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Abstract
We show that there is a hidden freedom in quantum many-body theory associated 
with overcompleteness of the time evolution through the single-particle subspace of 
a many-body system. To fix the freedom, an additional constraint is necessary. We 
argue that the appropriate constraint on the time evolution through the subspace is 
to quantize the propagation of entangled pairs of particles, represented by the single-
particle spectral function, instead of individual particles. This solution method cre-
ates a surface that indicates the multiplicity of every solution to the inverse problem 
defined by matching the freedom to the constraint. Upon measurement, the system 
collapses nonlocally onto a single quantized solution. In addition to a combinatoric 
multiplicity, each solution acquires a multiplicity due to its stability when subject 
to a small variation in the microscopic degrees of freedom. Numerical calculations 
for a two-level system show that our theory improves upon standard theory in the 
description of non-quasiparticle spectral features. Our reinterpretation of quantum 
many-body theory is not based on the Born rule and offers a more faithful represen-
tation of experiments than current theory by modeling individual, quantized events 
with an explicit collapse model.

Keywords  Quantum many-body theory · Entanglement · Quantum measurement · 
Wave function collapse · Non-Fermi liquid

1  Introduction

Nonrelativistic quantum many-body theory is a highly developed and extremely 
successful field. Nonetheless, theoretical challenges remain, and the one which 
motivates our study is a lack of consistency. Many-body theory takes place in Fock 
space, a much larger Hilbert space than for the noninteracting problem. The N ± 1 
portions of Fock space include excitations of the single-particle type, defined by 
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a single field operator acting on a reference configuration, and virtual excitations 
created by multiple field operators. Unitary time evolution of the many-body wave 
function covers all of Fock space, mixing both types of excitations, and is guaran-
teed to be norm conserving.

Effective field theories based on the single-particle Green’s function, on the other 
hand, are built around a locally conserved current that passes through only the sin-
gle-particle portion of Fock space. This single-particle basis is incomplete for the 
many-body problem. Even so, effective theories are constructed to have a normal-
ized single-particle current, seemingly at odds with time evolution of the wave func-
tion through a much larger Fock space and the incompleteness of the single-particle 
basis.

Despite the advanced stage of the field, we do not consider the overall picture 
very clear. Our discussion raises a conceptual gap in many-body theory: how exactly 
does the many-body system propagate? At present, one can apparently choose 
between the two options discussed above: the high-dimensional wave function or 
a conserved current. Both of these objects are somehow normalized to the cor-
rect particle number despite their difference in dimensionality − an unsatisfying 
situation − and there is no clue about which one is physical or correct. Central to 
this question is the quantum measurement problem. At what point and how does 
the measurement condense the probability amplitude? What is the precise mecha-
nism by which the probabilistic many-body state, an object much larger than can be 
observed, is reduced to a single, observable outcome? We want to close this gap in 
understanding.

Spectroscopies measure correlations between particles and are the primary means 
by which we gain information about quantum systems. The theoretical inconsistency 
discussed above can also be explained in the spectroscopic context. Experimental 
spectroscopies create and annihilate particles over some time interval, a process 
modeled theoretically with field operators. The field operators can act at any point in 
space and span the entire observable, three-dimensional space accessible in experi-
ment. These operators represent the single-particle basis. Yet, the many-body system 
has some norm beyond this single-particle basis, even though any norm beyond the 
single-particle space cannot be measured.

The discrepancy between the quantum state and what can be measured arises 
because the wave function is a superposition of many-body configurations, and there 
are exponentially more configurations than there are single-particle states. What 
remains unclear to us is how to solve or completely understand this inconsistency.

There is a major hint at the mechanism behind a unified understanding of the 
single- and many-particle pictures: quantum entanglement. Indeed, we already know 
that correlations with the Schrödinger equation do not necessarily form a local cur-
rent but can instead be entangled [1], with particles affecting each other nonlocally 
across indeterminate spacetime intervals. A complete and consistent theory of parti-
cle/hole correlations based on the Schrödinger equation should contain the entangle-
ment effect.

Many aspects of nonlocality and entanglement are already understood by 
examining the entanglement structure of the many-body wave function. However, 
we want to develop a second-quantized formalism for entanglement. Such a field 
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theory-like description would, ideally, contain entanglement features of the wave 
function like nonlocal correlations and, at the same time, utilize the field opera-
tor formalism. Instead of being forced to choose between the wave function or a 
single-particle current, we want to combine features of both − a new theory with 
the entanglement structure of the full Schrödinger equation but in the language 
and reduced space of the single-particle Green’s function.

In this article, we propose a solution to fully and consistently connect the sin-
gle- and many-particle pictures. In brief, our idea is to quantize the correlation 
between particles instead of an individual particle. We show that there is a free-
dom in the quantum many-body problem that gives a choice of how to project the 
total correlation function into the single-particle subspace. To fix the freedom, we 
introduce a constraint on the resulting two-point equation, which is to quantize 
the creation, propagation, and annihilation of entangled particles together. Upon 
measurement, the many-body state collapses, and one such quantized solution is 
projected onto the single-particle, observable subspace. Counting these quantized 
solutions creates a multiplicity surface that can be compared with an experimen-
tal ensemble of spectroscopic measurements. We present numerical calculations 
for a two-level model system and discuss our concept in a broad context includ-
ing comparisons with the single-particle Green’s function, quasiparticles, and the 
reduced single-particle density matrix. Our proposal is a reinterpretation of the 
many-body wave function as a carrier of information about two-point, quantized 
correlations instead of a probability amplitude.

Our purpose in this article is to start building a theory that consistently and rigor-
ously treats both the single- and many-particle pictures. We also want to understand 
the physical mechanism which enables transitions between the two. The scope of 
this manuscript is broad. We focus on general concepts in this initial exposition and 
not fine details.

2 � Norm Conservation

We first give a clear demonstration of the problem we want to solve. We are inter-
ested in an isolated electronic system in equilibrium at zero temperature to which we 
can add or remove individual, quantized electrons. Our definition of norm or particle 
conservation is that for any initial single-particle creation/annihilation process, the 
total probability of annihilating/creating the added particle at any final time must be 
1. This two-point normalization condition is necessary for the Green’s function to 
make sense as a probability amplitude.

We are primarily concerned with the adiabatic, nonrelativistic electronic Hamil-
tonian of condensed matter [2, 3] and quantum chemistry [4],
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∑
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for one-body matrix elements tij , two-body matrix elements vijkl , and fermionic mode 
creation (annihilation) operators a†

i
 ( ai ). The single-particle Green’s function in an 

orbital representation is [2, 3]

for interacting ground state �Ψ0⟩ and time-ordering operator T̂  . G describes the crea-
tion/annihilation of a particle at an initial time and the ensuing annihilation/creation 
of a particle at a final time.

The initial state in G is not an eigenstate of H , in general. The repeated matrix 
multiplications from Taylor expanding the time evolution operator at internal times, 
e∓iH(t1−t2) , mix all types of excitations in the N ± 1 portion of Fock space. Fock space 
includes configurations with neutral particle-hole excitations attached to any added 
particle/hole. We label excitations with attached particle/hole pairs as virtual exci-
tations. At any final time, the many-body state has nonzero expansion coefficients 
across the entire Fock space.

G is defined as the overlap at the final time with only the portion of these configu-
rations with a single bare particle or hole. The total probability recoverable with G 
is found by summing over all possible single-particle annihilation/creation processes 
(summing down the column of G at the final time). Because the particle addition 
state after time evolution is distributed across the entire Fock space, and all possi-
ble single-particle annihilation/creation processes cover only a small portion of Fock 
space, the total recoverable probability is < 1 . Only a fraction of a particle can be 
recovered by G at the final time. Simply put, the single-particle basis is incomplete.

(2)Gij(t1, t2) = (−i)
⟨Ψ0�T̂ [ ai(t1) a

†

j
(t2) ] �Ψ0⟩

⟨Ψ0�Ψ0⟩

Fig. 1   (a) After an initial creation process, a†
j
�Ψ

0
⟩ , nonzero expansion coefficients ck(t) cover all of Fock 

space. At the final time, the overlaps with all possible annihilation processes recover the probability 
amplitude below the horizontal dashed line. The norm above the dashed line is on virtual excitations and 
not recoverable with G. The red outline shows the general case of how norm spreads across the full Fock 
space as the system evolves. The red shaded region depicts the specific and extreme case when all norm 
is transferred to virtual excitations, an excitation with zero quasiparticle residue. (b) and (c) show a parti-
cle (p/h) and particle plus particle-hole (p/h+ph) excitation, respectively. Excitations below the horizon-
tal dashed line in (a) are of the type in (b), and excitations above the horizontal line in (a) are of the type 
in (c). The excitations in (b) and (c), which we refer to as particle and virtual, respectively, have the same 
particle number − one added electron
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This effect is demonstrated graphically in Fig. 1. For an initial particle creation on 
the ground state, which we assume is a single reference configuration ��0⟩ , time evolu-
tion covers the entire Fock space. The expansion coefficients ck for the configurations 
��k⟩ are all nonzero, in general. The spread of norm to all ck with time evolution is 
shown by the red outline in Fig. 1. At the final time, only the probability amplitude 
below the horizontal dashed line can be recovered with G, ruining the normalization of 
the final state in the single-particle subspace that is accessible in experiment.

It is even possible, in principle, that all of the norm is transferred to those configura-
tions above the dashed line which have particle-hole pairs attached to the bare particle/
hole (virtual excitations). This extreme case with all amplitude on virtual excitations is 
an excitation with zero quasiparticle residue, an outstanding challenge for theoretical 
physics, and shown by the red shaded region in Fig. 1.

Whether or not the lost norm is a problem and how to address it are additional issues. 
We argue that the norm lost to virtual excitations is a major problem. The intent of G 
is to describe the creation and ensuing annihilation of a normalized particle, exactly 
modeling a spectroscopy experiment. A possible solution to recover the lost norm is 
to somehow absorb the virtual excitations into renormalized field operators based on 
physical constraints. The theory can then be reconstructed or reinterpreted so that it 
respects the symmetries and conservation laws we impose.

For example, one can impose local continuity in the single-particle basis − a con-
served single-particle current or probability density − in order to model a measured 
current. The result is that both initial and final states are normalized in the single-parti-
cle subspace. Such techniques, however, are the crux of the problematic inconsistency 
discussed thus far. We know that local time evolution of the many-body state covers all 
of Fock space, not just the single-particle portion.

As well-reasoned as it may be, local continuity is an external constraint on the many-
particle theory. Based on only the Schrödinger equation, there is simply no reason for 
local continuity in the single-particle basis. In fact, both entanglement and the high-
dimensional time evolution of the wave function suggest that this is actually not the 
case.

Our initial motivation is simple: recover the norm on virtual excitations that is part 
of the many-body wave function but lost in the definition of G. For this reason, we 
define a new correlation function, G , that correlates all degrees of freedom in the N ± 1 
portions of Fock space. G has a Lehmann representation of

where � is a positive infinitesimal. The operators ΛK , Λ†

K� create every possible exci-
tation in the N ± 1 portions of Fock space. Each ΛK is a string of many single-parti-
cle field operators. For example,

GKK� (�) =
�

N+1

⟨Ψ0�ΛK�ΨN+1⟩⟨ΨN+1�Λ†

K� �Ψ0⟩
� − (EN+1 − E0) + i�

+
�

N−1

⟨Ψ0�Λ†

K� �ΨN−1⟩⟨ΨN−1�ΛK�Ψ0⟩
� − (E0 − EN−1) − i�
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where the composite index K includes all single-particle indices on the right-hand 
side. �ΨN+1⟩ ( �ΨN−1⟩ ) are eigenstates of the N + 1 ( N − 1 ) particle Hamiltonian with 
corresponding eigenvalues EN+1 ( EN−1 ). �Ψ0⟩ is the interacting ground state. We also 
refer to the Λ†

K
 as composite excitations rather than virtual, since single-particle 

excitations of the type in Fig. 1b are allowed in the set of all K (as in Eq. 3). All of 
these excitations have the same particle number. G allows an initial state made from 
some number of field operators to decay into a final state with any other number of 
field operators (or the same number) that belongs to the sector of Fock space with 
the same particle number. G is extremely complicated, but can be defined quite sim-
ply as the largest possible time-ordered correlation function in the N ± 1 portions of 
Fock space (the “total” correlation function).

As a starting point for a complete and consistent theory, G is an excellent choice. 
G contains all information about the total system and time evolution in the positions 
and residues of its poles. By summing down the column of G at the final time as in 
Fig. 1a, we can recover the full norm of the many-body state; no other correlation 
function can do this.

3 � Spectral Layers

We eventually want to describe the addition/removal of normalized particles to the 
single-particle portion of the K, K′ basis. To condense the total correlation func-
tion into the particle/hole subspace, we project G into the subspace of single-particle 
excitations.

Before detailing the exact projection of G onto the single-particle excitations, we 
demonstrate the key concept underlying our approach with an analogy. Consider 
a flashlight that illuminates a pencil in front of a screen. The shadow cast on the 
screen is the projection of the pencil. The three-dimensional pencil exists in a higher 
dimensional space than the two-dimensional screen. Accordingly, and necessarily, it 
is possible to rotate the pencil and find a new projection. This is purely a geometric 
effect, independent of any mathematical details of how the projection is performed. 
There is more information about the three-dimensional pencil than can fit on the 
two-dimensional screen. There are always more projections of the state (pencil) 

(3)Λ†

K
=a†

i

(4)Λ†

K
=a†

i
aja

†

k

(5)Λ†

K
=a†
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than can fit in a subspace (screen). No matter which projection is selected, it always 
appears on the screen as two-dimensional (Fig. 2).

Our analogy is that the pencil represents the total correlation function G . The 
screen is analogous to the single-particle subspace which can be measured exper-
imentally. The projection of the pencil onto the screen by the flashlight represents 
the projection of G onto single-particle excitations. The screen can be considered 
overcomplete with projections of the pencil. That is, there are more projections of 
the pencil than can be shown on the screen at one time, a result of the dimension-
ality reduction from pencil to screen.

Despite its simplicity and without any equations, this simple example nicely 
demonstrates the core principle behind our idea: there is a fundamental freedom 
in choosing how to project the high-dimensional pencil ( G ) onto the screen (sin-
gle-particle subspace). Just as the screen is overcomplete with information about 
the pencil, the single-particle subspace is overcomplete with information about 
the many correlations contained in G , as we now demonstrate.

Because we are interested in describing correlations between states, we must 
project different spectra contained in the total correlation function G onto the sin-
gle-particle subspace. Spectra tell us the probabilities that one initial state decays 
into another and at which frequencies these decays can occur. The spectrum itself 
is defined by the imaginary part of the Green’s function or correlation function of 
interest. We can simply take the imaginary part later and work directly with the 
correlation functions now.

To this end, we define projection amplitudes AiK as

(7)AiK = ⟨Ψ0�ai Λ†

K
�Ψ0⟩ .

Fig. 2   When a flashlight illuminates a pencil, the projection of the pencil appears on the screen as a 
shadow. Because the pencil is higher dimensional than the screen, it can be rotated to have either a cir-
cular (top) or linear (bottom) projection. The screen is overcomplete with information about the pencil
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AiK projects the state Λ†

K
�Ψ0⟩ defined by the composite excitation K onto the state 

a
†

i
�Ψ0⟩ , a single-particle excitation. AiK simply tells us how much of excitation i is 

in excitation K. The projection amplitude depends on states defined by excitations 
above the fully interacting ground state, a very complicated excitation process in the 
most general case. The ground state is not a single reference configuration with sin-
gle-particle occupation numbers of 0 or 1. Consequently, these excitation processes 
are much more complicated than the case of working from a ground state that is a 
single reference configuration, either by assumption or after adiabatic connection 
from an interacting ground state [2]. We make no assumptions about the character of 
ground or excited states in our formalism.

We project every possible initial K excitation in G onto a single-particle excita-
tion i; the same procedure is applied to final states K′ by projecting onto single-
particle excitation j. The resulting object, which we label the single-particle spec-
tral projection matrix (abbreviated to projection matrix) and denote as G , is

Care must be taken in Eq. 9 to attach the proper particle or hole projection ampli-
tudes AiK to the corresponding particle or hole portion of G.

Equation  9 is a complicated expression, but the meaning of G is straightfor-
ward. We compute a spectrum in the Lehmann representation for every possible 
creation/annihilation process, including offdiagonal ones, involving any number 
of field operators that create the correct particle number. We correlate all possible 
degrees of freedom. Then, every pair of initial and final excitations is projected 
onto the observable degrees of freedom − pairs of excitations defined by a single 
field operator. The projection has the same spectral shape as the original excita-
tion pair but with a different normalization.

Again, we have carefully chosen to project onto the basis of states created by 
single field operators acting on the ground state. These operators represent the 
particles which can be measured in experiment. We consistently use i, j to denote 
single-particle excitations and K, K′ to denote composite excitations. We remind 
the reader that all possible i are a subset of all possible K.

G depends on four independent indices: i, j, K, and K′ . The projection of each 
pair of many-body excitations K and K′ is therefore an entire matrix in the i, j 
basis. This again has a simple interpretation: an arbitrary excitation composed 
of any number of field operators (K or K′ ) has some nonzero overlap with every 
possible single-particle excitation (i or j). The states created by these different 

(8)Gij(K,K
�,�) =AiK GKK� (�)AK�j

(9)

=⟨Ψ0�ai Λ†

K
�Ψ0⟩

�
�
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⟨Ψ0�ΛK�ΨN+1⟩⟨ΨN+1�Λ†
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�
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j
�Ψ0⟩ + ⟨Ψ0�Λ†
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×

�
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excitations are, in general, not orthogonal. The projection amplitudes AiK are 
therefore nonzero in the most general case and form a full matrix of amplitudes. 
The matrix multiplications involved in forming an entire i, j matrix for choice of 
K and K′ are shown in Fig. 3.

i and j are fixed by the single-particle basis. These are the degrees of free-
dom which can be measured. K and K′ , however, are free parameters. There is a 
freedom in choosing K and K′ in analogy with rotating the pencil in front of the 
screen to find a new projection. Because the space of all possible K is much larger 
than the space of all possible i, the projection of G onto G is not unique. Thus, K 
and K′ in Eq. 9 represent a fundamental freedom in choosing how to project the 
total correlation function G onto the subspace of single-particle excitations. This 
projection freedom is an unavoidable consequence of the size and structure of the 
many-body problem; more specifically, of the reduction in dimensionality from 
full Hilbert space to subspace.1

In the Appendix (Sec.  8), we give yet another perspective on projecting infor-
mation about the full system into a subspace based on the Löwdin downfolding 
technique for eigenstates. Our conclusion is the same: the hallmark of projecting or 

Fig. 3   Schematic of the matrix multiplications involved in G . Each choice of K, K′ is represented by 
a different position and color of the box in the grey square representing G . For each choice, a vector 
and row of projection amplitudes are computed between the initial and final state of G (K or K′ ) and all 
single-particle excitations. Their multiplication yields a matrix. K and K′ run over a much larger set than 
i and j, hence the colored vectors and rows are shorter than the length of the grey square

1  One could consider projecting only single-particle excitations i onto single-particle excitations j by the 
overlap Aij . This case does technically provide a choice of which excitation to project without a reduction 
in dimensionality. This freedom is only due to the nonorthogonality of the states created by a†

i
 and a†

j
 , 

however, and not what we have in mind. We consider this an “accidental” freedom. When projecting the 
full Hilbert space onto a subspace, the projection freedom is necessary and not accidental. The Appendix 
supports this view.
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compressing information about the total system into a low-dimensional subspace is 
overcompleteness in the subspace or nonuniqueness of the projection.

At this point, K and K′ are simply part of the definition of G and we leave them 
unspecified. Their selection is very important and will be discussed in detail in the 
next section.

The effect of projecting onto a subspace is to create “layers” to the spectrum of the 
projection matrix, as shown in Fig.  4. The subspace has many more spectra than it 
could normally support, leaving a choice of which spectrum to produce. The time evo-
lution through the subspace is now overcomplete or nonunique, and there is a necessary 
free parameter, the K, K′ pair, that allows us to choose the time evolution through the 
subspace.

The observable, single-particle spectrum in G changes with each choice of K, K′ . A 
given matrix element holds many spectral layers of information. To an experimentalist 
who can only observe the single-particle subspace, each of these projections appears as 
a propagating particle, regardless of how many virtual particles would be attached to 
the full excitation.

In the limit of a single reference ground state and excited states made of a single 
Slater determinant, we recover in G the spectral function of G in the same limit. In this 
case, the amplitudes AiK are zero for i ≠ K because states i and K are orthogonal. For 
weakly-correlated systems with little mixing of excitations, we expect the amplitudes 
AiK to be very small for all excitations except the case i = K . In this case, we expect 
each spectral layer to be dominated by a quasiparticle solution. We expect very many 
of the matrix elements of Gij to be nearly zero in most cases, at least for common elec-
tronic systems.

We are most interested, however, in understanding deviations from quasiparticle 
behavior in the strongly interacting limit. In this case, there could be significant offdi-
agonal amplitudes. This regime is explored numerically in our toy model in Sec. 6. In 
the direction of increasing correlation strength, the offdiagonal projection amplitudes 

Fig. 4   A pair of composite excitations defined by a string of single-particle field operators (K, K′ on the 
left, M, M′ on the right) has its own spectrum in G . The spectrum is related to the imaginary part of the 
correlation function. (a) and (b) have the same choice of composite excitation, as do (c) and (d). (a) and 
(b) have the same spectrum subject to different normalizations, as do (c) and (d). The choices K, K′ or M, 
M′ are different layers of the projection matrix G
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increase from zero (noninteracting limit), to small (weakly interacting), to large 
(strongly interacting).

Next, we next address the obvious question of how to choose K and K′ . There is a 
fundamental freedom in choosing the layer or projection.

4 � Collapse and Spectral Quantization

We assign the projection of G onto the single-particle basis meaning as the collapse 
of the many-body state upon measurement of the system. Originally, the system 
remains in a high-dimensional superposition of configurations across all of Fock 
space according to the Schrödinger equation. Then, it suddenly collapses with the 
measurement into the observable, single-particle subspace. We use the projection 
matrix as an explicit model for collapse of the wave function.

Our interpretation of the projection as collapse also guides our choice of which 
K, K′ layer to project into the observable subspace. We see no a priori way to choose 
the layer onto which the system collapses. The choice of layer is extremely impor-
tant, however, since it determines how the particle propagates.

To absorb the projection freedom, we need an additional constraint. The observed 
spectroscopic signal of the two-point process is always a normalized particle cre-
ated at one point, propagating in time, and annihilated at another. This two-point 
creation/annihilation process is a correlation represented by a spectrum in the fre-
quency domain − the same type of spectrum we have already been working with. 
However, unlike any given spectral layer of G , the observed spectrum always has a 
very specific shape and normalization due to quantization. The normalized process 
is represented by a simple pole of residue 1 shifted off the real �-axis by the physi-
cal broadening value i� . This shape means that the created/annihilated particles are 
normalized and the particle propagates with a definite frequency.

We use the projection freedom to choose the correlation that we observe. We 
search for linear combinations of the spectral layers that match the observed and 
normalized two-point signal. The final, observable event is a total projection assem-
bled from different layers, each layer with its own weight. With measurement, the 
system collapses onto a quantized spectral projection.

Our strategy is to quantize the single-particle spectral function instead of a parti-
cle by itself. Since its discovery, entanglement has shown that the relevant and indi-
visible degree of freedom is the entangled pair, not the individual particles. Heu-
ristically speaking, then, it makes sense to quantize a pair of particles instead of a 
single particle. Whether or not our idea can be formally connected to entanglement 
remains to be seen, but the physics of entanglement suggests such a two-point quan-
tization is a credible approach.

Our quantization condition sets up a search through combinations of layers so 
that the single-particle spectral function of the total, observable projection, denoted 
M, is
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for some peak position Et . We select a single matrix element in the single-parti-
cle excitation basis to quantize as a ��-function and set all other matrix elements to 
zero. The �� function in Eq. 10 represents our constraint and describes the creation, 
propagation, and annihilation of a single normalized particle, the most microscopic 
single-particle quantum mechanical process.

The structure of our proposed solution method, searching through an overcom-
plete space to find combinations of layers which match an observable signal, is 
an inverse problem. The total projection M is a sum of different layers of G . We 
only need to consider the imaginary parts of the layers to match the quantiza-
tion condition. We define spectral layer K, K′ as Lij(K,K�,�) = ImGij(K,K

�,�) , 
the imaginary part of the single-particle spectral projection matrix. It depends on 
the free parameters K and K′ . The inverse problem is to find the expansion coef-
ficients cKK′ for the layers which satisfy

where we have quantized matrix element x, y in the single-particle excitation basis. 
Equation  11 constrains the free parameters K and K′ . The cKK′ select a quantized 
path that the particle can take through the system.

The observed process is one particle propagating from one state to another 
without any norm transferred to other states. For this reason, matrix elements of 
Mij other than the one selected for quantization are set to zero. Our condition 
is therefore quantization on both the �-axis (normalized ��-function) and in real 
space (zeroing other matrix elements (i, j ≠ x, y)).

Equation 11 is a system of linear equations. We assume there is some number 
of solutions which match the quantization constraint at each x, y matrix element 
and frequency Et with a multiplicity Wxy(Et) . We make no restrictions on the layer 
coefficients cKK′ and only require that the total projection is normalized. Normali-
zation of the observed signal is what matters.

This sets up a very complicated problem for real systems. The idea is best 
explained graphically as in Fig. 5. Consider a single matrix element for two spectral 
layers of G , one with a dominant peak at an energy E1 and weak satellite at E2 , and 
the other with a strong peak at E2 and a weak feature at E1 . Importantly, neither layer 
is quantized on its own. This is the behavior we expect for the exact layers of G and 
is due to the multiconfigurational character of the eigenstates.

To quantize the peak at E1 , we first give the E1-dominated layer a weight so that 
the residue of that pole is 1. This also increases the amplitude on the weaker peak in 
that layer at E2 . To compensate, we add a contribution from the E2-dominated layer 
with the sign and weight chosen so that it cancels the satellite peak in the first layer. 
Because the second layer is E2 dominated, the numerical value of its satellite peak at 
E1 is very small. We assume it does not ruin the normalization of the E1 peak in the 

(10)
1

�
| ImMij(�)| =

{
��(� − Et), i, j = x, y

0, otherwise

(11)ImMij =
∑

KK�

cKK�Lij(K,K
�,�) =

{
±� ��(� − Et), i, j = x, y

0, otherwise
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first layer. Combined, these two layers form a quantized spectral projection within 
some numerical tolerance.

Identical arguments allow one to quantize the E2 peak in the second layer with a 
small contribution from the other layer. The general idea is that for any weak feature 
of one spectral layer that ruins the quantization of the spectrum, there is a different 
layer in which that pole is the dominant peak and can be used to remove the weak 
feature in the first layer. We present numerical results corroborating this picture for a 
two-level model system in Sec. 6.

There is therefore a combinatoric effect which determines the multiplicity of each 
quantized solution. We expect the combinatoric multiplicity to be highest when 
quantizing peaks which are already strong in an individual layer. It is possible, in 
principle, that there are different combinations which give the same solution. Count-
ing these different combinations defines the multiplicity, W, for that solution. Obvi-
ously, many combinations do not give quantized spectra and do not contribute to the 
multiplicity. Extremely weakly-correlated systems that lack satellite features in their 
spectra above a certain numerical tolerance could have quantized solutions com-
posed of a single layer.

Until the measurement, the system remains in a high-dimensional superposition 
of configurations. Then, with collapse upon measurement, the initial and final states 
are both projected onto single-particle excitations. Our collapse model therefore has 
a nonlocal effect on the initial point. We interpret this as an actual, physical change 
to the system’s history and initial configuration. Even the choice of the initial state 
is not determined until the collapse occurs, resulting in a nonlocal modification of 
the system’s past. This is exactly the quantum entanglement effect we hoped to cap-
ture with a new theory for particle/hole correlations that remains consistent to the 

Fig. 5   Assume there are two layers of the single-particle spectral projection matrix L
1
 and L

2
 . These lay-

ers have strong peaks at E
1
 and E

2
 , respectively. The inverse problem of Eq. 11 searches for linear com-

binations of L
1
 and L

2
 to create quantized projections M

1
 and M

2
 The total, quantized projections, M

1
 

(purple) and M
2
 (green), are linear combinations of L

1
 and L

2
 . The expansion coefficients c are chosen to 

remove the extra features of the spectrum away from the main peaks. L
1
 and L

2
 are shown with dashed 

lines in (b) for comparison
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Schrödinger equation. Our proposal is a two-point collapse, consistent with entan-
glement, instead of a single-point collapse onto the density.

Whether or not quantized solutions exist for a pair of points depends on the details 
of the Hamiltonian and any preparation of the initial many-body state, the structure 
of which requires exploration beyond the scope of this work. A formal connection 
to entanglement is desirable. If the Hamiltonian decouples into blocks, for example, 
one can speculate that there are no quantized solutions between states coming from 
different blocks. This could appear in the Lehmann amplitudes, which depend on 
the eigenstates, and/or through the projection amplitudes. G can be rewritten in a 
density matrix-like way, and our hope is that many properties of the reduced single-
particle density matrix, including its entanglement structure, will carry over into our 
theory.

The expansion coefficients cKK′ for each quantized spectrum are not related to 
normalization or probability amplitudes. They are just numbers which solve the 
inverse problem. Furthermore, by construction, each quantized spectrum is normal-
ized. We cannot compare the residues of different events to each other − they are all 
1. For these reasons, we need some other way to predict the probability of one col-
lapse occurring over another. The multiplicity for each process holds that informa-
tion. By comparing the multiplicities of different quantized processes to each other 
and/or summing over all processes to compute a total multiplicity, we can predict 
the probability of one collapse event occurring over any other. The total multiplicity 
is the normalization to convert the multiplicity surface to a probability distribution. 
Computing multiplicities is discussed more in the next section.

Finally, there is the normalization of the field operators. Because single-particle 
occupation numbers in the interacting ground state are not 0 or 1, the effect of a bare 
field operator on the interacting ground state is not to create a normalized particle. 
Our reintepretation remedies this issue. The projection matrix G is defined in the 
basis of states created by single field operators acting on the ground state. When we 
quantize matrix elements in this basis, the single, bare field operators behave exactly 
as we want (after the collapse of the system). By construction of our ��-function 
constraint on the inverse problem of Eq. 11, the bare field operators create/annihilate 
normalized particles above the interacting ground state.

5 � Numerical Width

To continue developing our collapse model, we return to the analogy of projecting a 
pencil onto a screen. Consider the pencil and the flashlight. Within some numerical 
tolerance, very small rotations of the pencil give the same projection on the screen. 
As long as the rotation of the pencil causes a change to the projection which is less 
than the resolution of the screen, the resulting projection is the same to an observer 
of the screen. We can count each micro-rotation as a unique projection because it is 
distinct in the microscopic degrees of freedom. However, an observer will perceive 
a cluster of several of these small − though distinct − deviations around a single 
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projection as identical. This gives the observable projection on the screen a finite 
multiplicity.

There may be many ways to micro-rotate the pencil to reach the same projection 
on the screen, and we simply count them all to define the multiplicity of that projec-
tion. The observer or screen itself must have a finite resolution which is less than the 
resolution of the microscopic degrees of freedom, an idea built into our model, in 
order to be ignorant of these micro-rotations and give the macrostate (the projection 
on the screen) a finite number of microstates (micro-rotations of the same solution).

In order to generate a multiplicity with meaningful shape, it is essential to recog-
nize that not all projections are equal. Instead of projecting a pencil, consider pro-
jecting a piece of paper. It is easy to project the broad side of the paper as a shadow 
on the screen. This projection is robust against slight deviations in the microscopic 
degrees of freedom. It is nearly impossible, however, to project the edge of the 
paper. Even though this projection technically exists, it takes incredible precision to 
actually create the projection. It is very unstable. These two projections are therefore 
unequal in terms of their robustness against microscopic deviations.

These examples demonstrate our concept of numerical width. To each projection, 
we attach a numerical width, or multiplicity, due to its (in)stability against small 
deviations in the microscopic degrees of freedom. More stable projections have a 
higher multiplicity.

Finite precision in the quantum system could potentially come from a number of 
sources including noise, stochastic fluctuations, etc., but we most strongly associate 
it with imprecise information about the positions of the electrons. If the screen has 
a finite resolution, for example, then the projection is insensitive to micro-rotations 
in the underlying degrees of freedom which induce a change less than the resolution 
of the screen. Without dwelling on the reason, we simply exclude infinitely precise 
projections from our model.

In principle, one should recompute the projection matrix for a cluster of small 
deviations in the microscopic parameters around a central point. We denote this 
abstract space of small deviations as a differential volume dV. At each perturbed set 
of coordinates inside of dV, one then solves the inverse problem for quantized pro-
jections. Counting solutions inside of dV contributes to the multiplicity through our 
concept of numerical width. This a separate effect contributing to W than the combi-
natorics of the inverse problem that we already discussed.

The previously outlined procedure is very expensive. We want a simpler proce-
dure that renders the problem more tractable. Assume that, for a given quantized 
spectrum of interest, there is a certain contributing layer that is most sensitive to 
deviations in the microscopic degrees of freedom. Instead of solving the inverse 
problem at every point inside of dV, we can simply track how rapidly the projection 
amplitudes of that layer change as we move away from an optimal solution point 
inside of dV. Small changes to the amplitudes will make no difference and the com-
binatorics of the central point hold. However, a significant change can ruin the com-
binatorics required to reach the solution at the central point. Crudely speaking, the 
faster the amplitudes change away from a central point, the smaller the numerical 
width and multiplicity.
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The relationship between the numerical width of a layer and the change in its pro-
jection amplitude is characterized by the equation

where Nij(K,K
�) is the numerical width of matrix element i, j for layer K, K′ . The 

variation �∕�� is an abstract representation of the change in the layer projec-
tion amplitudes due to some small perturbation � . If the gradient is very large, the 
numerical width of the layer drops to zero. If the gradient is very small, the width of 
the layer increases. In this case, the change of the layer is very slow within the vol-
ume dV. This gives that layer a high multiplicity. Stationary points with respect to 
the variation �∕�� are especially noteworthy for their stability.

Our current equations are only approximate but convey the concept. These are not 
equations to compute the numerical widths in an absolute sense. They are, however, 
simple expressions which allow us to qualitatively capture the behavior we want. 
Exact equations for numerical widths are left to future work.

6 � Two‑Level Model

To demonstrate the virtues of our theory, we perform exact diagonalization (ED) 
calculations on a two-level model system. We use the eigenstates from ED to com-
pute the Lehmann representation of G , projection amplitudes AiK , and spectral 
projection matrix. Our Hamiltonian is the interacting electronic Hamiltonian H of 
Eq. (1). Because of the number of overlap amplitudes involved in our formalism, an 
analytic result is cumbersome even for very simple systems. We instead resort to a 
numerical calculation.

Our two-level system is shown in Fig. 6. It contains two spatial levels, l (low) and 
h (high), each capable of holding two electrons in opposite spins. Spin dependent 
states are indexed from 1 − 4 . The ground state has N = 2 and particle addition con-
nects to the N + 1 = 3 particle portion of the Hilbert space. In this sector, we limit 

(12)Nij(K,K
�) =

(
�

��
AiK AjK�

)−1

Fig. 6   Our two-level system has 4 spin-orbitals, shown in (a). The ground state in (b) has N = 2 elec-
trons. We consider two excitations above the ground state: a particle excitation into state 2, shown in 
panel (c), and a composite excitation with an additional virtual particle-hole pair, shown in panel (d)
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ourselves to particle addition only to state 2. There is a single spin-conserving vir-
tual excitation in this sector, the creation of a particle in state 2 combined with the 
virtual particle-hole pair composed of states 4 and 3.

With these simplifications, the total correlation function G is only a 2 × 2 matrix. 
It contains one particle addition excitation into state 2 ( a†

2
 ), which we label Λ†

p
 , and 

one virtual excitation ( a†
2
a3 a

†

4
 ), which we label Λ†

v
 . We emphasize that the simple 

depiction of the ground state and excitations in Fig.  6 is only for illustrative pur-
poses. The true ground state is not a single Slater determinant with states 1 and 3 
occupied; it is a superposition of many different configurations, a key component of 
our theory. The effects of the excitation operators Λ†

p
 and Λ†

v
 are therefore more com-

plicated than what is shown in Fig. 6.
The advantage of these reductions is that G is a simple 1 × 1 matrix. Our entire 

single-particle basis is one state. We can therefore search for quantized spectra in 
just this matrix element without worrying about zeroing other matrix elements of G . 
This matrix element of G has three layers corresponding to (creation, annihilation) 
excitations of (p, p), (p, v), and (v, v). These are the three unique matrix elements of 
the 2 × 2 matrix G . Based on our previous discussion, we are especially interested 
in the transfer of norm from the excitation p to the excitation v and how it manifests 
itself in our theory. This is the norm lost to virtual excitations and unaccounted for 
in the single-particle G.

We make further simplifications in order to isolate the effects of interest. We 
consider only an on-site Coulomb interaction U (equivalent to Coulomb matrix ele-
ments vllll or vhhhh ) and a direct interaction D (equivalent to Coulomb matrix ele-
ment vlhlh ). The interesting physics relevant to our formalism is driven by offdiago-
nal matrix elements of the Hamiltonian. Offdiagonal elements are responsible for 
transferring norm from the particle space to the virtual space during time evolution. 
Neither U nor D contribute to the offdiagonal Hamiltonian. We instead parameterize 
the offdiagonal elements of H by the offdiagonal kinetic terms tlh = t∗

hl
 . We vary tlh 

to control the correlation strength in our model system.
Finally, we must compute the numerical width for each projection. For this, 

we employ a finite difference approach by repeating the calculation for a given 
set of parameters with a small increment added to tlh , �tlh . This small change in 
kinetic energy, �tlh , represents some small deviation in the spatial coordinates of 
the electrons. We estimate the numerical width of the projection by selecting the 
most important layer and computing its change in amplitude with respect to the 
increment �tlh . The numerical width is the inverse of this change, as in Eq.  12. 
This value is meaningless in an absolute sense but can be used to compare the 
stabilities of two different projections from the same ED calculation.

Figure  7 shows the single-particle spectral function A(�) = |ImG(�)|∕� , the 
spectra of the three unique matrix elements of G(�) , our computed multiplicity, 
and the spectral layers L. The comparison between the vertically aligned panels 
(b) and (d) allows one to deduce the magnitude of the projection amplitudes AiK . 
Corresponding matrix elements between (b) and (d) keep their spectral shape. 
The comparison tells how strongly each matrix element of G(�) is projected onto 
the basis of single-particle excitations. Panel (b) shows three separate matrix ele-
ments of G(�) ; panel (d) shows three different layers of a single matrix element.
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The parameters in Fig.  7 are U = 0.5 , D = 0.2 , tll = −1.0 , thh = 1.0 , and 
tlh = 0.05 . This system is weakly correlated. The spectral function A(�) in panel 
(a) nearly overlaps with the noninteracting spectrum A0(�) . Gpp shows a single, 
clearly-defined peak at the first particle addition energy, and Gvv shows a single 
peak at the second excitation energy. There is little mixing of these excitations 
and, as a result, Gpv is weak. After projecting these matrix elements onto the state 
Λ†

p
�Ψ0⟩ , only the Gpp(�) layer survives. This is visible in panel (d). Consequently, 

there is a single peak in the multiplicity from the Lpp(p, p) layer at the quasiparti-
cle energy.

In this case, the multiplicity closely matches the spectral function of G. This is a 
good result. For weakly-correlated systems, we should recover the successful results 
of the single-particle Green’s function. We do not want major numerical deviations 
from A(�) for these systems. Because the offdiagonal projection amplitude Avp is 
very small, we essentially just project the Gpp element, whose imaginary part is 
exactly the spectral function of G, onto the p, p matrix element of G . This spectral 
layer shows no satellite features, trivially satisfies our quantization condition, and 
creates a peak in the multiplicity.

Turning up the correlation strength by raising tlh to 0.4 in Fig. 8, we see that the 
offdiagonal matrix element Gpv is larger. This system has some norm transferred 
away from the particle excitation p onto the virtual excitation v. After projecting 
matrix elements of G onto the single matrix element of G , all three layers have some 
amplitude. Even though the blue spectrum in Fig. 8d is very weak, it has the correct 
shape for quantization. It can be renormalized with the proper choice of expansion 
coefficient for that layer, cvv , to create a properly quantized spectrum. In this case, cvv 
must be relatively large, but the value of the expansion coefficient cvv does not affect 

Fig. 7   (a) Spectral function of the noninteracting single-particle Green’s function ( A
0
(�) ) and interacting 

Green’s function ( A(�) ) for a weakly-correlated two-level system. (b) Matrix elements of the total cor-
relation function G(�) . (c) Multiplicity of quantized projections. (d) Spectral layers in the single-particle 
basis. The scales for the vertical axes are arbitrary



1 3

Foundations of Physics           (2023) 53:50 	 Page 19 of 25     50 

the multiplicity. The cKK′ are simply parameters in our theory to find quantized paths 
through the system.

The layer Lpp(v, v) is less stable than Lpp(p, p) according to our finite difference 
test with the increment �tlh . The instability of layer Lpp(v, v) creates a smaller peak in 
the multiplicity in panel Fig. 8c at higher energy. It is again an appealing result, for 
the sake of reproducing successful results of the single-particle G, that weakly pro-
jected layers (those with small AiK ) have greater instabilities and lower multiplici-
ties. This mimics the overlap amplitude interpretation of the spectral function. It is 
not obvious or guaranteed that it should be this way, but we generally find this to be 
true for weak to moderate correlation.

A clear counterexample to this behavior, and the case we are most interested in, is 
the strongly-correlated example in Fig. 9. In this case, with tlh = 4.0 , there is strong 
mixing of excitations. Matrix elements of G all show meaningful spectra, and Gvv 
has peaks at both eigenvalues of the system. The offdiagonal projection amplitudes 
do not vanish and the layers all have some amplitude after projecting back into the 
particle subspace. To quantize the layer Lpp(v, v) , a contribution from either Lpp(p, v) 
or Lpp(p, p) with the opposite sign is necessary to remove the feature in Lpp(v, v) at 
lower energy. This combination satisfies the inverse problem and gives a quantized 
spectrum at the higher eigenvalue. This quantized spectrum is an example of one 
with a combinatoric multiplicity greater than 1. Lpp(p, v) and Lpp(p, p) have essen-
tially the same shape, and Lpp(v, v) can be combined with either one to form a quan-
tized solution.

In this case, the offdiagonal projection amplitude Avp is actually more stable 
against small deviations in the microscopic degrees of freedom than the diagonal 
projection App , even though Avp is smaller. For this reason, the multiplicity has a 
larger peak at the higher energy solution. By comparison with A(�) , we see that this 
non-quasiparticle feature is entirely absent from the single-particle Green’s function. 

Fig. 8   Same as Fig. 7 but for medium correlation, tlh = 0.4
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By the nature of projecting the virtual excitation v onto the particle excitation p, it 
is a non-quasiparticle feature. It is only because the eigenstates are multiconfigura-
tional (superposition of many different configurations) that there is a nonzero pro-
jection amplitude between the particle and virtual excitations. This distinctly quan-
tum many-body behavior, in turn, is why we recover the non-quasiparticle feature.

The appearance of this additional peak in the multiplicity is a direct result of the 
norm transferred to virtual excitations. It is − exactly − the spectral projection of the 
virtual excitation. This is precisely the issue we wanted to address, and it leads to a 
very significant difference compared to the standard theory. We cannot overempha-
size the potential impact of this difference from standard theory on the description 
of non-quasiparticle excitations.

7 � Discussion

We now focus on the interpretation of our proposed reformulation, give perspective 
on its relation to current ideas, and the critical points that distinguish it from estab-
lished theory.

Figure 10 shows the different steps in comparing an experimental ensemble of 
spectroscopic measurements to theory. Figure 10a shows a single measurement on 
a detector for a given process. One measurement always produces a normalized �
-function broadened by the physical value � . Panel (b) shows an ensemble of meas-
urements. Each measurement produces its own ping on the detector at a certain 
frequency. In Fig. 10c, we have added the individual measurements of (b) together 
to form a histogram of the experimental data. The portion of Fig.  10 above the 

Fig. 9   Same as Fig. 7 but for tlh = 4.0 . The data in panel (d) has been rescaled for better visualization. 
Different curves within panel (d) can still be compared to each other
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horizontal dashed line is not meant for interpretation or discussion; it is simply a 
schematic of the process of collecting spectroscopic data.

Panels below the dashed line in the figure represent theoretical comparisons to the 
ensemble. Panel (d) shows the spectral function, A(�) , of the single-particle Green’s 
function, G. A(�) is normalized, and the size of a single measurement (blue bar) can 
be used as a consistent scale throughout Fig. 10. The common approach of many-
body theory is to identify quasiparticles in panel (d) where the spectrum has clearly 
defined peaks. This is indicated by the lifetime width 1∕� around the first main peak. 
The quasiparticle is then considered the relevant degree of freedom. In this qua-
siparticle description, what has happened is that the properties of an ensemble of 

Fig. 10   Panels above the horizontal dashed line show the experimental process of measurement and 
building a histogram from the ensemble of N measurements. Panels below the horizontal line are theo-
retical comparisons to the experimental ensemble spectrum, labeled D(�) . Quasiparticle theory is illus-
trated in d; our own framework for generating the theoretical multiplicity is shown in e. Blue and black 
bars are drawn to scale throughout
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statistics are now being ascribed to a single object, the quasiparticle. It is only by 
measuring the ensemble that properties like the quasiparticle lifetime appear.

In practice, we measure infinitely sharp �-functions, not quasiparticles, as 
shown in Figs.  10a and b. A single measurement never yields the spectrum of 
A(�) or even shows a peak with an identifiable lifetime. We consider the qua-
siparticle-ization of the ensemble to be a conceptual leap to fit in the language 
and formalism of the single-particle Green’s function. It is an extremely success-
ful paradigm, but we do not consider this picture a faithful representation of the 
experiment.

Our new approach in Fig.  10e is different. The inverse problem of Sec.  4 
describes the individual spectroscopic pings that appear on the detector. This the-
oretical process is a faithful representation of what is measured in experiment in 
panels (a) and (b). By abandoning the quasiparticle concept, our formulation also 
has a clear advantage: it is completely general and naturally describes systems 
without quasiparticles like non-Fermi liquids.

It is somewhat understood that quasiparticles are not fundamental degrees of free-
dom and argued that a more fundamental description is not necessary to describe 
what is observable. The assumption, at least as we understand it, is that the physical 
structure of the effective field theory is correct, even if observables must be renor-
malized. However, the structure of our formulation is completely different than an 
effective field theory. In our formulation, particles do not locally propagate from one 
spacetime point to another. Instead, the wave function collapses nonlocally. This dif-
ference in structure and foundational principles could lead to dramatically different 
physics.

Counting the ways that each process can be realized builds up the multiplicity, 
W, which can be compared to the experimental ensemble. W is not normalized, and 
different systems may carry different numbers of solutions. This is a profound dif-
ference from the standard theory. Adding up the individual multiplicities defines the 
total multiplicity, W tot , as indicated in Fig.  10. With the correct normalization by 
W tot , the multiplicity can be converted to a probability distribution.

Our emphasis on modeling individual, quantized events is largely what separates 
our concept from the Born rule or from the spectral function of G [5]. We calculate 
individually normalized events instead of the probability of a normalized event. In 
our theory, properties of the ensemble are built up from a distribution of individual 
events based on the bare particle degrees of freedom, just as they are in experiment.

In our picture, the wave function is not a probability amplitude [5]. Instead, we 
use an explicit model for collapse. The wave function is a carrier of information 
about fully quantized correlations between field operators. It has little quantitative 
meaning outside the context of our inverse problem.

An alternative approach to recovering the norm lost to virtual excitations could 
be to trace over all possible K, K′ excitations to define a reduced correlation func-
tion in the single-particle subspace. Simply adding up all the different spectral layers 
would be somewhat analogous to the definition of the reduced single-particle den-
sity matrix [4]. In general, traces are performed when an observer only has access to 
a subspace of a system. We have demonstrated, however, that a trace is not the only 
option to treat inaccessible degrees of freedom. Our method adds contributions from 
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inaccessible degrees of freedom, like a trace, but combined so that their weighted 
sum creates a signal that matches the observation in the accessible subspace.

Our interpretation holds great promise for new physics. Again, the foun-
dational structure of our concept is different than current theory. If only quan-
tized solutions contribute to statistical mechanics of observables, there is a new 
entropic force based on counting quantized solutions. It is also possible that no 
quantized solutions exist. There is a new quantity, W tot , to interpret. We have a 
complete phenomenology built around the concept that observable dynamics are 
described by collapse along the multiplicity surface that we will discuss in future 
work. A major component of this extended phenomenology is an internal spa-
cetime that connects the two points of the collapse with the purpose of holding 
the information gained from the reduction of the probabilistic state. It dilates and 
contracts in order to hold the information gained from each event. We also con-
sider the connections of the internal spacetime and entropic force to the geom-
etry of the multiplicity surface through statistical mechanics. This discussion is 
reserved for a future manuscript.

8 � Conclusion

The initial motivation for our study was the difference in size between the many-
body state and the relatively small portion of it which can be measured. This is an 
unavoidable fact of the many-body problem and one which creates inconsisten-
cies when jumping from the wave function to Green’s function picture. To rem-
edy this, we started our construction from the total Green’s function, G . At the 
endpoints of the correlation, we project all available degrees of freedom onto the 
observable degrees of freedom. Because of the reduction in dimensionality inher-
ent to this process, there is freedom in choosing which pair of excitations to pro-
ject into the observable subspace.

We argued that the relevant object in entangled systems is the entangled pair 
of particles. For this reason, our strategy is to quantize the creation, propagation, 
and annihilation of entangled pairs of particles instead of individual particles. We 
proposed that the observable event is a linear combination of spectral layers cho-
sen so that the observed single-particle spectral function is quantized. This con-
straint fixes the projection freedom. When the system is measured, a quantized 
spectrum is projected onto the single-particle subspace. The measurement has a 
nonlocal effect on the system’s past, consistent with quantum entanglement.

Regardless of fine details of the solution method, counting solutions that fix 
the freedom to the quantization constraint defines a multiplicity surface. The mul-
tiplicity includes both a combinatoric effect from solving our inverse problem and 
a purely numerical effect due to insensitivity of the quantized projection to small 
perturbations in the microscopic degrees of freedom. Knowledge of the multiplic-
ity surface and the total multiplicity for all possible collapse events allows one to 
compute the probability of one collapse event occurring over another.
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In practice, our numerical calculations nicely imitated the behavior of the 
spectral function of G for weakly-correlated systems. For strong correlation, how-
ever, we observe non-quasiparticle peaks in the multiplicity. These new peaks are 
the projection of virtual excitations into the single-particle subspace. Such non-
quasiparticle peaks are not visible in the single-particle Green’s function and a 
major difference from standard theory. We consider the description of such non-
quasiparticle features a success of our approach.

This article is meant to encourage new ideas and more rigorous work to follow. 
There are many technical aspects that need to be considered in detail. A main 
goal of future work is to rigorously find signatures of entanglement in the projec-
tion matrix. Our focus in this work is on introducing new physical principles. Our 
concept could serve as a blueprint for a new quantum many-body theory.

This work was supported by the Academy of Finland through grant no. 316347.

Appendix: Projection via Löwdin Downfolding

We provide a final demonstration of the overcompleteness of time evolution 
through a subspace of the many-body Hamiltonian. The Löwdin downfolding 
method is well-known in condensed matter and quantum chemistry. We demon-
strate it here to further show the robustness of our concept and refute a common 
belief in the Green’s function community.

As shown in many references and applied many times [6–10], algebraic manip-
ulations of the time independent Schrödinger equation give the energy-dependent 
subspace Hamiltonian

for projection operators P and Q which can be taken to project onto the single-parti-
cle subspace of the Hamiltonian and all other configurations, respectively. Inserting 
this effective Hamiltonian into the Schrödinger propagator,

We see that the propagator now depends on two parameters with the dimension of 
energy: � and E. The subspace has many more eigenstates than it could normally 
support, and many more than can be represented at any one time. The self-consistent 
selection of the eigenvalue E determines the eigenstate which is projected into the 
subspace. The subspace is overcomplete with information about the total system, 
just as when correlating all degrees of freedom in G and projecting onto G . For the 

(13)H
eff(E) = PHP + PHQ

1

E − QHQ
QHP

(14)Uij(�) =
1

� −H
eff(E)

(15)Uij(�) =
1

� −
(
PHP + v

1

E−QHQ
v
) .
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Löwdin downfolding, E is a free parameter which represents the projection freedom 
analogous to K, K′ in our projection matrix.

Downfolding the many-body Hamiltonian and inserting it into the propagator 
does not contribute a self-energy Σ(�) to the propagating particle as in Dyson’s 
equation. The effect of downfolding is to render the problem overcomplete and 
uncover the projection freedom we have already described. The Hamiltonian in 
the denominator of Eq. 15 is E-dependent, not �-dependent.
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