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Abstract

Bayesian neural networks (BNNs) can account
for both aleatoric and epistemic uncertainty. How-
ever, in BNNs the priors are often specified over
the weights which rarely reflects true prior knowl-
edge in large and complex neural network archi-
tectures. We present a simple approach to incorpo-
rate prior knowledge in BNNs based on external
summary information about the predicted clas-
sification probabilities for a given dataset. The
available summary information is incorporated
as augmented data and modeled with a Dirichlet
process, and we derive the corresponding Sum-
mary Evidence Lower BOund. The approach is
founded on Bayesian principles, and all hyper-
parameters have a proper probabilistic interpre-
tation. We show how the method can inform the
model about task difficulty and class imbalance.
Extensive experiments show that, with negligible
computational overhead, our method parallels and
in many cases outperforms popular alternatives
in accuracy, uncertainty calibration, and robust-
ness against corruptions with both balanced and
imbalanced data.

1 Introduction

Modern deep learning has opened up a plethora of possibil-
ities that previously seemed impossible. Leveraging func-
tion approximation capabilities of neural networks, modern
deep learning can tackle challenging problems (Esteva et al.,
2019; George and Huerta, 2018; Silver et al., 2016), but
the black-box nature of neural networks hinders researchers
from developing insights into the model’s predictions, and
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the issue is amplified in settings where uncertainty quantifi-
cation is required. On the other hand, model uncertainty
should be calibrated in critical areas such as healthcare and
autonomous driving. Bayesian modeling enables a coher-
ent probabilistic perspective for machine learning (Murphy,
2012) and provides valuable tools for data analysis (Gel-
man et al., 2014). Bayesian neural networks (BNNs) offer a
formal framework with promises of improved predictions,
reliable uncertainty estimates, principled model comparison,
etc (Wilson, 2020; Wilson and Izmailov, 2020).

While many works in Bayesian neural networks focus
on specifying priors over model parameters (Graves,
2011; Blundell et al., 2015) and functional outputs (Flam-
Shepherd et al., 2017; Tran et al., 2020; Sun et al., 2019),
there is a surprising gap in incorporating prior knowledge
about summary statistics of the functional outputs. Such
a prior could help in improving uncertainty quantification
and calibration of Bayesian neural networks. Calibration of
neural network predictions is a widely studied topic (Guo
et al., 2017; Minderer et al., 2021; Wang et al., 2021) and
methods such as posterior tempering (Wenzel et al., 2020)
have been developed. However, these approaches typically
deviate from the strictly Bayesian approach by modifying
the prior or likelihood with additional parameters. Conse-
quently, we study how to incorporate summary statistics
information available about a classification task in a fully
Bayesian manner. We introduce a formulation where the
shape of the distribution of the predicted probabilities (such
as sigmoid/softmax scores) is available as prior knowledge,
and we demonstrate how such a summary can be infor-
mative, e.g., about the difficulty of classification or class
imbalance (See Fig. 1). Technically, we augment the ob-
served data with this summary, expand the likelihood with a
Dirichlet process term for the summary, and derive a formal
ELBO for variational training. Through empirical evalua-
tion in multiple classification tasks, we show the proposed
approach is able to improve the calibration, robustness and
uncertainty of BNNs while maintaining their accuracy.

The main contributions of this work are,
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(a) Regular BNN (b) s0 = Beta(0.1, 0.1) (c) s0 = Beta(1.0, 1.0) (d) s0 = Beta(5.0, 5.0)

Figure 1: Posterior distribution of predicted sigmoid scores with different summary statistic observations s0 in binary
classification in MNIST. Top row: Posterior distribution of predicted sigmoid samples. Bottom row: Decision surface of the
model with samples projected in 2D using t-SNE and colored corresponding to the predicted sigmoid scores. We see from
Fig. 1a that the regular BNN predicts scores peaked towards 0 or 1, indicating possible overconfidence. By introducing a
likelihood term for the summary statistic the proposed Summary ELBO is able to control how the predicted sigmoid scores
are distributed, and Figs. 1b - 1d show that different s0 can yield different predicted sigmoid score histograms. This is also
evident in the decision surface; the regular BNN has a sharp decision boundary with extreme predicted values while the
Summary ELBO yields a smoother decision surface.

1. We propose a fully Bayesian approach to incorporate
summary information into Bayesian neural networks

2. We introduce how different summary information such
as confidence in predictions or class imbalance can
be incorporated during model training using the aug-
mented likelihood.

3. Through comprehensive empirical studies in computer
vision and natural language processing, we show that
the additional knowledge can in most cases signifi-
cantly improve the performance of BNNs, especially
with corrupted test data or imbalanced classes.

2 Background

2.1 Bayesian neural networks and variational
inference

Different from deterministic neural networks (NNs),
Bayesian neural networks (BNNs) (MacKay, 1992; Neal,
2012) are commonly defined by placing a prior distribu-
tion p(θ) on the weights θ of a NN. Moreover, instead of
only finding point estimates for weights θ, a posterior dis-
tribution of the weights is computed conditionally on the
data according to the Bayes’ theorem. Specifically, given
a dataset D = {X,Y} with inputs X = {x1, . . . ,xN}
and outputs Y = {y1, . . . ,yN}, we have the likelihood
p(Y|X,θ) = p(Y|f(X;θ)) of a BNN on the dataset where
f(X;θ) is the prediction of the BNN parameterized by
θ. Then, training a BNN means computing the posterior

distribution p(θ|X,Y) = p(Y|f(X;θ))p(θ)/p(Y|X),
and we predict a new data point (x?,y?) by marginaliz-
ing out θ from the likelihood according to its posterior
p(y?|x?,X,Y) =

∫
p(y?|f(x?;θ))p(θ|X,Y)dθ. Unfor-

tunately, neither the posterior of weights nor the predic-
tive distribution of the new data is analytically tractable for
BNNs.

Variational inference can be used to approximate the in-
tractable p(θ|X,Y) with a simpler distribution, qφ(θ), by
minimizing KL(qφ(θ)||p(θ|X,Y)). This is equivalent to
maximizing the Evidence Lower BOund (ELBO) (Bishop,
2006)

L(φ) = Eqφ(θ)[log p(Y|X,θ)]−KL[qφ(θ)|p(θ)], (1)

where the first term is the expected log-likelihood and the
second term measures the divergence between the posterior
and the prior. ELBO and its gradients with respect to φ can
be computed by backpropagation with the reparametrization
trick (Kingma and Welling, 2013). Therefore, the posterior
predictive distribution can be approximated by

p(y?|x?,X,Y) ≈
∫
p(y?|f(x?;θ))qφ(w)dθ

≈ 1

M

M∑
l=1

p(y?|f(x?;θ
(l))), (2)

where θl ∼ qφ(θ) and M is the number of Monte Carlo
samples drawn from posterior distribution.
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(a) Easy task, balanced data (b) Difficult task, balanced data (c) Imbalanced data

Figure 2: Different examples for selecting s0 to reflect prior information in a 3 class classification setting. Figure shows
the heatmap of the distribution of sigmoid scores where dark means low probability and bright means high probability.
Here, s0 is a Dirichlet distribution and, by selecting the parameters of the Dirichlet distribution appropriately, our method
provides a flexible and principled approach to incorporate prior information on the difficulty of the classification task and
class imbalance. The figure also shows the binning of the simplex into a finite number of regions required by the finite
approximation in DP inference. See text for details.

2.2 Dirichlet processes

The Dirichlet process (DP) (Teh, 2010) is a stochastic pro-
cess widely used in Bayesian nonparametrics. Different
from Gaussian processes (GPs) (Seeger, 2004), which model
distributions over functions with Gaussian marginals, DPs
are stochastic processes over probability measures with
Dirichlet marginals. In machine learning, DPs have been
used as an infinite-dimensional generalization of the Dirich-
let distribution in mixture models (Neal, 1992) and in topic
modeling (Teh et al., 2006). A DP, G ∼ DP(H,α), is
parameterized by the base measure H , which is a distribu-
tion H over a probability space Θ, and the concentration
parameter α, a positive real number, such that

(G(A1), . . . , G(Ab)) ∼ Dir(αH(A1), . . . , αH(Ab)) (3)

for every finite measurable partition {A1, . . . , Ab} of Θ.
The base measure H is the mean of the DP, i.e., for any
A ⊂ Θ, E[G(A)] = H(A), and it specifies the overall
shape of G. The concentration parameter α serves as the
inverse variance of the DP (Teh, 2010), such that a large α
will force G to be close to H , see Fig. 8 in Appendix for
examples of sampled distributions from a DP with different
α.

3 Incorporating summary information

We consider multiclass classification using a Bayesian neu-
ral network, where target yi is encoded label, such as the
one hot encoding. Let ỹi = f(xi;θ) be the prediction by
the neural network for input xi. In binary classification,
we have ỹi ∈ [0, 1] representing the probability of one of
the classes. In multiclass classification, ỹi ∈ [0, 1]K with∑K
k=1 ỹik = 1, where ỹik is the probability of class k and

K is the number of classes.

Ideally, ỹi would be equal to yi, corresponding to the per-
fect prediction. However, in practice in multi-class classifi-
cation we get ỹi ∈ [0, 1]K , where each entry in the predicted
vector ỹi is the normalized score of a particular class, cor-
responding to the probability that the sample belongs to
the class. Here, we assume that the modeler has access to
a summary statistic s0 representing the how the predicted
probabilities ỹi are distributed over the dataset. For exam-
ple, in binary classification the summary statistic s0 is a
distribution in the range [0, 1] (e.g. a Beta distribution, Fig.
1) and in multiclass classification s0 is a distribution over
the prediction simplex (e.g. a Dirichlet, Fig. 2).

The summary statistic s0 is then used for controlling the
distribution of predicted sigmoid/softmax scores ỹi accord-
ing to available prior knowledge. In practice this prior
knowledge should reflect considerations external to the cur-
rent data set. For example, if we know that the classifi-
cation task is easy and well separable, we expect ỹi to
take values where one entry is close to 1 while others are
close to 0, which we can represent with a summary statistic
s0 = Dir(α1, α2, . . . , αk), with all parameters αk < 1 (see
Fig. 2a). Conversely, if we know that the dataset is noisy
and/or not easily separable, we would expect the predic-
tions ỹi to concentrate towards the center of the prediction
simplex, which could be represented with a Dirichlet with
αk > 1 (Fig. 2b). Furthermore, the relative magnitudes of
the different αk parameters can inform about the frequencies
of different labels in imbalanced data (Fig. 2c).

As another point to emphasize, our approach considers how
ỹi are collectively (i.e. jointly) distributed in the prediction
simplex for all samples. Another option would be to model
ỹi with a Dirichlet separately for each i, similar to Sensoy
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(a) Independent Dirichlet (b) DP modeling

Figure 3: We show the posterior distribution of ỹis when
using s0 = Beta(5.0, 5.0) with different approaches. Mod-
eling sigmoid outputs independently can result in all pre-
dictions concentrating near the mode of the distribution as
shown in Fig. 3a. However, the proposed DP modeling
avoids this and tries instead to match the whole distribution
of the scores set by s0 as shown in Fig. 3b.

et al. (2018). However, this would make all ỹis concentrate
near the mode of the Dirichlet (see Fig. 3). Instead, we want
to control how ỹis are distributed across all samples from
training dataset D, indicating that the dataset will contain
both easy and difficult samples to classify.

3.1 Incorporating prior knowledge through
sequential Bayesian inference

We want to train a Bayesian neural network f(x;θ) for clas-
sification from a dataset D = (X,Y) = {xi,yi}Ni=1 of N
observations from the input space xi ∈ X and output space
yi ∈ Y with K labels, where θ denote the parameters of
the neural network. We also consider a summary statistic
sθ = S(θ,X) = S(f(x1;θ), . . . , f(xN ;θ)), where the
function S calculates the distribution of the predicted sig-
moid scores f(xi;θ) in the training set. This can be a con-
tinuous or discrete density estimator. In addition, we denote
with s0 the observed summary statistic, which corresponds
to the distribution of sigmoid/softmax scores available from
prior knowledge, representing information about label distri-
bution (in case of class imbalance), or mass in different parts
of the prediction simplex (in case of difficult classification
tasks).

Assume now that we have a prior p(θ) for the neural network
weights, and we observe an augmented data Daug = (D, s0)
where s0 is the observed summary statistic andD = (X,Y)
are the observations. Fig. 4 shows a graphical model as-
sumed by a traditional BNN and compares that with our
joint model with summary information s0. Specifically, we
assume that the joint distribution factorizes as follows:

p(X,Y, s0,θ) =

[
N∏
i=1

p(yi|xi,θ)

]
p(s0|X,θ)p(θ). (4)

Hence, the approach can be formally seen as sequential
Bayesian inference, which first updates the non-informative
prior p(θ) into an informative prior by multiplying with the
summary likelihood, p(s0|X,θ), and then uses the informa-
tive prior for modeling the data (X,Y) using the regular

(a) BNN (b) BNN with summary

Figure 4: Graphical model for BNNs. Fig. 4a shows the
graphical model for vanilla BNN where model parameters
θ are only related to label y. In our proposed summary
likelihood model Fig. 4b, we show how to model additional
summary statistics information. We model the summary
information s0 as derived from input variable x and model
parameters θ, and is an observed node in the model.

likelihood. We define the summary likelihood as

p(s0|X,θ) = DP(s0|sθ, α). (5)

In other words, the observed summary s0 is distributed
as a Dirichlet process whose base measure is equal to
sθ = S(θ,X), i.e., the histogram of sigmoid/softmax out-
puts predicted by the NN for the training data, and a con-
centration hyperparameter α. Consequently, with a large
α the predicted and observed summary statistics sθ and
s0 are expected be close to each other. The model defini-
tion is completed by defining the likelihood as a categorical
distribution:

p(yi|xi,θ) = Cat
(
yi|f(xi,θ)

)
, for all i, (6)

and the prior conventionally as p(θ) = Nθ(µ,Σ).

One way to think about the summary statistic, s0, is to inter-
pret it as a ‘pseudo-observation’; pseudo-observations are
often used to interpret common priors (Gelman et al., 2014).
To understand why the prior knowledge is incorporated
through another likelihood term p(s0|Xobs, θ), it is instruc-
tive to notice that a prior on the parameters θ, p(θ), already
induces a prior on the distribution of outputs, sθ, which we
can here denote by pθ(sθ). In general, when there exists
some prior knowledge, captured by s0, about sθ, an obvious
thing would be to define a prior distribution, something like
p(sθ|s0), or equivalently a joint distribution p(sθ, s0). The
problem is that there can’t be two prior distributions: pθ(sθ)
and p(sθ|s0), for the same quantity sθ. Instead, we calcu-
late p(sθ|s0) according to the formal Bayesian procedure
where we update the initial prior distribution pθ(sθ) into
p(sθ|s0) using the Bayes’ rule, which happens through the
multiplication of the previous prior using a likelihood term.
Consequently, as we show later, this yields a well-defined
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ELBO corresponding to proper Bayesian inference. Further,
Gelman (2021) suggests to consider one prior as data when
there are two sources of prior knowledge for the same pa-
rameter instead of two priors, because the former is more
consistent with Bayesian theory.

3.2 Inference with summary ELBO

In this setting our goal is simply to infer the parameter
posterior p(θ|D), which we approximate variationally with
qφ(θ). This induces an ELBO

L(φ) = Eqφ(θ) log p(D|θ)−KL[qφ(θ)||p(θ)]

= Eqφ(θ)

[
N∑
i=1

log p(yi|xi,θ) + log p(s0|X,θ)

]
−KL[qφ(θ)||p(θ)]

= Eqφ(θ)

[
N∑
i=1

log Cat
(
yi|f(xi,θ)

)
+ logDP

(
s0|sθ, α

)]
−KL

[
Nθ(µφ,Σφ) || Nθ(0, σ2I)

]
≈ 1

M

N∑
i=1

M∑
j=1

log Cat
(
yi|f(xi,θj)

)
+

1

M

M∑
j=1

logDP
(
s0|sθj , α

)
−KL

[
Nθ(µφ,Σφ) || Nθ(0, σ2I)

]
, (7)

where {θj}Mj=1 ∼ qφ(θ) are the samples from the inferred
posterior and M is the number of Monte Carlo samples.
Hence, compared to the traditional ELBO (Kingma and
Welling, 2013; Neal, 1992), our objective, Summary ELBO,
defined in (7), incorporates prior information about the mod-
eler’s belief on how the predictions ỹi should be jointly
distributed, as captured by the observed summary statistic
s0.

3.3 Computation of the DP summary likelihood term

One challenge in the objective function (7) is the computa-
tion of summary likelihood involving the DP (second term).
As a closed form expression is unavailable (Teh, 2010), we
use a finite partition approximation, where the parameter
space Θ is divided into a finite number of bins {A1, . . . , Ab}
corresponding to discretized histograms and the likelihood
is evaluated using Eqn. (3). In the binary experiments, the
softmax scores are distributed in the [0, 1] interval, which
we divide into multiple bins, as demonstrated in Fig.1a-1d.
In the multiclass classification we divide the prediction sim-
plex symmetrically into regions where some regions are
more central and some in the corners of the simplex, al-
lowing us to express prior knowledge about task difficulty,

i.e., how much of the probability mass should be given to
uncertain predictions corresponding to sigmoid scores near
0.5 and how much to confident predictions with scores close
to 1, demonstrated in Figs 2a and 2b. In the imbalanced
data experiment, we use a partition shown in Fig. 2c, which
accounts for the total mass allocated to each predicted class,
but is agnostic about how far the score is from the center of
the simplex.

In practice, the predictions ỹi from the model at each train-
ing step are collected from the entire minibatch and a his-
togram over the specified regions is constructed. To be able
to backpropagate through the operation, we use SoftHis-
togram to construct the histogram in our experiments. The
SoftHistogram function identifies the total mass in each bin
using a pair of sigmoid functions and aggregating over the
minibatch. Details of SoftHistogram construction is dis-
cussed in Appendix C. The major bottleneck in using this
approximation is the quality of SoftHistogram results. To
address this, we use a moderately large minibatch size to
make the estimation less noisy.

4 Related works

Functional BNNs priors Our approach can be seen as a
way to incorporate summary information about the predic-
tive distribution, and hence it is conceptually related to
functional priors. Previously, Gaussian processes have been
proposed to encode rich functional structures as prior knowl-
edge. Flam-Shepherd et al. (2017) and Tran et al. (2020)
transformed a functional GP prior into a weight-space BNN
prior by minimizing the Kullback–Leibler divergence and
Wasserstein distance respectively. Functional BNNs (Sun
et al., 2019) performed variational inference directly with
GP priors. Other recent works which concern with the
output behavior include Noise contrastive priors (NCPs)
(Hafner et al., 2018) and Output-Constrained BNNs Yang
et al. (2020). A comprehensive review of deep learning
priors is given in Fortuin (2021).

Weight-space BNN priors In the weight space, a fully fac-
torized Gaussian prior has been proposed by Graves (2011)
and Blundell et al. (2015), and interpreted as equivalent to
dropout when using a mixture of Dirac-deltas as the varia-
tional posterior (Gal and Ghahramani, 2016). Nalisnick et al.
(2019) extended these works and interpreted NNs with any
multiplicative noise as BNNs with a Gaussian scale mixture
prior (Andrews and Mallows, 1974) and Automatic Rele-
vance Determination (ARD) (MacKay, 1994). Moreover,
low-rank priors, such as the k-tied normal (Swiatkowski
et al., 2020) and rank-1 perturbation (Dusenberry et al.,
2020), were combined with ensemble methods Lakshmi-
narayanan et al. (2017) to capture multiple modes, and they
had better convergence rates. To model the correlation be-
tween the weights, Matrix-variate Gaussian priors were pro-
posed by Neklyudov et al. (2017) and Sun et al. (2017). Also
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sparse priors have been defined, such as the log-uniform
(Molchanov et al., 2017; Louizos et al., 2017), log-normal
(Neklyudov et al., 2017), horseshoe (Louizos et al., 2017;
Ghosh et al., 2018), and spike-and-slab priors (Deng et al.,
2019). Cui et al. (2021b) proposed a two-stage procedure to
encode the prior knowledge about the data signal-to-noise
ratio into a Gaussian scale mixture prior. Overall, it is often
challenging to incorporate more general domain knowledge
other than sparsity into the weight-space priors.

Evidential Deep Learning Different from ordinary deep
learning, which is trained to predict the parameters of the
likelihood function with Maximum Likelihood, evidential
deep learning (EDL) is trained to predict the parameters
of likelihood with the Type II Maximum Likelihood (ML-
II, i.e., maximizing the model evidence). Therefore, the
model predictions, as well as the aleatoric and epistemic
uncertainty estimations, come from the learned prior of the
likelihood. In the classification setting, Sensoy et al. (2018);
Malinin and Gales (2018) proposed to learn a Dirichlet prior
of the categorical likelihood parameters, and in regression,
Amini et al. (2020) learned a Normal Inverse-Gamma prior
of the Gaussian likelihood. Although EDL provides a rea-
sonable uncertainty estimation, a heuristic regularization on
evidence has to be applied to avoid over-fitting due to the
ML-II.

Non-Bayesian approaches of incorporating domain
knowledge Sophisticated regularization techniques, i.e., ex-
planation prior, have been proposed for deterministic NNs
to incorporate extra domain knowledge (Ross et al., 2017).
When the importance score of each feature is known a pri-
ori, attribution priors were proposed to regularize the feature
importance of the model to agree with the prior importance
score, such as DeepSHAP (Tseng et al., 2020) and Contextu-
ral Decomposition (Rieger et al., 2020). DAPr (Weinberger
et al., 2020) matched the feature attribution to a learned prior
feature importance from meta-features. In a genetics appli-
cation, MEP Cui et al. (2021a) was proposed to incorporate
the feature main effects (i.e., linear regression coefficients)
on an external large dataset into NNs on a small dataset.

5 Experimental results

Here, we show the utility of the proposed method, abbre-
viated as S-ELBO for Summary ELBO, in classification
tasks from computer vision and natural language processing
domains. Specifically, we show results for image classifi-
cation and sentiment analysis. The experiments cover both
binary and multiclass classification tasks. In all the cases,
Mean Field Variational Inference (MFVI) with N (0, σ2

0I)
prior is used to train the neural networks. We cross-validate
the prior variance σ0 ∈ {0.10, 0.25, 0.50, 1.00, 2.00}, but
as the results are not sensitive to this choice (Fig. 9 in
Appendix), we use the default value σ0 = 1 through-
out. For the numerical results, each model is trained

5 times independently, and the mean and standard er-
ror of each metric are reported. The code is imple-
mented in PyTorch Paszke et al. (2019) and available at
github.com/v-i-s-h/summary-likelihood.

For modeling the Dirichlet Process likelihood term,
we cross validate the concentration parameter α ∈
{10, 50, 100, 500, 1000, 2500, 5000, 10000} on a separate
validation set. For the summary prior histogram s0 in the
DP likelihood, we cross validate between the uniform dis-
tribution and a distribution based on automatic parameter
selection as described in Appendix B. Models are trained
for 3000 steps for binary and 5000 steps for multiclass clas-
sification problems. We use minibatch size of 256 and
Adam optimizer with a constant learning rate 10−3. We
report the negative log-likelihood (NLL), accuracy, and Ex-
pected Calibration Error (ECE) (Guo et al., 2017) in clean
(in-domain) and corrupted test sets. In the detection of out-
of-distribution samples we report the difference in predictive
entropy ∆OOD between OOD and in-domain samples, and
in the multi-class classification with imbalanced classes we
report the F1 score. All scores are reported for held-out
test sets. During cross validation, the optimal hyperparam-
eters are chosen based on the NLL. We compare against
the vanilla BNN trained with the standard ELBO (ELBO)
(Blundell et al., 2015) , Evidential Deep Learning (EDL)
(Sensoy et al., 2018) and Label Smoothing (LS), all shar-
ing the same NN architecture in the same task. ELBO
and LS are trained with MFVI, using the same prior as
S-ELBO. For LS, we cross validate the smoothing factor
ε ∈ {0.01, 0.05, 0.10}. For EDL, we use the setup recom-
mended in Sensoy et al. (2018), and train it in multiclass
classification with an annealing step of 1000.

5.1 Sentiment analysis task

Sentiment analysis is an NLP task of classifying the polar-
ity of a given text, usually posed as binary classification.
However, the analysis of phrases from each of the sample
texts (Socher et al., 2013) shows that the contituent phrases
can have intermediate values of sentiment, not fully cap-
tured by the binary labels. Hence, sentiment analysis is a
perfect example of a classification task where labels are not
always too confident. We use Stanford Sentiment Treebank
Socher et al. (2013) as our source data with labels and use
Sentence-BERT (Reimers and Gurevych, 2019) to compute
a 768 dimensional embedding for each sample text. A feed-
forward BNN with a single hidden layer of dimension 128 is
trained on these embeddings using the alternative methods.
For training the proposed method, a uniformly distributed
prior histogram s0 is assumed, reflecting the inherent uncer-
tainty in the labels, and discretized into 10 regions of equal
width in [0,1], similarly to the examples in Fig. 1.

In-domain prediction. Summary results for an in-domain
prediction task (clean test data) are given in Table 2. While

https://github.com/v-i-s-h/summary-likelihood
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Table 1: Results on multiclass classification task with CIFAR10 dataset. Hyperparameters are cross validated using validation
NLL - for the proposed method, we used α = 1000 and for LS, we used ε = 0.01. For OOD experiments, we used SVHN
dataset as test data. Detailed results are given in Tables 7 - 9 in Appendix G.

In-domain testset Corrupted testset OOD testset

Method NLL↓ Accuracy↑ ECE↓ NLL↓ Accuracy↑ ECE↓ ∆OOD
↑

ELBO 0.76± 0.01 0.82± 0.00 0.10± 0.00 1.34± 0.02 0.70± 0.00 0.18± 0.00 0.55± 0.08
LS 1.93± 0.02 0.79± 0.00 0.17± 0.00 3.36± 0.09 0.67± 0.01 0.27± 0.01 0.13± 0.03
EDL 0.78± 0.01 0.82± 0.00 0.08± 0.00 1.31± 0.02 0.68± 0.00 0.16± 0.00 0.80± 0.08
Proposed 0.68± 0.01 0.82± 0.00 0.08± 0.00 1.23± 0.02 0.70± 0.00 0.16± 0.00 0.54± 0.03

Figure 5: Comparison of ECE on different corruptions. The models are trained on clean CIFAR10 data and tested with
various corruptions from the CIFAR-10-C dataset.

Table 2: Comparison of different methods on the sentiment
analysis task. All models achieve > 88% accuracy. Com-
prehensive comparison of different variants of the proposed
method along with accuracy and AUROC metrics is given
in Table 4 in appendix. ↓ means lower the better.

Method NLL↓ ECE↓

ELBO 0.341± 0.024 0.045± 0.009
LS(ε = 0.05) 0.444± 0.029 0.071± 0.004
EDL 0.301± 0.001 0.044± 0.004
Proposed (α = 1000) 0.288± 0.002 0.026± 0.001

all methods achieve > 88% accuracy (Table 4 in Appendix),
the proposed method is able to provide significantly better
NLL and calibration performance. We explore alternative
prior histograms s0 in Appendix (E) and show that incor-
porating the information about uncertainty in constituent
phrases helps the model to improve both calibration as well
as prediction accuracy.

Corrupted test data. To study the robustness of the meth-
ods against data corruptions, we perturb the BERT em-
beddings in test data with variance preserving noise as
ẽ = (1 − γ) ∗ e + γ ∗ η, where e is the noise free em-
bedding and η ∼ N (0, I). The results in Fig. 6 show that
the proposed method is robust against corruptions. Even
though both ELBO and the proposed method are trained
with MFVI, we see that robustness of ELBO deteriorates
significantly with added noise while the proposed method

Figure 6: Comparison of different methods in corrupted test
embeddings for the sentiment analysis task. γ represents the
strength of noise added. A detailed comparison is available
in Fig. 10 in appendix.

better retains its robustness, even compared to EDL.

5.2 Multiclass classification with CIFAR10

Here we consider multiclass classification with CIFAR10
data and balanced classes. For OOD experiments, we use
the SVHN dataset (Netzer et al., 2011) and for corruptions,
CIFAR-10-C (Hendrycks and Dietterich, 2019).

In-domain prediction. We give the results on in-domain
prediction in Table 1. While we observe that none of the con-
sidered methods reaches the s-o-t-a accuracy for VGG11, we
nevertheless clearly see that training the models with the pro-
posed method can reduce the ECE significantly when com-
pared to the regular BNN trained with ELBO, and closely
matches EDL using the same architecture.



Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach

Table 3: Results with imbalanced data. Models are trained on Imbalanced CIFAR10. The parameters of each model are
selected using the validation NLL. LS is not included due to a very large NLL values with corrupted test data.

In-domain test data Corrupted test data

Method NLL↓ F1 Score↑ NLL↓ F1 Score↑

ELBO 1.158± 0.026 0.849± 0.002 6.354± 0.117 0.331± 0.012
EDL 0.703± 0.009 0.824± 0.003 2.840± 0.034 0.314± 0.012
Proposed (α = 500) 0.960± 0.022 0.847± 0.001 3.564± 0.070 0.400± 0.011

Figure 7: Comparison of F1 on different corruptions on imbalanced dataset. Classifier is trained clean imbalanced CIFAR10
data and tested with various corruptions from CIFAR-10-C dataset.

Corrupted test data. When testing on different corrup-
tions, we can observe in Table 1 and Fig. 5 that the proposed
method singificantly improves NLL and ECE compared
with the vanilla ELBO, which does not incorporate the prior
summary information. This demonstrates how the summary
prior helps the model to regularize its predictions. In ECE
the proposed method and EDL are jointly the best, whereas
in NLL the proposed method is the single best method with
corrupted test data.

Detection of out-of-distribution samples. Here we com-
pare in-distribution and OOD predictive entropies. A model
that captures uncertainty properly should have a smaller pre-
dictive entropy (larger confidence) for in-distribution than
for OOD test samples. Here, EDL performs better with a
larger ∆OOD, but this comes at the cost of higher in-domain
entropy (Table 9 in Appendix). Instead, incorporating prior
summary information through S-ELBO appropriately bal-
ances between in-domain and OOD prediction confidence.

5.3 CIFAR10 with class imbalance

To test the ability of the method to incorporate prior knowl-
edge about class imbalance, we create a dataset from CI-
FAR10 by sub-sampling image classes, such that the imbal-
ance ratio is 1 : 1/2 : 1/4 : . . . : 1/28 : 1/28. We assume
that the class fractions are available as prior knowledge, and
use this to construct s0 as demonstrated in Fig. 2c.

In-domain prediction. The results of in-domain prediction
are given in Table 3. Here EDL has a better NLL, but
the proposed method and ELBO yield a much larger F1

score. As the NLL is dominated by the majority class, we
conclude that the proposed method does a better job in
the challenging task of classifying the minority class items.
Note that the summary likelihood regularizes the predicted
scores to reflect the class imbalance and hence the proposed
model is able to provide both a low NLL (relative to ELBO)
and a high F1-score.

Corrupted test data. More useful insights can be obtained
when analysing the performance under corrupted test data.
Table 3 and Fig. 7 show the F1 scores of different methods
for corrupted test datasets. These results show that incor-
porating the prior knowledge of class imbalance provides
a significant improvement in F1 score compared to both
ELBO and EDL. This clearly points to the fact that the strat-
egy of the proposed method to allocate probability mass for
each class label through the summary likelihood results in
robust predictions under noisy input.

Additional experiments. We also provide a comprehensive
study of binary classification on a dataset derived from
MNIST in Appendix F. We study different dataset sizes and
architectures and show that the proposed method is able to
provide advantage over the standard ELBO formulation in
most cases. As this task is simple, all models perform rather
well and there is no single best method.

6 Concluding Remarks

We presented a principled approach to incorporate prior
knowledge about the distribution of predicted scores in
Bayesian neural network training. Technically, we aug-
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mented the data with a summary observation s0 that cap-
tured the prior knowledge. One way to think about the
summary is to interpret it as a ‘pseudo-observation’; pseudo-
observations are often used to interpret common priors (Gel-
man et al., 2014). In order to incorporate all prior knowledge
into the model, we apply Bayes rule, and multiply the weight
prior with a likelihood term for the summary statistic. Con-
sequently, this yields a well-defined ELBO corresponding
to proper Bayesian inference. Thorough empirical experi-
ments in computer vision and natural language processing
showed that the proposed method improved robustness and
calibration of the BNNs. While we only considered MFVI
training of the BNNs, the summary likelihood can be eas-
ily incorporated in other Bayesian training methods like
MCMC or even to deterministic networks (See Appendix I).
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Incorporating functional summary information in Bayesian neural networks
using a Dirichlet process likelihood approach

A Effect of concentration parameter α in DP

As introduced in Sec2.2 and later used in Sec 3.2, we use Dirichlet Process to model the summary statistic information
s0. The concentration parameter, α, play a key role in defining the DP and estimating the likelihood loss for each set of
summary samples predicted by neural network. In Fig. 8, we show samples drawn from a DP with base measure Beta(5, 5)
for different values of α.

(a) Samples from DP with α = 1

(b) Samples from DP with α = 100

Figure 8: Samples from DP(Beta(5, 5);α) for different values of α. The concentration parameter α governs how closely
the samples from DP will be to the base measure. In top row, we give the results of using α = 1 with a base measure of
Beta(5, 5). The samples are widely different, has high variance between them, and individual samples are not close to the
base measure used. When we increase the concentration parameter to α = 100, the samples drawn from the DP are close to
base measure.
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B Derivation of parameters for s0

In the case of binary classification problem, we assume that the following prior knowledge is available for modeling the
base distribution for Dirichlet Process.

1. Fraction of minority class samples. If n0 is the number of majority class samples in the training set and n1 is the
number of minoty class samples, then the fraction of minority class samples is defined as

γ1 =
n1

n0 + n1
(8)

2. Expected accuracy. This refers to the expected accuracy of a trained model and is defined as

Ea =

1/2∫
x=0

(1− x)f(x)dx+

1∫
x=1/2

xf(x)dx, (9)

where f(x) is the density function of the predicted scores x.

B.1 Useful results

1. Let a, b > 0 and 0 < u < 1, then∫
ua−1(1− u)b−1du =

ua

a
2F1(a, 1− b; a+ 1;u) + constant, (10)

where 2F1(·) is the hypergeometric function.

B.2 Beta distribution as s0

The probability density function is defined as

f(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1, (11)

where a, b > 0, x ∈ (0, 1) and B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the Beta function.

The cummulative distribution function is defined as

F (x) =
B(x; a, b)

B(a, b)
, (12)

where B(x; a, b) =
x∫
0

ta−1(1 − t)b−1dt is the incomplete Beta function. We can apply (10) to express this in terms of

hypergeometric function.

Mean of Beta distributed random variable is defined as

µ =
a

a+ b
. (13)

B.3 Deriving parameters from prior information

Let γ0 = 1− γ1 is the fraction of majority samples in the training dataset.

Assuming s = 1
2 as the threshold for binary decision making, where s is the score predicted by the model, we can see that

1/2∫
s=0

f(s)ds = γ0. (14)
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Assuming that score is distributed as Beta distribution, we have

F (1/2) = γ0

B(1/2; a, b)

B(a, b)
= γ0

1

a2a
2F1(a, 1− b; a+ 1; 1/2) = γ0B(a, b) (15)

Unable to proceed because of lack of closed for expression for 2F1(·)

Now, consider the expected accuracy Ea,

Ea =

1/2∫
0

(1− s)f(s)ds+

1∫
s=1/2

sf(s)ds

=

1/2∫
0

f(s)ds−
1/2∫
0

sf(s)ds+

1∫
s=1/2

sf(s)ds (16)

Applying the density function, we have∫
sf(s)ds =

∫
s · 1

B(a, b)
sa−1(1− s)b−1ds

=
1

B(a, b)

∫
sa(1− s)b−1ds

=
1

B(a, b)

sa+1

a+ 1
2F1(a+ 1, 1− b; a+ 2; s) (17)

Continuing from (16),

Ea = F (1/2)− 1

B(a, b)

([
sa+1

a+ 1
2F1(a+ 1, 1− b; a+ 2;x)

]s=1/2

s=0

−
[
sa+1

a+ 1
2F1(a+ 1, 1− b; a+ 2;x)

]s=1

s=1/2

)

=
1

2aB(a, b)

(
1

a
2F1(a, 1− b; a+ 1; 1/2)

1

a+ 1
(2F1(a+ 1, 1− b; a+ 2; 1/2)− 2F1(a+ 1, 1− b; a+ 2; 1))

)
(18)

Ideally, from (15) and (18), we can find the value of a and b given γ0 and Ea. However, closed form expression for
solutions are not available. But, using optimization techniques, we can find the approximate solution for this problem. For
our experiments, the objective function for optimization is chosen as the MSE between the target value (γ0, Ea) and the
value (γ̂0, Êa) observed for the pair (â, b̂). We used ’L-BFS-G’ optimizer available with sklearn package for solving the
optimization problem with Ea set to 0.95 - 0.98.

In multiclass classification experiments, this approach becomes a difficult problem to solve with more unknown that known
variables. In those cases, we chose the base distribution parameters by considering the Dirichlet distribution with parameters
proportional to number of samples and dividing this into unequal regions to build the base Dirichlet distribution for DP.

C SoftHistogram construction during training

The proposed approach requires to estimate the distribution of predicted scorea over a mini-batch of sample to train the
model using summary information. We resort to a differentiable histogram for this.

Let B denotes the regions which constite the prediction simplex and over which we are intereseted in computing the soft
histogram. We identity each region by a center ci and width δi and ensuring that no two regions overlap. For a predicted
score vector ỹ, the contribution of it towards each region i is computed using

gi(ỹ) = sigmoid(σ ∗ (ỹ − bi + δi/2))− sigmoid(σ ∗ (ỹ − bi − δi/2)). (19)
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Here, σ acts as the slope of the sigmoid function and effectively improves the quality of histogram estimation. In our
experiments, we used σ = 500.

Finally, over a minibatch B, the weight for each region i is computed as

wi =
∑

ỹ=f(x);x∈B

gi(ỹ). (20)

Other methods such as KDE-style estimation with Gaussian kernal can also be used. But in our experiments, we found that
using the above method provided stable training.

D Cross validation of prior variance

In this section, we provide results for cross validating the choice of hyperparameters we chose to design the Bayesian Neural
Network. The results of crossvalidating prior variance σ0 is given in Fig. 9. Both accuracy and ECE is found to be better at
σ0 = 1 and we continue to use this value for all our experiments.

(a) Accuracy vs σ0 (b) ECE vs σ0

Figure 9: Results of cross validating prior variance, σ0, of neural network parameters. The result is for CIFAR10 with
VGG11 architecture.
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E Additional results for Sentiment Analysis task

In this section, we provide additional results for the sentiment analysis task. In Table 4, we provide the in-domain test results
and in Fig. 10 we provide the effect of corruption in embeddings.

In the labels below, for proposed method, ‘auto’ means base distribution parameters are computed based on the method
in Sec. B, ‘uniform’ refers to uniform base distribution, ‘eqbin’ refer to equal bin width strategy and ‘uneqbin’ refers to
unequal bin width strategy discussed in Sec. 5.1 in main text.

Table 4: Results on test dataset. Models are trained on SST. The parameters for each model are chosen based on best
validation NLL.

Method NLL↓ Accuracy↑ AUROC↑ ECE↓

ELBO 0.341± 0.024 0.883± 0.004 0.952± 0.002 0.045± 0.009
LS 0.444± 0.029 0.880± 0.002 0.950± 0.001 0.071± 0.004
EDL 0.301± 0.001 0.882± 0.001 0.954± 0.000 0.044± 0.004
Proposed (auto, eqbin, α = 103) 0.297± 0.010 0.883± 0.001 0.953± 0.001 0.034± 0.004
Proposed (uniform, eqbin, α = 103) 0.288± 0.002 0.881± 0.002 0.953± 0.000 0.026± 0.001
Proposed (auto, uneqbin, α = 102) 0.302± 0.009 0.886± 0.002 0.954± 0.001 0.033± 0.005
Proposed (uniform, uneqbin, α = 500) 0.291± 0.005 0.883± 0.003 0.951± 0.002 0.021± 0.005

Figure 10: Effect of corruption in sentiment analysis task
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F Results for BinaryMNIST classification task

A binary classification task is constructed from MNIST dataset by sampling only two labels, ‘3’ and ‘5’. Popular models,
LeNet and ConvNet are used as the Bayesian neural network architectures. To study the effect of dataset size, we performed
experiments with different sizes - |D| = 1000 and |D| = 8000. We use a summary observation s0 for the proposed method
is constructed using the method described in Appendix B. Unequal width regions are used to construct the base distribution
using {0.01, 0.05, 0.10, 0.90, 0.95, 0.99} as boundaries. This unequal width regions help the model to concentrate more
of high confidence predictions to match the base distribution while giving less importance to low confidence predictions.
The results are provided in Appendix F and show that the proposed method is able to provide improved performance in big
architectures and large dataset regime.

Table 5: Results on clean dataset. Models are trained on MNIST for binary classification. The parameters for each model
are chosen based on best validation NLL.

|D| Method NLL↓ Accuracy↑ AUROC↑ ECE↓

L
eN

et

1
0
0
0

ELBO 0.013± 0.001 0.995± 0.001 1.000± 0.000 0.002± 0.001
LS 0.012± 0.001 0.995± 0.000 1.000± 0.000 0.003± 0.000
EDL 0.035± 0.002 0.992± 0.001 1.000± 0.000 0.010± 0.002
Proposed (α = 50.0) 0.014± 0.001 0.994± 0.001 1.000± 0.000 0.003± 0.000

8
0
0
0

ELBO 0.028± 0.003 0.991± 0.000 1.000± 0.000 0.004± 0.000
LS 0.019± 0.001 0.992± 0.001 1.000± 0.000 0.003± 0.000
EDL 0.045± 0.003 0.989± 0.001 1.000± 0.000 0.006± 0.001
Proposed (α = 100.0) 0.026± 0.002 0.992± 0.001 1.000± 0.000 0.005± 0.001

C
on

vN
et 1

0
0
0

ELBO 0.039± 0.005 0.993± 0.001 1.000± 0.000 0.024± 0.004
LS 0.040± 0.006 0.993± 0.001 1.000± 0.000 0.024± 0.005
EDL 0.030± 0.004 0.994± 0.000 1.000± 0.000 0.012± 0.004
Proposed (α = 10.0) 0.063± 0.003 0.990± 0.001 1.000± 0.000 0.041± 0.004

8
0
0
0

ELBO 0.043± 0.005 0.994± 0.001 1.000± 0.000 0.032± 0.005
LS 0.058± 0.018 0.996± 0.000 1.000± 0.000 0.046± 0.016
EDL 0.091± 0.055 0.996± 0.000 1.000± 0.000 0.061± 0.039
Proposed (α = 50.0) 0.029± 0.002 0.995± 0.001 1.000± 0.000 0.020± 0.003

In-domain prediction. In Table 5, we study the performance in in-domain dataset and OOD datasets. Since MNIST is a
well curated dataset, there is very less chance of label confusion (as opposite to the sentiment analysis task above) and hence
the base distribution we used also encourages the predictions to be concentrated towards high confidence regions, similar to
MFVI and LS. However, the proposed method also encourages the distribution of predicted scores to have a non zero mass
in low confidence regions and this clearly seems to improve NLL and ECE in clean dataset. We can attribute this to the fact
that proposed method makes the models predict less confident scores for incorrect samples and hence lowering the cost of
mistake (NLL) and on the course, improving calibration (ECE).

Corrupted test data. An important aspect of the proposed method is that it can better represent the uncertainty about
predictions by regularizing the posterior score distribution. To test this claim, we provide results on corrupted dataset. We
use the MNIST-C (Mu and Gilmer, 2019) dataset which has 15 corruptions, and we measure the calibration error on the
corrupted data. The results in Fig. 11 show that in most cases the proposed method is able to perform better than baseline
methods.

Detection of out-of-distribution samples. For OOD experiment, we used FashionMNIST (Xiao et al., 2017) as the test
dataset and predictive entropy is measured as a proxy for prediction uncertainty. ∆OOD is defined as the difference between
OOD and in-domain predictive entropies and higher ∆OOD is desirable. From Table 6, we can see that the proposed method
is able to provide high OOD predictive entropy while maintaining low in-domain predictive entropy.
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(a) LeNet, |D| = 1000.

(b) LeNet, |D| = 8000.

(c) ConvNet, |D| = 1000.

(d) ConvNet, |D| = 8000.

Figure 11: Comparison of NLL and ECE on different MNIST corruptions. Binary classifier is trained clean MNIST data
and tested with various corruptions from MNISTC dataset.
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Table 6: Predictive entropy results on OOD setting. Models are trained on clean MNIST dataset and tested on FashionMNIST.
The parameters for each model is chosen based on best validation NLL. ∆ denotes the difference between OOD predictive
entropy and in-domain predictive entropy.

|D| Method In-domain↓ OOD↑ ∆↑

L
eN

et

1
0
0
0

ELBO 0.018± 0.001 0.317± 0.023 0.300± 0.022
LS 0.016± 0.001 0.362± 0.011 0.346± 0.011
EDL 0.065± 0.004 0.191± 0.010 0.126± 0.009
Proposed (α = 50.0) 0.033± 0.001 0.488± 0.022 0.456± 0.023

8
0
0
0

ELBO 0.013± 0.001 0.433± 0.025 0.421± 0.024
LS 0.011± 0.001 0.405± 0.017 0.394± 0.016
EDL 0.075± 0.006 0.276± 0.028 0.201± 0.024
Proposed (α = 100.0) 0.017± 0.001 0.486± 0.011 0.469± 0.011

C
on

vN
et 1

0
0
0

ELBO 0.098± 0.015 0.523± 0.015 0.426± 0.009
LS 0.100± 0.020 0.544± 0.021 0.444± 0.012
EDL 0.074± 0.016 0.353± 0.028 0.279± 0.031
Proposed (α = 10.0) 0.151± 0.012 0.598± 0.012 0.446± 0.012

8
0
0
0

ELBO 0.115± 0.013 0.602± 0.013 0.487± 0.010
LS 0.156± 0.043 0.568± 0.021 0.412± 0.036
EDL 0.143± 0.047 0.384± 0.056 0.241± 0.018
Proposed (α = 50.0) 0.081± 0.009 0.568± 0.011 0.487± 0.019
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G Additional results for CIFAR10 multiclass classification task

Table 7: Results on clean test dataset. Models are trained on CIFAR10. The parameters for each model are chosen based on
best validation NLL.

Method NLL↓ Accuracy↑ AUROC↑ ECE↓

ELBO 0.762± 0.011 0.820± 0.001 0.978± 0.000 0.102± 0.002
LS (ε = 0.01) 1.929± 0.019 0.787± 0.003 0.961± 0.001 0.169± 0.003
EDL 0.779± 0.006 0.815± 0.001 0.959± 0.001 0.078± 0.002
Proposed (α = 1000) 0.681± 0.003 0.820± 0.001 0.979± 0.000 0.082± 0.002

Table 8: Results on corrupted test dataset. Models are trained on CIFAR10. The parameters for each model are chosen based
on best validation NLL on testset. CIFAR10-C is used as corrupted dataset. Results are averaged over all 19 corruptions and
5 severity levels.

Method NLL↓ Accuracy↑ AUROC↑ ECE↓

ELBO 1.336± 0.022 0.700± 0.004 0.943± 0.002 0.177± 0.003
LS (ε = 0.01) 3.361± 0.087 0.666± 0.006 0.913± 0.003 0.270± 0.006
EDL 1.313± 0.020 0.677± 0.005 0.893± 0.003 0.157± 0.003
Proposed (α = 1000) 1.232± 0.022 0.701± 0.004 0.945± 0.002 0.155± 0.003

Table 9: Predictive entropy results on OOD setting. Models are trained on clean CIFAR10 dataset and tested on SVHN. The
parameters for each model is chosen based on best validation NLL. ∆ denotes the difference between ood predictive entropy
and indomain predictive entropy.

Method In-domain↓ OOD↑ ∆↑

ELBO 0.219± 0.017 0.771± 0.089 0.552± 0.077
LS (ε = 0.01) 0.106± 0.003 0.240± 0.029 0.134± 0.031
EDL 0.481± 0.005 1.282± 0.084 0.801± 0.083
Proposed (α = 1000) 0.268± 0.013 0.806± 0.035 0.537± 0.027
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(a) Expected Calibration Error

(b) Negative Log Likelihood

(c) Accuracy

Figure 12: Comparison of performance on corrupt dataset from CIFAR10-C.

H Additional results for imbalanced classification problem

Table 10: Results on clean test dataset. Models are trained on Imbalanced CIFAR10. The parameters for each model are
chosen based on best validation NLL.

Method NLL↓ F1 Score↑ AUROC↑ ECE↓

ELBO 1.158± 0.026 0.849± 0.002 0.901± 0.003 0.116± 0.002
EDL 0.703± 0.009 0.824± 0.003 0.862± 0.002 0.058± 0.002
Proposed (α = 500) 0.960± 0.022 0.847± 0.001 0.908± 0.001 0.101± 0.003
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Table 11: Results on corrupted test dataset. Models are trained on Imbalanced CIFAR10. The parameters for each model are
chosen based on best validation NLL on test data.

Method NLL↓ F1 Score↑ AUROC↑ ECE↓

ELBO 6.354± 0.117 0.331± 0.012 0.421± 0.002 0.620± 0.010
EDL 2.840± 0.034 0.314± 0.012 0.355± 0.002 0.495± 0.007
Proposed (α = 500) 3.564± 0.070 0.400± 0.011 0.421± 0.003 0.525± 0.008

Table 12: Predictive entropy results on OOD setting. Models are trained on clean imbanalced CIFAR10 dataset and tested
on SVHN. The parameters for each model are chosen based on best validation NLL. ∆ denotes the difference between OOD
predictive entropy and indomain predictive entropy.

Method In-domain↓ OOD↑ ∆↑

ELBO 0.503± 0.020 1.461± 0.105 0.959± 0.106
EDL 0.099± 0.006 0.313± 0.028 0.213± 0.025
Proposed (α = 500) 0.152± 0.028 0.517± 0.075 0.365± 0.051

(a) Expected Calibration Error

(b) Negative Log Likelihood

(c) F1 Score

Figure 13: Comparison of performance on corrupt dataset from Imbalanced CIFAR10-C.
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I Training deterministic neural networks with Summary Likelihood

Even though in the main section, we focussed on incorporating prior knowledge to training Bayesian Neural Networks, our
goal is to introduce a novel model to incorporate informative prior information into NNs that is widely applicable without
restrictions on the inference method (we used standard VI in main section). To demonstrate this flexibility, we provide
additional results of using SGD + momentum for NN and NN+SL in Tables 13 and 14 (BNNs in main section were trained
5000 steps, no DA). We observe that data augmentation can improve accuracy but importantly also that the SL consistently
improves the accuracy, calibration error and OOD detection. We believe SL can be beneficial with other better inference
methods of NNs, both Bayesian and non-Bayesian, such as the deep ensembles.

Table 13: Results on VGG11 trained on CIFAR10. Evaluation is performed on clean dataset. Numbers on braces indicates
the number of training steps. SL - Proposed approach. DA - Data augmentation.

Method NLL↓ Accuracy↑ AUROC↑ ECE↓

NN (5k) 1.006± 0.003 0.808± 0.001 0.977± 0.000 0.138± 0.001
NN + SL (5k) 0.803± 0.001 0.799± 0.001 0.976± 0.000 0.121± 0.000
NN (30k) 0.948± 0.003 0.810± 0.001 0.977± 0.000 0.133± 0.001
NN + SL (30k) 0.772± 0.005 0.817± 0.000 0.980± 0.000 0.115± 0.001

NN + DA (5k) 0.498± 0.004 0.843± 0.001 0.986± 0.000 0.054± 0.001
NN + SL + DA (5k) 0.501± 0.005 0.834± 0.002 0.985± 0.000 0.041± 0.001
NN + DA (30k) 0.566± 0.004 0.887± 0.001 0.991± 0.000 0.080± 0.001
NN + SL + DA (30k) 0.449± 0.002 0.886± 0.001 0.992± 0.000 0.067± 0.000

Table 14: Predictive entropy results on OOD setting. VGG11 model is trained on clean CIFAR10 dataset and tested on
SVHN. ∆ denotes the difference between OOD predictive entropy and indomain predictive entropy.

Method In-domain↓ OOD↑ ∆↑

NN (5k) 0.140± 0.001 0.381± 0.010 0.241± 0.010
NN + SL (5k) 0.222± 0.004 0.585± 0.045 0.363± 0.044
NN (30k) 0.150± 0.000 0.384± 0.011 0.234± 0.012
NN + SL (30k) 0.186± 0.004 0.475± 0.021 0.290± 0.020

NN + DA (5k) 0.315± 0.005 1.010± 0.038 0.695± 0.036
NN + SL + DA (5k) 0.377± 0.008 1.065± 0.025 0.689± 0.029
NN + SL (30k) 0.093± 0.001 0.365± 0.005 0.272± 0.005
NN + SL + DA (30k) 0.135± 0.001 0.531± 0.026 0.395± 0.026


