances of Table 1 , the ILP formulation was solvable 

(with gap tolerance 0.01 and 2 hours time limit) in 93% of cases 

9 Over half of these ILP problems were not solved within the 2 hours time limit. 

with time horizon | T | = 4 hours; however, for | T | = 6 hours, only 

26% of instances were solvable. Also RDP was implemented to in- 

clude the same grid of dummy nodes. For all cases with | T | = 

4 , . . . , 12 hours, weight λ = 30 , and M = 6 , 10 , 20 , 100 the comput- 

ing time per RDP iteration (on average over the seven days) in- 

creased by a factor ranging from 4 to 12 in comparison with the 

figures in Table 4 . 

5.3.7. Value of stochastic solution 

It is well known that in general the solutions from the de- 

terministic versions of a problem can behave rather badly in 

a stochastic environment. The reasons are outlined by Wallace 

(20 0 0) . In the comparison test to measure how much worse the 

deterministic model will act, the deterministic solution is evalu- 

ated using the scenarios from the stochastic version of the prob- 

lem. In this way, the stochastic model is solved with all first-stage 

variables fixed to the deterministic solution. The resulted value is 

compared with the objective value of the full stochastic version. 

In the literature, the difference in expected value is known as the 

Value of Stochastic Solution ( V SS) (see Maggioni, Kaut, & Bertazzi, 

2009; Thapalia, Wallace, Kaut, & Crainic, 2012 ). 

To see the importance of modeling our problem with stochas- 

tic parameters, we develop a performance comparison test follow- 

ing a similar concept, using the solution of two-stage SP ( sp) of 

Section 4 and the corresponding deterministic model ( det) dis- 

cussed in Section 3 . V SS shows the expected value gained by using 

stochastic model provided that the given scenarios are true repre- 

sentation of reality. 

Suppose the scenarios of ships’ trajectories for sp discussed 

above in Section 5.2 depict the true state of the world. At initial 

time t 0 it is not known yet which scenario occurs. The predicted 

trajectories are realized during the first stage T 0 , and exactly one of 

the scenarios is realized during the second stage T 1 , each of which 

is equally likely. Both sp and det are used to optimize the itinerary 

plan at time t 0 over the time horizon T (composed of T 0 and T 1 ) 

and the plans are implemented for T 0 . At the end of T 0 , the realized 

scenario s ∈ C is observed and the plans are updated by optimizing 

over the scenario which is deterministic after it is observed. The 

question is that, how much the expected loss is in terms of value 

function using det compared with sp. 

At time t 0 we calculate the expected value over T (including T 0 
and T 1 ) in two cases: (i) using sp (based on predictions over T 0 
and M scenarios over T 1 ) to find the tour for T 0 and (ii) using det

(based on predicted trajectories over T ) to find a tour in T 0 . In both 

cases the tour for T 0 is implemented and at the end of T 0 both find 

the optimal plan for T 1 , given the observed scenario and the plan 

chosen for T 0 . In case (i) the best tour in T 1 for each scenario is 

already found by solving sp and the optimal expected value V (tak- 
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ing into account all M scenarios) is the optimal objective function 

value of sp. For the det in case (ii), we need the optimal value for 

the tour in T 1 under each scenario, given the choice for the tour 

in T 0 . Such optimal tours are found by solving the scenario-wise 

separable problem, referred to as the restricted sp with binary vari- 

ables for T 0 fixed to optimal levels from the initial det over T . The 

optimal objective function value of the restricted sp, V ′ , is the ex- 
pected value if det is used for tour optimization in two stages: at 

t 0 for T 0 and at the end of T 0 for T 1 . Given the restriction in sp, 

we have V ′ ≤ V , and we call V −V ′ the expected loss ( V SS) reveal- 
ing how much one expects to lose (in terms of the value function) 

if det is used for tour optimization instead of sp. In terms of ex- 

pected value, sp is always at least as good as det and the expected 

loss tells how much better. Table 5 summarizes the expected loss 

(kilometer) for the 210 problems reported in Table 1 . 

Table 5 shows the average and maximum expected loss (kilo- 

meter) over seven days for the 210 problems reported in Table 1 . 

The average loss ranges from 0.0 kilometer to 3.7 kilometers and 

the maximum from 0.2 kilometer to 12.9 kilometers. Small val- 

ues mean that approximating the stochastic parameters (trajecto- 

ries) by the predicted values (instead of random trajectories) is a 

good choice. For short time horizon | T | ≤ 6 hours, the average loss 

is small compared with | T | ≥ 8 hours. Cases with a large weight 

λ ≥ 10 for α lead to a higher average loss than cases with λ = 5 . 

The cases with | T | ≥ 8 hours and λ ≥ 10 are of most interest in 

practice; for these cases the smallest average loss is larger than the 

largest average loss among the other cases with | T | ≤ 6 or λ = 5 . 

6. Conclusion 

In this article we model a bi-criteria moving-target travelling 

salesman problem with the assumption that the locations of tar- 

gets are predicted but uncertain. The model is applied for decision 

support in optimal routing of a surveillance boat measuring green- 

house gas emission from vessels navigating in the Baltic sea. Given 

that all targets cannot be reached, the management sets two goals: 

to maximize the number of visits and minimize the total travel 

distance. For solving the subsequent two-stage stochastic program- 

ming problem for maximizing the expected value of a linear value 

function, we introduce an iterative randomized dynamic program- 

ming algorithm where forward and backward recursion stages are 

linked by empirical probabilities of timing the measurements. Each 

iteration of RDP provides a feasible tour for the problem. Based on 

the randomization, we show that the algorithm converges to an 

optimal solution with probability one. The exchange of informa- 

tion between forward and backward stages acts as a reinforcement 

mechanism in learning the favorable probabilities, and as a key for 

success of RDP . Using either forward or backward stage indepen- 

dently leads to a significant loss in the efficiency. 

Using a medium size deterministic problem with a hundred 

thousand binary variables, we illustrate that the expected number 

of RDP iterations for obtaining an optimal solution can be small, 

from one to ten iterations. For the two-stage stochastic program- 

ming case with 10 scenarios, the size of such problem is eight 

times bigger in terms of binary variables. Our tests show that RDP 

can reach in 10 iterations an optimal solution within a small ac- 

ceptable tolerance. 

We also formulate the problem as a stochastic ILP model. In our 

sample of 210 test problems with real data, small to medium size 

ILP problems are solvable with 1% gap tolerance in a reasonable 

time and solutions found by RDP and ILP solver are shown equally 

good; however, RDP is significantly faster and able to deal with 

large-scale problems as well. For larger problem sizes, RDP can 

become extraordinarily efficient compared to a general ILP solver 

which often fails to return a feasible solution within a desired time 

limit. The RDP algorithm can be applied efficiently for the stochas- 

tic routing problem of huge size and return a high-quality solu- 

tion even in minutes. We develop a model for generating scenar- 

ios based on the predicted locations of ships (targets), and observe 

that the stochastic programming solution is robust to increasing 

the number of scenarios from 10 to 100. 

The convergence of RDP iterations is sensitive to the choice 

of distribution interval parameters employed for randomization. 

Loose boundaries lead to extra calculation on producing low qual- 

ity solutions while too tight boundaries can result in being trapped 

in local optima. 

We also demonstrate the value of stochastic solution ( V SS) us- 

ing the sample of the 210 test problems and show that applying 

deterministic (instead of stochastic) model in the uncertain dy- 

namic network leads to an expected loss up to 13 kilometers in 

extra travel distance. 

In theory, convergence to a global optimum with probability 

one is guaranteed. However, for real applications one needs to be 

content with the best solutions found in one or a few hundred it- 

erations. Nevertheless, our computational tests indicate that good 

enough solutions for practical needs are found in early iterations. 

Possible future extensions and developments of our work in- 

clude adaptation of RDP to parallel processing to deal with a large 

number of scenarios. Scalability is ensured by the fact that recur- 

sive computations in RDP can be carried out in parallel for each 

scenario; hence significant benefit can be gained for models with 

a large number of scenarios. Regarding further methodology im- 

provement, reinforcement learning approach is an interesting can- 

didate for extending RDP to be applied for solving deterministic or 

stochastic MT-TSP. 
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