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ABSTRACT: Prediction is a vague concept that is why we need to conceptualize it specific-
ally for underground deformation time-series data. For this impending issue, this paper 
employs an advanced deep learning model Bi-LSTM-AM to address it. The results show its 
applicability for practical engineering. The proposed model is compared with other basic deep 
learning models including long short-term memory (LSTM), Bi-LSTM, gated recurrent units 
(GRU), and temporal convolutional networks (TCN). These models cover the most common 
three forms of deep learning for time-series prediction: recurrent neural networks (RNN) and 
convolutional neural networks (CNN). This research is supposed to benefit the underground 
deformation time-series prediction.

Keywords: underground engineering, time-series, deep learning, deformation prediction, 
machine learning

1 INTRODUCTION

In underground engineering, structural deformation is an intuitive, easy to obtain, and can 
effectively reverse the structural health status and surrounding rock and soil. Here, under-
ground deformation can refer to the deformation of underground structure or the under-
ground constructing-induced deformation of surface structures. Predicting deformation is to 
predict the safety state of the structure in the future and prevent potential risks. Many 
methods can be used to predict structural deformation. The expected deformation of the struc-
ture can be calculated through analytical formulas and numerical simulation. However, due to 
the complexity of geotechnical materials, it is difficult to achieve high accuracy only by mech-
anical means. another method to predict the deformation is according to the deformation 
monitoring data. The monitoring data is usually in the form of time series, therefore the time- 
series method can be used to predict the deformation. The prediction results can also be 
updated with the accumulation of monitoring data. The traditional time-series method is 
ARMA model (Fan & Jian 2019). Recently, the development of machine learning has brought 
new approaches to deformation prediction.

For underground structure deformation, there are two commonly used machine learning 
prediction models: (1) classical models: more powerful than mathematical statistics with 
enough data, including support vector regression (SVR), extreme learning machines (ELM), 
XGBoost, etc (Ahmed et al. 2020). (2) Deep learning models: it refers to deep neural networks 
or, in the broad sense, any iterative multi-layer machine learning models. It has strong gener-
alization ability, mainly including two types of methods: (a) recurrent neural network (RNN): 
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long short-term memory (LSTM), gated current unit (GRU), DeepAR, etc. (Wang et al. 2021; 
Yu et al. 2019), and (b) convolutional neural network (CNN): temporal convolutional net-
work (TCN), WaveNet, etc (Livieris et al. 2020). These methods provide more possibilities for 
the deformation prediction of underground structures. Further research is focused on the 
model optimization, which is mainly divided into: (1) combining LSTM, attention mechanism 
(AM) and other methods to optimize the model structure (Vaswani et al. 2017); (2) Introdu-
cing particle swarm optimization, drosophila, gray wolf and other algorithms to improve the 
model parameters.

In short, this research uses deep learning models to underground time-series deformation, 
which can be more practical for understanding the temporal development of deformation 
during construction and operation. The remainder of this paper is organized as follows. Sec-
tion 2 conceptualizes the time-series prediction. Section 3 employs a deep learning model Bi- 
LSTM-AM to predict the time-series deformation of a underground project. Section 4 shows 
the results, which are compared with other basic deep learning models including LSTM, Bi- 
LSTM, GRU, and TCN. Section 5 draws up the conclusions.

2 CONCEPTUALIZATION

In order to distinguish from other prediction methods, the process of predicting underground 
construction deformation by time series method is conceptualized via its mathematical form. 
For the time-series deformation data collected by each sensor, the prediction task is to obtain 
the deformation in a certain future period through the existing monitoring data:

where Dtþ1:tþq is predicted deformation from time t+1 to t+q; F is the mapping relation; and 
xðx�pþ1Þ:t are monitoring data from time x � p þ 1 to t.

According to this definition, q is the prediction step, that is, the deformation after time q is 
predicted; P is the observation length, that is, p monitoring data from time t � p þ 1 to time 
t are selected for prediction.

In order to obtain above mapping relationship, model training is required to transform the time 
series vector of monitoring data x1:t ¼ x1; x2; …; xtf g into input matrix A and output matrix B:

The training of prediction model refers to solving a mapping relationship F to make c and 
b closest to the whole, that is, the overall error is the minimum. The model training error ε is:

where n = t-q-p+1.
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The above process is the fundamental part of time-series prediction. More complicated pre-
diction can be conducted through considering more factors. First, while predicting deformation, 
more time-series data can be incorporated such as temperature and water pressure. In this con-
dition, the matrix B is still the same but in matrix A, each xi should be a array or vector that 
represents more information than deformation. Second, some static factors which do not 
change with time can be considered such as the geometry information of the monitoring section.

For the time series prediction problem, all kinds of machine learning algorithms are solving 
the above mapping relationship F, and this standard form is the essential feature of time-series 
prediction with machine learning which is different from other methods.

3 MODEL ESTABLISHMENT

3.1  Data pre-processing

The deformation time-series was derived from an open-access data set. The deformation inside 
a rock was monitored, and the temperature was recorded meanwhile. For each monitoring 
place, a borehole extensometer was anchored in the rock mass at the end of the borehole at 
a depth of 8 m from the cliff wall. Three displacement-measuring points at depths of 2 m, 
4 m and 6 m from the cliff wall and temperature measuring points at 2 m and 6 m depth.

In this research, the displacement at depth of 6 m in the rock mass is chosen as the pre-
diction target. The input time series include the displacements at depths of 2 m, 4 m and 
6 m and temperature at 6 m depth. Therefore, the input dimensions are 4. In the original 
data set, the displacement and temperature are monitored once per hour (from 22.07.2010 
to 08.04.2015) but few records are missing. The prediction task is to use the data (the dis-
placements at depths of 2 m, 4 m and 6 m and temperature at 6 m depth) of the past three 
days to predict the displacement at 6 m depth of the next day.

According to Equations (2) and (3), the original data set is transformed into input array 
and output array. After removing samples that contain missing data, the shape of input array 
is (35169, 72, 4). 35169 is the sample size; 72 is the length of time series; and the 4 is the input 
dimensions or numbers of the time series. The output array shape is (35169, 24), and 24 is the 
length of time series, i.e., the displacements of the next 24 hours.

In a machine learning task, there should be training data, validation data and test data. 
Training data is used for training parameters of model. Test data is used to test the generaliza-
tion performance of the final model that has been trained. It should be noted that before the 
test, the model parameters have been determined, and these parameters do not change after 
the test. Validation data is used to check the performance of the model (this is the same as the 
test set), but the model parameters, mainly the hyper-parameters, can be adjusted in turn 
according to the inspection results. Since the sample size is very large in this case, only 5% of 
the samples are used for training, and 1% for validation, and 94% for test. Before dividing 
samples into training, validation and test data, the samples are disordered randomly to make 
each data set has sufficient time span.

The last step before training is to normalize data set:

where bx is the data after normalization; x is the mean of x; σ is the standard deviation of x. It 
should be not that the validation and test data cannot be involved when calculating x and σ, 
because they are unknown when we train a model in practical engineering.

3.2  Experimental setup and parameter configuration

We proposed a Bi-LSTM-AM model to predict. In short, Bi-LSTM is used for processing 
time series data, and AM is to estimate the output weight of Bi-LSTM at each time step. The 
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principle of this model can be briefly described in Figure 1. The networks are developed in 
Keras. The Keras framework is encapsulated well but its customization is limited. In order to 
realize the attention mechanism, its neural network layer is used as a function call, and the 
object-oriented programming model is adopted. After grid search optimization algorithm, the 
model structure is determined and shown in Table 1.

The batch size is 128; epoch number is 100; optimizer is Adam; loss metric is mean square 
error. The training loss and validation loss along with epochs are shown in Figure 2. The 
training loss and validation loss both decrease steadily, and do not fluctuate apparently after 
a few epochs. After 100 epochs, the model is obtained and will be tested by test data set.

4 RESULTS AND DISCUSSION

4.1  Results of Bi-LSTM-AM

The model was used to test 33059 size of data set. For each sample, we can have a time series with 
length of 24, which means the predicted following 24-hour displacements. The mean absolute 
error (MAE) and symmetric mean absolute percentage error (SMAPE) are chosen to evaluate the 
model performance, as shown in Figure 3. As we can see, the total errors of both MAE and 
SMAPE are very low, however, it cannot indicate that the prediction performance must be good. 

Figure 1.  The principal and process of Bi-LSTM-AM model with one layer of Bi-LSTM.

Table 1. The model structure of Bi-LSTM-AM.

Layer* Output shape Connected to

Input layer (None, 72, 4)
Bi-LSTM layer 1 (None, 72, 256) Inpur layer
Bi-LSTM layer 2 (None, 72, 512) Bi-LSTM layer 1
Bi-LSTM layer 3 (None, 72, 128) Bi-LSTM layer 2
Permute 1 (None, 128, 72) Bi-LSTM layer 3
Dense layer 1 (None, 128, 72) Permute 1
Permute 2 (Attention vector) (None, 72, 128) Dense layer
Attention multiply (None, 72, 128) Bi-LSTM layer 3 and  

Permute 2 (Attention vector)
Flatten layer (None, 9216) Attention multiply
Dropout layer (None, 9216) Flatten layer
Dense layer 2 (None, 128) Dropout layer
Dense layer 3 (None, 64) Dense layer 2
Dense layer 4 (None, 24) Dense layer 3
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This is because in this case, the displacement time series do not change fiercely in short term. Cur-
rently, there is not common metric to reasonably evaluate the model performance suitable for all 
conditions with different features that how much time series change in concerned time steps. 
A more reasonable evaluation indicator should be proposed, which is the task in our further stud-
ies. But overall, the errors are low and acceptable in practical underground engineering.

Another perspective to evaluate the model performance is the change of errors on different 
prediction time steps. In the past, one problem when using ARIMA or classical machine learn-
ing methods to predict time series is that the error will increase rapidly with the increase of pre-
diction time step. This is caused by the cumulative error. However, in Figure 3, only the errors 

Figure 2.  The training and validation loss during model training.

Figure 3.  The MAE and SMAPE of test results on 24 prediction time steps for all samples, and a 24 
time-step prediction results of one sample.

Figure 4.  The weights of each time step in training data determined by AM.
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on the first 10 prediction time steps are low and keeping increasing, while on the rest 14 time 
steps (from 11 to 24), the errors do not have a increase trend anymore. It reveals the potential of 
deep learning model to predict on long time steps without an obvious non-convergence.

The temporal attention mechanism is used in this research. It can calculate the weights of 
the output of “Bi-LSTM layer 3” on each time step. As shown in Figure 4, when predicting 
the next 24-hour displacements using 72-hour data, the last 5 time steps from 68 to 72 has the 
most weights. AM can make the whole model focus on the crucial time steps, which will have 
more influence on prediction results. In big data training task, AM is important to increase 
the efficiency and accuracy of the model.

4.2  Discussion

The MSE, MAE and SMAPE of Bi-LSTM-AM are compared with other basic deep learning 
models, as shown in Figures 5 and 6. First, Bi-LSTM-AM model achieves a highest accuracy 
on the test data set. But all RNN models including Bi-LSTM-AM, LSTM, Bi-LSTM, and 
GRU have similar performance. TCN, which belongs to a type of 1D CNN models, does not 
have a advantage in this research. In addition, the Bi-LSTM-AM model has more obvious 
advantage when the prediction steps are large.

5 CONCLUSION

This research proposed a Bi-LSTM-AM model to predict a underground time-series dis-
placement. The prediction accuracy is acceptable. The attention mechanism has increased 

Figure 6.  The MSE, MAE and SMAPE of each deep learning models (from prediction time step 13 to 24).

Figure 5.  The MSE, MAE and SMAPE of each deep learning models (from prediction time step 1 to 12).
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the performance of prediction, compared with other basic deep learning models. The main 
conclusions are as follows:

1) The deep learning models have strong applicability. This technique allows data set with dif-
ferent values and features to be trained and subsequently predicted accurately.

2) The results of Bi-LSTM-AM are with a prediction error MAE around 0.003 mm, which is 
acceptable considering the value variation range.

3) The introduction of attention mechanics enables the model to calculate a large window- 
scale and prediction-step problem. Although on the whole, the effect of AM on prediction 
accuracy is limited, but the effect is more significant in the farther prediction steps.
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