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A B S T R A C T

Human Augmentation Technologies improve human capabilities using technology. In this study, we investigate
the placebo effect of Augmentation Technologies. Thirty naïve participants were told to be augmented with
a cognitive augmentation technology or no augmentation system while conducting a Columbia Card Task. In
this risk-taking measure, participants flip win and loss cards. The sham augmentation system consisted of a
brain–computer interface allegedly coordinated to play non-audible sounds that increase cognitive functions.
However, no sounds were played throughout all conditions. We show a placebo effect in human augmentation,
where a sustained belief of improvement remains after using the sham system and an increase in risk-taking
conditional on heightened expectancy using Bayesian statistical modeling. Furthermore, we identify differences
in event-related potentials in the electroencephalogram that occur during the sham condition when flipping
loss cards. Finally, we integrate our findings into theories of human augmentation and discuss implications
for the future assessment of augmentation technologies.

1. Introduction

Human Augmentation Technologies (ATs) are ubiquitous near-body
technologies that enable users to improve their cognitive, sensory,
or physical abilities. ATs enhance human capabilities and change the
way users act in their environment. For example, firefighters can
augment their reality with heat-vision to support them in emergency
situations (Abdelrahman, Knierim, Wozniak, Henze, & Schmidt, 2017).
Exoskeletons can be used to carry heavy loads, thus improving the
user’s strength and dexterity beyond physiological limitations (Brown,
Tsagarakis, & Caldwell, 2003; Cao, Ling, Zhu, Wang, & Wang, 2009;
Marcheschi, Salsedo, Fontana, & Bergamasco, 2011). Considering that
users often rely on ATs when making decisions, any failure or misjudg-
ment (Borenstein, Wagner, & Howard, 2018; Bredereke & Lankenau,
2002; Stirling, Siu, Jones, & Duda, 2018) in the joint human–system
capabilities could put lives at risk. If we are stronger, smarter, and more
perceptive, we may take greater risks. Hence, we expect ATs to increase
the risks people take.

Basic and applied research in medicine and psychology has shown
that a mere suggestion of improvement, mostly for treatments, can
result in real benefits, such as the feeling of being cured of an ailment
in response to taking an inert substance (e.g., a sugar pill). This im-
provement due to a non-specific sham treatment is called the placebo
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effect (Beecher, 1955; Kaptchuk, 1998), which relies on the individual’s
expectation that the treatment will improve their condition (Lee & Suhr,
2020).

Studies have shown that placebo effects can also occur when an-
ticipating enhancement (Beedie et al., 2019; Beedie, Stuart Elizabeth,
Colemean, & Foad, 2006; Oken et al., 2007; Rozenkrantz et al., 2017;
Weger & Loughnan, 2013). Music (Geers, Weiland, Kosbab, Landry, &
Helfer, 2005) or medical devices (Dawes, Hopkins, & Munro, 2013; Ma-
galhães De Saldanha da Gama, Slama, Caspar, Gevers, & Cleeremans,
2013) described as enhancing performance can serve as a placebo.
Human–Computer Interaction (HCI) studies showed a placebo effect
on system satisfaction for a non-functional social media control sys-
tem (Vaccaro et al., 2018) or player behavior with game experience
changes for fake elements in a video game (Denisova & Cairns, 2015;
Denisova & Cook, 2019). Furthermore, Kosch, Welsch, Chuang, and
Schmidt (2022) showed altered performance estimates by exposing
participants to sham descriptions of a supporting adaptive AI system.
Therefore, placebo effects are well-documented for technologies that
suggest improvement. However, research investigating the placebo
effect in ATs is scarce and the anticipation of being augmented may
suggest that people are enhanced; hence, they may take more risks
when encountering a non-functional system.
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This study investigates how performance expectations induced by a
sham AT, and thus placebo effects, increase risk-taking. In a user study
(N=30), participants played a revised version of the Columbia Card
Task (Somerville et al., 2019; Weller, King, Figner, & Denburg, 2019)
assessing risk-taking behavior. The task was adapted, thus we refer to
it as RCCT, to briefly show the content of cards, including the location
of loss cards, to participants that were shuffled afterwards. In addition,
participants were equipped with an electroencephalograph (EEG).

Following Kosch et al. (2022), we tested each participant with
two conditions, each utilizing the presence or absence of an AT that
provides cognitive augmentation. In the cognitive augmentation condi-
tion, participants were informed that a generated non-audible playing
frequency enhanced their cognitive abilities while playing the RCCT. In
the non-augmentation condition, participants were told that the system
was turned off and they were no longer augmented. In fact, no sound
was played during both conditions, and only the narrative description
of the AT’s status was manipulated. In contrast to Kosch et al. (2022),
we were not interested in task performance, but in the influence that
the verbal description of the system would have in the user’s decision-
making, especially risk-taking behavior. Our work demonstrates that
descriptions of ATs influence user expectations, the processing of loss
information and that anticipation of augmentation increases risk-taking
behavior.

2. Background

First, we present investigations on placebo effects drawing from
medical studies and psychological studies and then also highlight where
placebo effects have been researched in the evaluation technology.
Next, we provide an overview on ATs and how they are used. Finally,
we provide an overview of standard measures of risk-taking to motivate
our choice of task in the study.

2.1. The placebo effect

Since the 1950s, pioneered by Lasagna, Mosteller, von Felsinger,
and Beecher (1954), systematic research on placebo mechanisms has
been ongoing (Schindel, 2004). A pharmacological placebo effect is
the reduction of a symptom, such as pain, due to the patient’s own
expectations (Price, Finniss, & Benedetti, 2008). The placebo effect has
been replicated several times in clinical trials (Hrõbjartsson & Gøtzsche,
2001) and psychological research (Diederich & Goetz, 2008; Price et al.,
2008) and can thus be considered an established research domain.

In addition to the treatment of ailments, researchers found that
placebo treatments can improve performance indicators and objective
treatment outcomes (Price et al., 2008). Note, however, that placebo ef-
fects are most consistently found for subjective evaluations of improve-
ment (Beckham, 1989; Rickels, Hesbacher, Weise, Gray, & Feldman,
1970). Numerous studies have demonstrated that the placebo effect
can improve a condition, promote creativity, improve cognitive ability,
and boost athletic performance (Beedie et al., 2019, 2006; Belchior
et al., 2013; Oken et al., 2007; Rozenkrantz et al., 2017; Watkins, 1986;
Weger & Loughnan, 2013). This indicates that a placebo affects the
individual’s state.

Irrespective of the measurement outcome, the subject’s mental
model of the effect of treatment is crucial for the placebo effect.
Previous research has shown that expectancy can not only be induced
regarding the outcome (response expectancy) (Kirsch, 1999; Lee &
Suhr, 2020; Oken et al., 2007), biasing the participant’s perception
of their reaction (e.g., the placebo alleviating the feeling of pain),
but also that evaluation of the stimulus itself can be biased (stim-
ulus expectancy), e.g., the placebo reducing the perception of pain.
Implementing response expectancies is the more dominant and robust
paradigm (Kirsch, 1999) for eliciting placebo effects; therefore, our
sham augmentation will, therefore, focus on the implementation of
response expectancies.

Although useful for treatment, the placebo effect obscures treat-
ments’ assessment, making placebo control necessary (Price et al.,
2008). In placebo-controlled pharmacological studies, participants are
unaware whether they were administered an active (e.g., painkiller) or
inactive treatment (e.g., a sugar pill). Therefore, in evaluating these
studies, a treatment is considered successful only if its effect super-
sedes the placebo effect. Likewise, medical standards are used in the
evaluation of performance-enhancing drugs to ensure that the deployed
treatment is effective (Greely et al., 2008).

In user-centered technology evaluation, systems are probed by a
user, typically by comparing an old technology to new technology or a
standard technology. In these studies, users are often able to discern the
experimental conditions, e.g., a new artificial intelligence (AI) system
vs. a baseline system, and identify the system that is intended to provide
improvement. Instructions may even indicate the novelty of the tested
systems (Caraban, Karapanos, Gonçalves, & Campos, 2019) explicitly.
Therefore, studies in technology evaluation are susceptible to placebo
effects by setting expectations a-priori that affect the interaction and
evaluation of systems. For a more nuanced discussion on expectations
see e.g., Kujala, Mugge, and Miron-Shatz (2017) or biases in technology
evaluation, see Caraban et al. (2019) and Kosch et al. (2022).

ATs are rarely compared to a placebo condition, although they are
designed to improve human abilities and therefore can elicit expec-
tations of improvement. Thus, simple verbal descriptions of ATs may
produce a placebo effect in the absence of system functionality, thus
replicating prior research (Kosch et al., 2022) on human-AI interaction.

While current HCI research has focused on dialogue-oriented in-
terfaces (Shin, 2021a, 2021b) that have been shown to be susceptible
to placebo effects (Kosch et al., 2022), we focus on ATs that enhance
humans, i.e. interfaces without a dialogue (Rekimoto & Nagao, 1995).

2.2. Human augmentation technologies

Parallel to the development of placebo research, Engelbart (1962)
has pioneered research on human augmentation (Engelbart & English,
1968; Schmidt, 2017). ATs improve a person’s ability to sense, think,
or act. For this, ATs typically integrate novel sensors such as thermal
cameras, actuators such as vibrotactile motors or exoskeletons, and
include technologies such as AI that supersede human abilities; how-
ever, the primary distinction between ATs and these technologies alone
is that ATs are embodied by the user and have the goal to enhance
human capabilities (Raisamo et al., 2019; Shneiderman, 2022; Villa
et al., 2023). ATs can be classified as sensory, cognitive, or motor
augmentation (Raisamo et al., 2019). For example, initial sensory
augmentations emerged from the need to compensate for impaired
hearing (Proulx, 2010) or vision (Danilov, Tyler, & Kaczmarek, 2008).
Motor augmentations were first observed as technologies to compensate
for constrained mobility (Kumar, Hote, & Jain, 2019). Therefore, early
classes of human augmentation have their roots in the development of
assistive technologies for assisting users with impairments (Guerrero,
da Silva, Fernández-Caballero, & Pereira, 2022; Huber, Shilkrot, Maes,
& Nanayakkara, 2018).

Today, AT researchers are intrigued by the idea of enhancing human
abilities beyond evolutionary constraints (Inami et al., 2022; Schmidt,
2017). For example, Abdelrahman et al. (2017) enabled users to see
the infrared spectrum in a natural way using the combination of
augmented reality headsets and thermal cameras, which can support
firefighters in operating hot environments (Abdelrahman, Sahami Shi-
razi, Henze, & Schmidt, 2015). Exoskeletons can increase strength
for individuals (Brown et al., 2003; Cao et al., 2009; Marcheschi
et al., 2011) and enable them to carry heavy loads. Technologies,
such as life-logging devices, preserve human memory for longer and
with more details than regular memory capacities (Brich, Bause, Hesse,
& Wesslein, 2019; Cristina, Jorge, Eva, & Mario, 2021; Dobrowolski,
Hanusz, Sobczyk, Skorko, & Wiatrow, 2015; Ksibi, Alluhaidan, Salhi,
& El-Rahman, 2021). Consequently, extending human capabilities is
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used not only to re-enable users with impairments but also to enhance
users so that they can unlock new potential for interacting with their
environment.

AT’s mediate the direct interaction of the individual with their
surroundings (Raisamo et al., 2019; Rekimoto & Nagao, 1995); aug-
mented senses provide information about the immediate environment
via augmented reality or vibrotactile cues, among others (Schmidt,
2017). Motor augmentations, such as exoskeletons, alter the percep-
tion of an object’s weight, whereas cognitive augmentations modify
how individuals interpret or process information. ATs, thus, alter the
user’s perception of their immediate surroundings and their affordances
which may cause the user to behave unexpectedly and engage in risky
behavior (Cumiskey, 2017). It has been shown by Low and Chan (2021)
that excessive reliance on SCUBA-diving systems, arguably one of the
most popular forms of human augmentations, increases the likelihood
of risky behavior on the part of the user. Further, Borenstein et al.
(2018) illustrated, in the case of exoskeletons, that people trust the
exoskeletons’ dependability without any prior knowledge of the system
and advocate the use of exoskeletons in high-risk situations, despite the
fact that the system was not designed for such situations. In spite of this,
it is still possible for people to misjudge the state of the system, even if
trust is warranted (Bredereke & Lankenau, 2002); Users can put them-
selves in physical danger if they are unaware of a system’s state and act
as if an augmentation is supporting them, such as by pulling a heavy
load without the active assistance of an exoskeleton (Stirling et al.,
2018). Therefore, expecting enhanced abilities due to augmentation by
an AT may increase risk-taking when making decisions.

2.3. Measuring risk-taking

Decision-making describes the process of choosing one option from
a set of alternatives (Shafir, Simonson, & Tversky, 1993). A decision
may be made by calculating risks and benefits or by at least partially
relying on emotional responses and gut feelings to each alternative.
The latter is known as ‘‘hot’’ decision-making and the former as ‘‘cold’’
decision-making (Buelow & Blaine, 2015). Risk-taking is the deci-
sion to take an uncertain action (Deck, Lee, Reyes, & Rosen, 2012).
Prior research states that individuals who engage in risky behavior
do so because they believe that the possible advantages of a given
action will outweigh the potential consequences of another (Fromme,
Katz, & Rivet, 1997). However, risk-taking is not necessarily ratio-
nal as it is prone to biases that correlate with personality and age
and Nicholson, Soane, Fenton-O’Creevy, and Willman (2005), vary
between certain groups, e.g., (Hanoch & Gummerum, 2010; Poon,
2016), and self-assessment e.g., self-perception of skills is linked with
higher risk-taking (McKenna & Horswill, 2006).

Such patterns in decision-making under uncertainty can be evalu-
ated using behavioral measurements in lab contexts (Buelow & Blaine,
2015). The most frequent tasks are the Iowa Gambling Task (Buelow
& Suhr, 2009), the Balloon Analogue Risk Task (Lejuez et al., 2002),
and the cold and hot variants (Figner, Mackinlay, Wilkening, & Weber,
2009) of the Columbia Card Task (CCT). While these tasks are abstract
in nature, they show great external validity (Buelow & Blaine, 2015)

Remarkably they also exhibit internal validity, especially on phys-
iological correlates. In particular, electro-dermal activity, heart rate,
functional near-infrared spectroscopy (fNIRS), and EEG responses.
Holper and Murphy (2013) reported that participants had stronger
activity for electro-dermal activity and fNIRS and decreased heart rate
when playing the hot version of the CCT as compared to the cold
version, and postulated electro-dermal activity and fNIRS as a suitable
combination to study hemodynamic and affective responses of the
users.

Event-Related Potentials (ERPs) are time-locked measurements of
the EEG activity in response to a particular event or stimulus (Sur
& Sinha, 2009). It consists of a series of positive and negative peaks

known as components. P300 positivity and N200 negativity (feedback-
related negativity, also known as FRN), appearing after 300 ms and
between 200 and 300 ms post-stimulus, respectively, are two particu-
larly important components for stimulus evaluation, selective attention,
and conscious discrimination in humans (Patel & Azzam, 2005). Using
this as reference, de Groot and Van Strien (2019) demonstrated that
feedback evaluation following risky decision-making in the CCT was
linked with FRN and a P300 in the EEG, where smaller FRN differences
were associated with greater risk-taking in the hot CCT, decreased loss
sensitivity, and increased impulsivity, whereas smaller P300 differences
were most strongly associated with greater reward responsiveness.

We, therefore, implement and adapt the hot-version of the CCT, as
a measure of affective risk-taking in our study and explore recordings
of event-related potentials in the EEG.

3. Research model and hypotheses

Previous research has shown that social learning (Kirsch, 1999),
classical conditioning (Flaten & Blumenthal, 1999), or verbal informa-
tion, e.g., expert instructions (Stewart-Williams & Podd, 2004), can be
used to generate placebos. We concentrated on the latter and attempted
to create a placebo effect by changing system descriptions (Kosch et al.,
2022). We conducted a within-subjects lab study following medical
research on the placebo effect (Gniß, Kappesser, & Hermann, 2020) and
HCI research on placebo effects (Kosch et al., 2022) to determine the
effect of expecting augmentation on risk-taking behavior.

We operationalized risk-taking through the CCT, the participants
were given a revised version of the Hot CCT two times, one per
condition. In the augmentation condition, participants were told to be
supported by a cognitive augmentation. In the no-augmentation con-
dition, participants were told the augmentation system was turned off
and that any beneficial effects did not exist. We anticipated that being
cognitively augmented affected the participant’s risk-taking behavior
during the CCT. Note that while trust and over-reliance are relevant
to ATs and their adoption, our study focused on the expectation of
improvement and the placebo effect’s mechanism altering risk-taking.

We used an EEG as a placebo AT and informed participants that the
EEG was a Brain–Computer Interface (BCI) playing an inaudible sound
that was proven to improve the ability to process information and thus
perform better in the CCT. However, the setup was identical for both
conditions, the system was not functional, and no sound was played.
Note that our study was designed to show the placebo effect of an AT
and that we did not focus on BCIs or the efficacy of augmentation of
cognitive capacities per se, only on the propensity of placebo effects of
ATs to increase risk-taking.

We adapted one aspect of the CCT for our study. Typically, in each
round of the CCT, a participant is presented with a set of cards face
down. Behind these are loss or win cards representing the given amount
the player can win or lose. For the purpose of our study, participants
were briefly presented with the cards face-up. Afterwards, the cards
were put face down again and shuffled using an animation. Participants
were led to believe by the verbal description that the augmentation
would support them in tracking the cards on the screen. Participants
did not know that win or loss cards were rendered at each draw and
that the entire game was rigged.

Note that medical research on pain-alleviating placebos has varied
a large set of contextual variables that can modulate the placebo effect
in size. Wager and Atlas (2015) provides a taxonomy of different con-
textual cues affecting placebo effects. These cues include the treatment
cues (e.g., the novelty of the treatment), the place (e.g., a medical lab),
the social situation (e.g., the experimenter wearing a white coat) and
verbal suggestion (e.g., describing the mechanism closely); while we
have taken these contextual variables into account, our study should
resemble a user study for ATs as closely as possible.

To reiterate, we state the following research question:
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RQ: Can anticipation of being augmented be induced by verbal de-
scription and can this increase risk-taking behavior?

We investigated the following hypotheses to answer this research ques-
tion:

H1: A verbal description of an AT results in an increase in perfor-
mance expectations

H2: A verbal description of an AT results in an increase in perfor-
mance judgments after interaction

H3: Performance expectations improvement induced by a placebo-
treatment increases risk-taking behavior.

H4: Performance expectations induced by a placebo-treatment affect
processing of risk-related information.

4. Method

In the following, we motivate and document our methodologi-
cal choices in realizing the study. The study implementation with
all associated measures can be found at https://github.com/mimuc/
PlaceboAugmentation.

4.1. Participants

We recruited participants through the university’s mailing lists and
communication channels. To prevent study participants from detecting
the placebo condition (Verbal description of the augmentation system),
we refrained from recruiting individuals with prior knowledge of EEG
or human augmentation systems. We recruited a total of thirty partici-
pants (𝑁 = 30), one of whom did not consent to the use of their data
following the experiment, and two were excluded due to poor data
quality (no data was recorded concerning their expectancy ratings).
There were a total of twenty-seven participants (𝑁 = 27, Male = 17,
Female = 10, 0 non-binary, 0 participants did not disclose or self-
specified a gender) with an average age of 29 years (𝑀 = 29.13, 𝑆𝐷 =
9.51) and a reported technical competence of (𝑀 = 4.76, 𝑆𝐷 = 1.43).
Participants were compensated 5 euro/30 min for their involvement.

4.2. Experimental design

We conducted a within-subjects lab study with four variables of
interest, each with two levels. In detail, the independent variables were:
(1) Verbal description, referred to as description (The setup is augment-
ing participant cognitive skills, referred to as augmentation condition vs.
the setup is not augmenting the participant’s cognitive skills, referred
to as no-augmentation condition), (2) Number of loss cards (one loss card
vs. three loss cards) compared to the total number of cards referred to
as loss cards, (3) Value of win cards (10 points vs. 30 points) referred
to as win amount, and, (4) Value of loss cards (250 points vs. 750
points) referred to as loss amount. The order of presentation the Verbal
description was counter-balanced, while the CCT-related variables (loss
cards,win amount,loss amount) were randomized.

4.3. Stimulus

Verbal description:. We compared the influence of two verbal descrip-
tions regarding a human augmentation. We did this by manipulating
the system description (i.e., augmentation condition or no-augmentation
condition). The participants were informed about the assigned condi-
tion before conducting the RCCT (see Fig. 1).

During the augmentation condition, participants were informed that
the BCI was analyzing their brain waves to emit an inaudible brain-
stimulating sound to boost visual processing, allowing the participants
to recognize the win cards more precisely. A coherent explanation of
how the system works was provided to the participants. We stated
that we used binaural sounds (Colzato, Barone, Sellaro, & Hommel,
2017), which are administered through inaudible frequencies (Møller

Fig. 1. Stimulus: Verbal description; we told participants the EEG was a BCI system
that modulated an inaudible sound that improves their information processing and
RCCT performance. In reality, the system played no sound and was used to record
data only.

& Pedersen, 2004), are proven to have a positive impact on cogni-
tive functions (e.g., mitigating Alzheimer symptoms Clements-Cortés,
Ahonen, Evans, Freedman, & Bartel, 2016). In the no-augmenation
condition, participants were informed that during this condition, the
augmentation device would not be active; therefore, their performance
would be determined solely by their ability to visualize the cards
shifting, identify the winning cards and play the game. This condition
serves as a control condition in our experiment.

Columbia card task related variables. According to Figner et al. (2009),
the risk assessment of participants in the Columbia card task is in-
fluenced by three variables: the value of win and loss cards, and the
number of loss cards in the deck. We used literature informed values for
the CCT, namely, 10 and 30 for win cards, 250 and 750 for loss cards,
and, 1 and 3 for number of loss cards. The value of win cards is added
to the participant’s total round score upon flipping a win card. In the
same way, the value of loss cards is subtracted from the participant’s
total score upon flipping a loss card. The number of loss cards in the
deck is the number of cards that can lead to point deduction out of the
total 27 cards present in the deck.

4.4. Procedure

The participant-assignment to the starting condition (augmentation
or no-augmentation) was counterbalanced. Participants were supplied
with an explanation of the study’s design, as well as data protec-
tion and comprehensive study information. The participants were then
requested to grant informed consent to participate in the study in
accordance with initial Declaration of Helsinki and to continue with
the demographics and technical competency evaluation. We collected
the participants’ age, occupation, and identity gender information and
seven-point Likert scale ratings of their technical competence.

The researcher then described in full the notion of human aug-
mentation, cognitive augmentation, and the apparatus. Clements-Cortés
et al. (2016), Colzato et al. (2017), Møller and Pedersen (2004) works
were specifically cited as evidence that the outlined augmentation
is functional. However, the augmentation used in our study was a
placebo. It was non-functional and did not improve the participants’
cognitive abilities. See Fig. 2 for an overview.

The induction of placebos adheres to a typical medical research pro-
cess, see Kosch et al. (2022). Participants received a stimulus consisting
of an augmentation system that reportedly enhances human skills and
a verbal description. The system was presented as a functional EEG-
based human augmentation system that analyzes electric potentials
in the brain and boosts performance by playing inaudible sounds to
improve cognitive skills, even though no sound is actually created. This
design integrates past studies demonstrating that the sound of musical
compositions may improve performance through placebo effects (Geers

https://github.com/mimuc/PlaceboAugmentation
https://github.com/mimuc/PlaceboAugmentation
https://github.com/mimuc/PlaceboAugmentation
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Fig. 2. Study flow diagram: We conducted a within-subjects study. We induced a placebo effect by changing system descriptions. Participants took the Revised Hot Columbia Card
Task (RCCT) twice to measure risk-taking. Participants in the augmentation condition were told that they would be helped by a cognitive augmentation. In the no-augmentation
condition, participants were told the augmentation system was off and no benefits existed. Finally, we informed them about the actual purpose of the study.

et al., 2005) and that EEG caps can be utilized as a placebo (Magalhães
De Saldanha da Gama et al., 2013). The function of the augmentation
device in the RCCT was presented as enabling participants to follow the
movement of the quickly shuffling cards so they could determine the
location of the loss cards, see Fig. 2.

The following is an excerpt of the explanation provided to the
participants (translated from blinded):

We tune the audio to high and low frequencies that cannot be actively
perceived to minimize listener fatigue and distraction from the sounds.
For this purpose, the hearing threshold, loudness at which sounds are
just heard, is measured. An artificial intelligence (AI) evaluates brain
activity during the experiment and dynamically adjusts the binaural
tones accordingly. The resulting feedback cycle ensures that the AI opti-
mally adjusts the signal for maximum augmentation and thus maximum
performance. In this study, we now want to evaluate whether the system
enhances performance and compare this to a control condition without
cognitive augmentation by AI.

After describing the augmentation to the participants, we ques-
tioned them on their comprehension of the experiment, the augmen-
tation, and its informed purpose (See supplementary material: https://
osf.io/gex4t/).
This included three questions: What are the two conditions you will test in
this study?, How does the augmentation work?, and, What are the measured
metrics used for?. Each item had three possible response options, but
only one was correct. All participants included in the study answered
these questions correctly.

The RCCT was explained once the experimenter checked that the
individual understood these points. Participants were informed that
their remuneration would depend on their success in each game con-
dition. Thus, they would receive 2.50 euro at the beginning of each
card game. The worst scenario would result in 0 euros, while the best
outcome would result in 10 euros. They were informed that the actual
payout amount would be determined by the number of points obtained
at the completion of each condition. At the end of the experiment, all
participants were compensated with 5 euro per half hour.

The participants then played two rounds of guided instruction to
familiarize themselves with the task. The system guided them through
the first round by displaying win and loss cards, and the second round
instructed them on how to use the rest of the interface (see Fig. 3). After
the two instruction rounds, we had the participants play two practice
rounds, one of which was intentionally manipulated to demonstrate the
risk of flipping loss cards. Following this explanation and prior to the
actual experiment, we did an assessment of performance expectations
prior to the RCCT.

Participants underwent a standard auditory threshold detection task
across different frequency bands. Thresholds were not of interest in the
study but were used to strengthen the placebo system’s narrative of
the verbal description. Then, depending on the condition (i.e., augmen-
tation or no-augmentation), the participant either receives a pop-up
stating that the augmentation is inactive and the game begins, or they
are presented with a loading screen where they must wait two minutes
until the system allegedly begins generating the inaudible sounds to
augment them. After this delay, a message would appear confirming

that the augmentation is now active, and then participants would
finally be able to play the game. Throughout each condition of the
RCCT, we recorded the number of cards flipped and the type of cards
flipped. We simultaneously collected EEG data. The conditions were
counterbalanced to avoid order effects.

Then we assessed task load and game experience after each con-
dition. After completing both conditions, we measured participant
judgments of improvement. Once participants had completed all ques-
tionnaires, we examined the usability of the AT, and, finally, debriefed
them on the details of the experiments. Then, we measured user judg-
ment of improvement and how they persisted after interaction. After
debriefing participants we asked participants if they consented to the
use of the collected data once they were fully informed regarding
the purpose of the study. The experimenter did not know what their
decision was and their decision did not affect their compensation.

4.5. Measures

Assessment of judgments of performance. We measured user judgments
of performance and how they persisted after interaction. For per-
formance expectations (judgments prior interaction) we used three
questions: First, a seven-point Likert item with anchors 1: Strongly
disagree, and, 7 Strongly agree compared the expected performance
between both conditions: ‘‘I think I will do better in the augmentation
condition as compared to the no augmentation condition’’. Then, two slider
questions from zero to 930 (the theoretically possible maximum points
if the game was not rigged) asking participants the expected number
of points in each condition ‘‘How many points do you think you will get
in the no augmentation condition in the game?’’, and ‘‘How many points
do you think you will get in the augmentation condition in the game?’’.
For judgments of improvement after interaction, we asked participants
to rate Table 1 Likert items with anchors 1: Strongly disagree, and, 7
Strongly agree, after completing both conditions.

Risk-taking behavior. We applied the CCT (de Groot & Van Strien, 2019;
Figner et al., 2009) (hot version) to assess risk-taking behavior. In the
CCT, risk-taking is operationalized by the total number of cards flipped
in a round by the participants under a set of factors that modulate the
risk of flipping a loss card.

There are a predefined number of loss cards (1 vs. 3) in the deck,
each of which is equipped with a win (10 vs. 30) and loss point (250
vs. 750). Participants are instructed to flip as many cards as they dare
to.

To maintain the task’s credibility and prevent participants from
simply flipping every card in the deck, seven rounds of each condition
game are loss rigged, thus predetermined to result in a loss. These
rounds are selected at random. The Columbia card task has been shown
to correlate with affective decision-making (Buelow & Blaine, 2015;
Figner et al., 2009), risk behavior in adolescents (Panno, 2016), and
other experimental measures of risk (de Groot & Van Strien, 2019).

Two variants of the CCT exist (i.e., cold and hot) depending on the
ability to interact with the cards in the game. In the hot version, the
player must make incremental judgments (i.e., turn over one card at a
time) and receive feedback after each decision. In the cold version, the
player chooses the number of cards to turn over for the trial. We used

https://osf.io/gex4t/
https://osf.io/gex4t/
https://osf.io/gex4t/
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Fig. 3. RCCT interface: The interface was a deck of cards with five indicators: current round, number of points, loss and win card values, and number of loss cards. The interface
permits players to skip and stop rounds.

the hot version of the CCT for two reasons. First, it measures bias in
affective decision-making likely relevant for the use of augmentation
under risk. Second, it could be perceived as less random as it allows
participants to choose cards individually. The location of loss cards
is not known to participants. This means that in the hot version of
the CCT participants can pick cards from arbitrary locations until they
encounter a loss-card while in the cold version the algorithm turns over
cards sequentially from the beginning. To reiterate, in the cold CCT
participants choose the number of cards to turn over while in the hot
version of the CCT the participant chooses to flip individual cards.

The verbal description stimulus (description) goal is to induce the
participant’s belief to be knowledgeable of the location of loss cards,
i.e. the verbal description suggested they have an advantage in selecting
the cards due to their enhanced information processing abilities. To
allow for participants to know the location of loss cards and thus have
an advantage in the game, we adapted the original CCT by showing the
location of loss cards briefly using a card flipping animation and then
shuffling the cards, referred in this manuscript as RCCT.

In the original CCT, the participant has no visibility of the win and
loss cards, so the task depends on the participant’s willingness to take
risks based on the aforementioned factors (i.e., number of loss cards,
amount of gain, amount of loss) that are displayed in the interface.
For our narrative, however, we required a skill-based task that is
subsequently executed more effectively due to cognitive enhancement.
In detail, we implemented two changes (see Fig. 4) to the CCT: Each
round begins with the deck facing up (one second) so that the player
can identify the winning and losing cards, and then the deck is flipped
over and shuffled. We repeated the shuffling process five times. The
cards are shuffled at an extremely rapid rate. One card could relocate

from one side to the other in less than 480 ms and its trajectory was
shuffled five times before each round, preventing participants from
determining the actual location of the cards. The last shuffle lasted
100 ms to ensure it was not possible to follow the card location.
Thereby preserving the element of risk in the actual task. As in the
original CCT the location of loss cards was pre-determined, most rounds
were rigged to be win rounds (13 of 20 rounds; 7 rigged-loss rounds).
Thus, only the last or last three cards were loss cards.

Note also that, participants had to decide whether to flip over a
card on a given location. Therefore, the augmentation that facilitated
the processing of location information was described as giving them a
relative advantage in the task. Note that implementing the same routine
in the cold CCT would only yield an advantage to participants if they
knew all locations of loss cards. Therefore, the hot CCT is better suited
for our study.

EEG recordings. de Groot and Van Strien (2019) have shown that
feedback evaluation following risky decision-making in the CCT was
linked with feedback-related negativity (FRN) and a P300 in the EEG,
where smaller FRN differences were associated with greater risk-taking
and, impulsivity, with a decreased loss sensitivity, while smaller P300
differences were most strongly associated with greater reward respon-
siveness. Therefore we operationalize the processing of risk-related
information through the FRN and P300 in the EEG. For the recording
of the EEG, we used an R-Net 64 channel EEG with a wireless amplifier
(LiveAmp, Brain Products, Germany) and the corresponding recording
software (Brain Vision Recorder) for electrode impedance calibration
and the Brain Products LSL Streamer for signal streaming (R-Net, Brain
Products, Germany). Electrodes were electrically connected to the scalp
using a saline solution. The impedance of the electrodes was kept

Table 1
Items were answered on a 7-point likert scale(1 - strongly disagree; 7 - strongly agree). We tested against an indecisive value of 3. Effects that are distinguishable from zero are
marked with *. We did not test the SUS against a hypothesized value.

Item/scale 𝑀 𝑆𝐷 𝑏̃std 𝐻𝐷𝐼95% 𝑝𝑏
The game was easy to play.* 3.93 1.86 0.47 [0.07, 0.86] 1.07%
The cognitive augmentation has made the task easier.* 3.74 1.40 0.50 [0.12, 0.88] 0.59%
The cognitive augmentation has made the task more enjoyable. 3.56 1.93 0.28 [−0.12, 0.68] 8.24%
The cognitive augmentation has made me more confident. 3.67 1.86 0.35 [−0.05, 0.74] 4.35%
The cognitive augmentation has made me more efficient. 3.52 1.50 0.33 [−0.06, 0.72] 4.63%
The cognitive augmentation has improved my performance.* 4.11 1.55 0.70 [0.31, 1.09] 0.06%
The cognitive augmentation has improved my cognitive
abilities.*

3.93 1.54 0.59 [0.21, 0.96] 0.20%

The cognitive augmentation in this game has a lot of potential
for future development.*

4.37 1.55 0.85 [0.45, 1.24] 0.00%

System usability scale 56.94 11.34 – – –
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Fig. 4. Revised Columbia Card Task: Each round begins with the deck facing up (one second) so the player can identify the winning and losing cards. The deck is then flipped
over and shuffled at an extremely rapid rate and relocated in less than 300 ms five times before each round, preventing participants from determining the actual location of the
cards and preserving the element of risk in the actual task.

below 50kΩ (below the manufacturer’s recommendations of 100kΩ).
We utilized an average reference and a 500 Hz sampling rate to record
the data. We have recorded data from 32 electrodes (see Fig. 5).

Task load. We distributed a NASA-TLX task load (Hart & Staveland,
1988) questionnaire to compare potential variations in task load gen-
erated by the stimulus. It is a widely used subjective assessment tool for
evaluating task load. It measures task load by assessing six dimensions:
mental demand, physical demand, temporal demand, performance,
effort, and frustration. Participants rate each dimension on a scale from
0 to 100, with higher scores indicating higher levels of task load. The
NASA-TLX has been extensively validated and is considered a reliable
and valid tool for measuring task load in various contexts.

4.6. Apparatus

We used Lab Streaming Layer (LSL) for time-series data acquisition.
It was used for networking, time synchronization, and centralized data
recording of the EEG streams and the RCCT annotations. We based our
RCCT on a web-based CCT experiment provided by The Experiment
Factory Sochat (2018) (Stanford, CA). The task was carried out using
Microsoft Edge on a Windows (Windows 10 Version 21H2) desktop
computer (HP Z1 G6) with an i7 (i7-10700) processor, 16 GB of RAM
and a screen size of 27 inches with a refresh rate of 60 Hz. Additionally,
the web-based experiment was modified to transmit time annotations
with the information of each button pressed (i.e., card flip or next
round) to the lab streaming layer network and synchronize with EEG
data. The participants used the mouse to select the cards in the RCCT.
They were positioned in front of the screen, which was calibrated to
their eyesight level. The distance between the participant’s forehead
and the screen was roughly 75 cm (29,5 inch).

4.7. Data analysis

EEG data processing. To analyze the recorded data, we used the Python
MNE library. The data was high pass filtered at 1 Hz and low pass fil-
tered at 15 Hz (Acunzo, MacKenzie, & van Rossum, 2012; de Cheveigné
& Nelken, 2019). The data was then re-referenced to the average of
all channels, which included the original reference electrode FCz. We
applied a notch filter to remove the 50 Hz powerline noise. Then, we
sliced the epochs into blocks of −0.3 ms and 0.7 ms, where 0.0 ms
denotes the onset of the stimulus. We use the time between −0.3 ms and
0.0 ms as a baseline for the measured stimulus signal. We detected and
rejected epochs likely to contain noise using the Autoreject library (Jas,
Engemann, Bekhti, Raimondo, & Gramfort, 2017). We automatically
detected the local maximum around 300 ms and 450 ms to extract the
P300 amplitudes for each epoch according to previous work (de Groot
& Van Strien, 2019).

Bayesian data analysis and inference. We use a Bayesian approach to
data analysis for this paper. We used Bayesian linear mixed models
(BLMM). The Bayesian approach has been taken up lately (Acker-
mans, Rusman, Nadolski, Specht, & Brand-Gruwel, 2019; Gueron-Sela,
Shalev, Gordon-Hacker, Egotubov, & Barr, 2023; Kay, Haroz, Guha &
Dragicevic, 2016; Kay, Nelson & Hekler, 2016; Urbaniak et al., 2022)
as it presents several advantages to classical statistics. Kay, Nelson
et al. (2016) explain advantages of Bayesian statistics in technological
contexts that are also relevant to our study. These are in particular: 1.
The ability to use prior knowledge and learn from data. 2. To inform
on the size of the placebo effect with a given level of precision, 3. It
allows for the estimation of effects in small n-studies, 4. The approach
enables readers to evaluate the effect size, which can also be close to
zero, rather than the mere effect existence.

This Bayesian approach to modeling the CCT is frequently
used (Somerville et al., 2019; Weller et al., 2019). Following Weller
et al. (2019), we used censoring to model incomplete data distributions
(e.g., rigged-loss trials of the CCT). The mean and standard deviation
of the data distribution are reported without these censored trials.
For a tutorial on Bayesian statistics, a description of the common
workflow using brms, and reporting guidelines, see Bürkner (2017a),
Dix (2022), Schad, Betancourt, and Vasishth (2021), van de Schoot
et al. (2021). Most importantly, the existence and the non-existence
of a placebo effect is likewise important. The Bayesian approach to
statistical inference allows us to measure the placebo effect and the
non-existence of placebo effects on the measures.

Here, we use Bayesian parameter estimation which allows us to
estimate parameter values of effect sizes and quantify the uncertainty
regarding these estimates based on the information in our data and
the priors applied. We used brms (Bürkner, 2017a), a wrapper for

Fig. 5. Microsoft Edge was used on a Windows (Windows 10 Version 21H2) desktop
computer (HP Z1 G6) with an i7 (i7-10700) processor, 16 GB of RAM, and a 27-inch
screen with a refresh rate of 60 Hz to complete the task. We used an R-Net 64-channel
EEG with a wireless amplifier.
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the STAN-sampler (Carpenter et al., 2017). For statistical inference,
we used R (R Core Team, 2021) along with packages for prepro-
cessing (Bates, Maechler, & Jagan, 2022; Müller, 2020; Wickham
et al., 2019; Wickham, Hester & Bryan, 2022; Wickham, Miller &
Smith, 2022), modeling (Bates, Mächler, Bolker, & Walker, 2015;
Bürkner, 2017b, 2022; Eddelbuettel & François, 2011; Kuznetsova,
Brockhoff, & Christensen, 2017; Revelle, 2022) and post-processing
(Chang, 2022; Gromer, 2020; Kay, 2022; Lüdecke, 2021; Lüdecke et al.,
2021; Makowski et al., 2022; Pedersen, 2020; Wickham, 2016; Xie,
2015) the data. We computed 4 Hamilton-Monte-Carlo chains with
40000 iterations each and 10% warm-up samples. Trace plots of the
Markov-chain Monte-Carlo permutations were inspected for divergent
transitions. All Rubin–Gelman statistics (Gelman & Rubin, 1992) were
well below 1.1, for effective sampling size.

We compare possible models with approximate leave-one-out cross-
validation (LOOCV) (Vehtari, Gelman, & Gabry, 2017). This procedure
allows us to compare information criteria across models. Relatively
smaller LOOCV values indicate a better fit of the model to the data.
The best model is then selected and parameters are further analyzed.
For these, 𝑝𝑏 was computed by calculating the relative proportion of
posterior samples being zero or opposite to the median. This metric has
similar properties to the classical p-value (Hoijtink & van de Schoot,
2018; Meng et al., 1994; Shi & Yin, 2020) but quantifies the proportion
of probability that the effect is zero or opposite given the data observed.
Note that this is the reverse of the classical approach to inferential
statistics, where one measures the probability of the data given the
null-hypothesis with respect to the test statistic. Effects were considered
meaningful when there was a particularly low probability (𝑝𝑏 <= 2.5%)
of the effect being zero or the opposite. In addition to the median
of the parameter, we calculated the High-Density Interval (HDI) at
95% of the posterior distribution for all parameters, which indicates
the possible range of effects given the data, alongside the median
of the respective parameter. Simple mean comparisons were done on
standardized outcome variables. Therefore, all 𝑏̃ represent an effect
size in terms of deviations of the standard deviations from the mean
(corresponding to Cohen’s d for simple effects of categorical predictors
with two levels). For models on factorial designs, our analysis of the
behavioral and physiological data, we calculated 𝛿𝑡, which can be
interpreted quite similar to Cohen’s d and is based on standardizing
the population-level effects on the varying-effects and residual vari-
ance (Hedges, 2007; Judd, Westfall, & Kenny, 2017). We explored the
effect of different weakly informative priors on the data. None affected
statistical inference. We also provide classical tests resembling Bayesian
analysis for each step of inference and ordinal regression analysis for
Likert-tye questions in the supplement https://osf.io/gex4t/.

For simple mean comparisons, priors were chosen to resemble only
weakly informative priors when standardized with a prior on the
standardized mean difference of (M = 0, SD = 1) and thus encompass
positive and negative small to large effect sizes, 𝑑𝑧 𝐻𝐷𝐼95% = [−.1.96,
1.96], centered at zero on the standardized outcome, for the intercept
and the residual a 𝑡-distributed prior (𝑑𝑓 = 3, 𝑀 = 0, 𝑆𝐷 = 1) was used
and we specified a student-link function (𝜈 following a 𝛾 distribution
with 𝑝 = .1, b = 2) to resemble the commonly used 𝑡-test with pooled
variances.

5. Findings

We first report on the belief of participants that the system aug-
mented them. Then we analyze user judgment of improvement before
and after the stimulus. Followed by modeling risk-taking behavior as
a function of Verbal description and judgment of improvement (Kosch
et al., 2022). We follow this up with an analysis of FRN in response to
loss cards (de Groot & Van Strien, 2019) for the EEG signal.

Fig. 6. Mean expected augmentation gain in points for the RCCT with individual data
points for each subject as a function of self-reported belief in the augmentation after
debriefing. Error bars denote ±1 standard error of the mean.

5.1. Manipulation check

After the experiment and debriefing participants about the decep-
tion and sham treatment, we asked them to indicate whether they
believed in the functionality augmentation system or suspected that
they were deceived. Only one out of 27 participants (3.70%) indicated
that they did not believe in the system’s capabilities. Eleven out of 27
(40.74%) participants reported some minor suspicion of the system’s
functionality (e.g., P2: I believed that augmentation takes place, but that
it really helps was skeptical. I was aware that the difference was more
influenced by sequence, fatigue, and other factors’’.). The majority of par-
ticipants, 14 (51.85%), fully believed in the augmentation technology’s
effect. One participant did not disclose whether they believed in the
description or not (3.70%).

5.2. Impact of verbal description on performance expectations and judg-
ments of performance (H1 & H2)

After the description of the experiment, the task, and the system
being used but before interaction, we asked participants to indicate
how many points they thought they would score with and without the
augmentation on a scale ranging from 0 to 930 points. Participants
indicated that for the augmentation condition (𝑀 = 480.30, 𝑆𝐷 =
150.91), they will score more points as compared to the no-augmentation
condition (𝑀 = 346.70, 𝑆𝐷 = 130.43). This difference could be
distinguished from zero , 𝑏̃std = 0.41 [0.29, 0.54], 𝑝𝑏 = 0%, see Fig. 7B.
Fig. 7A shows the mean for each condition and the substantial variation
in participants. While some estimated their gain to be small, others
considered it quite substantial. Therefore, hinting at the notion that the
placebo effect is subject to high levels of individual variation, which is
in line with Kosch et al. (2022).

To inspect whether this variation corresponds to participants’ re-
ported judgment of improvement in the augmentation condition after
use, we plotted the difference in expected points, further referred to
as relative augmentation expectancy (expected points for augmentation -
expected points for no-augmentation) as a function of indication of belief
on the system (manipulation check). One can see that while on average,
there is no substantial difference between the full-belief group and
the group of participants that reported some doubt 𝑏̃full/doubt = −0.04
[−0.47, 0.42], 𝑝𝑏 = 56.54%, (see Fig. 6), the variation is larger in the
group that reported some doubt; however the difference in variance
between groups was not distinguishable from zero, 𝜎̃full/doubt = 0.31
[−0.01, 0.65], 𝑝𝑏 = 3.12%. Also noteworthy is that some participants
that voiced minor doubts after the experiment were expecting no gain

https://osf.io/gex4t/
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Fig. 7. A: Mean expected points in the RCCT with connected individual mean values. Error bars denote ±1 standard error of the mean. B: Prior and posterior density plots. Prior
samples in beige, and posterior samples in green. The relative density increase from prior to posterior shows how the data has informed the model. No posterior samples lie
opposite of zero, indicating that the effect is unlikely to be opposite, or zero.

in points through the augmentation. This is also the case for the one
participant who reported that they did not believe in the system at all
after the experiment, see Fig. 6.

As it could be argued that participants’ lack of familiarity with
the game mechanics could have impacted our results, we also asked
participants to indicate their agreement to ‘‘I think I will do better in the
augmentation condition as compared to the no augmentation condition’’ on
a 7-point Likert scale with anchors 1:Strongly Disagree, and, 7: Strongly
Agree. On average, participants reported agreeing with the item with
𝑀 = 4.81 (𝑆𝐷 = 1.47). We tested this mean against an expected
value of 3 (which would indicate neither to agree or disagree with the
statement), resembling a one-sample 𝑡-test. Here, we used a normally-
distributed prior on the intercept centered at zero with a 𝑆𝐷 that was
two times the standard deviation of the observed variable again with a
studentized link-function (𝜈 following a 𝛾 distribution with 𝑝 = .1, b =
2) for the residuals. The sigma prior resembled the mean-comparison
model and to allow for more variation a 𝑡-distributed prior (𝑑𝑓 = 3,
𝑀 = 0, 𝑆𝐷 = 1). The difference between the mean and the expected
value of 3 was distinguishable from zero, 𝑏̃std = 1.24 [0.83, 1.61], 𝑝𝑏 =
0.00% . We also asked whether they still believed this after interaction
with the system and experiencing the no-augmentation condition. On
average participants still believed in the augmentation, 𝑀 = 4.44,
𝑆𝐷 = 1.67, 𝑏̃std = 0.86 [ 0.46, 1.24], 𝑝𝑏 = 0% and when comparing
their response before and after interaction participants there was no
distinguishable reduction in confidence 𝑏̃std = −0.12 [−0.37, 0.14],
𝑝𝑏 = 17.29%. The 𝐻𝐷𝐼95% was centered around zero with a maximum
effect of 0.37 𝑆𝐷 on the outcome variable. Therefore, the belief of
superior performance for the augmentation condition was sustained after
interaction, which generated the placebo effect (Kosch et al., 2022).

This placebo effect is also exemplified in the post-experimental
questionnaire (see Table 1). We found that participants, on average,
judged the augmentation system to facilitate task completion and im-
prove performance and cognitive abilities. This has also prompted
participants to conclude that this augmentation has potential for future
development, again see Table 1.

5.3. Influence of performance expectations on risk-taking behavior (H3)

Participants each played 40 rounds of the game. These were sam-
pled from combinations of 2 (1 vs. 3 loss cards) × 2 (250 vs. 750
points loss amount) × 2 (10 vs. 30 points win amount) for each condition
of description. Note that the mixed model approach, we use for anal-
ysis does not require equal distribution of trials across experimental
variations. For 27 participants, this resulted in 1080 data points that
indicated risk-taking as the number of cards turned over in the RCCT.
We used censoring for rigged loss rounds to model the whole game
in line with (Weller et al., 2019). Censoring takes into account that

the number of cards in loss rounds only represents a minimum but
otherwise unknown estimate of the number of cards the participant
would have turned over.

5.3.1. Priors and model selection
For multilevel-data and trial-based modeling of the RCCT, we ap-

plied normally-distributed priors (M = 0, SD = 10) on all population-
level effects, with Cholesky priors on the unstructured (residual) corre-
lation (𝜂 = 2), and a 𝑡-distributed prior (𝑑𝑓 = 3, 𝑀 = 0, 𝑆𝐷 = 5) on the
intercept, sigma and the variance, with a normally-distributed prior on
the intercept parameters (𝑀 = 20, 𝑆𝐷 = 10). Two-way interactions
in our model were followed up by posterior predictive plots, which
serve a similar purpose as post-hoc comparisons in classical statistical
inference. We used effect-coding on categorical variables (e.g., 1, −1).

We modeled the effect of the stimulus using a varying intercept
for every participant to account for the repeated-measures structure
of the data in the mixed model. To allow for individual variation of
effects in participants, we added cross-varying slopes for interaction
terms for loss amount, win amount, and loss cards for every subject. The
varying intercepts and varying slopes for each participant serve the
purpose of normalization and thus control for systematic individual
differences in the dependent variable (e.g., individual differences in
loss aversion). All population-level effects of loss cards, loss amount
and win amount, were matched with an interaction term of description
and augmentation expectancy See the supplementary material for the
full model specification: https://osf.io/gex4t/. We compared a null
model that only estimated the intercept and the mean (LOO = 4732.99)
with a model that accounted for loss cards, loss amount and win
amount with population-level effects and varying-level effects (LOO =
4269.19) similar to Weller et al. (2019) with the LOOCV information
criterion and then subsequently added main-effects and fully crossed
interaction terms for the description (LOO = 4218.09) and augmentation
expectancy (LOO = 4225.04). We selected the most complex model with
both description and augmentation expectancy as it allows us to quantify
the effect of individual augmentation expectancy while providing a fit
indistinguishable from the more parsimonious model. For the sake of
brevity, we will analyze the posterior only for this final model.

5.3.2. Posterior distribution analysis
As is typically the case for the CCT, our model could show that

participants considered the number of loss cards when making their
decision, 𝑏̃loss cards = 3.90 [3.12, 4.69], 𝑝𝑏 = 0.00%, 𝛿b = 0.78 [0.61,
0.94]. They turned over relatively fewer cards (𝑀 = 14.49, 𝑆𝐷 =
6.35) when there were three loss cards in the deck as compared to the

https://osf.io/gex4t/
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Fig. 8. A: Average number of cards turned over in the RCCT with connected individual mean values. Error bars denote a +/−1 standard error of the mean. B: Average number
of cards turned over in the RCCT for each participant as a function of expected points in the RCCT. C: Predicted average number of cards turned over in the RCCT by our model
as a relative augmentation gain (Augmentation- No augmentation). D: Posterior density plot. The blue indicates the proportion of posterior samples opposite to the median and
thus is a visual representation of the posterior 𝑝-value. It quantifies the proportion of probability that the effect is zero or opposite given the data observed. The smaller the blue
areas in comparison to the green areas are, the more reliable is the estimation of the effect. We omitted to display the prior distribution as it would appear flat given the wide
𝑆𝐷 when it is, in fact, normally distributed.

conditions when there was one loss cards in the deck (𝑀 = 22.61, 𝑆𝐷 =
4.73). There was also an effect of loss amount, 𝑏̃loss amount = 0.60 [0.19,
1.01], 𝑝𝑏 = 0.35%, 𝛿b = 0.12 [0.04, 0.20]. With more cards turned
in games with 250 points loss possibility (𝑀 = 19.28, 𝑆𝐷 = 4.83) as
compared to 750 points losses (𝑀 = 17.96, 𝑆𝐷 = 5.81). The win amount
did not affect participant’s decision to turn over cards, 𝑏̃win amount =
0.12 [−0.42, 0.64], 𝑝𝑏 = 31.53%, 𝛿b = 0.02 [−0.08, 0.13]. Therefore,
our data of the RCCT is in line with other psychological studies using
the CCT (Somerville et al., 2019; Weller et al., 2019).

We did not find any direct effect of the description on risk-taking,
𝑏̃description = 0.42 [−0.19, 1.01], 𝑝𝑏 = 8.07%, 𝛿b = 0.08 [−0.04, 0.20].
The HDI indicates that any difference between conditions is smaller
than 1 and can therefore be neglected. This lack of a substantial effect,
was probably due to the high level of variation in the placebo effect, see
Fig. 8A. However, we found that relative augmentation expectancy (see
Fig. 8B), increased the number of cards chosen in the augmentation con-
dition, 𝑏̃description × augmentation expectancy = 0.72[0.12, 1.32], 𝑝𝑏 = 1.04%,
𝛿b = 0.15 [0.02, 0.26], see also Fig. 8D. The more participants expected
to gain from the augmentation in the game, the more risks they took
when expecting to be augmented, see also Figure Fig. 8C. The direct
placebo effect term, as well as the interaction effect of description ×
augmentation expectancy, were not qualified by any interaction with the
factors loss amount, win amount, or loss cards, all effects centered around
zero with 𝑝𝑏 > 15.94%. The Bayesian analysis can thus show that
relative augmentation expectancy is a necessary condition for risk-taking
during interaction.

5.4. Task load

We compared the average NASA TLX Raw sum score across descrip-
tion. There was no significant difference between conditions, 𝑏̃std =
−0.03 [−0.09, 0.04], 𝑝𝑏 = 21.96%. Looking closely at the posterior
distribution of the mean difference (Fig. 9) and taking into account the
𝐻𝐷𝐼95%, it is highly unlikely that the augmentation condition produced
any kind of increased subjective workload in the TLX. The 𝐻𝐷𝐼95%
indicates that any difference would be smaller than around 1/10 of a
point on the sum-score. We can follow that the effect of the description
on the TLX is negligible and not distinguishable from a null-effect. We
also found no effect on any of the TLX-subscales, all 𝑝𝑏 > 5.23%

5.5. Influence of performance expectations on processing risk-related infor-
mation (H4)

5.5.1. Priors and model selection
One participant had to be discarded from the dataset due to cor-

rupted data in the recordings. Leaving data from 26 participants for
the EEG data analysis. We modeled the EEG separately regarding the
amplitude of the FRN and the P300.

For multilevel-data and average-based analysis of the P300 and FRN
amplitudes in the EEG, we applied normally-distributed priors (M = 0,
SD = 10) on all population-level effects and varying-level effects, and
normally-distributed prior (M = 0, SD = 20) on the intercept. 𝜎 was
modeled with a 𝑡-distributed prior (𝑑𝑓 = 3, 𝑀 = 0, 𝑆𝐷 = 5) and the
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Fig. 9. A: Average TLX sum score with connected individual mean values. Error bars denote ±1 standard error of the mean. B: Prior and posterior density plots. Prior samples in
beige, and posterior samples in green. The relative density increase from prior to posterior shows how the data has informed the model. Posterior samples are centered at zero,
indicating that the effect is likely to be small, or zero.

student-link function with 𝜈 following a 𝛾 distribution with 𝑝 = .1, b
= 2. Two-way interactions in our model were followed up by posterior
predictive plots, which serve a similar purpose as post-hoc comparisons
in classical statistical inference. We used effect-coding on categorical
variables (e.g., 1, −1).

To allow for individual variation of win/loss card effects in subjects,
we added a varying slope for every subject. The population-level effects
of description, augmentation expectancy and win/loss cards were fully
crossed (For the full model specification, see supplementary material).
As event-related EEG data is prone to outliers, we used a student link
function (The deviation of normality was due to the heavy tails of
the distribution. For a histogram and a Shapiro–Wilk test). For model
selection, we compared a null model that only estimated the intercept,
varying slopes, and the mean (LOO𝐹𝑅𝑁 = 512.26, LOO𝑃300 = 616.88)
with a model that accounted for win/loss cards as population-level ef-
fect (LOO𝐹𝑅𝑁 = 508.06, LOO𝑃 300 = 611.16), and then subsequently
added main-effects and fully crossed interaction terms for the description
(LOO𝐹𝑅𝑁 = 515.95, LOO𝑃 300 = 618.24) and augmentation expectancy
(LOO𝐹𝑅𝑁 = 521.53, LOO𝑃300 = 608.11). For the FRN, the best fit
was the NULL model. The LOO information criteria, therefore, suggest
that none of the modeled population-level effects had any influence on
the amplitude of the FRN. For the P300, the most complex model with
all population-level effects had the best fit to the data. We will thus
only analyze the posterior of this P300 model.

5.5.2. Posterior distribution analysis
description affected the strength of the P300, 𝑏̃description = −0.76

[−1.38, −0.08], 𝑝𝑏 = 1.23%, 𝛿b = −.24 [−.47, −0.02]. Participants had
higher P300 amplitudes in the no-augmentation condition 𝑀 = −0.19,

𝑆𝐷 = 5.42 as compared to the augmentation condition 𝑀 = −0.46,
𝑆𝐷 = 5.24. We also found a distinguishable effect of augmentation
expectancy, 𝑏̃expectancy = 1.42 [0.41, 2.38], 𝑝𝑏 = 0.53%, 𝛿b = 0.46
[0.12, 0.82]. With every 10 points of relative augmentation expectancy,
the amplitude of the P300 increases by about 0.14. There was no
distinguishable main effect of win/loss cards on the P300 amplitude
𝑏̃win/loss = −1.05 [−2.13, 0.05], 𝑝𝑏 = 2.97%.

The description × win/loss trials interaction was distinguishable
from zero, 𝑏̃description × win/loss = −0.64 [−1.23, −0.01], 𝑝𝑏 = 2.31%,
𝛿b = −0.21 [−0.42, 0.00], for posterior predictive plot see Fig. 10A.
Likewise, a relative augmentation expectancy × win/loss trials interaction
was distinguishable from zero, 𝑏̃expectancy × win/loss = 1.31[0.18, 2.39],
𝑝𝑏 = 1.30%, 𝛿b = 0.43 [0.05, 0.81] (see Fig. 10B), as well as a description
× relative augmentation expectancy interaction, 𝑏̃description × expectancy× =
−0.90 [−1.45, −0.21], 𝑝𝑏 = 0.85%, 𝛿b = −0.31 [−0.51, −0.09] (see
Fig. 11A).

Note that these two-way interactions were driven by a the three-
way interaction, 𝑏̃description × expectancy × win/loss = −0.97 [−1.48, −0.32],
𝑝𝑏 = 0.42% . To grasp the model estimates and the interaction effects,
we compare the raw data to the model predictions Fig. 12. One can
see that the P300 only increased with augmentation expectancy for the
no-augmentation condition in loss trials; for win cards and loss cards in
the no-augmentation condition, this correlation was not present. We can
thus follow that heightened augmentation expectancy is associated with
a decreased P300 response for loss trials.

6. Discussion

Our study investigated the placebo effect of ATs and their con-
sequences for risk-taking. We replicated prior research on placebo

Fig. 10. A: ERP averaged across the central region (Fz, Cz, Pz, Oz). There is a significant decrease in the P300 amplitudes for description between loss/win -trials for the augmentation
condition. B: Posterior predictive plot for the description × win/loss trials interaction.
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Fig. 11. A: Posterior predictive plot for the win/loss trials × relative augmentation expectancy interaction. B: Posterior predictive plot for the description × relative augmentation
expectancy interaction.

Fig. 12. A: Average P300 for each participant as a function of augmentation expectancy and win/loss cards. B: Predicted P300 by our model contrasting augmentation expectancy
(Augmentation- No augmentation) and win/loss cards.

effects in technology evaluation inducing expectations with a verbal
description of an AT (H1) and after using the sham AT, participants
maintained their judgment of improvement (H2). Consequently, using
ATs results in an inherent perception of improvement in the subject, a

placebo effect. While we have not found a direct effect of the placebo
on risk-taking, our Bayesian analysis demonstrates that an expectation
of improvement is required for increased risk-taking when being told
to be augmented (H3). The P300, which typically occurs in the CCT
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for loss trials (de Groot & Van Strien, 2019), was lowered when antici-
pating support from the augmentation compared to the no-augmentation
condition (H4).

6.1. Experiencing benefits from a Sham AT

The placebo effect of ATs extends previous studies on placebo
effects that focused on improvement after treatment in medical re-
search and psychology (Beedie et al., 2019, 2006; Oken et al., 2007;
Rozenkrantz et al., 2017; Weger & Loughnan, 2013) but also in tech-
nology evaluation (Kosch et al., 2022). In our study, a mere expectation
of improvement changed the user’s risk-taking, and their expectation of
improvement was sustained after use. Particularly interesting is that, in
contrast to Kosch et al. (2022), not only the joint performance with the
assistance system was increased, but the users’ very own capabilities
were expected to be improved. Mapping our results onto theories of
human–computer integration (Mueller et al., 2020), our study can
assert that perceived human–system capabilities may be judged in the
absence of probing system functionality. In this domain of research, our
methodology of employing a placebo AT could be used to study how
human–system integration affects the users’ decision-making. Note,
however, that for the use of placebo for research purposes, the mecha-
nisms (Kosch et al., 2022) and contextual variables (Price et al., 2008)
in the placebo effect of ATs need to be examined more closely.

6.2. Taking risks with ATs

Augmentation technologies are mediators of interaction with the
real world. Our findings indicate that a belief of being augmented,
in conjunction with the user’s expectations regarding the AT’s perfor-
mance, is sufficient to modify the user’s risk-taking behavior. This must
be examined from two standpoints. Firstly, it could be that users pose
a risk to themselves. Secondly, the user could engage in risky behavior
and endanger those around him. This may be exaggerated in situations
where enhancements support in interacting with environments that
pose conditions that cannot be met with the users’ capabilities alone,
but only when augmented, e.g., (Abdelrahman et al., 2017, 2015;
Borenstein et al., 2018).

Our findings suggest that in these situations, decision-making will
be biased in favor of riskier options that match the subjective capa-
bilities of augmentation rather than the objective capabilities of the
AT user (Borenstein et al., 2018). An immediate possibility to prevent
placebo effects from promoting risky decision-making would be to
support the user in building appropriate mental models about the AT,
e.g. by training them to know about the constraints and limitations
of the AT. A more advanced strategy would be to support the user
in an appropriate control. Here, one could give feedback to the user
that human–system capabilities are not enough to meet the user’s
expectations and therefore foster risk-averse decisions. For this, users’
expectations in a given context could be measured verbally (i.e., by
polling expectations), extracted from simulated behavior as in the
RCCT, or based on physiological sensing (e.g., comparing the amplitude
of the P300 for expected and non-expected events). These levels of
information could be integrated and presented to the user in an open-
loop system. In a closed-loop system, the level of support could be
mapped onto expectations in low-risk situations to calibrate the user’s
mental model, e.g., less support by an exoskeleton when carrying an
object that is not too heavy for the user without augmentation. Overall,
our study can highlight that decision-making under uncertainty needs
to be taken into account when designing ATs, irrespective of the actual
human-AT capabilities.

6.3. P300 as a correlate of risk processing for ATs

We observed greater P300 amplitudes in the absence of augmenta-
tion than in the presence of augmentation for loss-trials. In the context
of our study, a reduction in the P300 for loss trials when in the aug-
mentation condition as compared to the no-augmentation condition could
have two concurring explanations. First, Gray, Ambady, Lowenthal, and
Deldin (2004) postulates that in decision-making contexts, the P300
indexes the self-relevance of events. Concerning our study, a reduced
P300 for the augmentation condition could index that non-functional
human-AT interaction are processed as less self-relevant. Secondly,
one can argue that this was only due to a difference in brain-related
potentials caused by perceived ambiguity in decision-making. Previous
research by Wang, Zheng, Huang, and Sun (2015) shows that the P300
amplitude is attenuated in ambiguous situations of risk-taking and less
attenuated when there is less ambiguity concerning outcomes. In our
study, the augmentation condition represents less ambiguity as com-
pared to the no-augmentation condition because participants subjectively
experienced more control over the outcomes of their decisions, i.e., an
advantage in knowing where the loss cards are. However, looking
closely at our results, the reduced P300 was only found in loss trials
and not in win trials and not only as a main effect. Thus, it is likely that
self-relevance, as posed by Gray et al. (2004) can explain the pattern
in our data. Information about loss trials was not preferably processed
as self-relevant when being augmented.

6.4. Effects of ATs on information processing in augmented individuals

While previous research has suggested that Augmentation Technolo-
gies (ATs) may impact self-perception and behavior (Mueller et al.,
2020), empirical evidence has been lacking until now; Our results show
a notable change in P300 amplitude based on expectancy of augmen-
tation, which may be explained by self-relevance; this finding raises
questions about how people process information in tasks performed
with AT support. This highlights the significance of developing more
effective ATs, given their potential impact on decision-making, as well
as the importance of further investigating decision-making when using
ATs.

6.5. Evaluation of human augmentation

The placebo literature so far emphasizes either physical artifacts
(e.g., pills) or psychological treatment
(Stewart-Williams & Podd, 2004). Our study reaffirms (Kosch et al.,
2022) position to add a new subcategory of placebos to placebo
research, namely, those introduced by digital artifacts.

There are two concurrent processes for describing placebo effects
in placebo studies. Expectancy-oriented theories suggest that the occur-
rence of placebo effects is caused by a rise in treatment efficacy beliefs.
Contrarily, conditioned response explanations define the placebo effect
in terms of the strength of previously established stimulus–response
linkages (such as those between taking a drug and feeling better). As
ATs are completely new to individuals, no linkages between stimulus
and reaction could have formed. Our findings, therefore, align with
the expectancy-based mechanisms of the placebo effect. Still, one could
argue that high-level linkages of novel technology and subjective im-
provement could have formed, however, this cannot explain the results
we obtained on a physiological level that are specific to the integration
of loss-information. Also, other mechanisms for placebo induction exist,
such as social learning (Kirsch, 1999) that are plausible to persist for
ATs and other technologies, e.g., observing someone else receiving a
benefit from using an AT and should be explored.

Based on our replication of placebo effects in ATs, we follow that
controlling for placebo effects in AT research, much like in psychologi-
cal and medical intervention studies, is necessary. However, in contrast
to medical and psychological research, participants in user studies of
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technology are often aware of the novelty of a new technology. They
can infer which user group they are in. Therefore, in line with (Kosch
et al., 2022), we recommend implementing measures of placebo control
that align with practices and constraints in the particular area of
research. We present five ways of controlling for the placebo effects of
ATs. These represent neither an exhaustive list nor a general solution to
the problem of placebo control for ATs; While some of these guidelines
apply to other domains technology evaluation, every study has to be
carefully and individually designed to show an effect above and beyond
the placebo effect.

Five ways of addressing the placebo effect in the evaluation of
ATs:

1. Present a placebo condition with a non-functional AT and com-
pare it to the functional system – placebo-control

2. Control for contextual aspects (Wager & Atlas, 2015) that are
known to increase placebo effects – placebo-reduction

3. Poll expectations before and after use – placebo-indicator
4. Consider indirect measures (e.g., physiological measures) when

probing the AT – placebo-indicator
5. Assess users’ qualitative statements in an interview can highlight

a mismatch between expectation – placebo-indicator

One could argue that this research paves the way for a variety of
follow-up investigations for each new technology. However, medical
placebo trials can provide a framework for defining the limits of such
follow-up research.

First, only studies that can identify the conditions and mecha-
nisms under which placebo effects occur, the potential consequences
of placebo effects are relevant to technology evaluation. Here, there is
substantial knowledge in the medical literature to start and replicate
effects that generalize across technologies.

Second, AI in human-centered AI, or augmentation technologies are
examples of technology that create high expectations in their users.
Therefore another constraint is that only technologies that raise high
expectations may need placebo control. Third, the placebo effects we
found are small and thus false-positive inferences due to placebo effects
may only be relevant for user studies that found small effects in statis-
tical comparisons. Overall, while placebo research must be considered
in the evaluation of technology, we have to understand the constraints
and mechanisms of placebo effects in the evaluation of technology
before discrediting large amounts of prior research.

6.6. Implications for motor and sensory augmentations

Expectations regarding the perception of external events are known
as stimulus expectancy, whereas expectations regarding our own invol-
untary reactions to events are known as response expectancy (Kirsch,
2018). An example of a response expectancy would be the belief
that a sugar pill will improve response time. In contrast, a placebo
that improves target detection concentration could be considered a
stimulus anticipation. While both expectancy mechanisms to placebo-
effects have been studied in the medical domain, it has not yet been
determined how these mechanisms contribute to the evaluation of AI
augmentation technologies.

For example, Kosch et al. (2022) employed a response expectancy
framing technique, informing participants that the task would be easier
to complete. However, augmentation technologies can also generate
stimulus expectancy. A placebo in sensory augmentation would be
considered a stimulus expectancy, whereas a placebo in motor and
cognitive augmentation would be a response expectancy. While re-
sponse expectancies are considered more stable and robust in producing
placebo effects, stimulus expectancies rely on the ambiguity of the
stimulus (Kirsch, 2018). As placebo effects for stimulus expectancy can
be modulated by stimulus ambiguity and are typically weaker than
response expectancies in terms of the placebo effect, future research
should investigate whether the likelihood of placebo effects varies
between augmentation approaches, i.e., sensory, motor, and cognitive.

6.7. Generalizability to other technological contexts

Our study has examined the contextual factors related to cogni-
tive ATs, which is an emerging and highly anticipated technology.
Due to the limited understanding of this technology and the external
narratives surrounding it, users may develop high expectations of its
capabilities (Cave, Coughlan, & Dihal, 2019). Similarly, overhyped
technologies such as AI have been found to induce placebo effects and
affect user performance. Hence, it can be argued that expectations of
technologies are central in the judgment of their performance, thus
emphasizing the significance of user perception of the technology over
its form factor which was embodied in our study but was desktop-based
in Kosch et al. (2022). Thus, researchers should consider controlling for
users’ expectations of the technologies under investigation to prevent
potential biases in evaluations and alterations in user behavior. This,
for example, implies that tools such as the Technology Acceptance
Model (King & He, 2006) must account for user expectations.

Currently, the placebo literature in Medicine and Psychology em-
phasizes the role of physical artifacts (e.g. pills) or psychological treat-
ments (de Jong, van Baast, Arntz, & Merckelbach, 1996; Stewart-
Williams & Podd, 2004). However, placebo effects can be found for
game elements, e.g., power-ups, (Denisova & Cairns, 2015; Denisova
& Cook, 2019), control modules in user interfaces (Vaccaro et al.,
2018), or when being supported by AI (Kosch et al., 2022). There-
fore, our study supports the hypothesis that verbal descriptions of
digital-technological artifacts can serve as a placebo.

6.8. Limitations and future work

Several limitations have to be taken into account concerning our
study. First, we did not assess a functional augmentation system. We
only compared the placebo to a control condition. Future research
should compare all three conditions: A functional augmentation system,
a non-functional placebo system, and a control condition. This will
allow the researcher to compare the size of the placebo effect, given
the context, task, and AT, to the real benefit that the user receives from
the functional AT.

Second, we did not examine the differences caused by the type
of augmentation. Our narrative was bound to cognitive augmentation
technologies and did not include sensory or motor augmentations.
A placebo in sensory ATs would change how a user perceives their
environment. Considering that stimulus expectancies are not as robust
as response expectancies (Kirsch, 1999), it could be that sensory aug-
mentations are less susceptible to placebo effects than cognitive and
motor augmentations. One could compare this by presenting the same
sham AT to a participant and framing it once in terms of augmenting
sensory abilities and once in terms of augmenting the user’s cognitive
or motor abilities.

Third, we assessed affective risk-taking using a standardized lab-
based task. While the hot CCT shows good external validity and cor-
relates with other lab-based measures of affective risk-taking (Buelow
& Suhr, 2009; Somerville et al., 2019; Weller et al., 2019), it does
not cover more deliberate decision-making under risk (Buelow & Suhr,
2009) which could be studied with the cold CCT. Still, both CCTs are
abstract in nature. Ultimately, to understand the aspects of biases in
decision-making with ATs, behavior has to be observed in real-world
contexts.

Fourth, one could argue that there is no direct placebo effect on
risk-taking; therefore, ATs will not change how people make decisions.
Only participants with heightened expectations increased their risk-
taking. Therefore, not the belief in augmentation but the heightened
expectations pose the problem of a placebo effect of ATs. We may
confront this position with the data on the P300 as a retort. While it is
true that for risk-taking to manifest, elevated expectations need to be
present, the P300 was reduced irrespective of expectancies. Therefore,
while only indirect effects on risk-taking are found, we find a direct
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effect on information processing in loss trials. Still, to show the direct
effects of placebo on risk-taking, larger samples might be needed to
reduce uncertainty in the estimation of parameters. Indeed, as we
used Bayesian parameter estimation for the analysis of our data, the
posterior of our models can be used as a prior for the studies to come.

Finally, our research focuses on ATs, which have specific internal
characteristics such as form factor and purpose of use (Raisamo et al.,
2019) and external characteristics such as narratives, social perception,
and expectations (Villa et al., 2023). These characteristics may affect
the generalizability of our findings to other types of technologies that
do not share these features. Therefore, researchers should consider
assessing the placebo effect of various types of technologies.

7. Conclusion

This work shows that expectations with regard to ATs can increase
risk-taking. We report a placebo effect, a belief in ATs functionality
induced by a verbal description. This belief was sustained after the
interaction. We find that participants take more risks during interaction
with the AT when they expect the augmentation to support them. We
also find a relative reduction in P300, an index of self-relevance of
a stimulus, when participants were supposedly augmented and were
encountering risk-related information. Our study suggests that placebo
effects are relevant for the use of ATs and they affect decision-making
under uncertainty, e.g., in safety–critical environments. Likewise, we
suggest that much like other fields of human-related research, such
as psychology and medicine, research on ATs should consider placebo
control. Improvement by an AT must surpass a placebo to constitute a
significant improvement.
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